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Chapter 1

Introduction

There are three groups of students in a Trainee School. Each one of them should
have a one-day session with his coaching team, formed by all his teachers. How
many days are needed in order to schedule all meetings?

Teachers: Mr.Lopez Mr.Perez Mrs.Gonzalez

Mrs.Smith Mrs.Smith Mr.Key
Groups: Mr.Key Mrs.Grant Mrs.Grant

Mr.Nelson Mr.Cox Mr.Atkins
Mrs.Lee

Figure 1.1: The groups in the Trainee School

This question can be answered solving a vertex-colouring problem of the graph that
models the situation: each student is represented by a vertex and two vertices are
connected if and only if the corresponding students share a group, as follows.

Nelson Cox

Key

Smith

Grant

Atkins

Lee

Figure 1.2: Graph representing the groups in the Trainee School

And then, colours are assigned to each vertex of the graph in such a way that
adjacent vertices receive different colours. Hence, the graph will be proper coloured
(in this thesis, we will always talk about proper colourings).
In this case the colour assigned to each vertex represents the day in which this
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1 INTRODUCTION

student is meeting his teachers. One possible solution is given by Figure 1.3

1
2

3

2

3

1

4

Nelson

Smith

Cox

Grant

Key

Lee

Atkins

Meetings 1st day: Key - Lopez and Gonzalez Cox - Perez
Meetings 2nd day: Nelson - Lopez Grant - Perez and Gonzalez
Meetings 3rd day: Smith - Lopez and Perez Atkins - Gonzalez
Meetings 4th day : Lee - Gonzalez

Figure 1.3: Vertex-Colouring

Hence, all meetings could be arranged in 4 days and obviously it could not be done
in less days, since Mrs. Gonzalez has four students and she needs one day per each
of them.
On the other hand, another possible situation is that the students should work in
pairs with each of their group partners during a day to prepare a presentation about
an hypothetic product. How many days are required in order to have all presen-
tations done? This question can be solved by colouring the edges of the previous
graph, where the colour assigned to an edge is the day when the corresponding pair
is working together, for example as follows.

1

23

4

2

5

1

2

3

1

5

4

Nelson Cox

Grant

Smith

Key

Lee

Atkins

Meetings 1st day: Smith-Nelson Key-Grant Atkins-Lee
Meetings 2nd day: Smith-Cox Key-Atkins Grant-Lee
Meetings 3rd day: Key-Lee Grant-Atkins
Meetings 4th day: Smith-Key Cox-Grant
Meetings 5th day: Key-Nelson Smith-Grant

Figure 1.4: Edge-Colouring
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1 INTRODUCTION

Hence, all presentations can be done in 5 days. It is an optimal solution, since Mr.
Key and Mrs. Grant have five partners.
Following with these examples, one might think if both activities (the coaching
sessions and the team work) can be scheduled in such a way that two activities
cannot be done on the same day. Obviously it could be done in 9 days, just doing
the coaching sessions at first and then prepare the presentations, but now, as we
will see, this solution can be optimized if the activities can be alternated. It is a
typical application of the total-colouring. One possible solution is shown in Figure
1.5 where, as before, the vertices colours represent the days in which this student is
having his coaching session and the edges colours represent the days in which the
corresponding students are meeting.

1

23

4

2

5

4

2

3

1

5

6

6
4

1

2

3

5

1

Atkins

Lee

Grant

Key

Cox

Smith

Nelson

Meetings 1st day: Smith-Nelson Key-Grant Cox-Perez Atkins-Gonzalez
Meetings 2nd day: Smith-Cox Key-Atkins Grant-Lee Nelson-Lopez
Meetings 3rd day: Key-Lee Grant-Atkins Smith-Lopez and Perez
Meetings 4th day: Smith-Key Atkins-Lee Grant-Perez and Gonzalez
Meetings 5th day: Key-Nelson Smith-Grant Lee-Gonzalez
Meetings 6th day: Grant-Cox Key-Lopez and Gonzalez

Figure 1.5: Total-Colouring

Hence, all activities can be done in 6 days. And this is an optimal timing since Mr.
Key and Mrs. Grant need 5 days to prepare the presentations with their partners
and one day for their coaching sessions.

As it has been shown, all these problems can be solved using classical colourings.
But what happens if some other constraints are introduced? For example it would be
natural that the teachers would need at least one day between two coaching sessions
in order to prepare them. Or that the students do not need just one day to prepare
the presentation, but that at least three.
This is a typical example in which the [r, s, t]-colouring can be used, in other words,
a situation in which vertices and edges are coloured in such a way that elements of
the graph that are in contact receive not only different colours, but there must be
also a certain distance r between colours of adjacent vertices, a distance s between
colours of adjacent edges and a distance t between colours of incident vertices and
edges (for a formal definition see Definition 2.21).
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1 INTRODUCTION

Then, the situation presented above can be considered as a [2, 3, 1]-colouring of the
graph (if supposed that a coaching session cannot be done on the first day that one
student is preparing a presentation), for example as shown in Figure 1.6.

1

47

10

4

13

1

4

7

1

13

10

2
5

1

7

10

8

4
Nelson

Smith

Cox

Grant

Key

Lee

Atkins

Figure 1.6: [2, 3, 1]-Colouring

Hence all activities with the demanded constraints can be achieved in 15 days (the
presentations starting on the 13th day, still need two days to be done), which is
optimal because Mr. Key and Mrs. Grant need for their five presentations at least
this time.
On the other hand, some examples illustrate that this colouring respects the con-
straints: For instance, Mr.Key makes his 5 presentations, using three days for each
of them, in such a way that he is starting the 5th presentation on the 13th day
and he has his coaching session on the 2nd day, when he has not started preparing
any presentation; on the other hand the teacher Mr.Lopez directs a coaching session
with Mr.Key on the 2nd day, with Mr.Nelson on the 4th day and with Mrs.Smith
on the 7th day, hence he always has at least 1 day to prepare the next coaching.

Another example of application of the [r, s, t]-colouring was introduced by Kemnitz
and Marangio [11], as follows.

Assume that in a soccer tournament there is an elimination round where four teams
are playing, such that each team plays one match against the others. During this
round each team should get the possibility of a training day. Since there is only one
training field, different training days must be assigned to the teams. Furthermore,
a training day of a team should be different from a playing day and no team should
play two successive days.

All required conditions are fulfilled in a [1, 2, 1]-colouring of a complete graph K4 if
one assigns the vertices of K4 to the training days of the teams and the edges to the
matches between them.

Figure 1.7 shows in the right picture a [1, 2, 1]-colouring with 6 colours of the com-
plete graph K4. It means then that one can arrange a schedule for the considered
soccer tournament round fulfilling all the desired conditions in six days. On the
other hand, the left picture shows a [2, 4, 1]-colouring of K4 with 9 colours, which
would model another situation in which two teams cannot train on two consecutive
days, between the matches of a team there must be at least 3 free days and there
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1 INTRODUCTION

24

6 8

1 1

5

5

9

9

24

5 3

1 1

3

4

6

6

Figure 1.7: A [2, 4, 1]-colouring and a [1, 2, 1]-colouring of K4

cannot be two activities for a team on the same day.

Hence, as seen, using [r, s, t]-colourings it is possible to solve more general situations
than just with the classical colourings.

In Section 2.1 the classical colourings will be formally introduced and known results
will be presented for some classes of graphs that are relevant for this thesis.

The notion of [r, s, t]-colouring was introduced by Arnfried Kemnitz, Massimiliano
Marangio and Andrea Hackmann in a discussion in 2002 and a paper of them [11]
is in preprint. There, the definition of [r, s, t]-colouring, certain properties and also
several results for complete graphs are given. Some of them will be presented in
Section 2.2.

As a first step to determine the [r, s, t]-chromatic number for some graphs, the
simplest classes were studied. In Chapter 3 and Chapter 4 the exact value of the
[r, s, t]-chromatic number for paths and cycles are determined, respectively.

Since for the [r, s, t]-colouring, the hereditary property for subgraphs holds (Lemma
2.22), one of the most interesting classes to be considered are the stars. Studying
a graph G, the [r, s, t]-chromatic number of the star with ∆(G) (maximum degree
of G) leaves is a lower bound for its [r, s, t]-chromatic number. In Chapter 5 the
[r, s, t]-chromatic number for K1,3 is determined and for K1,n bounds and some exact
values are given.

Finally in Chapter 6 some more results for bipartite graphs and complete graphs
are given.

The terminology and notation of the books by D.B. West [19] and H.P. Yap [20]
will be mainly used. In addition a Glossary with some basic terminology and other
terms that will be defined in this work can be found in the last pages.
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Chapter 2

Preliminaries

2.1 Classical Colourings

One of the graph-theoretical parameters that has received more attention over the
years is the chromatic number, undoubtedly due to its involvement in the Four
Colour Theorem. It says that every map drawn on a sheet of paper can be coloured
with just four colours in such a way that countries sharing a common border receive
different colours (provided that all countries are connected regions).

The first known document on the Four Colour Problem is a letter dated October 23,
1852, written by August DeMorgan to his colleague Sir William Rowan Hamilton.
There, he wrote that his student Frederick Guthrie (who later attributed it to his
brother Francis) asked him about the Four Colour Problem and that he was not
able to solve it.

In 1879, one year after the proposal of the problem to the London Mathematical
Society by Arthur Cayley, Alfred Bray Kempe published a paper [12] that claimed
to prove that the conjecture was true. In 1890, Percy J. Heawood published a
refutation and a first proof of the Five Colour Theorem [8].

Even though, Kempe’s argument contained most of the basic ideas that eventually
lead to the correct proof by Kenneth Appel and Wolfgang Haken working with John
Koch [1, 2, 3] one century later, in 1976. It is a quite unusual proof, due to the fact
that it made unprecedented use of computer computation: the correctness of the
proof cannot be checked without the aid of computer and some of the crucial ideas
were upgraded by computer experiments.

In 1997, Neil Robertson, Daniel P. Sanders, Paul Seymour and Robin Thomas gave
a simpler proof of the Four Colour Theorem [15, 16], but which still contains several
hundred irreducible cases.

The Four Colour Problem could be seen as a vertex-colouring problem for a planar
graph being the dual graph of a map G. The dual graph G∗ of a map G is a planar
graph whose vertices correspond to the faces of G and the edges correspond to the

6



2.1 CLASSICAL COLOURINGS

edges of G as follows: if e is an edge of G with face X on one side and face Y on
the other side, then the end points of the dual edge e∗ ∈ E(G∗) are the vertices
x, y ∈ G∗ that represent the faces X, Y of G.

2.1.1 Vertex-Colouring

The colouring of the faces of a map corresponds to a colouring of the vertices of its
line graph defined as follows.

Definition 2.1. A proper k-colouring (or k-vertex-colouring) of a graph G is a
labelling f : V (G) → S, where |S| = k and adjacent vertices have different labels.
The labels are called colours. A graph is k-colourable if it has a proper k-colouring.
The chromatic number X (G) is the least k such that G is k-colourable.

If f is a proper k-colouring of G, then f yields a partition of the set of vertices
of G, V (G), into independent sets V1, . . . , Vk. These independent sets V1, . . . , Vk of
vertices of G are called colour classes of f .

And the Four Colour Theorem for maps leads to the corresponding theorem for
graphs.

Theorem 2.2 (Four Colour Theorem). For any simple connected planar graph
exists a proper 4-colouring.

Putting aside planar graphs and the Four Colour Theorem, there will be shown some
general known results for vertex-colouring of graphs.

Graphs with loops are uncolourable, since the colour of a vertex cannot be made
different from itself. Therefore, in this subsection all graphs are loopless. Also,
multiple edges are irrelevant, because extra copies of edges do not affect colourings.
Thus it will be thought in terms of simple graphs. Most of the statements made
without restriction to simple graphs remain valid when multiple edges are allowed.
The investigation can be also restricted to connected graphs, since the number of
colours needed to colour a disconnected graph is the maximum of the colours needed
to colour each of its components.

Although the chromatic number is one of the most studied parameters in graph the-
ory, no practicable formula exists for the chromatic number of an arbitrary graph. In
fact, Stockmeyer [14] proved that the 3-colorability problem is NP-complete, which
leads to the NP-completeness of the k-colorability problem for k ≥ 3. This means
that there is no known polynomial-time algorithm that can answer the question
whether a graph is k-colorable or not.

The goal is to find an upper and a lower bound that coincide, because then X (G) is
equal to this common value. But in fact, in many cases there will only be possible
to find bounds close enough one from the other.

If the clique number, ω(G), of a graph G is the maximum size of a set of pairwise
adjacent vertices (clique) in G, then an obvious bound is X (G) ≥ ω(G), since in the

7



2.1 CLASSICAL COLOURINGS

clique each vertex must receive a different colour.
This idea yields to the concept of perfect graph, a graph in which this bound is
sharp, so X (G) = ω(G). In 1960, Claude Berge [7] conjectured that, every graph
with no odd hole or antihole is perfect, where an odd hole is an induced subgraph
which is an odd cycle of length at least five, and an odd antihole is the same in the
complement graph.
A proof of the conjecture was not completed until 42 years later. It was 2002
when Paul Seymour, Maria Chudnovsky, Neil Robertson and Robin Thomas finally
completed it.

On the other hand, an upper bound for the chromatic number of graphs can be easily
found. By induction, it is proved that a graph G with maximum vertex degree ∆(G)
can be coloured with ∆(G) + 1 colours. This bound was improved by Brooks [6].

Theorem 2.3 (Brooks’ Theorem). Let G be a connected simple graph. If G
is neither a cycle with an odd number of vertices, nor a complete graph, then
X (G) ≤ ∆(G).

Vertex-Colouring for some Classes of Graphs

The bound mentioned before the Brook’s Theorem, X (G) ≤ ∆(G) + 1, holds with
equality for complete graphs and odd cycles.

Lemma 2.4. For the complete graph with n vertices, Kn, it holds

X (G) = ∆(Kn) + 1 = n,

for all n.

Proof. Since any vertex has ∆(Kn) = ∆ neighbors, obviously ∆ + 1 colours are at
least needed, which coincides with the upper bound.

Lemma 2.5. For any cycle of odd order, C2n+1, it holds

X (C2n+1) = ∆(C2n+1) + 1 = 3.

Proof. Since each colour class is an independent set, a graph is 2-colourable if and
only if it is bipartite. Then, odd cycles, which are no bipartite graphs, have chromatic
number greater or equal 3 and since they are 3-colourable X (C2n+1) = 3 for all
n ≥ 1.

In the previous proof there was a very interesting result for this thesis, which follows
from the fact that each colour class is an independent set.

Lemma 2.6. For any bipartite graph G, it holds

X (G) = 2.

Hence, this value holds for non trivial paths, cycles of even order and stars, since all
of them are bipartite graphs.

8



2.1 CLASSICAL COLOURINGS

2.1.2 Edge-Colouring

Many of the previous questions and results are naturally analogues for edges and
this can be explained by means of the relation between independent sets and match-
ings: independent sets have no adjacent vertices and matchings have no adjacent
edges. Then, if vertex-colourings partition the vertex set into independent sets, in
an analogous way the edge set can be partitioned into matchings.

Definition 2.7. A proper k-edge-colouring of a graph G is a labelling f : E(G) → S,
where |S| = k and adjacent edges have different labels.
Again the labels are called colours. A graph is k-edge-colourable if it has a proper
k-edge-colouring. The edge-chromatic number (or chromatic index) X ′(G) is the
least k such that G is k-edge-colourable.

If f is a proper k-edge-colouring of G, then f yields a partition of E(G) into inde-
pendent sets E1, . . . , Ek. These independent sets E1, . . . , Ek of edges of G are called
colour classes of f .

Edge-colouring and vertex-colouring are related via line graphs.

Definition 2.8. The line graph of G, written L(G), is the simple graph whose
vertices are the edges of G, with ef ∈ E(L(G)) when e and f are adjacent in G.

Then, questions about edges in a graph G can be phrased as questions about vertices
in L(G). This observation appears to be of little value in computing edge-chromatic
number, since chromatic numbers are in general extremely difficult to evaluate. If
the chromatic-number can be computed, then the original question about edges in
G can be answered by applying the vertex result to L(G).
However, note that from any graph G, L(G) can be build, but not for any graph H,
a graph G, such that L(G) = H, can be found.

In contrast with Subsection 2.1.1, multiple edges greatly affect X ′(G), but in this
thesis just simple graphs will be considered. A graph with a loop has no proper
edge-colouring, thus it will be thought in terms of loopless graphs. As on vertex-
colouring, the study can be restricted to connected graphs, since the number of
colours needed to edge-colour a disconnected graph is the maximum of the colours
needed to edge-colour each of its components.

Since edges sharing a vertex need different colours, X ′(G) ≥ ∆(G). The upper
bound X ′(G) ≤ 2∆(G) − 1 also follows easily: if the edges are coloured in some
order, always assigning to the current edge the least-indexed colour different from
those already appearing on edges adjacent to it. Since no edge is adjacent to more
than 2(∆(G) − 1) other edges, this never uses more that 2∆(G) − 1 colours.
Using a procedure in which ∆(G) + 1 colours are available and a proper edge-
colouring is built, incorporating edges one by one until a proper ∆(G) + 1-edge-
colouring is found, much better upper bounds have been established by Vizing [17,
18]. This shows that the trivial lower bound is almost sharp.

9



2.1 CLASSICAL COLOURINGS

Theorem 2.9 (Vizing’s Theorem). Let G be a simple graph, then
∆(G) ≤ X ′(G) ≤ ∆(G) + 1.

Hence, all graphs can be divided in two classes.

Definition 2.10. A simple graph G is Class 1 if X ′(G) = ∆(G) and it is Class 2
if X ′(G) = ∆(G) + 1.

Anyway, determining whether a graph is Class 1 or Class 2 is, as Holyer [9] proved,
generally an NP-complete problem.

Edge-Colouring for some Classes of Graphs

For bipartite graphs the trivial lower bound is achieved and there is a good algorithm
to obtain a proper ∆(G)-edge-colouring in a bipartite graph G, as König [13] proved.

Theorem 2.11 (König’s Theorem). All bipartite graph are Class 1.

Thus paths, cycles of even order and stars are Class 1.
On the other hand, cycles of odd order are Class 2.

Lemma 2.12. All odd cycles, C2n+1, are Class 2.

Proof. For a regular graph G, a proper edge-colouring with ∆(G) colours is equiv-
alent to a decomposition into perfect matchings. Since odd cycles are regular and
have no such a decomposition, X ′(C2n+1) > ∆(C2n+1) = 2, and C2n+1 is 3-edge-
colourable, so X ′(C2n+1) = 3, for all n.

The chromatic index of complete graphs has been studied by many authors, for
example Vizing [18], Behzad, Chartrand and Cooper [5].

Lemma 2.13. For all complete graphs, Kn, it holds

X ′(Kn) =

{

n − 1 if n even;

n if n odd.

2.1.3 Total-Colouring

The notion of total-colouring is a generalization of the previous concepts and it was
introduced and studied by Behzad [4] and Vizing [17] around the year 1965. With
this colouring, not just vertices or edges have to be coloured, but every element of
the graph (every element of V (G) ∪ E(G)) has to be coloured in such a way that
neighboring elements receive different colour.

10



2.1 CLASSICAL COLOURINGS

Definition 2.14. A proper k-total-colouring of a graph G is a labelling
f : V (G) ∪ E(G) → S, where |S| = k and no two adjacent vertices or edges have the
same label and the image of each vertex is distinct from the images of its incident
edges.
The labels are again called colours. A graph is k-total-colourable if it has a proper
k-total-colouring. The total-chromatic number XT (G) is the least k such that G is
k-total-colourable.

Thus if f is a total-colouring of G, then f |V (G), the restriction of f on V (G), is a
vertex-colouring of G. Similarly, f |E(G) is an edge-colouring of G. Taking this into
account, it follows that a total-colouring f of G yields a partition of V (G) ∪ E(G)
into independent sets V1 ∪ E1, V2 ∪ E2, . . . , where V1, V2, . . . are independent sets
of vertices of G and E1, E2, . . . are independent sets of edges of G, and no vertex
in Vi is incident with any edge in Ei. These independent sets V1 ∪ E1, V2 ∪ E2, . . .
are called the colour classes of f . Conversely, any partition of V (G) ∪ E(G) into
independent sets V1 ∪ E1, V2 ∪ E2, . . . , Vk ∪ Ek leads to a k-total-colouring of G.

Since a total-colouring of G is a vertex-colouring and an edge-colouring of G at the
same time, the degree of difficulty of this subject is obvious.

Similar to the study of vertex- and edge-colouring of graphs, in the study of the
total-colouring of a graph G, it shall be assumed that G is connected. On the other
hand, it will be also restricted to loopless and simple graphs.

Clearly, for any graph G, XT (G) ≥ ∆(G) + 1, since a vertex of maximum degree
needs a different colour from those ∆(G) assigned to its incident edges.

On the other hand, since every element of the graph G (every element of V (G) ∪
E(G)) has at most 2∆(G) neighbors, a trivial upper bound is XT (G) ≤ 2∆(G) + 1,
for all graphs G.
The following conjecture aiming a better general upper bound was posed indepen-
dently by Behzad [4] and Vizing [17] in 1965.

Theorem 2.15 (Total-Colouring Conjecture (TCC)). For any graph G,
XT ≤ ∆(G) + 2.
(In fact, Vizing posed a more general conjecture for graphs with multiple edges which
says that for any multigraph G, XT ≤ ∆(G) + µ(G) + 1, where µ(G) denotes the
maximum multiplicity of edges in G.)

Hence if the TCC is considered true, all simple graphs can be divided in two classes.

