Imitation Learning of Motor Skills for
Synthetic Humanoids

Von der Fakultat fur Mathematik und Informatik

der Technischen Universitat Bergakademie Freiberg
genehmigte

DISSERTATION

zur Erlangung des akademischen Grades
Doktor-Ingenieur
Dr.-Ing.

vorgelegt

von Dipl.-Inform. Heni Ben Amor

geboren am 01.02.1982 in Dernbach

Gutachter:
Prof. Dr.-Ing. Bernhard Jung, Freiberg

Prof. Dr. rer. nat. Ulrich Furbach, Koblenz

Tag der Verleihung: 12.11.2010

Versicherung

Hiermit versichere ich, daf} ich die vorliegende Arbeit ohne unzulissige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt ibernommenen Gedanken sind als solche kenntlich
gemacht.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts
habe ich keine Unterstiitzungsleistungen Dritter, wie Promotionsberater, in Anspruch

genommen. Weitere Personen haben von mir keine geldwerten Leistungen fiir Arbeiten
erhalten, die nicht als solche kenntlich gemacht worden sind.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder &hnlicher
Form einer anderen Priifungsbehorde vorgelegt.

Freiberg, den 01. Juni 2010

Heni Ben Amor

i

Acknowledgements

You can dream, create, design and build
the most wonderful place in the world, but
it requires people to make the dream a reality.

(Walt Disney)

Although the focus of this thesis are virtual and robotic humanoids, it is the interac-
tion with humans of flesh and blood that played the most important part in its comple-
tion. During the last four years, many people at the Technical University Bergakademie
Freiberg and the University of Osaka supported me in the work leading to this thesis.

First, I would like to thank my advisor Bernhard Jung for giving me the opportunity
to work on exciting scientific projects, and for guiding and educating me during my
years in Freiberg. Bernhard is a very inspiring person who always managed to create
a motivating atmosphere in our working group. Thank you Bernhard for all the ideas,
your help and patience! I would also like to thank my coworkers at the virtual reality
group Guido Heumer, Arnd Vitzthum and Matthias Weber for the stimulating scientific
(and sometimes non-scientific) discussions and their great support.

[am grateful to Ulrich Furbach for initiating me to the world of artificial intelligence
and for being available as a reviewer of this thesis.

I am indebted to Hiroshi Ishiguro for making me part of the Intelligent Robotics Lab
at the University of Osaka in Japan. Ishiguro-sensei was a great mentor and constantly
supported me in my research on android robots.

My special thanks go to Konrad Froitzheim for the numerous hints on how to improve
the thesis and for his support in acquiring the small humanoid robots that were essential
for carrying out the experiments presented here.

I would like to thank my close collaborator Shuhei Ikemoto for his constant help as well
as his support during my stays in Japan. Although at times we were seperated by several
thousands of kilometers, we always managed to continue our successful collaboration. I
had a great time working with Shuhei and I will always remember the funny discussions
at 3:00 a.m. in the morning