Definition 2.16. A simple graph G is Type 1 if XT (G) = ∆(G) + 1 and it is Type
2 if XT (G) = ∆(G) + 2.

The TCC was proved true for a few classes of graphs in the 1970’s. Only recently,
some new techniques have been introduced and used to prove that the TCC holds
for some more classes of graphs, especially graphs having high maximum degree.

11



2.2 [R, S, T ]-COLOURING

For example, the TCC holds for bipartite graphs: since X (G) = 2 (Lemma 2.6) and
X ′(G) = ∆(G) (König’s Theorem 2.11) for all bipartite graph G, vertices and edges
can be coloured separately using no more that ∆(G)+2 colours. On the other hand,
Behzad, Chartrand and Cooper [5] proved the TCC for cycles in 1971.

Total-Colouring for some Classes of Graphs

For paths and cycles, the total-chromatic number can be easily determined: first,
search for a possible colouring with ∆(G)+1 colours. If it not possible, then ∆(G)+2
colours are enough, since the TCC holds for them.

Lemma 2.17. Every path, Pn, is Type 1.

Lemma 2.18. For every cycle, Cn, it holds

XT (Cn) =

{

3 if n ≡ 0(mod 3);

4 if n 6= 0(mod 3).

Finally, the total-chromatic number for complete bipartite graphs (in particular for
stars) and for complete graphs was determined by Behzad, Chartrand and Cooper
[5] in 1967.

Lemma 2.19. For any complete bipartite graph, Kn,m, it holds

XT (Kn,m) =

{

∆(Kn,m) + 1 if n 6= m;

∆(Kn,m) if n = m.

Lemma 2.20. For any complete graph, Kn, it holds

XT (Kn) =

{

∆(Kn) + 1 = n if n odd;

∆(Kn) = n − 1 if n even.

2.2 [r, s, t]-Colouring

In 2002, Hackman, Kemnitz and Marangio, working on total-colourings, observed
that some situations could not be modelled with this colouring and introduced a new
concept: the [r, s, t]-colouring. As before, vertices and edges have to be coloured,
but neighboring elements have to receive not only different colours but also colours
with a certain difference r between colours of adjacent vertices, a distance s between
colours of adjacent edges and a distance t between colours of incident vertices and
edges. Observe that these distances can be defined because the labels, that we called
colours, are in fact natural numbers.
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2.2 [R, S, T ]-COLOURING

Definition 2.21. Given non-negative integers r, s and t, an [r, s, t]-colouring of a
graph G = (V (G), E(G)) is a mapping c from V ∪E(G) to the colour set {1, 2, ..., k}
such that |c(vi)− c(vj)| ≥ r for every two adjacent vertices vi, vj , |c(ei)− c(ej)| ≥ s
for every two adjacent edges ei, ej , and |c(vi) − c(ej)| ≥ t for all pairs of incident
vertices vi and edges ej , respectively.
The [r, s, t]-chromatic number Xr,s,t(G) of G is defined to be the minimum k such
that G admits an [r, s, t]-colouring.

Obviously, a [1, 0, 0]-colouring is a classical vertex-colouring, a [0, 1, 0]-colouring is a
classical edge-colouring and a [1, 1, 1]-colouring is a classical total-colouring.

Hence, there are several different applications for such [r, s, t]-colourings.

Properties of the [r, s, t]-Chromatic Number

Some hereditary properties of the [r, s, t]-chromatic number were given by Kemnitz
and Marangio [11].
For instance, since the restriction of an [r, s, t]-colouring of a graph, G, to the ele-
ments of any of its subgraphs, H ⊆ G, is an [r, s, t]-colouring of H, the [r, s, t]-
chromatic number of any subgraph of G is a lower bound for the [r, s, t]-chromatic
number of G.

Lemma 2.22. If H ⊆ G then

Xr,s,t(H) ≤ Xr,s,t(G).

On the other hand, an [r, s, t]-colouring of G is, by definition, an [r′, s′, t′]-colouring
for G for any r′, s′ and t′, such that r′ ≤ r, s′ ≤ s and t′ ≤ t.

Lemma 2.23. If r′ ≤ r, s′ ≤ s, t′ ≤ t then

Xr′,s′,t′(G) ≤ Xr,s,t(G).

Using a vertex-colouring (or an edge-colouring) of the graph G, an [r, 0, 0]-colouring
(or a [0, s, 0]-colouring) of G can be easily found. The vertices (or edges) have to
be recoloured in such a way that an element, that had the colour i in the original
vertex-colouring (or edge-colouring), receive the colour r(i− 1) + 1 (or s(i− 1) + 1).

Lemma 2.24. If G is non-trivial then

1. Xr,0,0(G) = r(X (G) − 1) + 1,

2. X0,s,0(G) = s(X ′(G) − 1) + 1.

Kemnitz and Marangio gave also bounds for the [r, s, t]-chromatic number of a gene-
ral graph G, as follows

max{r(X (G)−1)+1, s(X ′(G)−1)+1, t+1} ≤ Xr,s,t(G) ≤ r(X (G)−1)+s(X ′(G)−1)+t+1,

which can be improved in a first step as shown in Lemma 2.25.

13



2.2 [R, S, T ]-COLOURING

Lemma 2.25. For the [r, s, t]-chromatic number of a graph G, it holds

max{r(X (G)−1)+1, s(X ′(G)−1)+1, t+∆(G)} ≤ Xr,s,t(G) ≤ r(X (G)−1)+s(X ′(G)−1)+t+1,

if |V (G)| ≥ 2, G 6= Kn and s, t ≥ 1 (where ∆(G) is the maximum degree of G and
Kn is the empty graph).

Proof. By Lemma 2.24 and 2.23

r(X (G) − 1) + 1 = Xr,0,0(G) ≤ Xr,s,t(G)
s(X ′(G) − 1) + 1 = X0,s,0(G) ≤ Xr,s,t(G)

On the other hand, the star K1,∆ consisting of a vertex of maximum degree ∆ := ∆(G),
v0, and its adjacent vertices without other edges than the ones connecting v0 and
its neighbors, needs at least the following number of colours: To colour the ∆ edges
at least s(∆− 1) + 1 colours have to be used, which is at least ∆. The colour of the
”central vertex” can be set as follows.

If this colour is smaller than the smallest one for the edges or greater than the
greatest, at least t + ∆ colours are being used. If the colour for the vertex ”fits”
between the colours of two edges, the difference between these two colours must be
at least 2t, hence the total number of colours used to colour the edges is at least
2t + ∆ − 1, which is at least t + ∆, if t ≥ 1.

Then, by Lemma 2.22, t+∆ ≤ Xr,s,t(K1,∆) ≤ Xr,s,t(G). Hence, max{r(X (G)− 1)+
1, s(X ′(G) − 1) + 1, t + ∆} ≤ Xr,s,t(G). Observe that, if s = 0, t + ∆ would not be
a lower bound but t + 1; for the other bounds nothing changes.

For the upper bound, it is enough to find a proper [r, s, t]-colouring with the de-
sired number of colours. If the vertices of G are coloured (see [11]) with colours
0, r, . . . , r(X (G)− 1) and the edges with colours r(X (G)− 1) + t, r(X (G)− 1) + t +
s, . . . , r(X (G)−1)+ t+ s(X ′(G)−1), then an [r, s, t]-colouring of G is obtained.

The previous Lemmas 2.22 and 2.25 will be used to determine bounds for the [r, s, t]-
chromatic number.

Sharpness of the lower bounds

In this subsection the sharpness of the lower bounds given in Lemma 2.25 will be
proved.

Lemma 2.26. For any graph G,
if r ≥ d ∆(G)

X (G)−1es + 2t, or r ≥ d∆(G)+2−X (G)
X (G)−1 es + 2t and s < 2t,

then Xr,s,t(G) = (X (G) − 1)r + 1,
and if s ≥ r + 2t and r < 2t or 2s ≥ 3r + 2t,
then Xr,s,t(G) = (X ′(G) − 1)s + 1.

14



2.2 [R, S, T ]-COLOURING

Proof. (1.1) If r ≥ d ∆(G)
X (G)−1es + 2t, then the elements of the graph can be coloured

as follows:
The vertices are coloured with the X (G) colours 1, r+1, 2r+1, . . . , (X (G)−1)r+1.
And the edges use the following colours: a1 = t + 1, aj+1 = aj + s, for all j ≥ 1 and

j 6= nk + 1 and ank+2 = max{ank+1 + s, nr + t + 1}, for all n, where k := d ∆(G)
X (G)−1e.

In this way the colours of the edges were placed in the intervals between the colours
of the vertices. Then, in order not to use more than (X (G) − 1)r + 1 colours, the
edges can receive k + 1 + k(X (G)− 2) ≥ ∆ + 1 ≥ X ′(G) different colours, where the
inequality X ′(G) ≤ ∆ + 1 follows from the Vizing’s Theorem (see Theorem 2.9).

(1.2) If s < 2t and r ≥ d∆(G)+2−X (G)
X (G)−1 es + 2t, then the vertices can receive colours

from the list 1, r+1, . . . , (X (G)−1)r+1 and the edges from the following ai, defined
as a1 = t + 1, ai+1 = ai + s for i 6= n(k + 1)− 1 for some n, and an(k+1) = nr + t + 1

for all n, where k := d∆(G)+2−X (G)
X (G)−1 e.

Then, similarly as above, among the (X (G) − 1)(r − 1) remaining colours smaller
than (X (G) − 1)r + 1, there are (k + 1)(X (G) − 1) ≥ ∆ + 1 possible colours for the
edges, which are enough.

(2) If s ≥ r + 2t, then the elements of the graph can be coloured using the following
colours: For the edges, the colours 1, s + 1, . . . , (X ′(G)− 1)s + 1 are chosen (observe
that, in this way, the remaining colours smaller than (X ′(G) − 1)s + 1 are divided
into X ′(G)− 1 intervals, each containing s− 1 colours). For the vertices we use the
colours t + 1, r + t + 1, which fit in the first interval of colours; max{s, 2r} + t +
1, max{s + r, 3r} + t + 1 that are in the second interval (because if r < 2t, then
2s + 1 ≥ s + r + 2t + 1 > 3r + 2t + 1 and in the other case if 2s ≥ 3r + 2t, then
2s + 1 ≥ max{s + r, 3r}+ 2t + 1); and finally max{2s, 4r}+ t + 1, max{3s, 5r}+ t +
1, . . . , max{(X ′(G)−2)s,X ′(G)r}+ t+1, where each one lays in one of the following
intervals.
In this way, there are X ′(G) + 1 possible colours for the vertices, which is greater or
equal to ∆ + 1 and hence greater or equal to X (G), where the last inequality is a
consequence of the Brooks’ Theorem (see Theorem 2.3).

On the other hand, the third lower bound is achieved in a not so general case, which
is natural, since it can still be improved as shown in Lemma 5.1.

Lemma 2.27. For a star with n leaves K1,n, X1,1,t(K1,n) = t + ∆(K1,n) if
t < n = ∆(K1,n).

Proof. Kemnitz and Marangio [11] proved that for any bipartite graph G, t+∆(G) ≤
X1,1,t(G) ≤ t + ∆(G) + 1. Then, if v0 is the central vertex of the star, the n
edges are noted as e1, e2, . . . , en and vi is the leaf adjacent to ei, K1,n could be
coloured as follows: c(v0) = 1, c(v2) = 2t + 1, c(vi) = 2 for all i = 2 . . . n and
c(ej) = j +1 for all j = 1 . . . n. Which is a [1, 1, t]-colouring with t+n colours, hence
X1,1,t(K1,n) = t + ∆(K1,n).
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2.2 [R, S, T ]-COLOURING

After this Lemma, a natural next step is to see what happens in the other case,
this is if t ≥ ∆(K1,n). Giving an answer to this question a better lower bound for
bipartite graphs can be found. This will be done using the result given by Kemnitz
and Marangio mentioned in the previous proof.

Theorem 2.28. For any bipartite graph G, Xr,s,t(G) ≥ t + ∆(G) + 1, if t ≥ ∆(G).

Proof. In a personal communication with Kemnitz and Marangio, they presented
the proof of X1,1,t(K1,∆(G)) = ∆(G) + t + 1 if t > ∆, which can be done as follows.
It will be proved that if t ≥ ∆, then there is no [1, 1, t] colouring of K1,∆ with t + ∆
colours.
Suppose X1,1,t(K1,∆) ≤ t + ∆. If c(v0) < c(ei) < c(vi) (or the symmetric situation)
for some i, where v0 is the central vertex and ei is incident to v0 and vi, then
c(vi) (or c(v0)) ≥ 2t + 1 > t + ∆, which is a contradiction.
Then, c(v0), c(vi) < c(ei) (or the symmetric situation) for all i. Since s = 1, all edges
should receive different colours, so the edge with the smallest colour can be noted
as e1 and so on until e∆. Then c(e1) ≥ t + 2 and c(v∆) ≥ t + ∆ + 1, a contradiction.
Hence, X1,1,t(K1,∆) = t + ∆ + 1.
Then, by Lemma 2.22 and Lemma 2.23, Xr,s,t(G) ≥ Xr,s,t(K1,∆) ≥ X1,1,t(K1,∆)

Treatment of symmetric cases

The following Lemma will be useful to reduce the number of cases to be considered.

Lemma 2.29. If c is an [r, s, t]-colouring with colours from {1, ..., k}, then c′ with
c′(x) = k + 1 − c(x) is also an [r, s, t]-colouring with colours from {1, ..., k}.

Proof. If 1 ≤ c(x) ≤ k, then 1 ≤ k + 1 − c(x) ≤ k. And if |c(x) − c(y)| ≥ d, then
|(k + 1 − c(x)) − (k + 1 − c(y))| = |c(y) − c(x)| ≥ d.

In [11], Kemnitz and Marangio presented first results on Xr,s,t(G) such as general
bounds and also exact values, for example for complete graphs and in the case
min{r, s, t} = 0.
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Chapter 3

[r, s, t]-Colouring of Paths

As a first approach to the problem of the [r, s, t]-colouring of graphs, the [r, s, t]-
colouring of paths was studied. Not just because of its expected easiness, but also
because it could be used, because of Lemma 2.22, as a lower bound for graphs
containing a certain path as a subgraph.

Since any path with n vertices Pn is bipartite, X (Pn) = 2 for all n and X ′(Pn) =
∆ = 2 for all n ≥ 3 (for n = 2, X ′(Pn) = ∆ = 1), as observed in Lemma 2.6
and Theorem 2.11. Then these values can be substituted in Lemma 2.25 and some
bounds for Xr,s,t(Pn) can be found.

Corollary 3.1. For any path Pn, from Lemma 2.25 it follows that

max{r + 1, s + 1, t + 2} ≤ Xr,s,t(Pn) ≤ r + s + t + 1, for all n ≥ 3.

(for n = 2, it would be max{r + 1, t + 2} ≤ Xr,s,t(Pn) ≤ r + t + 1).

Notation 1. In this chapter there will be used the following notation for the colour-
ing of the vertices and edges of a path

(..., c(e0), c(v0), c(e1), c(v1), c(e2), c(v2), c(e3), ...),

where . . . , v0, v1, . . . are vertices and . . . , e0, e1, . . . edges of the considered path, such
that ei = vi−1vi.

3.1 Some Lower Bounds for Xr,s,t(Pn)

3.1.1 Lower Bounds for Xr,s,t(P2) and Xr,s,t(P3)

As a first step on the study of the [r, s, t]-colouring for paths, some lower bounds will
be given for the paths of order 2 and 3, since its [r, s, t]-chromatic number is a lower
bound for the [r, s, t]-chromatic number of any path with greater order, because of
Lemma 2.22.
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3.1 SOME LOWER BOUNDS FOR XR,S,T (PN )

Observation 3.1. There is considered a path P2 given by v0e1v1. It may be assumed
c(v0) ≤ c(v1). Then, by Lemma 2.29, all possible constellations of colours of its
elements can be reduced to the following two:

If c(v0) ≤ c(v1) ≤ c(e1), then k ≥ r + t + 1.
If c(v0) ≤ c(e1) ≤ c(v1), then k ≥ max{2t + 1, r + 1},

where k := Xr,s,t(G) (this notation will be used all along this thesis).

Hence

k ≥ min{r + t + 1, max{2t + 1, r + 1}} =











r + 1 if r ≥ 2t;

2t + 1 if t ≤ r < 2t;

r + t + 1 if r < t.

Consequently for any path of order n ≥ 2, by Lemma 2.22, these lower bounds are
valid.

Observation 3.2. There is considered a path P3 given by v0e1v1e2v2. By symmetry,
it can be assumed that c(e1) ≤ c(e2). Three main cases are now distinguished, which
due to Lemma 2.29 can be reduced to two cases, and several subcases:

(Observe that, by Corollary 3.1, it may be assumed k ≤ r + s + t + 1. Hence the
cases for which k ≥ k0 > r + s + t + 1 can be omitted.)

1. If c(e1) ≤ c(e2) ≤ c(v1), then k ≥ s + t + 1.

1.1 If c(v0) ≤ c(e1) ≤ c(e2) ≤ c(v1), then k ≥ max{r + 1, s + 2t + 1}.
For this constellation, there are 5 possible situations, corresponding to the 5
possible relations between the colour of v2 and the colours of the other elements
of P3.

If c(v2) ≤ c(v0) ≤ c(e1) ≤ c(e2) ≤ c(v1), then k ≥ max{r + 1, s + 2t + 1}.
If c(v0) ≤ c(v2) ≤ c(e1) ≤ c(e2) ≤ c(v1), then k ≥ max{r + 1, s + 2t + 1}.
If c(v0) ≤ c(e1) ≤ c(v2) ≤ c(e2) ≤ c(v1), then k ≥ max{r + t + 1, s + 2t + 1, 3t + 1}.
If c(v0) ≤ c(e1) ≤ c(e2) ≤ c(v2) ≤ c(v1), then k ≥ r + s + 2t + 1 > r + s + t + 1.
If c(v0) ≤ c(e1) ≤ c(e2) ≤ c(v1) ≤ c(v2), then k ≥ r + s + 2t + 1 > r + s + t + 1.

In the same way, the following cases are treated using shortened tables.

1.2 If c(e1) ≤ c(v0) ≤ c(e2) ≤ c(v1), then k ≥ max{r + t + 1, s + t + 1, 2t + 1}.

c(v2) ≤ c(e1) ≤ c(v0) ≤ c(e2) ≤ c(v1) k ≥ max{r + t + 1, s + t + 1, 2t + 1}
c(e1) ≤ c(v2) ≤ c(v0) ≤ c(e2) ≤ c(v1)

c(e1) ≤ c(v0) ≤ c(v2) ≤ c(e2) ≤ c(v1) k ≥ max{r + t + 1, s + t + 1, 3t + 1}

c(e1) ≤ c(v0) ≤ c(e2) ≤ c(v2) ≤ c(v1) k ≥ r + s + t + 1
c(e1) ≤ c(v0) ≤ c(e2) ≤ c(v1) ≤ c(v2)
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1.3 If c(e1) ≤ c(e2) ≤ c(v0) ≤ c(v1), then k ≥ max{r + t + 1, s + t + 1, r + s + 1}.

c(v2) ≤ c(e1) ≤ c(e2) ≤ c(v0) ≤ c(v1) k ≥ max{r + t + 1, s + t + 1, r + s + 1, 2t + 1}
c(e1) ≤ c(v2) ≤ c(e2) ≤ c(v0) ≤ c(v1)

c(e1) ≤ c(e2) ≤ c(v2) ≤ c(v0) ≤ c(v1) k ≥ r + s + t + 1
c(e1) ≤ c(e2) ≤ c(v0) ≤ c(v2) ≤ c(v1)
c(e1) ≤ c(e2) ≤ c(v0) ≤ c(v1) ≤ c(v2)

1.4 If c(e1) ≤ c(e2) ≤ c(v1) ≤ c(v0), then k ≥ r + s + t + 1.

2. If c(e1) ≤ c(v1) ≤ c(e2), then k ≥ 2t + 1.

2.1 If c(v0) ≤ c(e1) ≤ c(v1) ≤ c(e2), then k ≥ max{r + t + 1, s + t + 1, 3t + 1}.

c(v2) ≤ c(v0) ≤ c(e1) ≤ c(v1) ≤ c(e2) k ≥ max{r + t + 1, s + t + 1, 3t + 1}
c(v0) ≤ c(v2) ≤ c(e1) ≤ c(v1) ≤ c(e2)
c(v0) ≤ c(e1) ≤ c(v2) ≤ c(v1) ≤ c(e2)

c(v0) ≤ c(e1) ≤ c(v1) ≤ c(v2) ≤ c(e2) k ≥ max{r + 3t + 1, 2r + t + 1, s + t + 1}

c(v0) ≤ c(e1) ≤ c(v1) ≤ c(e2) ≤ c(v2) k ≥ max{2r + 1, s + 2t + 1, 4t + 1}

2.2 If c(e1) ≤ c(v0) ≤ c(v1) ≤ c(e2), then k ≥ max{r + 2t + 1, s + 1}.

c(v2) ≤ c(e1) ≤ c(v0) ≤ c(v1) ≤ c(e2) k ≥ max{r + 2t + 1, s + 1}
c(e1) ≤ c(v2) ≤ c(v0) ≤ c(v1) ≤ c(e2)
c(e1) ≤ c(v0) ≤ c(v2) ≤ c(v1) ≤ c(e2)

c(e1) ≤ c(v0) ≤ c(v1) ≤ c(v2) ≤ c(e2) k ≥ max{2r + 2t + 1, s + 1}

c(e1) ≤ c(v0) ≤ c(v1) ≤ c(e2) ≤ c(v2) k ≥ max{r + 3t + 1, 2r + t + 1, s + t + 1}

2.3 If c(e1) ≤ c(v1) ≤ c(v0) ≤ c(e2), then k ≥ max{r + t + 1, s + 1, 2t + 1}.

c(v2) ≤ c(e1) ≤ c(v1) ≤ c(v0) ≤ c(e2) k ≥ max{r + t + 1, 2r + 1, s + 1, 2t + 1}
c(e1) ≤ c(v2) ≤ c(v1) ≤ c(v0) ≤ c(e2)

c(e1) ≤ c(v1) ≤ c(v2) ≤ c(v0) ≤ c(e2) k ≥ max{r + 2t + 1, s + 1}
c(e1) ≤ c(v1) ≤ c(v0) ≤ c(v2) ≤ c(e2)

c(e1) ≤ c(v1) ≤ c(v0) ≤ c(e2) ≤ c(v2) k ≥ max{r + 2t + 1, s + t + 1, 3t + 1}

2.4 If c(e1) ≤ c(v1) ≤ c(e2) ≤ c(v0), then k ≥ max{r + t + 1, s + 1, 2t + 1}.

c(v2) ≤ c(e1) ≤ c(v1) ≤ c(e2) ≤ c(v0) k ≥ max{r + t + 1, 2r + 1, s + 1, 2t + 1}
c(e1) ≤ c(v2) ≤ c(v1) ≤ c(e2) ≤ c(v0)

c(e1) ≤ c(v1) ≤ c(v2) ≤ c(e2) ≤ c(v0) k ≥ max{r + 2t + 1, s + 1}

c(e1) ≤ c(v1) ≤ c(e2) ≤ c(v2) ≤ c(v0) k ≥ max{r + t + 1, s + t + 1, 3t + 1}
c(e1) ≤ c(v1) ≤ c(e2) ≤ c(v0) ≤ c(v2)
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Hence, for any path of order n ≥ 3, by Lemma 2.22, the [r, s, t]-chromatic number is
lower bounded by the minimum of all these values (where there is no need to consider
values lower bounded by any other).

k ≥ min{max{r + 2t + 1, s + 1},

max{r + 1, s + 2t + 1},

max{r + t + 1, s + t + 1, 2t + 1},

max{r + t + 1, 2r + 1, s + 1, 2t + 1},

r + s + t + 1}.

Observe that, if r ≤ s+2t, s ≤ r+2t and t ≤ r+s, then k ≥ min{r + 2t + 1, s + 2t + 1,
max{r + t + 1, s + t + 1, 2t + 1}, max{r + t + 1, 2r + 1, s + 1, 2t + 1}}.

Observation 3.3. If there are considered paths that have a chain of the form edge-
vertex-edge-vertex-edge as a substructure (i.e. paths of order greater or equal to
4), then the same lower bound can be obtained, exchanging r and s in all cases
(considering the same constellations with the following changes: vi → ei+1 and
ei → vi).

k ≥ min{max{s + 2t + 1, r + 1},

max{s + 1, r + 2t + 1},

max{s + t + 1, r + t + 1, 2t + 1},

max{s + t + 1, 2s + 1, r + 1, 2t + 1},

r + s + t + 1}.

If r ≤ s + 2t, s ≤ r + 2t and t ≤ r + s, then k ≥ min{s + 2t + 1, r + 2t + 1,
max{s + t + 1, r + t + 1, 2t + 1}, max{s + t + 1, 2s + 1, r + 1, 2t + 1}}.

3.1.2 General Lower Bounds for Xr,s,t(Pn)

For some concrete relations between the three constants r, s and t, much better
lower bounds than the general ones can be found (Lemma 2.25). They will be very
useful to determine the [r, s, t]-chromatic number for paths and are presented in this
subsection.

Lemma 3.2. If t < r ≤ s < r + t and 2r ≥ s + t, then

Xr,s,t(Pn) ≥ s + t + 1 for all n ≥ 3.

Proof. By Observation 3.2, k ≥ min{r+2t+1, s+2t+1, s+t+1, 2r+1} = s+t+1.

Lemma 3.3. If t ≤ r ≤ 2t, 2r > s and 2r ≤ s + t, then

Xr,s,t(Pn) ≥ 2r + 1 for all n ≥ 3.

Proof. By Observation 3.2, k ≥ min{r+2t+1, s+2t+1, s+t+1, 2r+1} = 2r+1.
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Lemma 3.4. If s ≥ r, s ≥ t and 2r < 3t, then

Xr,s,t(Pn) ≥ 2r + 1 for all n ≥ 4.

Lemma 3.5. If r ≥ s, r ≥ t and 2s < 3t, then

Xr,s,t(Pn) ≥ 2s + 1 for all n ≥ 4.

To prove the previous lemmas it will be shown in detail a procedure that will be often
used in this paper in similar situations. It will be called ”symmetric replacement”.

Observe that, in these lemmas, in the conditions and the consequences r and s have
been exchanged in all cases. Introducing a new notation – for all i, let xi,yi be the
elements of the graph (vertices or edges) in the following order ...x1y1x2y2... and
N(x) = r if xi is a vertex for all i and N(x) = s if xi is an edge for all i (analogously
for y) – both can be enunciated together as follows.

Lemma 3.4/3.5:

If N(x) ≥ N(y), N(x) ≥ t and 2N(y) < 3t, then

Xr,s,t(Pn) ≥ 2N(y) + 1 for all n ≥ 4.

Observe that in this case the minimum order of the path, for which the condition
holds, is the same. But generally, this will not be the case, so the proof will be given
and then, depending of the role of xi and yi, this value will be fixed.

Proof. Suppose that k ≤ 2N(y). By Lemma 2.29, it may be assumed that c(y1), c(y3) <
c(y2). Then c(y1), c(y3) ≤ N(y) and N(y) + 1 ≤ c(y2) ≤ 2N(y). By symmetry, as-
sume that c(x2) < c(x3). Then c(y2) < c(x2) < c(x3) is not possible because
N(x) + N(y) + t + 1 > 2N(y) + 1.

Case 1, c(x2) < c(y2) < c(x3): Then c(x2) ≤ 2N(y)−2t, t+1 ≤ c(y2) ≤ 2N(y)−t and
c(y1), c(y3) ≤ N(y)− t. Now 2N(y)− 3t < 0 implies c(y1) > c(x2) and c(y1) ≥ t+1,
a contradiction.

Case 2, c(x2) < c(x3) < c(y2): Then c(x2) ≤ 2N(y)−t−N(x) and N(x)+1 ≤ c(x3) ≤
2N(y)− t. Now N(x) + t + 1 > N(y) implies c(y3) < c(x3) and c(y3) ≤ 2N(y)− 2t.
If there exists x4, then 2N(y)− 3t < 0 implies c(x4) > c(y3) and c(x4) ≥ t + 1. Now
2N(y) − 2t < t + 1 implies c(x4) > c(x3) and c(x4) ≥ 2N(x) + 1, a contradiction.
If there exists no x4, but there exists x1 and y0, then 2N(y)−2t−N(x) ≤ 2N(y)−3t
implies c(y1) > c(x2) and c(y1) ≥ t+1. Now 2N(y)−t−2N(x) ≤ 2N(y)−3t implies
c(x1) > c(x2) and c(x1) ≥ N(x)+1. Next N(y)− t < N(x)+1 implies c(x1) > c(y1)
and c(x1) ≥ 2t + 1. Then c(y0) < c(x1) which implies c(y0) ≤ 2N(y)− t and on the
other hand c(y0) > c(y1) implies c(y0) ≥ N(y)+ t+1, a contradiction to N(y) ≤ 2t.
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Now both situations can be analyzed:
If xi is a vertex for all i (Lemma 3.5), then v3 (x4) will always exist (because the exis-
tence of e3 (y3) was already assumed). Hence, the elements used are e1, v1, e2, v2, e3

and v3, in other words, a path of order 4. So Xr,s,t(Pn) ≥ 2s + 1 for all n ≥ 4.
On the other hand, if xi is an edge for all i (Lemma 3.4), then v1, e2, v2, e3, v3 and
e4 were used in one situation and v0, e1, v1, e2, v2, e3 and v3 in the other. Hence,
Xr,s,t(Pn) ≥ 2r + 1 for all n ≥ 4.

Lemma 3.6. If r ≤ 2t, 2r < 3t and 2r ≤ 2t + s, then

Xr,s,t(Pn) ≥ 2r + 1 for all n ≥ 5.

Proof. Observe that 2r ≤ 2t + s implies r ≤ t + s/2 ≤ t + s.
Suppose k ≤ 2r. By Lemma 2.29, it may be assumed that c(v0), c(v2) < c(v1).
Hence, c(v0), c(v2) ≤ r and r+1 ≤ c(v1) ≤ 2r. By symmetry, it can be supposed that
c(e1) < c(e2). Then c(v1) < c(e1) < c(e2) is not possible because r + s + t + 1 > 2r.

Case 1, c(e1) < c(v1) < c(e2): Then c(e1) ≤ 2r − 2t, r + 1 ≤ c(v1) ≤ 2r − t and
thus c(v0), c(v2) ≤ r − t. Now 2r − 3t < 0 implies c(v0) > c(e1) and c(v0) ≥ t + 1, a
contradiction.

Case 2, c(e1) < c(e2) < c(v1): Then c(e1) ≤ 2r − t − s and s + 1 ≤ c(e2) ≤ 2r − t.
Now 2r − 2t − s ≤ 0 implies c(v0) > c(e1) and c(v0) ≥ t + 1. Hence c(e1) ≤ r − t.
If there exist e0 and v−1, then r − t− s ≤ 0 implies c(e0) > c(e1) and c(e0) ≥ s + 1.
Then, r − t < s/2 < s + 1 implies c(e0) > c(v0) and c(e0) ≥ 2t + 1. Thus c(v−1) <
c(e0), which implies c(v−1) ≤ 2r − t. Furthermore c(v−1) > c(v0), which implies
c(v−1) ≥ r + t + 1, a contradiction.
If there exist neither e0 nor v−1, but there exist e3, v3, e4 and v4, then s + t + 1 > r
implies c(v2) < c(e2) and c(v2) ≤ 2r − 2t. Hence c(e2) ≥ t + 1. Then 2r − 3t < 0
implies c(e3) > c(v2) and c(e3) ≥ t + 1. Now 2r − t − s ≤ t implies c(e3) > c(e2)
and c(e3) ≥ max{2s + 1, s + t + 1}. Thus, s + 2t + 1 > 2r implies c(v3) < c(e3)
and c(v3) ≤ 2r − t. Furthermore c(v3) > c(v2) implies c(v3) ≥ r + 1. Then c(e3) ≥
r + t + 1. Now r + s + t + 1 > 2r implies c(e4) < c(e3) and c(e4) ≤ 2r − s. Next
r + t + 1 > r + (r − s) + 1 > 2r − s implies c(e4) < c(v3) and c(e4) ≤ 2r − 2t.
Then c(v4) > c(e4) implies c(v4) ≥ t + 1 and c(v4) < c(v3) implies c(v4) ≤ 2r − 2t,
a contradiction.

Hence, Xr,s,t(Pn) ≥ 2r + 1 for all n ≥ 5.

Lemma 3.7. If 2s < 3t and 2s ≤ 2t + r, then

Xr,s,t(Pn) ≥ 2s + 1 for all n ≥ 6.

Proof. It follows directly from the proof of Lemma 3.6 using ”symmetric replace-
ment”.
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Lemma 3.8. If t ≤ r ≤ 2t and s ≤ r ≤ s + t, then

Xr,s,t(Pn) ≥ r + t + 1 for all n ≥ 3.

Proof. By Observation 3.2, k ≥ min{r+2t+1, s+2t+1, r+t+1, 2r+1} = r+t+1.

Lemma 3.9. If t ≤ s ≤ 2t and r ≤ s ≤ r + t, then

Xr,s,t(Pn) ≥ s + t + 1 for all n ≥ 4.

Proof. The lower bound given in Observation 3.3can be used and obtained
k ≥ min{s + 2t + 1, r + 2t + 1, s + t + 1, 2s + 1} = s + t + 1.

3.2 Xr,s,t(Pn)

In this section, the [r, s, t]-chromatic number of Pn will be given for all possible
triples [r, s, t] and orders n.

Theorem 3.10. If P2 is a path of order 2, then

Xr,s,t(P2) =











r + 1 if r ≥ 2t;

2t + 1 if t ≤ r < 2t;

r + t + 1 if r < t.

Proof. Since just one edge is considered in this case, Xr,s,t = Xr,s′,t for all s and s′.
Then, the proof is a direct consequence of a Lemma given by Kemnitz and Marangio
[11], that says that if X (G) = 2 (which is the case), then

Xr,0,t(G) =











r + 1 if r ≥ 2t;

2t + 1 if t ≤ r < 2t;

r + t + 1 if r < t.

Theorem 3.11. If r ≥ s + 2t, then

Xr,s,t(Pn) = r + 1 for all n ≥ 3.

Proof. The following colouring

(..., t + 1, r+1, s + t + 1,1, t + 1, r+1, s + t + 1, ...)

shows that Xr,s,t(Pn) ≤ r + 1 for all n. So, by Corollary 3.1, it is concluded that
Xr,s,t(Pn) = r+1 for all n ≥ 2. Observe that this includes n = 2 and r ≥ s+2t ≥ 2t,
what was already proved.
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Theorem 3.12. If s ≥ r + 2t, then

Xr,s,t(Pn) = s + 1 for all n ≥ 3.

Proof. Similarly to the proof of Theorem 3.11, the following colouring

(..., s + 1, t+1, 1, r+t+1, s + 1, t+1, 1, ...)

and Corollary 3.1 show that Xr,s,t(Pn) = s + 1 for all n ≥ 3.

Theorem 3.13. If s ≤ r < s + t and r ≥ 2t, then

Xr,s,t(Pn) = r + t + 1 for all n ≥ 3.

Proof. The following colouring

(..., t + 1,1, r + t + 1, r+1, t + 1,1, r + t + 1, ...)

proves that Xr,s,t(Pn) ≤ r+ t+1 for all n. Observation 3.2 implies that k ≥ min{r+
2t+1, s+2t+1, r + t+1, 2r +1} = r + t+1 for n ≥ 3. Hence, Xr,s,t(Pn) = r + t+1
for all n ≥ 3.

Theorem 3.14. If s + t ≤ r < s + 2t and r ≥ 2t, then

Xr,s,t(Pn) = s + 2t + 1 for all n ≥ 3.

Proof. The following colouring

(..., t + 1,1, s + t + 1, s+2t+1, t + 1,1, s + t + 1, ...)

shows that Xr,s,t(Pn) ≤ s + 2t + 1 for all n, and a lower bound for n ≥ 3 is given by
Observation 3.2, k ≥ min{r +2t+1, s+2t+1, r + t+1, 2r +1} = s+2t+1. Hence,
Xr,s,t(Pn) = s + 2t + 1 for all n ≥ 3.

Theorem 3.15. If r ≤ s < r + t and s ≥ 2t, then

Xr,s,t(Pn) =

{

2r + 1 if 2r < s + t for n = 3;

s + t + 1 otherwise.

Proof. Observation 3.3 shows that k ≥ min{s+2t+1, r +2t+1, s+ t+1, 2s+1} =
s + t + 1 for n ≥ 4 and an upper bound is given by the following colouring

(..., s + 1, t+1, 1, s+t+1, s + 1, t+1, 1, ...).

Hence, Xr,s,t(Pn) = s + t + 1 for all n ≥ 4.

For n = 3, if 2r ≥ s + t, Lemma 3.2 proves that Xr,s,t(P3) = s + t + 1. And if
2r < s + t, the following colouring

(1, 2r + 1, r+1, 1,2r+1)
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(observe that r + t > s ≥ 2t implies r > t, therefore 2r > s) demonstrates that
Xr,s,t(P3) ≤ 2r + 1. Then r < 2t (2r < s + t implies r < s − r + t < 2t because
s < r + t, hence s − r < t) and s < 2r (s < r + t < 2r). Hence, Lemma 3.3 can be
applied and it shows that Xr,s,t(P3) = 2r + 1.

Theorem 3.16. If r + t ≤ s < r + 2t and s ≥ 2t, then

Xr,s,t(Pn) =











s + 1 if r < 2t and (r < t or 2r ≤ s) for n = 3;

2r + 1 if s < 2r < 4t and r ≥ t for n = 3;

r + 2t + 1 otherwise.

Proof. Observation 3.3 gives the lower bound k ≥ min{s + 2t + 1, r + 2t + 1, s + t +
1, 2s + 1} = r + 2t + 1 and then the following colouring

(..., r + 2t + 1, t+1, 1, r+t+1, r + 2t + 1, t+1, 1, ...)

implies that Xr,s,t(Pn) = r + 2t + 1 for all n ≥ 4.
For n = 3, if r ≥ 2t, Observation 3.2 shows that k ≥ min{r + 2t + 1, s + 2t + 1, s +
t+1, 2r +1} = r +2t+1. Hence Xr,s,t(P3) = r +2t+1 with the previous colouring.
If r < 2t, then one possible colouring would be

(1, s + 1, max{t + 1, r + 1}, 1, max{2r + 1, r + t + 1}).

Hence, if t > r or (r ≥ t and 2r ≤ s), by Corollary 3.1 Xr,s,t(P3) = s + 1. On
the other hand, if r ≥ t and 2r > s, by the colouring and Lemma 3.3 (because
2r < (r + t) + t ≤ s + t), Xr,s,t(P3) = 2r + 1.

Theorem 3.17. For t < r, s < 2t,

1. If n = 3, then

Xr,s,t(P3) =











r + t + 1 if s < r;

s + t + 1 if r ≤ s and 2r > s + t;

2r + 1 if r ≤ s and 2r ≤ s + t.

2. If (3t ≤ 2r, 3t ≤ 2s for n ≥ 4) or (3t ≤ 2r, 3t > 2s for n ≥ 5) or (3t > 2r,
3t ≤ 2s for n ≥ 6), then

Xr,s,t(Pn) = 3t + 1.

3. If 3t ≤ 2r and 3t > 2s for n = 4, then

Xr,s,t(Pn) =

{

2s + 1 if 2s > r + t;

r + t + 1 if 2s ≤ r + t.

25



3.2 XR,S,T (PN )

4. If 3t > 2r and 3t ≤ 2s for n = 4 or 5, then

Xr,s,t(Pn) =

{

2r + 1 if 2r > s + t;

s + t + 1 if 2r ≤ s + t.

5. If 3t > 2r and 3t > 2s, then

Xr,s,t(Pn) =























2r + 1 if (s < r for n ≥ 5) or (r < s and 2r > s + t for n = 4 or 5);

2s + 1 if (r < s for n ≥ 6) or (s < r and 2s > r + t for n = 4);

r + t + 1 if s < r and 2s ≤ r + t for n = 4;

s + t + 1 if r < s and 2r ≤ s + t for n = 4 or 5.

Proof. Observe that in this case, there is a triple [r, s, t] which satisfies the conditions
for Lemmas 3.8 and 3.9, hence the following lower bounds hold:
Xr,s,t(Pn) ≥ r + t + 1 for all n ≥ 3, if s ≤ r, and Xr,s,t(Pn) ≥ max{r + t + 1, s + t +
1} for all n ≥ 4.

(1) If n = 3, then

If s < r, then the following colouring

(r+1, r + t + 1,1, t + 1,2t+1)

and the lower bound show that Xr,s,t(P3) = r + t + 1.

If r ≤ s, then the following colouring

(s+1, s + t + 1,1, t + 1,2t+1)

proves that Xr,s,t(P3) ≤ s + t + 1. If 2r ≥ s + t, then by Lemma 3.2, Xr,s,t(P3) =
s + t + 1. And if 2r < s + t, then P3 could be coloured like

(1, 2r + 1, r+1, 1,2r+1),

which together with Lemma 3.3 shows that Xr,s,t(P3) = 2r + 1.

(2) If 3t ≤ 2r or 3t ≤ 2s, then the colouring

(..., 2t + 1, t+1, 1,3t+1, 2t + 1, t+1, 1, ...)

implies that Xr,s,t(Pn) ≤ 3t + 1 for all n.

Suppose k ≤ 3t. Then, if 3t ≤ 2r, by Lemma 2.29, it may be supposed that
c(v0), c(v2) < c(v1). Hence, c(v0), c(v2) ≤ 3t − r and r + 1 ≤ c(v1) ≤ 3t. By
symmetry, assume that c(e1) < c(e2). Then c(e2) > c(e1) > c(v1) is not possible
because r + s + t + 1 > 3t.

Case 1, c(e1) < c(v1) < c(e2): Then c(e1) ≤ t, r + 1 ≤ c(v1) ≤ 2t and thus
c(v0), c(v2) ≤ 2t−r. Then c(v0) > c(e1), which implies c(v0) ≥ t+1, a contradiction.
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Case 2, c(e1) < c(e2) < c(v1): Then c(e1) ≤ 2t − s and s + 1 ≤ c(e2) ≤ 2t. This
implies c(v0) > c(e1) and c(v0) ≥ t + 1.
If there exist e0 and v−1, then c(e0) > c(e1) and c(e0) ≥ s + 1, thus c(e0) > c(v0)
and c(e0) ≥ 2t + 1. Therefore, c(v−1) < c(e0) and c(v−1) ≤ 2t, hence c(v−1) < c(v0)
and c(v−1) ≤ 3t − 2r ≤ 0, which is a contradiction.
If there exist neither e0 nor v−1, but there exist e3, v3, e4 and v4, then c(v2) < c(e2)
and c(v2) ≤ t. Therefore, c(e3) > c(v2) and c(e3) ≥ t+1, which implies c(e3) > c(e2)
and c(e3) ≥ 2s + 1. And this holds if and only if 3t > 2s.
In this case, c(v3) < c(e3) implies c(v3) ≤ 2t and c(v3) > c(v2) implies c(v3) ≥ r +1.
Hence, c(e3) ≥ r + t + 1. Then c(e4) < c(e3) and c(e4) ≤ 3t − s imply c(e4) < c(v3)
and c(e4) ≤ t. Therefore, c(v4) > c(e4) and c(v4) ≥ t + 1 which imply c(v4) > c(v3)
and c(v4) ≥ 2r + 1 ≥ 3t, a contradiction.

Hence, if 3t ≤ 2r and 3t ≤ 2s, then Xr,s,t(Pn) = 3t + 1 for all n ≥ 4, and if 3t ≤ 2r
and 3t > 2s, then Xr,s,t(Pn) = 3t + 1 for all n ≥ 5.

If 3t ≤ 2s, then the application of ”symmetric replacement” in the proof of the case
3t ≤ 2r demonstrates that, if 3t ≤ 2s and 3t > 2r, then Xr,s,t(Pn) = 3t + 1 for all
n ≥ 6.

(3) If 3t ≤ 2r and 3t > 2s for n = 4, then the colouring

(t+1, 1, r+t+1, s + 1,1, max{2s + 1, r + t + 1}, r+1)

implies that Xr,s,t(P4) = 2s + 1, if 2s > r + t by Lemma 3.5. And if 2s ≤ r + t, then
by the lower bound, Xr,s,t(P4) = r + t + 1.

(4) If 3t > 2r and 3t ≤ 2s for n = 4 or 5, then the colouring

(s+t+1, t + 1,1, s + t + 1, r+1, 1, max{2r + 1, s + t + 1}, s + 1,1)

shows that Xr,s,t(Pn) = 2r + 1 for n = 4 or 5, if 2r > s + t by Lemma 3.4. And if
2r ≤ s + t, then by the lower bound, Xr,s,t(Pn) = s + t + 1 for n = 4 or 5.

(5) If 3t > 2r and 3t > 2s, then

If s < r, then the colouring

(..., 2r + 1, r+1, 1,2r+1, r + 1,1, 2r + 1, ...)

and Lemma 3.6 show that Xr,s,t(Pn) = 2r + 1 for all n ≥ 5. If n = 4, then it is
basically the same situation as in case c). Hence, if 2s > r+t, then Xr,s,t(P4) = 2s+1
and, if 2s ≤ r + t, then Xr,s,t(P4) = r + t + 1.

If r < s, then by Lemma 3.7, Xr,s,t(Pn) = 2s + 1 for all n ≥ 6 with the colouring

(..., 2s + 1, s+1, 1,2s+1, s + 1,1, 2s + 1, ...)

and, if n = 4 or 5, then the same proof as in case (4) could be used. Hence, if
2r > s + t, then Xr,s,t(Pn) = 2r + 1 for n = 4 or 5, and if 2r ≤ s + t, then
Xr,s,t(Pn) = s + t + 1 for n = 4 or 5.
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Theorem 3.18. If s ≤ t ≤ r < 2t and s < r, then

Xr,s,t(Pn) =











s + 2t + 1 if s ≤ 2r − 2t and ((r ≥ s + t and n ≥ 3) or n ≥ 5);

2r + 1 if s > 2r − 2t and n ≥ 5;

r + t + 1 otherwise.

Proof. a) If s ≤ 2r − 2t, then the colouring

(..., s + t + 1,1, t + 1, s+2t+1, s + t + 1,1, t + 1, ...)

proves that Xr,s,t(Pn) ≤ s + 2t + 1 for all n.

If r ≥ s+ t, Observation 3.2 gives the lower bound k ≥ min{r +2t+1, s+2t+1, r +
t + 1, 2r + 1} = s + 2t + 1, for n ≥ 3. Hence, Xr,s,t(Pn) = s + 2t + 1 for all n ≥ 3.

If r < s + t, suppose k ≤ s + 2t, which is at most 2r. Then, by Lemma 2.29, it may
be assumed that c(v0), c(v2) < c(v1). Hence c(v0), c(v2) ≤ s + 2t − r (observe that
s + 2t− r > t) and r + 1 ≤ c(v1) ≤ s + 2t. By symmetry, assume that c(e1) < c(e2),
then c(e1) ≤ 2t and s + 1 ≤ c(e2) ≤ s + 2t.

Case 1, c(e2) > c(v1): Then r + 1 ≤ c(v1) ≤ s + t and thus c(e1) < c(v1) and
c(e1) ≤ s. Then c(v0) > c(e1) implies c(v0) ≥ t + 1 and now c(v0) < c(v1) implies
c(v0) ≤ s + t − r, a contradiction.

Case 2, c(e2) < c(v1): Then s + 1 ≤ c(e2) ≤ s + t and c(e1) ≤ t. Which implies
c(v0) > c(e1), t + 1 ≤ c(v0) ≤ s + 2t − r and e1 ≤ s + t − r.
If there exist e0 and v−1, then c(e0) > c(e1) and c(e0) ≥ s + 1. Then c(e0) > c(v0)
and c(e0) ≥ 2t + 1. And thus c(v−1) < c(e0) which implies c(v−1) ≤ s + t and
c(v−1) > c(v0) that implies c(v−1) ≥ r + t + 1, a contradiction.
If there exist neither e0 nor v−1, but there exist e3, v3, e4 and v4, then c(v2) < c(e2)
implies c(v2) ≤ s and c(e2) ≥ t + 1. Then c(e3) > c(v2) and c(e3) ≥ t + 1 and thus,
c(e3) > c(e2) and c(e3) ≥ s + t + 1. Then c(v3) < c(e3), hence c(v3) ≤ s + t. And
c(v3) > c(v2) thus c(v3) ≥ r + 1, which implies c(e3) ≥ r + t + 1. Then c(e4) < c(e3)
and c(e4) ≤ 2t. Hence c(e4) < c(v3), c(e4) ≤ s and c(v4) > c(e4), which implies
c(v4) ≥ t + 1, c(v4) > c(v3) and c(v4) ≥ 2r + 1, a contradiction.

Hence, Xr,s,t(Pn) = s + 2t + 1 for all n ≥ 5.

b) If s > 2r − 2t, then the colouring

(..., r + 1,1, 2r + 1, r+1, 1,2r+1, r + 1, ...)

implies that Xr,s,t(Pn) ≤ 2s + 1 for all n. And Lemma 3.6 can be applied, hence
Xr,s,t(Pn) = 2r + 1 for all n ≥ 5.

c) If s > 2r − 2t or (s ≤ 2r − 2t and r < s + t) and n ≤ 4, then the colouring

(t+1, 1, r+t+1, t + 1,1, r + t + 1, r+1)

and Lemma 3.8 show that Xr,s,t(Pn) = r + t + 1 for n = 3, 4.
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Theorem 3.19. If r ≤ t ≤ s < 2t and r < s, then

Xr,s,t(Pn) =























r + 2t + 1 if r ≤ 2s − 2t and ((s ≥ r + t and n ≥ 4) or n ≥ 6);

2s + 1 if r > 2s − 2t and n ≥ 6;

2t + 1 if n = 3;

s + t + 1 otherwise.

Proof. a) If r ≤ 2s − 2t, then the colouring

(..., r + 2t + 1, t+1, 1, r+t+1, r + 2t + 1, t+1, 1, ...)

shows that Xr,s,t(Pn) ≤ r + 2t + 1 for all n.

If r ≥ r+t, by Observation 3.3, k ≥ min{s+2t+1, r+2t+1, s+t+1, 2s+1} = r+2t+1.
Hence, Xr,s,t(Pn) = r + 2t + 1 for all n ≥ 4.

If s < r + t, then applying ”symmetric replacement” in the proof of Theorem 3.18
for r < s + t, it follows that Xr,s,t(Pn) = r + 2t + 1 for all n ≥ 6.

b) If r > 2s − 2t, then the colouring

(..., s + 1,1, 2s + 1, s+1, 1,2s+1, s + 1, ...)

demonstrates that Xr,s,t(Pn) ≤ 2s + 1 for all n. Hence, by Lemma 3.7 Xr,s,t(Pn) =
2s + 1 for all n ≥ 6.

c) If r > 2s − 2t or (r ≤ 2s − 2t and s < r + t) and n = 4 or 5, then the colouring

(2t+1, t + 1,1, s + t + 1, s+1, 1, s+t+1, s + 1,1)

and Lemma 3.9 show that Xr,s,t(Pn) = s + t + 1 for n = 4 or 5.

d) If n = 3, then the colouring

(1, 2t + 1, t+1, 1,2t+1)

implies that Xr,s,t(P3) ≤ 2t + 1. By Observation 3.2, k ≥ min{r + 2t + 1, s + 2t +
1, s + t + 1, 2t + 1} = 2t + 1. Hence, Xr,s,t(P3) = 2t + 1.

Theorem 3.20. If r, s ≤ t < r + s, then

Xr,s,t(Pn) = 2t + 1 for all n ≥ 3.

Proof. The colouring

(..., t + 1,1, 2t + 1, t+1, 1,2t+1, t + 1, ...)

shows that Xr,s,t(Pn) ≤ 2t + 1 for all n. By Observation 3.2, k ≥ min{r + 2t +
1, s + 2t + 1, 2t + 1, 2t + 1} = 2t + 1 for all n ≥ 3. Hence, Xr,s,t(Pn) = 2t + 1 for all
n ≥ 3.
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Theorem 3.21. If t ≥ r + s, then

Xr,s,t(Pn) = r + s + t + 1 for all n ≥ 3.

Proof. By Corollary 3.1, the bound Xr,s,t(Pn) ≤ r + s+ t+1 holds for all n, because
the colouring

(..., r + s + t + 1,1, r + t + 1, r+1, r + s + t + 1,1, r + t + 1, ...)

is always possible. Then, by Observation 3.2, k ≥ min{r + 2t + 1, s + 2t + 1, 2t +
1, 2t + 1, r + s + t + 1} = r + s + t + 1. Hence, Xr,s,t(Pn) = r + s + t + 1 for all
n ≥ 3.

All results presented in this chapter are summarized in Table 3.1.
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Conditions Order Xr,s,t(Pn)

r ≥ 2t 2 r+1

t ≤ r < 2t 2 2t+1

r < t 2 r+t+1

r ≥ s + 2t ≥3 r+1

s ≥ r + 2t ≥3 s+1

(s ≤ r < s + t) ∧ (r ≥ 2t) ≥3 r+t+1

(s + t ≤ r < s + 2t) ∧ (r ≥ 2t) ≥3 s+2t+1

(r ≤ s < r + t) ∧ (s ≥ 2t) 2r < s + t 3 2r+1
2r ≥ s + t ∨ n ≥ 4 ≥3 s+t+1

(r + t ≤ s < r + 2t) ∧ (s ≥ 2t) r < 2t ∧ (r < t ∨ 2r ≤ s) 3 s+1
s < 2r < 4t ∧ r ≥ t 3 2r+1
r ≥ 2t ∨ n ≥ 4 ≥3 r+2t+1

t < r, s < 2t s < r 3 r+t+1
r ≤ s 2r > s + t s+t+1

2r ≤ s + t 2r+1
(3t ≤ 2r ∧ 3t ≤ 2s)∨ ≥4 3t+1
(3t ≤ 2r ∧ 3t > 2s ∧ n ≥ 5)∨
(3t > 2r ∧ 3t ≤ 2s ∧ n ≥ 6)
3t ≤ 2r ∧ 3t > 2s 2s > r + t 4 2s+1

2s ≤ r + t r+t+1
3t > 2r ∧ 3t ≤ 2s 2r > s + t 4,5 2r+1

2r ≤ s + t s+t+1
3t > 2r ∧ 3t > 2s (r < s ∧ 2r > s + t ∧ n = 4, 5) ≥4 2r+1

∨(s < r ∧ n ≥ 5)
(s < r ∧ 2s > r + t ∧ n = 4) ≥4 2s+1
∨(r < s ∧ n ≥ 6)
s < r ∧ 2s ≤ r + t 4 r+t+1
r < s ∧ 2r ≤ s + t 4,5 s+t+1

(s ≤ t ≤ r < 2t) r < s + t ∨ s > 2r − 2t 3,4 r+t+1
∧(s < r) s ≤ 2r − 2t ∧ (r ≥ s + t ∨ n ≥ 5) ≥3 s+2t+1

s > 2r − 2t ≥5 2r+1

(r ≤ t ≤ s < 2t) 3 2t+1
∧(r < s) s < r + t ∨ r > 2s − 2t 4,5 s+t+1

r ≤ 2s − 2t ∧ (s ≥ r + t ∨ n ≥ 6) ≥4 r+2t+1
r > 2s − 2t ≥6 2s+1

r, s ≤ t < r + s ≥3 2t+1

t ≥ r + s ≥3 r+s+t+1

Table 3.1: [r, s, t]-chromatic number of paths
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Chapter 4

[r, s, t]-Colouring of Cycles

Once the values of the [r, s, t]-chromatic number of paths for all possible constella-
tions [r, s, t] were known, a logical next step was to find them for cycles, because, as
noted in Observation 4.1, the values for paths can be used as lower bounds (often
sharp) for them.

Observation 4.1. Because of Lemma 2.22, the values of Xr,s,t(Pn) given in the
previous chapter can be considered as lower bounds of the corresponding Xr,s,t(Cn),
where Cn is the cycles with n vertices.

As shown in Lemma 2.18, the total-chromatic number of a cycle, Cn, depends on the
value of its order modulo 3. This is, if n is zero modulo 3, XT (Cn) = 3, otherwise
XT (Cn) = 4. This fact implies that there is a monotone sequence of colours of
three (respectively four) elements of the cycle, where each element is in contact with
those elements whose colours are the immediately precedent and the immediately
following of its colour in the sequence. In case n 6= 0(mod 3), this property will be
very useful in order to find the [r, s, t]-chromatic number and it is presented in the
following Corollary.

Corollary 4.1. From Lemma 2.18 it follows that if n 6= 0(mod 3), then there is a
subpath of the cycle with one of the following constellations, which because of Lemma
2.22 give lower bounds for k := Xr,s,t(Cn) (reduction made by application of Lemma
2.29):

1. If c(v0) ≤ c(v1) ≤ c(v2) ≤ c(v3), then k ≥ 3r + 1.
2. If c(v0) ≤ c(v1) ≤ c(v2) ≤ c(e3) (2(1)) or

c(v0) ≤ c(v1) ≤ c(v2) ≤ c(e2) (2(2)), then k ≥ 2r + t + 1.
3. If c(v0) ≤ c(v1) ≤ c(e2) ≤ c(v2), then k ≥ max{r + 2t + 1, 2r + 1}.
4. If c(v0) ≤ c(v1) ≤ c(e2) ≤ c(e3), then k ≥ r + s + t + 1.
5. If c(v0) ≤ c(e1) ≤ c(v1) ≤ c(e2), then k ≥ max{3t + 1, r + t + 1, s + t + 1}.
6. If c(e1) ≤ c(v0) ≤ c(v1) ≤ c(e2), then k ≥ max{r + 2t + 1, s + 1}.
7. If c(v0) ≤ c(e1) ≤ c(e2) ≤ c(v1), then k ≥ max{s + 2t + 1, r + 1}.
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8. If c(e1) ≤ c(v1) ≤ c(e2) ≤ c(e3), then k ≥ max{s + 2t + 1, 2s + 1}.
9. If c(v0)) ≤ c(e1) ≤ c(e2) ≤ c(e3) (9(1)) or

c(v1)) ≤ c(e1) ≤ c(e2) ≤ c(e3) (9(2)), then k ≥ 2s + t + 1.
10. If c(e1) ≤ c(e2) ≤ c(e3) ≤ c(e4), then k ≥ 3s + 1.

Notation 2. For cycles the same notation as for paths given in Notation 1 will be
used, adding some extra symbology in order to be able to express the special struc-
ture of the [r, s, t]-colouring of a cycle. For instance, the chain of colours that is
underlined is the substructure that should be repeated as often as needed in order to
cover the cycle. In some cases, there will also be another chain of colours that will
be double underlined and needs to be placed just once.

As noted in Section 2.1, cycles have different chromatic number, edge-chromatic
number and total-chromatic number, depending on the parity of their order. Due to
this fact, cycles with even order and those with odd order will be treated separately.

4.1 Cycles of even order

In this section only cycles with an even number of vertices will be considered.

Since cycles of even order, C2n, are bipartite graphs, X (C2n) = 2 and X ′(C2n) =
∆(C2n) = 2, as observed in Lemma 2.6 and Theorem 2.11. With these values,
Lemma 2.25 yields to the following bounds.

Corollary 4.2. For any cycle of even order, C2n, it holds that

max{r + 1, s + 1, t + 2 ≤ Xr,s,t(C2n) ≤ r + s + t + 1

for all n ≥ 2.

Then all possible constellations of [r, s, t] will be studied.

Theorem 4.3. If r ≥ s + 2t, then

Xr,s,t(C2n) = r + 1 for all n ≥ 2.

Proof. By Corollary 4.2, Xr,s,t(C2n) ≥ r+1 for all n ≥ 2 and the following colouring

(...,1, t + 1, r+1, s + t + 1,1, ...)

verifies that Xr,s,t(C2n) = r + 1 for all n ≥ 2.

Theorem 4.4. If s ≥ r + 2t, then

Xr,s,t(C2n) = s + 1 for all n ≥ 2.
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Proof. Like in the previous proof, from Corollary 4.2 follows the lower bound Xr,s,t(C2n) ≥
s + 1 for all n ≥ 2. The upper bound is given by the colouring

(..., t+1, 1, r+t+1, s + 1, t+1, ...).

Hence, Xr,s,t(C2n) = s + 1 for all n ≥ 2.

Theorem 4.5. If s ≤ r < s + t and r ≥ 2t, then

Xr,s,t(C2n) = r + t + 1 for all n ≥ 2.

Proof. The following colouring

(..., t+1, 1, r+t+1, r + 1, t+1, ...)

implies that Xr,s,t(C2n) ≤ r + t + 1 for all n and by Observation 4.1, Xr,s,t(C2n) ≥
r + t + 1 for all 2n ≥ 3. So, Xr,s,t(C2n) = r + t + 1 for all n ≥ 2.

Theorem 4.6. If s + t ≤ r < s + 2t and r ≥ 2t, then

Xr,s,t(C2n) = s + 2t + 1 for all n ≥ 2.

Proof. Observation 4.1 gives the lower bound Xr,s,t(C2n) ≥ s+2t+1 for all 2n ≥ 3.
Then the following colouring

(...,1, s + t + 1, s+2t+1, t + 1,1, ...)

shows that Xr,s,t(C2n) = s + 2t + 1 for all n ≥ 2.

Theorem 4.7. If r ≤ s < r + t and s ≥ 2t, then

Xr,s,t(C2n) = s + t + 1 for all n ≥ 2.

Proof. By Observation 4.1 (observe that paths of length at least 4 are subgraphs of
the cycle), Xr,s,t(C2n) ≥ s + t + 1 for all n ≥ 2. And from the following colouring

(..., t+1, 1, s+t+1, s + 1, t+1, ...)

it follows that Xr,s,t(C2n) = s + t + 1 for all n ≥ 2.

Theorem 4.8. If r + t ≤ s < r + 2t, then

Xr,s,t(C2n) = r + 2t + 1 for all n ≥ 2.

Proof. Like in the previous proofs, Observation 4.1 implies that Xr,s,t(C2n) ≥ r +
2t + 1 for all n ≥ 2. The upper bound is given by the colouring

(..., t+1, r + 2t + 1, r+t+1, 1, t+1, ...).

Hence, Xr,s,t(C2n) = r + 2t + 1, for all n ≥ 2.
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Theorem 4.9. For t < r, s < 2t,

1. If 3t ≤ 2r or 3t ≤ 2s, then

Xr,s,t(C2n) = 3t + 1 for all n ≥ 2.

2. If 3t > 2r and 3t > 2s, then

Xr,s,t(C2n) =











2r + 1 if s < r and 2n = 3k;

2s + 1 if r ≤ s and 2n = 3k;

3t + 1 if 2n 6= 3k.

Proof. (1) If (3t ≤ 2r and 3t ≤ 2s for 2n ≥ 4) or (3t ≤ 2r and 3t > 2s for
2n ≥ 5) or (3t > 2r and 3t ≤ 2s for 2n ≥ 6), then from Observation 4.1 it fol-
lows that Xr,s,t(C2n) ≥ 3t + 1. Then the colouring

(..., t+1, 2t + 1,3t+1, 1, t+1, ...).

proves that Xr,s,t(C2n) = 3t + 1 for the mentioned cases.

If 3t ≤ 2r and 3t > 2s for 2n = 4, suppose k ≤ 3t ≤ 2r. Then by Lemma 2.29,
it may be supposed that c(v0), c(v2) < c(v1). Hence c(v0), c(v2) ≤ 3t − r and
r +1 ≤ c(v1) ≤ 3t. By symmetry, assume that c(e1) < c(e2). Then it is not possible
c(e2) > c(e1) > c(v1), because 3t < r + s + t + 1.

Case 1, c(e1) < c(v1) < c(e2): Then c(e1) ≤ t, c(v1) ≤ 2t and c(v0), c(v2) ≤ 2t − r.
Hence c(v0) > c(e1) and c(v0) ≥ t + 1, a contradiction.

Case 2, c(e1) < c(e2) < c(v1): Then c(e1) ≤ 2t − s, which implies c(v0) > c(e1)
and c(v0) ≥ t + 1. Now c(e4) > c(e1) implies c(e4) ≥ s + 1, c(e4) > c(v0) and
c(e4) ≥ 2t + 1. Hence c(v3) < c(e4) which implies c(v3) ≤ 2t, c(v3) < c(v0) and
c(v3) ≤ 3t − 2r, a contradiction.

Hence, Xr,s,t(C4) = 3t + 1.

And, if 3t > 2r and 3t ≤ 2s for 2n = 4, then using ”symmetric replacement” in the
previous proof, it can be concluded that Xr,s,t(C4) = 3t + 1.

(2) If 3t > 2r and 3t > 2s, then

if 2n = 3k, then the following colourings

(...,1, 2r + 1, r+1, 1,2r+1, r + 1,1, ...)

and
(...,1, 2s + 1, s+1, 1,2s+1, s + 1,1, ...)

show that Xr,s,t(C2n) ≤ 2r +1 if r > s and Xr,s,t(C2n) ≤ 2s+1 if r ≤ s, respectively,
for all n such that 2n = 3k. On the other hand, lower bounds are given by Obser-
vation 4.1 and it follows that if s < r, then Xr,s,t(C2n) = 2r + 1 and if r < s, then
Xr,s,t(C2n) = 2s + 1, for all n such that 2n = 3k.
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And if 2n 6= 3k, then the same colouring with 3t + 1 colours as in (1) can be
used. Then from Corollary 4.1 it follows that it cannot be done with less colours.
Therefore, Xr,s,t(C2n) = 3t + 1, for all n such that 2n 6= 3k.

Theorem 4.10. If s ≤ t ≤ r < 2t, then

Xr,s,t(C2n) =











s + 2t + 1 if s ≤ 2r − 2t;

2r + 1 if s > 2r − 2t and 2n = 3k;

s + 2t + 1 if s > 2r − 2t and 2n 6= 3k.

Proof. a) If s ≤ 2r − 2t and (r ≥ s + t or 2n ≥ 5), then by Observation 4.1, Xr,s,t(C2n) ≥
s + 2t + 1 for all n ≥ 2. Then the colouring

(..., t+1, 1, s+t+1, s + 2t + 1, t+1, ...)

implies that Xr,s,t(C2n) = s + 2t + 1, in this situation.

If s ≤ 2r − 2t and r < s + t for 2n = 4, suppose k ≤ s + 2t, which is at most
2r. Then by Lemma 2.29, it may be assumed that c(v0), c(v2) < c(v1). Hence
c(v0), c(v2) ≤ s + 2t− r and r + 1 ≤ c(v1) ≤ s + 2t. Observe that s + 2t− r > t. By
symmetry, assume that c(e1) < c(e2). Then c(e1) ≤ 2t and c(e2) ≤ s + 2t.

Case 1, c(e2) > c(v1): Then c(v1) ≤ s + t, c(e1) < c(v1) and c(e1) ≤ s. Now
c(v0) > c(e1) implies c(v0) ≥ t + 1 and on the other hand c(v0) < c(v1) implies
c(v0) ≤ s + t − r, a contradiction.

Case 2, c(e2) < c(v1): Then c(e2) ≤ s + t and c(e1) ≤ t, which implies c(v0) > c(e1),
t+1 ≤ c(v0) ≤ s+2t−r and c(e1) ≤ s+t−r. Now c(e4) > c(e1) implies c(e4) ≥ s+1,
c(e4) > c(v0) and c(e4) ≥ 2t + 1. Next c(v3) < c(e4) implies c(v3) ≤ s + t, and
c(v3) > c(v0) implies c(v3) ≥ r + t + 1, a contradiction.

Hence, Xr,s,t(C4) ≥ s + 2t + 1. Furthermore the same colouring as in the last case
can be used, hence Xr,s,t(C4) = s + 2t + 1.

b) If s > 2r − 2t, from Observation 4.1 it follows that Xr,s,t(C2n) ≥ 2r + 1. Then, if
2n = 3k, the colouring

(...,1, r + 1,2r+1, 1, r+1, 2r + 1,1, ...)

shows that Xr,s,t(C2n) = 2r + 1, for all n ≥ 2.

But if 2n 6= 3k, then the colouring with s + 2t + 1 colours used in a) can be used
too. Then suppose that k ≤ s + 2t. Just three cases are possible from those shown
in Corollary 4.1:

9(1), c(v0) < c(e1) < c(e2) < c(e3): Then c(v0) ≤ t − s and s + t + 1 ≤ c(e2) ≤ 2t.
Hence c(v1) > c(v0) which implies c(v1) ≥ r+1, c(v1) > c(e2) and c(v1) ≥ s+2t+1,
a contradiction.

9(2), c(v1) < c(e1) < c(e2) < c(e3): Then c(v1) ≤ t − s and s + t + 1 ≤ c(e2) ≤ 2t.
Now c(v2) > c(v1) implies c(v2) ≥ r + 1, c(v2) > c(e2) and c(v2) ≥ s + 2t + 1, a
contradiction.
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10, c(e1) < c(e2) < c(e3) < c(e4): Then c(e1) ≤ 2t − 2s and s + 1 ≤ c(e2) ≤ 2t − s.
If c(v0) < c(e1), then c(v0) ≤ t − 2s, t + 1 ≤ c(e1) and s + t + 1 ≤ c(e2). Which
yields to c(v1) > c(v0), c(v1) ≥ r + 1, c(v1) > c(e2) and c(v1) ≥ s + 2t + 1, a
contradiction. Hence c(v0) > c(e1) and c(v0) ≥ t + 1. Then c(v0) > c(e2), which
implies c(v0) ≥ s + t + 1. If c(v1) > c(v0), then c(v1) ≥ r + s + t + 1 > s + 2t + 1,
a contradiction. Therefore c(v1) < c(v0), hence c(v1) ≤ s + 2t − r, c(v1) < c(e2)
and c(v1) ≤ t − s. Now from c(v1) < c(e1) follows c(v1) ≤ t − 2s, c(e1) ≥ t + 1 and
c(e2) ≥ s + t + 1. Then c(v2) > c(v1) leads to c(v2) > c(e2) and c(v2) ≥ s + 2t + 1,
a contradiction.

Hence, Xr,s,t(C2n) = s + 2t + 1, for all n ≥ 2 and 2n 6= 3k.

Theorem 4.11. If r ≤ t ≤ s < 2t, then

Xr,s,t(C2n) =











r + 2t + 1 if r ≤ 2s − 2t;

2s + 1 if r > 2s − 2t for 2n = 3k;

r + 2t + 1 if r > 2s − 2t for 2n 6= 3k.

Proof. a) If r ≤ 2s − 2t and (s ≥ r + t or n ≥ 6), then by Observation 4.1 it fol-
lows that Xr,s,t(C2n) ≥ r + 2t + 1. From the following colouring

(..., t+1, 1, r+t+1, r + 2t + 1, t+1, ...)

it can be concluded that Xr,s,t(C2n) = r + 2t + 1, for all n ≥ 2.

If r ≤ 2s − 2t and s < r + t for n = 4, then the same lower bound could be found
using ”symmetric replacement” in the corresponding proof of Theorem 4.10. The
previous colouring is possible too, hence Xr,s,t(C2n) = r + 2t + 1, for all n ≥ 2.

b) For r > 2s − 2t, if 2n = 3k, Observation 4.1 shows that Xr,s,t(C2n ≥ 2s +
1 for all n ≥ 3 and from the colouring

(...,1, s + 1,2s+1, 1, s+1, 2s + 1,1, ...)

it follows that Xr,s,t(C2n) = 2s + 1, for all n ≥ 3 such that 2n = 3k.

If 2n 6= 3k, then using ”symmetric replacement” in Theorem 4.10, it can be con-
cluded that Xr,s,t(C2n) = s + 2t + 1, for all n ≥ 2.

Theorem 4.12. If r, s ≤ t < r + s, then

Xr,s,t(C2n) =

{

2t + 1 if 2n = 3k;

r + s + t + 1 if 2n 6= 3k.

Proof. a) If 2n = 3k, then the colouring

(..., t+1, 1,2t+1, t + 1,1, 2t + 1, t+1, ...)
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implies that Xr,s,t(C2n) ≤ 2t + 1 for all n, and hence by Observation 4.1, it can be
concluded that Xr,s,t(C2n) = 2t + 1, for all n ≥ 2.

b) If 2n 6= 3k, then the colouring

(...,1, r + t + 1, r+1, r + s + t + 1,1, ...)

shows that Xr,s,t(C2n) ≤ r + s + t + 1.
Then suppose k ≤ r + s + t. By Corollary 4.1, there are just three possible cases:

Case 9(1), c(v0) < c(e1) < c(e2) < c(e3): Then c(v0) ≤ r − s and s + t + 1 ≤
c(e2) ≤ r + t. Hence c(v1) > c(v0), which implies c(v1) ≥ r + 1, c(v1) > c(e2) and
c(v1) ≥ s + 2t + 1, a contradiction.

In case 9(2) it follows a similar contradiction for c(v2) in relation with c(v1) and
c(e2).

10, c(e1) < c(e2) < c(e3) < c(e4): Then c(e1) ≤ r+t−2s, s+1 ≤ c(e2) ≤ r+t−s and
c(e3) ≤ r+ t. If c(v1) < c(e1), then c(v1) ≤ r−2s, t+1 ≤ c(e1) and s+ t+1 ≤ c(e2).
Now c(v2) > c(v1) which implies c(v2) ≥ r+1, c(v2) > c(e3) and c(v1) ≥ s+2t+1, a
contradiction. Hence c(v1) > c(e1), c(v1) ≥ t+1, c(v1) > c(e2) and c(v1) ≥ s+ t+1.
Next c(v2) < c(v1) and c(v2) ≤ s+t. Then c(v2) < c(e2), which implies c(v2) ≤ r−s,
c(e2) ≥ t+1 and c(e3) ≥ s+t+1. Therefore c(v3) > c(v2), c(v3) ≥ r+1, c(v3) > c(e3)
and c(v2) ≥ s + 2t + 1, a contradiction.

Hence, Xr,s,t(C2n) = r + s + t + 1, for all n ≥ 2.

Theorem 4.13. If t ≥ r + s, then

Xr,s,t(C2n) = r + s + t + 1, for all n ≥ 2.

Proof. The result follows as a direct application from Corollary 2 in [11].

All results presented in this section are summarized in Table 4.1.

4.2 Cycles of odd order

In this section only cycles with an odd number of vertices will be considered.

As shown in Lemmas 2.5 and 2.12, for any cycle of odd order, C2n+1, it holds that
X (C2n+1) = X ′(C2n+1) = ∆(C2n+1) + 1 = 3. Hence the bounds given by Lemma
2.25 can be determined.

Corollary 4.14. From Lemma 2.25, it follows that for any cycle of odd order it
holds that

max{2r + 1, 2s + 1, t + 3} ≤ Xr,s,t(C2n+1) ≤ 2r + 2s + t + 1

for all n ≥ 1.
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Conditions Xr,s,t(C2n)

r ≥ s + 2t r+1

s ≥ r + 2t s+1

(s ≤ r < s + t) ∧ (r ≥ 2t) r+t+1

(s + t ≤ r < s + 2t) ∧ (r ≥ 2t) s+2t+1

(r ≤ s < r + t) ∧ (s ≥ 2t) s+t+1

(r + t ≤ s < r + 2t) ∧ (s ≥ 2t) r+2t+1

t < r, s < 2t 3t ≤ 2r ∨ 3t ≤ 2s ∨ 2n 6= 3k 3t+1
3t > 2r ∧ 3t > 2s ∧ 2n = 3k r > s 2r+1

r ≤ s 2s+1

s ≤ t ≤ r < 2t s ≤ 2r − 2t ∨ 2n 6= 3k s+2t+1
s > 2r − 2t ∧ 2n = 3k 2r+1

r ≤ t ≤ s < 2t r ≤ 2s − 2t ∨ 2n 6= 3k r+2t+1

r > 2s − 2t ∧ 2n = 3k 2s+1

r, s ≤ t < r + s 2n = 3k 2t+1
2n 6= 3k r+s+t+1

t ≥ r + s r+s+t+1

Table 4.1: [r, s, t]-chromatic number of even cycles

Theorem 4.15. If r ≥ s + 2t, then

Xr,s,t(C2n+1) = 2r + 1, for all n.

Proof. From the following colouring

(..., s + t + 1,1, t + 1, r+1, s + t + 1,2r+1, s + 2t + 1,1, t + 1, r+1, ...)

it follows that Xr,s,t(C2n+1) ≤ 2r + 1 for all n. Then, by the lower bound given by
Corollary 4.14, it can be concluded that Xr,s,t(C2n+1) = 2r + 1, for all n.

Theorem 4.16. If s ≥ r + 2t, then

Xr,s,t(C2n+1) = 2s + 1, for all n.

Proof. The following colouring

(..., r + t + 1,1, t + 1, s+1, r + t + 1,2s+1, r + 2t + 1,1, t + 1, s+1, ...)

implies that Xr,s,t(C2n) ≤ 2s + 1 for all n. Then, by Corollary 4.14, it follows that
Xr,s,t(C2n+1) = 2s + 1, for all n.

Theorem 4.17. If s ≤ r < s + 2t, then

Xr,s,t(C2n+1) = 2r + 1, for all n.
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Proof. The colouring

(..., max{s + 1, t + 1}, max{2s + t + 1, s + 2t + 1}, max{2s + 1, s + t + 1},1,

max{s + 1, t + 1}, r+1, 1,2r+1, max{2s + 1, s + t + 1},1, ...)

demonstrates that Xr,s,t(C2n+1) ≤ 2r + 1 for all n. Hence, by Corollary 4.14,
Xr,s,t(C2n+1) = 2r + 1 for all n.

Theorem 4.18. If r ≤ s < r + 2t, then

Xr,s,t(C2n+1) = 2s + 1, for all n.

Proof. Similarly to the previous theorem, the colouring

(..., max{r + 1, t + 1}, max{2r + t + 1, r + 2t + 1}, max{2r + 1, r + t + 1},1,

max{r + 1, t + 1}, s+1, 1,2s+1, max{2r + 1, r + t + 1},1, ...)

implies that Xr,s,t(C2n+1) ≤ 2s+1 for all n. Then by Corollary 4.14, Xr,s,t(C2n+1) =
2s + 1 for all n.

Theorem 4.19. For t < r, s < 2t,

1. If 2n + 1 = 3k, then

Xr,s,t(C2n+1) =

{

2r + 1 if s < r;

2s + 1 if s ≥ r.

2. If 2n + 1 6= 3k, then

Xr,s,t(C2n+1) =











2r + 1 if s < r and 2r > 3t;

2s + 1 if s ≥ r and 2s > 3t;

3t + 1 otherwise.

Proof. (1) If 2n + 1 = 3k, then if s < r, the following colouring

(..., s + 1,1, 2r + 1, r+1, 1,2r+1, s + 1,1, 2r + 1, r+1, ...)

and Corollary 4.14 show that Xr,s,t(C2n+1) = 2r + 1 for all n.
In a similar way, if s ≤ r, then from the colouring

(..., s + 1,1, 2s + 1, r+1, 1,2s+1, s + 1,1, 2s + 1, r+1, ...)

and Corollary 4.14, it follows that Xr,s,t(C2n+1) = 2s + 1 for all n.
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(2) If 2n + 1 6= 3k, then if s < r, the colouring

(..., t + 1,1, s + t + 1, r+1, 1, max{s + t + 1,2r + 1}, s + 1,

1, max{2s + 1, 3t + 1},2t+1, t + 1,1, ...)

shows that Xr,s,t(C2n+1) ≤ max{2s + 1, 3t + 1} for all n. From Corollary 4.14 it
follows that, if 2s > 3t, then Xr,s,t(C2n+1) = 2s + 1 for all n.
And if 3t ≥ 2s, then Corollary 4.1 implies that Xr,s,t(C2n+1) = 3t + 1 for all n.
On the other hand, if s ≥ r, then the cycle could be coloured as follows

(..., t+1, 1, r+t+1, s + 1,1, max{r + t + 1, 2s + 1}, r+1,

1, max{2r + 1,3t + 1}, 2t + 1, t+1, 1, ...)

and applying ”symmetric replacement” in the previous case, Xr,s,t(C2n+1) = 2r + 1
for all n, if 2r > 3t, and Xr,s,t(C2n+1) = 3t + 1 for all n, if 3t ≥ 2r.

Theorem 4.20. If s ≤ t ≤ r < 2t, then

Xr,s,t(C2n+1) =

{

2r + 1 if 2n + 1 = 3k or s + 2t ≤ 2r;

s + 2t + 1 otherwise.

Proof. a) If 2n + 1 = 3k, then Corollary 4.14 and the colouring

(..., r+1, 1,2r+1, t + 1,1, r + t + 1, r+1, 1,2r+1, t + 1, ...)

show that Xr,s,t(C2n+1) = 2r + 1 for all n.
b) If 2n + 1 6= 3k, then the colouring

(..., t + 1, s+2t+1, s + t + 1,1, t + 1,2r+1, 1, r+1, r + t + 1,1, t + 1, ...)

implies that Xr,s,t(C2n+1) ≤ max{2r + 1, s + 2t + 1}. Hence, if s + 2t ≤ 2r, then by
Corollary 4.14, Xr,s,t(C2n+1) = 2r + 1 for all n.
Then, if s + 2t > 2r, suppose k ≤ s + 2t. From Corollary 4.1, there are just three
possible cases:

9(1), c(v0) < c(e1) < c(e2) < c(e3): Then, s+ t+1 ≤ c(e2) ≤ 2t, hence c(v2) < c(e2)
and c(v2) ≤ t. Now c(v1) > c(v2) and c(v1) ≥ r + 1, therefore c(v1) ≥ c(e2) and
c(v1) ≥ s + 2t + 1, a contradiction.

9(2), c(v1) < c(e1) < c(e2) < c(e3): Then c(v1) ≤ t − s and s + t + 1 ≤ c(e2) ≤ 2t.
Hence c(v2) > c(v1) and c(v2) ≥ r + 1 and, on the other hand, c(v2) < c(e2) and
c(v2) ≤ t, a contradiction.

10, c(e1) < c(e2) < c(e3) < c(e4): Then c(e1) ≤ 2t − 2s, s + 1 ≤ c(e2) ≤ 2t − s and
c(e3) ≤ 2t. If c(v1) < c(e1) (only possible if t > 2s), then c(v1) ≤ t−2s, c(e1) ≥ t+1
and c(e2) ≥ s + t + 1. Then c(v2) > c(v1), c(v2) > c(e2) and c(v2) ≥ s + 2t + 1,
a contradiction. Hence c(v1) > c(e1). Then c(v1) > c(e2) and c(v1) ≥ s + t + 1.
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Therefore c(v2) < c(v1), c(v2) < c(e2) and c(v2) ≤ t − s. Now c(e2) ≥ t + 1 and
c(e3) ≥ s + t + 1. Hence c(v3) > c(v2), c(v3) > c(e3) and c(v3) ≥ s + 2t + 1, a
contradiction.

Hence, Xr,s,t(C2n+1) = s + 2t + 1 for all n.

Theorem 4.21. If r ≤ t ≤ s < 2t, then

Xr,s,t(C2n+1) =

{

2s + 1 if 2n + 1 = 3k or r + 2t ≤ 2s;

r + 2t + 1 otherwise.

Proof. The proof follows directly using ”symmetric replacement” in Theorem 4.20.
And the colourings used would be

(..., s + 1,1, 2s + 1, t+1, 1, s+t+1, s + 1,1, 2s + 1, t+1, ...)

if 2n + 1 = 3k, and

(..., t+1, r + 2t + 1, r+t+1, 1, t+1, 2s + 1,1, s + 1, s+t+1, 1, t+1, ...)

if 2n + 1 6= 3k.

Theorem 4.22. If r, s ≤ t < r + s, then

Xr,s,t(C2n+1) =

{

2t + 1 if 2n + 1 = 3k;

r + s + t + 1 otherwise.

Proof. a) If 2n + 1 = 3k, then the colouring

(..., t + 1,1, 2t + 1, t+1, 1,2t+1, t + 1,1, 2t + 1, ...)

and Observation 4.1 show that Xr,s,t(C2n+1) = 2t + 1, for all n.
b) If 2n + 1 6= 3k, from the colouring

(..., r + s + t + 1, r+1, r + t + 1,1, r + s + t + 1, t+1, 1, r+s+t+1, r + s + 1,

1, r + s + t + 1, ...)

it follows that Xr,s,t(C2n+1) ≤ r + s + t + 1, for all n.
Suppose k ≤ r + s + t. Then, by Corollary 4.1, there are just four possible cases:

1, c(v0) < c(v1) < c(v2) < c(v3): Then c(v0) ≤ s+t−2r and r+1 ≤ c(v1) ≤ s+t−r. If
c(e1) < c(v0) (only if s > 2r), then c(e1) ≤ s−2r, c(v0) ≥ t+1 and c(v1) ≥ r+ t+1.
Therefore c(e2) > c(e1), c(e2) ≥ s + 1, c(e2) > c(v1) and c(e2) ≥ r + 2t + 1,
a contradiction. Hence c(e1) > c(v0) and c(e1) ≥ t + 1. Then c(e1) > c(v1),
c(e1) ≥ r + t + 1 and c(v1) ≤ r + s. Now c(e2) < c(e1), c(e2) ≤ r + t, c(e2) < c(v1),
c(e2) ≤ s−r and c(v2) ≥ r+t+1. Therefore c(e3) > c(e2), c(e3) ≥ s+1, c(e3) > c(v2)
and c(e3) ≥ r + 2t + 1, a contradiction.
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2(1), c(v0) < c(v1) < c(v2) < c(e3): Then r + 1 ≤ c(v1) ≤ s. Hence c(e1) > c(v1),
c(e1) ≥ r + t+1, c(e2) < c(e1) and c(e2) ≤ r + t+1 (this implies that case 2(2) does
not have to be considered). On the other hand c(e2) > c(v1) and c(e2) ≥ r + t + 1,
a contradiction.

Case 9 and case 10 lead also to a contradiction applying ”symmetric replacement”
in cases 1 and 2.

Hence, Xr,s,t(C2n+1) = r + s + t + 1, for all n.

Theorem 4.23. If t ≥ r + s, then

Xr,s,t(C2n+1) = min{2t + 1, max{2r + s + t + 1, r + 2s + t + 1}}.

Proof. If there exists a monotone sequence of colours of alternating elements of the
cycle of length three (this is c(vi) < c(ei+1) < c(vi+1) or c(ei) < c(vi) < c(ee+1)),
then k ≥ 2t + 1.
In the other case, if x is an arbitrary element of G, then c(x) < c(y) for all elements
y that are incident to x or c(x) > c(y) for all y. Using induction, this implies that
either c(v) < c(e) for all vertices v and all edges e or always c(v) > c(e). Without
loss of generality, let c(v) < c(e). It also holds that c(vi−1) < c(vi) < c(vi+1) and
c(ej−1) < c(ej) < c(ej+1) for some i and j (or symmetric situations) because of the
parity of the cycle. Suppose that c(v0) < c(v1) < c(v2), then c(e2) ≥ 2r + t + 1. If
c(e3) > c(e2), then c(e3) ≥ 2r+s+t+1. In the other case, it holds c(e3) ≥ 2r+t+1,
hence c(e2) ≥ 2r + s + t + 1. Similarly if the case is c(ej−1) < c(ej) < c(ej+1), then
it can be proved that k ≥ r + 2s + t + 1.
Therefore, k ≥ min{2t + 1, max{2r + s + t + 1, r + 2s + t + 1}}.

Then, if t ≤ max{2r + s, r + 2s} for 2n + 1 = 3k, the cycle could be coloured like

(..., t + 1,1, 2t + 1, t+1, 1,2t+1, t + 1,1, 2t + 1, ...),

and for 2n + 1 6= 3k

(...,1, t + 1,2t+1, 1, t+1, 2t + 1,1, r + t + 1, r+1, r + s + t + 1,1, t + 1, ...).

Hence if t ≤ max{2r + s, r + 2s}, then Xr,s,t(C2n+1) = 2t + 1 for all n.

On the other hand, if t > max{2r + s, r + 2s}, then the colourings

(..., r+s+t+1, 1, s+t+1, s + 1, r+s+t+1, 2s + 1,2r+s+t+1, 1, ...)

if r ≥ s, and

(..., r + s + t + 1,1, r + t + 1, r+1, r + s + t + 1,2r+1, r + 2s + t + 1,1, ...)

if r < s, show that Xr,s,t(C2n+1) = max{2r + s + t + 1, r + 2s + t + 1} for all n.

All results presented in this section are summarized in Table 4.2.
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Conditions Xr,s,t(C2n+1)

r ≥ s + 2t 2r+1

s ≥ r + 2t 2s+1

(s ≤ r < s + 2t) ∧ (r ≥ 2t) 2r+1

(r ≤ s < r + 2t) ∧ (s ≥ 2t) 2s+1

t < r, s < 2t 2n + 1 = 3k s < r 2r+1
r ≤ s 2s+1

2n + 1 6= 3k r > s ∧ 2r > 3t 2r+1
r ≤ s ∧ 2s > 3t 2s+1
otherwise 3t+1

s ≤ t ≤ r < 2t 2n + 1 = 3k 2r+1
2n + 1 6= 3k s + 2t ≤ 2r 2r+1

s + 2t > 2r s+2t+1

r ≤ t ≤ s < 2t 2n + 1 = 3k 2s+1
2n + 1 6= 3k r + 2t ≤ 2s 2s+1

r + 2t > 2s r+2t+1

r, s ≤ t < r + s 2n + 1 = 3k 2t+1
2n + 1 6= 3k r+s+t+1

t ≥ r + s t ≤ max{2r + s, r + 2s} 2t+1
t > 2r + s ≥ r + 2s 2r+s+t+1
t > r + 2s > 2r + s r+2s+t+1

Table 4.2: [r, s, t]-chromatic number of odd cycles
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Chapter 5

[r, s, t]-Colouring of Stars

In this chapter the [r, s, t]-colouring of the stars is studied, which is of special interest
since, by Lemma 2.22, the [r, s, t]-chromatic number of the star with ∆(G) leaves is
a lower bound for the [r, s, t]-chromatic number of the whole graph G.

5.1 Improvement of the general bounds

In Lemma 2.25, it was found a first improvement of the general bounds given by
Kemnitz and Marangio [11], considering the star containing a vertex of maximum
degree and its neighbors, but only the colours of the central vertex and the edges
were studied. Obviously the more elements are taken, the better are the bounds.
Working in this direction, a new improvement of the general bounds has been found.

Lemma 5.1. For the [r,s,t]-chromatic number of a graph G, it holds

max{r(X (G)− 1) + 1, s(X ′(G)− 1) + 1, min{r + s(∆− 1) + t + 1, s(∆− 2) + 2t + 1,
max{r+1, 2t+1, s(∆−1)+t+1}}} ≤ Xr,s,t(G) ≤ r(X (G)−1)+s(X ′(G)−1)+t+1,

if |V (G)| ≥ 2 and G 6= Nn (where ∆(G) is the maximum degree of G and Nn is the
empty graph).

Proof. From these bounds, just the third term of the maximum in the lower bound
has not been proved. This partial proof will be now given.

Consider the star K1,∆ consisting of a vertex, v0, of maximum degree ∆ := ∆(G)
and its adjacent vertices without other edges than the ones connecting v0 and its
neighbors. It needs at least the following number of colours: To colour the ∆ edges
at least s(∆− 1)+1 colours have to be used. The colour of the ”central vertex” has
the following possibilities in the different cases.

If its colour ”fits” between the colours of two edges, then the difference between
these two colours must be at least 2t. For the m edges with smaller colour than that
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of the central vertex, s(m− 1)+1 colours are needed, and for the ∆−m edges with
larger colour, s(∆−m− 1) + 1 have to be at least used. Hence the total number of
colours used to colour the star is at least s(∆ − 2) + 2t + 1.
On the other hand if the colour of the central vertex is smaller than the smallest
one for the edges or greater than the greatest, then at least t + s(∆− 1) + 1 colours
are being used. Suppose that it is greater (the other case is symmetric). It means
c(v0) > c(e1), where v0 is the central vertex and e1 is such that c(e1) = max{c(ei) :
ei is an edge of the considered K1,∆}. Then, if the colour of the other end-vertex of
e1, v1, is greater than c(e1), at least r + s(∆ − 1) + t + 1 colours should be used.
In the other case, if c(v1) is smaller than c(e1), then the lower bound would be
max{r + 1, 2t + 1, s(∆ − 1) + t + 1} colours.

Then, by Lemma 2.22, min{r + s(∆ − 1) + t + 1, s(∆ − 2) + 2t + 1, max{r + 1, 2t +
1, s(∆ − 1) + t + 1}} ≤ Xr,s,t(K1,∆) ≤ Xr,s,t(G).

The other terms in the inequality were already proved in Lemma 2.25.

This new bound will be very useful in the study of the [r, s, t]-chromatic number of
stars, since it will be often sharp.

5.2 K1,3

As a first approach to the problem of finding the value of the [r, s, t]-chromatic
number of K1,n for any n, this task will be done for stars with three leaves.

Notation 3. In this section the notation shown in Figure 5.1 for the vertices and
edges of K1,3 will be used.

v
3

e
3

v
0

e
2

v
2

e
1

v1

Figure 5.1: Notation of K1,3

Since a star is a bipartite graph, X (K1,3) = 2 and X ′(K1,3) = ∆(K1,3) = 3, as
shown in Lemma 2.6 and Theorem 2.11. Using this fact, from Lemma 5.1, the next
Corollary follows.

Corollary 5.2. For a star K1,3, it holds

max{r + 1, 2s + 1, min{r + 2s + t + 1, s + 2t + 1, max{r + 1, 2t + 1, 2s + t + 1}}} ≤
≤ Xr,s,t(K1,3) ≤ r + 2s + t + 1.
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As shown in Lemma 2.19, the total-chromatic number of K1,3 is 4. This fact implies
that there is a monotone sequence of colours of four elements of the star so that
each element is in contact with those elements whose colours are the immediately
precedent and the immediately following of its colour in the sequence. This property
will be very useful in order to find the [r, s, t]-chromatic number of K1,3 and it is
presented in the following Corollary.

Corollary 5.3. For any triple [r, s, t] one of the following constellations occurs (re-
duction made because of Lemma 2.29), which leads to the corresponding bounds:

1. If c(v1) ≤ c(v0) ≤ c(v2) ≤ c(e2), then k ≥ 2r + t + 1.
2. If c(v1) ≤ c(v0) ≤ c(e2) ≤ c(v2), then k ≥ max{r + 2t + 1, 2r + 1}.
3. If c(v1) ≤ c(v0) ≤ c(e2) ≤ c(e3) (3(1)) or

c(v1) ≤ c(v0) ≤ c(e2) ≤ c(e1) (3(2)) or
c(v1) ≤ c(v0) ≤ c(e1) ≤ c(e2) (3(3)), then k ≥ r + s + t + 1.

4. If c(v1) ≤ c(e1) ≤ c(v0) ≤ c(e3), then k ≥ max{3t + 1, r + t + 1, s + t + 1}.
5. If c(e1) ≤ c(e2) ≤ c(e3) ≤ c(v3) (5(1)) or

c(e1) ≤ c(e2) ≤ c(e3) ≤ c(v0) (5(2)), then k ≥ 2s + t + 1.

Using the bounds given by the previous Corollaries, the [r, s, t]-chromatic number of
the stars will be determined for each case.

Theorem 5.4. If r ≥ s + 2t, then

Xr,s,t(K1,3) =











































r + 1 if r ≥ 2s + 2t;

2s + 2t + 1 if 2s + t ≤ r < 2s + 2t;

r + t + 1 if 2s ≤ r < 2s + t;

2s + t + 1 if r < 2s ≤ r + t;

r + 2t + 1 if r + t < 2s ≤ r + 2t;

2s + 1 if 2s > r + 2t.

Proof. For r ≥ s + 2t the colouring given by Figure 5.2 proves that if r ≥ 2s + 2t,

r+1

t+1

1

2s+t+1

max(r+1,2s+2t+1)

s+t+1

r+1

Figure 5.2: r ≥ s + 2t

then Xr,s,t(K1,3) ≤ r + 1 and if r < 2s + 2t, then Xr,s,t(K1,3) ≤ 2s + 2t + 1. Hence if
r ≥ 2s + 2t, by Corollary 5.2 Xr,s,t(K1,3) = r + 1.
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If r < 2s+2t, suppose that k ≤ 2s+2t. By Corollary 5.3 there are just two possible
situations:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then c(e1) ≤ t and 2s + t + 1 ≤ c(v3) ≤ 2s + 2t.
Therefore c(v0) < c(v3), so c(v0) ≤ 2s + 2t − r. Furthermore c(e1) < c(v0) and
c(v0) ≥ t + 1, a contradiction if r ≥ 2s + t.

Case 5(2) leads to an analogous contradiction considering c(v1), r ≥ 2s + t.

Hence if 2s + t ≤ r < 2s + 2t, then Xr,s,t(K1,3) = 2s + 2t + 1.

Then, if r < 2s+ t, a colouring with less colours can be found (see Figure 5.3), hence
Xr,s,t(K1,3) ≤ max{r + t + 1, 2s + t + 1}.

1

max(r+t+1,2s+t+1)

r+1

t+1

1

s+t+1

1

Figure 5.3: s + 2t ≤ r < 2s + t

If r ≥ 2s suppose k ≤ r + t. By Corollary 5.3 just two situations are possible:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then c(e1) ≤ r − 2s < t and 2s + t + 1 ≤
c(v3) ≤ r + t. Hence c(v0) < c(v3), so c(v0) ≤ t. Then c(e1) > c(v0), which implies
c(e1) ≥ t + 1, a contradiction.

From case 5(2) a similar contradiction follows considering c(v1) in relation with c(v0)
and c(e1).

Hence if 2s ≤ r < 2s + t, then Xr,s,t(K1,3) = r + t + 1.

If r < 2s, by the previous colouring Xr,s,t(K1,3) ≤ 2s + t + 1. Suppose k ≤ 2s + t.
By Corollary 5.3 there is just one possible situation:

4, c(v1) < c(e1) < c(v0) < c(e3): Then t + 1 ≤ c(e1) ≤ s + t, r + 1 ≤ c(v0) ≤ 2s
and r + t + 1 ≤ c(e3) ≤ 2s + t. Hence c(v2) < c(v0) and c(v2) ≤ 2s − r. On the
other hand, c(e2) < c(e3) and c(e2) ≤ s + t, hence c(e2) < c(e1) and c(e2) ≤ t. So
c(v2) > c(e2) and c(v2) ≥ t + 1, which is a contradiction if 2s ≤ r + t.

Hence, if r < 2s ≤ r + t, then Xr,s,t(K1,3) = 2s + t + 1.

Finally, if r ≥ s + 2t and 2s > r + t the colouring shown in Figure 5.4 is possible.

This implies that in this case if 2s ≤ r + 2t, then Xr,s,t(K1,3) ≤ r + 2t + 1, and
if 2s > r + 2t, then Xr,s,t(K1,3) ≤ 2s + 1. In the last case, by Corollary 5.2 the
inequality becomes equality, hence if 2s > r + 2t, then Xr,s,t(K1,3) = 2s + 1.
And if 2s ≤ r + 2t by Corollary 5.3 there is just one possible situation:

4, c(v1) < c(e1) < c(v0) < c(e3): Then t+1 ≤ c(e1) ≤ r+2t−s, r+1 ≤ c(v0) ≤ r+t
and r + t + 1 ≤ c(e3) ≤ r + 2t. Hence, c(v2) < c(v0) and c(v2) ≤ t. Furthermore
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1

max(r+t+1,2s+1)

r+t+1

1

t+1

s+1

1

Figure 5.4: r ≥ s + 2t and 2s > r + t

c(e2) < c(e3) and c(e2) ≤ r + 2t − s, so c(e2) < c(e1) and c(e2) ≤ r + 2t − 2s which
is smaller than t. Therefore c(v2) > c(e2) and c(v2) ≥ t + 1, a contradiction.

Hence if r + t < 2s ≤ r + 2t, then Xr,s,t(K1,3) = r + 2t + 1.

Theorem 5.5. If s + t ≤ r < s + 2t and r ≥ 2t, then

Xr,s,t(K1,3) =























2s + 2t + 1 if r > 2s + t;

r + t + 1 if 2s ≤ r ≤ 2s + t;

2s + t + 1 if r < 2s ≤ r + t;

2s + 1 if 2s > r + t.

Proof. a) If r > 2s + t, then the colouring given by Figure 5.5 shows that Xr,s,t(K1,3) ≤
2s + 2t + 1.

2s+2t+1

2s+t+1

1

s+t+1

s+2t+1

t+1

r+1

Figure 5.5: 2s + t ≤ r < s + 2t, r ≥ 2t

Suppose k ≤ 2s+2t. The only possible situations by Corollary 5.3 are the following:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then c(e1) ≤ t and 2s + t + 1 ≤ c(v3) ≤ 2s + 2t.
Hence c(v0) < c(v3) and c(v0) ≤ 2s+2t− r which is smaller than t. Therefore, c(e1)
should be greater than c(v0), but this is not possible.

Case 5(2) leads to an analogous contradiction, considering c(v1) in relation with
c(v0) and c(e1).

Hence, Xr,s,t(K1,3) = 2s + 2t + 1.

b) If 2s ≤ r ≤ 2s + t, then the colouring given in Figure 5.6 proves that Xr,s,t(K1,3) ≤
r + t + 1.
Suppose that k ≤ r + t. Then by Corollary 5.3 just two cases are possible:
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1

r+1

r+t+1

max(s+1,t+1)

1

1

t+1

Figure 5.6: s + t ≤ r < s + 2t, r ≥ 2t and 2s ≤ r ≤ 2s + t

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then c(e1) ≤ r−2s and 2s+t+1 ≤ c(v3) ≤ r+t.
Hence, c(v0) < c(v3) and c(v0) ≤ t. Therefore c(e1) > c(v0) and c(e1) ≥ t + 1, a
contradiction.

From case 5(2) follows an analogous contradiction, considering c(v1).

Hence, Xr,s,t(K1,3) = r + t + 1.

c) If r < 2s, then from the colouring shown by Figure 5.7, it follows that Xr,s,t(K1,3) ≤
2s + t + 1.

1

2s+1

2s+t+1

max(s+1,t+1)

1

1

t+1

Figure 5.7: s + t ≤ r < s + 2t and 2t ≤ r < 2s

Then by Corollary 5.3 there is just one possible situation:

4, c(v1) < c(e1) < c(v0) < c(e3): Then r + 1 ≤ c(v0) ≤ 2s. Therefore c(v2) < c(v0)
and c(v2) ≤ 2s−r. If c(e2) > c(v2), then c(e2) ≥ t+1 and max{c(ei) : i = 1, ..., 3} ≥
2s + t + 1, a contradiction. Hence c(e2) < c(v2), and then c(e2) ≤ 2s − r − t, which
is only possible if 2s > r + t.

Hence if 2s ≤ r + t, then Xr,s,t(K1,3) = 2s + t + 1.

If 2s > r + t, then Figure 5.8 implies that K1,3 can be coloured with less colours.
Hence, Xr,s,t(K1,3) ≤ 2s + 1 and, by Corollary 5.2, Xr,s,t(K1,3) = 2s + 1.

Theorem 5.6. If s ≤ r < s + t and r ≥ 2t, then

Xr,s,t(K1,3) =











2s + 1 if 2s ≥ r + 2t;

r + 2t + 1 if r + t ≤ 2s < r + 2t;

2s + t + 1 otherwise.
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1

2s+1

r+1

1

r+t+1

s+1

1

Figure 5.8: s + t ≤ r < s + 2t, r ≥ 2t and 2s > r + t

Proof. For s ≤ r < s + t and r ≥ 2t the colouring given in Figure 5.9 shows that if
2s ≥ r+2t, then Xr,s,t(K1,3) ≤ 2s+1 and if 2s < r+2t, then Xr,s,t(K1,3) ≤ r+2t+1.

1

max(2s+1,r+2t+1)

r+t+1

1

t+1

s+1

1

Figure 5.9: s ≤ r < s + t, r ≥ 2t and 2s ≥ r + 2t

Then in the first case by Corollary 5.2, Xr,s,t(K1,3) = 2s + 1.
On the other hand if 2s < r + 2t, supposed that k ≤ r + 2t, by Corollary 5.3 there
is just one possible situation if 2s ≥ r + t:

4, c(v1) < c(e1) < c(v0) < c(e3): Then t+1 ≤ c(e1) ≤ r+2t+1, r+1 ≤ c(v0) ≤ r+t
and r + t + 1 ≤ c(e3) ≤ r + 2t. Therefore c(e2) < c(e3) and c(e2) ≤ r + 2t − s, so
c(e2) < c(e1) and c(e2) ≤ r + 2t − 2s which is smaller than t. Hence c(v2) > c(e2)
and c(v2) ≥ t + 1, that implies c(v2) > c(v0) and c(v2) ≥ 2r + 1, a contradiction.

Hence if r + t ≤ 2s < r + 2t, then Xr,s,t(K1,3) = r + 2t + 1.

Then if 2s < r + t, a colouring with less colours can be found (see Figure 5.10), so

1

2s+1

2s+t+1

s+1

1

1

t+1

Figure 5.10: s ≤ r < s + t, r ≥ 2t and 2s < r + t

that Xr,s,t(K1,3) ≤ 2s + t + 1. Suppose k ≤ 2s + t, then by Corollary 5.3 the only
possible situation is:
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4, c(v1) < c(e1) < c(v0) < c(e3): Then t + 1 ≤ c(e1) ≤ s + t, r + 1 ≤ c(v0) ≤ 2s and
r + t + 1 ≤ c(e3) ≤ 2s + t. Hence c(e2) < c(e3) and c(e2) ≤ s + t, so c(e2) < c(e1)
and c(e2) < t. Therefore c(v2) > c(e2) and c(v2) ≥ t+1, and then c(v2) > c(v0) and
c(v2) ≥ 2r + 1 which is greater than 2s + t, a contradiction.

Hence Xr,s,t(K1,3) = 2s + t + 1.

Theorem 5.7. If s ≥ r and s ≥ 2t, then

Xr,s,t(K1,3) = 2s + 1

Proof. From the colouring shown in Figure 5.11 it follows that Xr,s,t(K1,3) ≤ 2s+1.

1

2s+1

s+t+1

1

t+1

s+1

1

Figure 5.11: s ≥ r and s ≥ 2t

Then by Corollary 5.2, Xr,s,t(K1,3) = 2s + 1.

Theorem 5.8. If t < r, s < 2t, then

Xr,s,t(K1,3) =











r + 2t + 1 if r ≥ s and 2s ≥ r + t ;

2s + t + 1 if r ≥ s and 2s < r + t;

s + 2t + 1 otherwise.

Proof. a) If r ≥ s, then from the colouring shown by Figure 5.12, it follows that

1

r+2t+1

r+t+1

1

t+1

s+1

1

Figure 5.12: t < r ≥ s < 2t

Xr,s,t(K1,3) ≤ r + 2t + 1. If supposed that k ≤ r + 2t, by Corollary 5.3 the only
possible situations are:

4, c(v1) < c(e1) < c(v0) < c(e3): Then t + 1 ≤ c(e1) ≤ r, 2t + 1 ≤ c(v0) ≤ r + t and
3t+1 ≤ c(e3) ≤ r+2t. Hence c(e2) < c(e3) and therefore c(e2) < c(v0) and c(e2) ≤ r,
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so c(e2) < c(e1) and c(e2) ≤ r − s. Therefore c(v2) > c(e2) and c(v2) ≥ t + 1, but
then c(v2) must be greater than c(v0), which is a contradiction.

Case 5(1) and case 5(2) are just possible if 2s < r + t.

Hence if 2s ≥ r + t, then Xr,s,t(K1,3) = r + 2t + 1.

On the other hand, if 2s < r+ t, then the colouring given by Figure 5.13 proves that
at most 2s + t + 1 colours are needed.

1

2s+1

2s+t+1

1

t+1

s+1

1

Figure 5.13: t < s ≤ r < 2t and 2s < r + t

Suppose k ≤ 2s + t, then by Corollary 5.3 just one situation is possible:

4, c(v1) < c(e1) < c(v0) < c(e3): Then t + 1 ≤ c(e1) ≤ 2s − t and 3t + 1 ≤ c(e3) ≤
2s + t. Observe that it is not possible that c(e2) and c(e3) are greater than c(e1),
because in other case at least 2s+t+1 colours would be needed. Hence c(e2) < c(e1)
and c(e2) ≤ s − t, so c(v2) > c(e2) and c(v2) ≥ t + 1. Then c(v2) should be greater
than c(v0), a contradiction.

Hence if 2s < r + t, then Xr,s,t(K1,3) = 2s + t + 1.

b) If r < s, then the colouring given by Figure 5.14 implies that Xr,s,t(K1,3) ≤
s + 2t + 1 which coincides with the lower bound given by Corollary 5.2.

1

s+2t+1

s+t+1

1

t+1

s+1

1

Figure 5.14: t < r < s < 2t

Hence Xr,s,t(K1,3) = s + 2t + 1.

Theorem 5.9. If r ≤ t ≤ s < 2t, then

Xr,s,t(K1,3) = s + 2t + 1.

Proof. From the colouring in Figure 5.15 follows an upper bound that coincides with
the lower bound given by Corollary 5.2.
Hence, Xr,s,t(K1,3) = s + 2t + 1.
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1

s+2t+1

t+1

1

2t+1

2t+1

1

Figure 5.15: r ≤ t ≤ s < 2t

Theorem 5.10. If s ≤ t ≤ r < 2t, then

Xr,s,t(K1,3) =











s + 2t + 1 if s + t ≥ r;

r + t + 1 if s + t < r ≤ 2s + t;

2s + 2t + 1 otherwise.

Proof. The colouring given by Figure 5.16 shows that if s+t ≥ r, then Xr,s,t(K1,3) ≤
s + 2t + 1 and if s + t < r, then Xr,s,t(K1,3) ≤ r + t + 1.

1

s+t+1

max(s+2t+1,r+t+1)

t+1

1

1

t+1

Figure 5.16: s ≤ t ≤ r < 2t

Then if s + t ≥ r, supposed that k ≤ s + 2t, by Corollary 5.3 there are just two
possibilities:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then s + 1 ≤ c(e2) ≤ t and 2s + t + 1 ≤ c(v3) ≤
s+2t. Hence c(e2) < c(v0) < c(v3), so s+ t+1 ≤ c(v0) ≤ s+2t− r, a contradiction.

Case 5(2) leads to a similar contradiction considering c(v2).

Hence if s + t ≥ r, then Xr,s,t(K1,3) = s + 2t + 1.

On the other hand if s + t < r, suppose that k ≤ r + t, then there are just two
possibilities left by Corollary 5.3:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then 2s + t + 1 ≤ c(v3) ≤ r + t, so c(v0) < c(v3)
and c(v0) ≤ t. Therefore c(e1) > c(v0), so c(e1) ≥ t + 1 and c(v3) ≥ 2s + 2t + 1, a
contradiction if 2s + t ≥ r.

From case 5(2) it follows a similar contradiction considering c(v1), if 2s + t ≥ r.

Hence if s + t < r ≤ 2s + t, then Xr,s,t(K1,3) = r + t + 1.
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Then if 2s + t ≤ r a colouring using less colours is possible (see Figure 5.17) and
Xr,s,t(K1,3) ≤ 2s + 2t + 1.

2s+2t+1

2s+t+1

1

t+1

2t+1

s+t+1

s+2t+1

Figure 5.17: 2s + t ≤ r < 2t

Suppose k ≤ 2s + 2t, then by Corollary 5.3 just two cases are possible:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then c(e1) ≤ t and 2s + t + 1 ≤ c(v3) ≤ 2s + 2t.
Therefore c(e1) < c(v0) < c(v3), so t + 1 ≤ c(v0) ≤ 2s + 2t − r, a contradiction.

5(2) leads to a similar contradiction considering c(v1).

Hence if 2s + t ≤ r, then Xr,s,t(K1,3) = 2s + 2t + 1.

Theorem 5.11. If r, s ≤ t < r + s, then

Xr,s,t(K1,3) =

{

r + s + t + 1 if r ≥ s;

2s + t + 1 otherwise.

Proof. From the colouring given by Figure 5.18, it follows that if r ≥ s, then
Xr,s,t(K1,3) ≤ r + s + t + 1 and if r < s, then Xr,s,t(K1,3) ≤ 2s + t + 1.

1

max(2s+1,t+1)

max(r+s+t+1,2s+t+1)

s+1

s+t+1

1

t+1

Figure 5.18: r, s ≤ t < r + s

In the second case, the upper bound coincides with the lower bound given by Corol-
lary 5.2, hence Xr,s,t(K1,3) = 2s+ t+1 if r < s. On the other hand, if r ≥ s, suppose
k ≤ r + s + t. Then by Corollary 5.3 just two situations are possible:

5(1), c(e1) < c(e2) < c(e3) < c(v3): Then s + 1 ≤ c(e2) ≤ r and 2s + t + 1 ≤ c(v3) ≤
r+s+t. Therefore c(e2) < c(v0) < c(v3), so s+t+1 ≤ c(v0) ≤ s+t, a contradiction.

From case 5(2) it follows a similar contradiction, considering c(v2).

Hence if r ≥ s, then Xr,s,t(K1,3) = r + s + t + 1.
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Theorem 5.12. If t ≥ r + s, then

Xr,s,t(K1,3) =











r + 2s + t + 1 if t ≥ r + 2s;

2t + 1 if 2s ≤ t < r + 2s;

2s + t + 1 otherwise.

Proof. a) If t ≥ r + 2s, then the colouring given by Figure 5.19 demonstrates that
Xr,s,t(K1,3) ≤ r+2s+ t+1. This upper bound coincides with the lower bound given
by Corollary 5.2.

1

r+2s+t+1

r+1

r+s+t+1

1

r+t+1

1

Figure 5.19: t ≥ r + 2s

Hence, Xr,s,t(K1,3) = r + 2s + t + 1.

b) If t < r + 2s, then from the colouring shown by Figure 5.20, it follows that if
t ≥ 2s, then Xr,s,t(K1,3) ≤ 2t + 1 and if t < 2s, then Xr,s,t(K1,3) ≤ 2s + t + 1.

1

max(t+1,s+1)

max(2t+1,s+t+1)

s+1

s+t+1

1

t+1

Figure 5.20: r + s ≤ t < r + 2s

These bounds are the same as in Corollary 5.2, therefore if t ≥ 2s, then Xr,s,t(K1,3) =
2t + 1, and if t < 2s, then Xr,s,t(K1,3) = 2s + t + 1.

The results presented in this subsection are summarized in Table 5.1.

5.3 K1,n

The proof method used for K1,3 (analysis of all possible constellations of its elements)
is obviously not applicable in general, due to the length of the resulting proof. But
the colourings used in the basic case will be very useful to find proper colourings for
K1,n and give upper bounds for its [r, s, t]-chromatic number.
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Conditions Xr,s,t(K1,3)

r ≥ s + 2t r ≥ 2s + 2t r+1
r < 2s + 2t r ≥ 2s + t 2s+2t+1

r < 2s + t r ≥ 2s r+t+1
r < 2s 2s > r + t 2s ≤ r + 2t r+2t+1

2s > r + 2t 2s+1
2s ≤ r + t 2s+t+1

(s + t ≤ r < s + 2t) 2s + t ≥ r r ≥ 2s r+t+1
∧(r ≥ 2t) r < 2s 2s ≥ r + t 2s+1

2s < r + t 2s+t+1
2s + t < r 2s+2t+1

(s ≤ r < s + t) 2s ≥ r + 2t 2s+1
∧(r ≥ 2t) r + t ≤ 2s < r + 2t r+2t+1

2s < r + t 2s+t+1

(s ≥ r) ∧ (s ≥ 2t) 2s+1

t < r, s < 2t r ≥ s 2s ≥ r + t r+2t+1
2s < r + t 2s+t+1

r < s s+2t+1

r ≤ t ≤ s < 2t s+2t+1

s ≤ t ≤ r < 2t s + t ≥ r s+2t+1
s + t < r 2s + t ≥ r r+t+1

2s + t < r 2s+2t+1

r, s ≤ t < r + s r ≥ s r+s+t+1
r < s 2s+t+1

t ≥ r + s t ≥ r + 2s r+2s+t+1
t < r + 2s t ≥ 2s 2t+1

t < 2s 2s+t+1

Table 5.1: [r, s, t]-chromatic number of K1,3

As observed in Section 2.1, a star is a bipartite graph, hence X (K1,n) = 2 and
X ′(K1,n) = ∆(K1,n) = n. From these values and Lemma 5.1 follows Corollary 5.13.

Corollary 5.13. For all n ≥ 3

max{r + 1, (n − 1)s + 1, min{r + (n − 1)s + t + 1, (n − 2)s + 2t + 1, max{r + 1,
2t + 1, (n − 1)s + t + 1}}} ≤ Xr,s,t(K1,n) ≤ r + (n − 1)s + t + 1.
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Theorem 5.14. If r ≥ (n − 2)s + 2t, then

Xr,s,t(K1,n) =











































r + 1 if r ≥ (n − 1)s + 2t;

≤ (n − 1)s + 2t + 1 if (n − 1)s + t ≤ r < (n − 1)s + 2t;

≤ r + t + 1 if (n − 1)s ≤ r < (n − 1)s + t;

≤ (n − 1)s + t + 1 if r < (n − 1)s ≤ r + t;

≤ r + 2t + 1 if r + t < (n − 1)s ≤ r + 2t;

2s + 1 if (n − 1)s > r + 2t.

Proof. For r ≥ (n − 2)s + 2t, the colouring given by Figure 5.21 implies that if
r ≥ (n−1)s+2t, then Xr,s,t(K1,n) ≤ r+1 and if r < (n−1)s+2t, then Xr,s,t(K1,n) ≤
(n − 1)s + 2t + 1.

r+1

t+1

1
r+1 s+t+1

r+1

2s+t+1

r+1

(n-2)s+t+1

(n-1)s+t+1

max(r+1,(n-1)s+2t+1)

Figure 5.21: r ≥ (n − 1)s + 2t

Hence if r ≥ (n − 1)s + 2t, by Corollary 5.13 Xr,s,t(K1,n) = r + 1.

On the other hand, if r < (n−1)s+t the colouring shown in Figure 5.22 is possible.

1

t+1

r+1
1

s+t+1

1

2s+t+1

1

(n-2)s+t+1

max(r+t+1,(n-1)s+t+1)

1

Figure 5.22: (n − 1)s ≤ r < (n − 1)s + t

Hence if (n−1)s ≤ r < (n−1)s+ t, then Xr,s,t(K1,n) ≤ r + t+1 and if r < (n−1)s,
then Xr,s,t(K1,n) ≤ (n − 1)s + t + 1.

But, if r + t < (n− 1)s a colouring with less colours can be found (see Figure 5.23).

Hence if r + t < (n − 1)s ≤ r + 2t, then Xr,s,t(K1,n) ≤ r + 2t + 1, and if (n − 1)s >
r + 2t, then Xr,s,t(K1,n) ≤ (n − 1)s + 1, hence in the last case by Corollary 5.13,
Xr,s,t(K1,n) = (n − 1)s + 1.
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t+1

1
r+t+1

1
s+1

1

2s+1

1

(n-2)s+1

max(r+2t+1,(n-1)s+1)

1

Figure 5.23: r + t < (n − 1)s

Theorem 5.15. If (n − 2)s + t ≤ r < (n − 2)s + 2t and r ≥ 2t, then

Xr,s,t(K1,n) =























≤ (n − 1)s + 2t + 1 if r > (n − 1)s + t;

≤ r + t + 1 if (n − 1)s ≤ r ≤ (n − 1)s + t;

≤ 2s + t + 1 if r < (n − 1)s ≤ r + t;

2s + 1 if (n − 1)s > r + t.

Proof. a) If r > (n − 1)s + t, then from the colouring shown in Figure 5.24, it follows
that Xr,s,t(K1,n) ≤ (n − 1)s + 2t + 1.

r+1

t+1

1

(n-2)s+2t+1

(n-2)s+2t+1

2s+t+1
(n-2)s+2t+1

(n-2)s+t+1

(n-1)s+t+1

(n-1)s+2t+1s+t+1

Figure 5.24: (n − 1)s + t ≤ r < (n − 2)s + 2t, r ≥ 2t

b) If (n − 1)s ≤ r ≤ (n − 1)s + t, the colouring given in Figure 5.25 shows that
Xr,s,t(K1,n) ≤ r + t + 1.

t+1

1

r+t+1

1

1
1

r+1

1

c(e )i i-1=c(e )+s, i=3,...,n-1

c( )=max(s+1,t+1)e2

c(e )3
c(e )n-1

Figure 5.25: (n− 2)s + t ≤ r < (n− 2)s + 2t, r ≥ 2t and (n− 1)s ≤ r ≤ (n− 1)s + t
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c) If r < (n − 1)s < r + t from the colouring shown by Figure 5.26, it follows that
Xr,s,t(K1,n) ≤ (n − 1)s + t + 1.

t+1

1
(n-1)s+t+1

1

1

2s+1

1

(n-2)s+1

(n-1)s+1

1s+1

Figure 5.26: (n − 2)s + t ≤ r < (n − 2)s + 2t and 2t ≤ r < (n − 1)s < r + t

And if (n − 1)s > r + t, then the colouring shown in Figure 5.27 is possible.

r+t+1

1

r+1

1

1

2s+1

1

(n-2)s+1

(n-1)s+1

1
s+1

Figure 5.27: (n − 2)s + t ≤ r < (n − 2)s + 2t, r ≥ 2t and (n − 1)s > r + t

Hence, Xr,s,t(K1,n) ≤ (n−1)s+1 and by Corollary 5.13 it follows that Xr,s,t(K1,n) =
(n − 1)s + 1.

Theorem 5.16. If (n − 2)s ≤ r < (n − 2)s + t and r ≥ 2t, then

Xr,s,t(K1,n) =























(n − 1)s + 1 if (n − 1)s ≥ r + 2t;

≤ r + 2t + 1 if r + t ≤ (n − 1)s < r + 2t;

≤ (n − 1)s + t + 1 if (n − 1)s < r + t and s ≥ t;

≤ (n − 2)s + 2t + 1 if (n − 1)s < r + t and s < t.

Proof. For (n − 2)s ≤ r < (n − 2)s + t and r ≥ 2t the colouring given in Figure
5.28 proves that if (n − 1)s ≥ r + 2t, then Xr,s,t(K1,n) ≤ (n − 1)s + 1 and if
r + t ≤ (n− 1)s < r + 2t, then Xr,s,t(K1,n) ≤ r + 2t + 1. Then by Corollary 5.13, in
the first case Xr,s,t(K1,n) = (n − 1)s + 1.
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t+1

1
r+t+1

1

1

2s+1
1

(n-2)s+1

max((n-1)s+1,r+2t+1)

1
s+1

Figure 5.28: (n − 2)s ≤ r < (n − 2)s + t, r ≥ 2t and (n − 1)s ≥ r + 2t

If (n − 1)s < r + t, than less colours can be used. But in order to be able to use
the colouring given by Figure 5.29 (similar to the colouring for K1,3 in Figure 5.10),
s should be greater than t, which is not always the case (observe that for K1,3 this
fact followed from s + t ≥ r > 2t).

t+1

1
(n-1)s+t+1

1

1

2s+1
1

(n-2)s+1

(n-1)s+1

1s+1

Figure 5.29: (n − 2)s ≤ r < (n − 2)s + t, r ≥ 2t, (n − 1)s < r + t and s ≥ t

Then if (n − 1)s < r + t and s ≥ t, then Xr,s,t(K1,n) ≤ (n − 1)s + t + 1.

On the other hand, if s < t, from the colouring shown in Figure 5.30, it follows that
Xr,s,t(K1,n) ≤ (n − 2)s + 2t + 1.

t+1

1
(n-2)s+2t+1

1

1

s+t+1
1

(n-3)s+t+1

(n-2)s+t+1

1t+1

Figure 5.30: (n − 2)s ≤ r < (n − 2)s + t, r ≥ 2t, (n − 1)s < r + t and s < t

In order to cover all possible situations and due to the role of n, a new situation (in
relation with the situations studied for K1,3) has to be considered and is presented
in Theorem 5.17.
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Theorem 5.17. If r < (n − 2)s + t and r ≥ 2t, then

Xr,s,t(K1,n) =











(n − 1)s + 1 if s ≥ 2t;

≤ (n − 1)s + t + 1 if t ≤ s < 2t;

≤ (n − 2)s + 2t + 1 s < t.

Proof. a) If s ≥ 2t, then the colouring given by Figure 5.31 implies that Xr,s,t(K1,n) ≤
(n − 1)s + 1.

t+1

1
(n-2)s+t+1

1

1

2s+1
1

(n-2)s+1

(n-1)s+1

1s+1

Figure 5.31: r < (n − 2)s + t, r ≥ 2t and s ≥ 2t

Then by Corollary 5.13, Xr,s,t(K1,n) = (n − 1)s + 1.

b) If s < 2t from the colouring shown in Figure 5.32, it follows that if t ≤ s < 2t,
then Xr,s,t(K1,n) ≤ (n−1)s+ t+1 and if s < t, then Xr,s,t(K1,n) ≤ (n−2)s+2t+1.

t+1

1
c(e )+tn

1

1

c(e )3

1

c(e )n-1

c(e )n

1
c(e )=max(s+1,t+1)2

c(e)=c(e )+s, i=3...ni i-1

Figure 5.32: r < (n − 2)s + t, r ≥ 2t and s < 2t

Theorem 5.18. If s ≥ r and s ≥ 2t, then

Xr,s,t(K1,n) = (n − 1)s + 1

Proof. From the colouring shown in Figure 5.33 it follows that Xr,s,t(K1,n) ≤ (n − 1)s + 1.

Then by Corollary 5.13, Xr,s,t(K1,n) = (n − 1)s + 1.
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t+1

1

s+t+1

1

1

2s+1
1

(n-2)s+1

(n-1)s+1

1
s+1

Figure 5.33: s ≥ r and s ≥ 2t

Theorem 5.19. If t < r, s < 2t, then

Xr,s,t(K1,n) =











≤ r + 2t + 1 if r ≥ (n − 2)s and (n − 1)s ≥ r + t ;

≤ (n − 1)s + t + 1 if r ≥ (n − 2)s and (n − 1)s < r + t;

(n − 2)s + 2t + 1 otherwise.

Proof. a) If r ≥ (n − 2)s from the colouring shown by Figure 5.34, it follows that
Xr,s,t(K1,n) ≤ r + 2t + 1.

t+1

1
r+t+1

1

1

2s+1
1

(n-2)s+1

r+2t+1

1
s+1

Figure 5.34: t < r, s < 2t and r ≥ (n − 2)s

b) If in addition (n − 1)s < r + t, then the colouring given by Figure 5.35 shows
that at most 2s + t + 1 colours are needed.

t+1

1
(n-1)s+t+1

1

1

2s+1
1

(n-2)s+1

(n-1)s+1

1s+1

Figure 5.35: t < r, s < 2t and r + s ≤ (n − 1)s < r + t

c) If r < (n − 2)s, the colouring given by Figure 5.36 demostrates that Xr,s,t(K1,n) ≤
(n−2)s+2t+1 which coincides with the lower bound given by Corollary 5.13. Hence
Xr,s,t(K1,n) = (n − 2)s + 2t + 1.
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t+1

1
(n-2)s+t+1

1

1

2s+1
1

(n-2)s+1

(n-2)s+2t+1

1s+1

Figure 5.36: t < r, s < 2t and r < (n − 2)s

Theorem 5.20. If r ≤ t ≤ s < 2t, then

Xr,s,t(K1,3) = (n − 2)s + 2t + 1.

Proof. The colouring given by Figure 5.37 gives an upper bound that coincides with
the lower bound given by Corollary 5.13. Hence, Xr,s,t(K1,n) = (n − 2)s + 2t + 1.

2t+1

1

t+1

1

1

s+2t+1
1

(n-3)s+2t+1

(n-2)s+2t+1

1
2t+1

Figure 5.37: r ≤ t ≤ s < 2t

Theorem 5.21. If s ≤ t ≤ r < 2t, then

Xr,s,t(K1,n) =











≤ (n − 2)s + 2t + 1 if (n − 2)s + t ≥ r;

≤ r + t + 1 if (n − 2)s + t < r ≤ 2s + t;

≤ (n − 1)s + 2t + 1 otherwise.

Proof. The colouring given by Figure 5.38 proves that if (n − 2)s + t ≥ r, then
Xr,s,t(K1,n) ≤ (n− 2)s + 2t + 1 and if (n− 2)s + t < r, then Xr,s,t(K1,n) ≤ r + t + 1.
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t+1

1
max((n-2)s+2t+1,r+t+1)

1

1

s+t+1
1

(n-3)s+t+1

(n-2)s+t+1
1t+1

Figure 5.38: s ≤ t ≤ r < 2t

But if (n − 1)s + t ≤ r, then a colouring with less colours is possible (see Figure
5.39) and it follows that Xr,s,t(K1,3) ≤ 2s + 2t + 1.

2t+1

t+1
1

s+2t+1

2s+2t+1

2s+t+1
(n-2)s+2t+1

(n-2)s+t+1

(n-1)s+t+1

(n-1)s+2t+1s+t+1

Figure 5.39: (n − 1)s + t ≤ r < 2t

Theorem 5.22. If r, s ≤ t < r + s, then

Xr,s,t(K1,n) =

{

≤ r + (n − 2)s + t + 1 if r ≥ s;

(n − 1)s + t + 1 otherwise.

Proof. From the colouring given by Figure 5.40, it follows that if r ≥ s, then
Xr,s,t(K1,n) ≤ r + (n− 1)s + t + 1 and if r < s, then Xr,s,t(K1,n) ≤ (n− 1)s + t + 1.

t+1

1

max((n-1)s+t+1,r+(n-2)s+t+1)

s+t+1

2s+t+1

2s+1
(n-2)s+t+1

(n-2)s+1

max((n-1)s+1,t+1)
1s+1

Figure 5.40: r, s ≤ t < r + s

Furthermore, in the second case the upper bound coincides with the lower bound
given by Corollary 5.13, hence Xr,s,t(K1,n) = (n − 1)s + t + 1 if r < s.
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Theorem 5.23. If t ≥ r + s, then

Xr,s,t(K1,n) =











r + (n − 1)s + t + 1 if t ≥ r + (n − 1)s;

2t + 1 if (n − 1)s ≤ t < r + (n − 1)s;

(n − 1)s + t + 1 otherwise.

Proof. a) If t ≥ r + (n − 1)s the colouring given by Figure 5.41 implies that Xr,s,t(K1,n) ≤
r + (n − 1)s + t + 1. This is an upper bound coincides with the lower bound given
by Corollary 5.13.

1

r+t+1

r+1

1

1

r+2s+t+1
1

r+(n-2)s+t+1

r+(n-1)s+t+1

1
r+s+t+1

Figure 5.41: t ≥ r + (n − 1)s

Hence, Xr,s,t(K1,n) = r + (n − 1)s + t + 1.

b) If t < r + (n − 1)s from the colouring shown by Figure 5.42, it follows that if
t ≥ (n − 1)s, then Xr,s,t(K1,n) ≤ 2t + 1 and if t < (n − 1)s, then Xr,s,t(K1,n) ≤
(n − 1)s + t + 1. These bounds are the same as given by Corollary 5.13, therefore

t+1

1

max((n-1)s+t+1,2t+1)

s+t+1

2s+t+1

2s+1

(n-2)s+t+1

(n-2)s+1

max((n-1)s+1,t+1)
1s+1

Figure 5.42: r + s ≤ t < r + 2s

if t ≥ (n − 1)s, then Xr,s,t(K1,n) = 2t + 1, and if t < (n − 1)s, then Xr,s,t(K1,n) =
(n − 1)s + t + 1.

The results presented in this section are summarized in Table 5.2.
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Conditions Xr,s,t(K1,n)

r ≥ (n − 2)s + 2t r ≥ (n − 1)s + 2t r + 1
r < (n − 1)s + 2t r ≥ (n − 1)s + t ≤ (n − 1)s + 2t + 1

r < (n − 1)s + t r ≥ (n − 1)s ≤ r + t + 1
r < (n − 1)s ≤ (n − 1)s + t + 1

((n − 2)s + t ≤ r (n − 1)s + t ≥ r r ≥ (n − 1)s ≤ r + t + 1
< (n − 2)s + 2t) r < (n − 1)s (n − 1)s ≥ r + t (n − 1)s + 1
∧(r ≥ 2t) (n − 1)s < r + t ≤ (n − 1)s + t + 1

(n − 1)s + t < r ≤ (n − 1)s + 2t + 1

((n − 2)s ≤ r < (n − 1)s ≥ r + 2t (n − 1)s + 1
(n − 2)s + t) r + t ≤ (n − 1)s < r + 2t ≤ r + 2t + 1
∧(r ≥ 2t) (n − 1)s < r + t s ≥ t ≤ (n − 1)s + t + 1

s < t ≤ (n − 2)s + 2t + 1

(r < (n − 2)s) s ≥ 2t (n − 1)s + 1
∧(r ≥ 2t) s < 2t s ≥ t ≤ (n − 1)s + t + 1

s < t ≤ (n − 2)s + 2t + 1

(s ≥ r) ∧ (s ≥ 2t) (n − 1)s + 1

t < r, s < 2t r ≥ (n − 2)s (n − 1)s ≥ r + t ≤ r + 2t + 1
(n − 1)s < r + t ≤ (n − 1)s + t + 1

r < (n − 2)s (n − 2)s + 2t + 1

r ≤ t ≤ s < 2t (n − 2)s + 2t + 1

s ≤ t ≤ r < 2t (n − 2)s + t ≥ r ≤ (n − 2)s + 2t + 1
(n − 2)s + t < r (n − 1)s + t ≥ r ≤ r + t + 1

(n − 1)s + t < r ≤ (n − 1)s + 2t + 1

r, s ≤ t < r + s r ≥ s ≤ r + (n − 2)s + t + 1
r < s (n − 1)s + t + 1

t ≥ r + s t ≥ r + (n − 1)s r + (n − 1)s + t + 1
t < r + (n − 1)s t ≥ (n − 1)s 2t + 1

t < (n − 1)s (n − 1)s + t + 1

Table 5.2: [r, s, t]-chromatic number of K1,n

67



Chapter 6

Other Graph Classes

In this chapter some results for other classes of graphs are presented.

6.1 Bipartite Graphs

As noted before, paths, even cycles and stars are examples of bipartite graphs.
Since the chromatic number and chromatic index are know for them (Lemma 2.6
and Theorem 2.11), a ”good” [r, s, t]-colouring can be found in general if they are
coloured with a certain rule.

Theorem 6.1. If G is a bipartite graph, a colouring using k colours can be easily
found in such a way that

k −Xr,s,t(G) ≤ 2t.

Proof. Since X (G) = 2 and X ′(G) = ∆ (where ∆ := ∆(G)) for all bipartite graph,
G, from Lemma 2.25 it follows that

max{r + 1, s(∆ − 1) + 1, min{r + s(∆ − 1) + t + 1, s(∆ − 2) + 2t + 1,
max{r + 1, 2t + 1, s(∆ − 1) + t + 1}}} ≤ Xr,s,t(G) ≤ r + s(∆ − 1) + t + 1.

Then, if r > s(∆ − 1) + 2t, the vertices can be coloured with the two colours 1 and
r+1 and the edges with the ∆ colours in between: t+1, s+t+1, . . . , s(∆−1)+t+1.
Hence just r + 1 colours have to be used and so, because of the previous bounds,
Xr,s,t(G) = r + 1.

On the other hand, if r ≤ s(∆− 1) + 2t, the edges can be coloured with the colours
t + 1, s + t + 1, . . . , s(∆− 1) + t + 1 and the vertices can receive the colours 1, s(∆−
1)+2t+1. Hence, a colouring using s(∆−1)+2t colours has been found and, since
Xr,s,t(G) ≥ s(∆ − 1), it differs at most on 2t from an optimal colouring.

Observe that then, if t = 0, the colourings described above are optimal. On the
other hand, it is obvious since then vertex-colouring and edge-colouring the graph
would be independent processes.
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6.2 Complete Graphs

From Lemma 2.22, it follows that Xr,s,t(Kω(G)) ≤ Xr,s,t(G) ≤ Xr,s,t(K|V (G)|), where
|V (G)| is the order of G. Therefore, the study of the [r, s, t]-chromatic number of
complete graphs is of great interest.

Complete graphs were already investigated by Kemnitz and Marangio [11], who
determined the exact value of Xr,s,t(Kn) if min{r, s, t} = 0 in almost any case.
Moreover, if min{r, s, t} ≥ 1 the following Theorem was given.

Theorem 6.2. If min{r, s, t} ≥ 1, n ≥ 3 and ∆ = ∆(Kn), then
a)Xr,r,r(Kn) = r∆ + 1 if n odd;
b)Xr,r,r(Kn) = r(∆ + 1) + 1 if n even;
c)Xr,s,t(K2n+1) = r∆ + 1, if 1 ≤ s ≤ r and 1 ≤ t ≤ r;
d)Xr,s,t(K2n+1) = s∆ + 1 if 1 ≤ r ≤ s and 1 ≤ t ≤ s;
e)Xr,s,t(K2n) = r∆ + 1 if r ≥ 2, 1 ≤ s ≤ r and 1 ≤ t ≤ br/2c;
f)X1,s,1(K2n) = s(∆ − 1) + 1 if s ≥ 3;
g)X1,2,1(K2n) = 2∆;
h)Xr,s,t(Kn) = r∆ + s(∆ − 1) + t + 1 if t > (r + s)∆ and r ≥ s.

Then, the smallest cases with min{r, s, t} ≥ 1 which are not covered by Theorem 6.2
are X2,3,1(K2n) and X1,1,2(Kn). The first value is determined in the next Theorem.

Theorem 6.3. X2,3,1(K2n) = 6n − 3, for all n.

Proof. Kemnitz and Marangio [11] gave a first approximation as follows: 6n − 4 ≤
X2,3,1(K2n) ≤ 6n − 3.
Suppose X2,3,1(K2n) = 6n − 4. Then since X (K2n) = ∆ + 1 (where ∆ = 2n − 1)
and X ′(K2n) = ∆, at least this number of different colours should be used for the
vertices and the edges, respectively.
But no more than ∆ different colours can be used for the edges, since otherwise
s(∆ + 1 − 1) + 1 = 6n − 3 + 1 = 6n − 2 > 6n − 4 colours would be at least needed.
Then, denote this ∆ colours as ce

1 < ce
2 < · · · < ce

∆ (analogously the colours for the
vertices will be cv

1 < cv
2 < · · · < cv

∆+1 < cv
∆+2 < . . . ).

The possible situations are the following:

Case 1: There exist cv
i , c

v
j such that cv

i , c
v
j < ce

1. Then X2,3,1(K2n) ≥ s(∆ − 1) + 1 +
t + r = 6n − 2, which is a contradiction.

Case 2: There exist cv
i , c

v
j such that cv

i < ce
1 and cv

j > ce
∆. Then X2,3,1(K2n) ≥

t + 1 + s(∆ − 1) + t = 6n − 3, which is not possible.

Case 3: There exists just one cv
i such that cv

i > ce
∆ (or cv

i < ce
1). Then, there must

exist cv
p, c

v
t , c

e
m such that ce

m < cv
p < cv

t < ce
m+1. Then X2,3,1(k2n) ≥ s(m − 1) + 1 +

t + r + t + s(∆ − m − 1) + t = 6n − 3, a contradiction.

Case 4: The only possible remaining situations are those where between two edge-
colours are at least three vertex-colours or where at least more than one vertex-colour
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is between two pairs of edge-colours. In detail:
Case 4(1): If ce

1 < · · · < ce
m < cv

i < cv
j < cv

p < ce
m+1 < · · · < ce

∆, for some m, i, j, p.
Then X2,3,1(K2n) ≥ s(m−1)+1+ t+2r+ t+s(∆−m−1) = 6n−2, a contradiction.
Case 4(2): If ce

1 < · · · < ce
m < cv

i < cv
j < ce

m−1 < · · · < ce
k < cv

p < cv
q < ce

k+1 < · · · <
ce
∆, for some m, i, j, k, p, q. Then X2,3,1(K2n) ≥ s(m− 1) + 1 + t + r + t + s(k −m−

1) + t + r + t + s(∆ − k − 1) = 6n − 3, which is a contradiction.

Hence, 6n−4 colours are not enough for a [2, 3, 1]-colouring of K2n. So X2,3,1(K2n) =
6n − 3, for all n.
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Chapter 7

Summary

[r, s, t]-colourings of graphs have been introduced as an extension of the classical
graph colourings: vertex-colouring, edge-colouring and total-colouring. As men-
tioned in Section 2.1, these colourings have been studied for a long time. So the
exact value of the chromatic number, the edge-chromatic number and the total-
chromatic number has been determined for many classes of graphs. In Section 2.1
the results for paths, cycles, stars, bipartite graphs and complete graphs are pre-
sented and are now summarized in Table 7.1.

Class of graphs X (G) X ′(G) XT (G)

Paths (Pn) 2 2 3

Cycles (Cn) 2 if n even 2 if n even 3 if n ≡ 0 mod 3
3 if n odd 3 if n odd 4 if n 6= 0 mod 3

Stars (K1,n) 2 n n + 1

Bipartite 2 ∆(G) ∆(Kn,m) + 1 if complete bip. and n 6= m
∆(Kn,m) if complete bip. and n = m

Complete (Kn) n if n even n − 1 if n even n − 1 if n even
n if n odd n if n odd n if n odd

Table 7.1: Classical Colourings

However, the chromatic number, edge-chromatic number and total-chromatic num-
ber have not been determined for every class of graphs, since this is a hard task.
This shows the difficulty of any generalization of vertex-, edge- or total-colouring,
which is the case of the [r, s, t]-colouring.

In Chapter 1, applications of these colourings for solving different scheduling problem
have been shown. There, we noted that considering some natural constraints (for
example relating waiting, resting or preparing times) a new notion of colouring
should be introduced.

This was realized by Hackmann, Kemnitz and Marangio [11] by defining the [r, s, t]-
colouring as follows: Given non-negative integers r, s and t, an [r, s, t]-colouring of a
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7 SUMMARY

graph G = (V (G), E(G)) is a mapping c from V ∪E(G) to the colour set {1, 2, ..., k}
such that |c(vi)− c(vj)| ≥ r for every two adjacent vertices vi, vj , |c(ei)− c(ej)| ≥ s
for every two adjacent edges ei, ej , and |c(vi) − c(ej)| ≥ t for all pairs of incident
vertices vi and edges ej , respectively. The [r, s, t]-chromatic number Xr,s,t(G) of G
is defined as the minimum k such that G admits an [r, s, t]-colouring.

This definition (Definition 2.21) and some hereditary properties (Lemmas 2.22 and
2.23) can be found in Section 2.2. There is also given a first improvement of the
general bounds by Kemnitz and Marangio, which says that

max{r(X (G)−1)+1, s(X ′(G)−1)+1, t+∆(G)} ≤ Xr,s,t(G) ≤ r(X (G)−1)+s(X ′(G)−1)+t+1.

Its sharpness was also shown, although the third term of the lower bounds is sharp
only in a very specific case, which made us believe that it could be still improved.
In fact it was done later in Chapter 5.

As a first step, the simplest class of graphs was taken. In Chapter 3 the [r, s, t]-
colouring for paths was studied, using the previous bounds in some situations and
considering all possible constellations of the colours of a subpath of order 3 in other
cases. Then the [r, s, t]-chromatic number for paths could be determined in all
possible situations, as listed in Table 3.1.

Furthermore, the study of the [r, s, t]-colouring for paths leads to useful applications.
Because of Lemma 2.22, the [r, s, t]-chromatic number of a path can be used as a
lower bound of the correspondent value for any graph containing it as a subgraph.
This fact was used in Chapter 4 to determine the [r, s, t]-chromatic number for cycles.

Cycles of even and odd order have different chromatic number, edge-chromatic num-
ber and total-chromatic number, which affects for instance the general lower bounds
given by Lemma 2.25. Due to this fact, these two cases were treated separately in
Sections 4.1 and 4.2, respectively.
On the other hand, for cycles whose order is not a multiple of 3, XT (Cn) = 4. This
was used to study all possible constellations of colours of the elements of the cy-
cle and the lower bounds that they imply, which reduce the possible situations to
be studied. This fact was very useful to present a complete listing of the [r, s, t]-
chromatic number for cycles, as shown in Tables 4.1 and 4.2.

According to Lemma 2.22, Xr,s,t(K1,∆(G)) ≤ Xr,s,t(G). Hence, the study of the
[r, s, t]-chromatic number for stars is specially interesting, since it provides a lower
bound for any graph G in relation with its maximum degree.
This task is presented in Chapter 5. At first, a second improvement of the general
bounds by Kemnitz and Marangio was given as follows:

max{r + 1, 2s + 1, min{r + 2s + t + 1, s + 2t + 1, max{r + 1, 2t + 1, 2s + t + 1}}} ≤
≤ Xr,s,t(K1,3) ≤ r + 2s + t + 1.

These bounds are often sharp for stars.
However, there were some remaining cases, for which a similar strategy as the one
used for cycles should be applied. Therefore, all possible constellations of the colours
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7 SUMMARY

of its elements with at least one monotone sequence of length four were listed, since
XT (K1,3) = 4. In this way the situations to be studied were reduced, as expected.
Using this strategy the [r, s, t]-chromatic number for K1,3 could be determined. The
results are presented in Section 5.2 and summarized in Table 5.1.

The colourings used for K1,3 give a schema of how the colourings for the general
case should be. Applying these colourings and the improved general bounds, the
[r, s, t]-chromatic number for K1,n could be determined in some cases. In the re-
maining cases, bounds were given. All these results are presented in Section 5.3 and
summarized in Table 5.2.

Finally in Chapter 6 some other classes of graphs are studied. In particular, it
is proved that for bipartite graphs a good approximation to the optimal [r, s, t]-
colouring can be always easily found. And for complete graphs, which were already
studied by Kemnitz and Marangio [11], the [r, s, t]-chromatic number for a special
case is given.
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Glossary

[r, s, t]-chromatic number: see Definition 2.21

[r, s, t]-colouring: see Definition 2.21

∆ := ∆(G): Maximum vertex degree of G

µ(G): Maximum multiplicity of edges in G

ω(G): Clique number of G

Cn: Cycle of order n

E(G): Set of edges of G

G∗: Dual graph of G

H ⊆ G: H is a subgraph of G

K1,n: Star of order n + 1 (with n leaves)

Kn: Complete graph of order n

L(G): Line graph of G

Nn: Empty graph

Pn: Path of order n

V (G): Set of vertices of G

X ′(G): Edge-chromatic number of G

X (G): Chromatic number of G

Xr,s,t(G): [r, s, t]-chromatic number

XT (G): Total-chromatic number of G

Acyclic graph: Graph without cycles
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GLOSSARY

Bipartite graph: Graph, whose vertex set is the union of two disjoint independent
sets

Chromatic number of G: see Definition 2.1

Clique number of G: see page 7

Complement graph of G, G: Simple graph with vertex set V (G) defined by
uv ∈ E(G) if and only if uv is not an element of E(G)

Complete graph: Simple graph, whose vertices are pairwise adjacent

Components of G: Maximal connected subgraphs in G

Connected graph: A graph where each pair of vertices belongs to a path

Cycle: Graph with equal number of vertices and edges, n, whose vertices can be
placed around a circle so that two vertices are adjacent if and only if they
appear consecutively along the circle

Dual graph: see page 6

Edge-chromatic number (or chromatic index): see Definition 2.7

Edge-colouring: see Definition 2.7

Empty graph: Graph with no edges

Independent set: Set of pairwise nonadjacent vertices

Line graph: see Definition 2.8

Matching: Set of non-loop edges with no shared endpoints

Maximum (vertex) degree of G: Maximum number of incident edges to any vertex
of G

Multiple edges: Edges having the same end points

NP-complete problem: Problem for which no polynomial-time algorithm solving it
is known

Order of a graph: Number of vertices

Path: Simple graph whose n vertices can be ordered so that two vertices are adjacent
if and only if they are consecutive in the list

Perfect matching: Matching that saturates every vertex

Planar graph: Graph that can be drawn in the plane without crossing edges
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GLOSSARY

Regular graph: Graph G, such that ∆(G) = δ(G), where δ(G) is the minimum
degree of G and is defined analogously to ∆(G)

Simple graph: Graph not having loops or multiple edges

Star: Connected acyclic graph consisting of one vertex adjacent to all the others

Subgraph: H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G) and the
assignment of end points to edges in H is the same as in G

Total-chromatic number: see Definition 2.14

Total-colouring: see Definition 2.14

Vertex-colouring: see Definition 2.1
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[7] C. Berge, Les problèmes de coloration en theorie des graphes, Publ. Inst. Statist.
Univ. Paris 9 (1960), 123-160.

[8] P.J. Heawood, Map-colour theorem, Quart. J. Pure Appl. Math. (Oxford) 24
(1890), 332-338.

[9] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Computing 10 (1981),
718-720.

[10] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley-Interscience, New York
(1995).

[11] A. Kemnitz, M. Marangio, [r,s,t]-Colorings of Graphs, (Preprint) (2003).

[12] A.B. Kempe, On the geographical problem of four colours, Amer. J. Math. 2
(1879), 193-200.
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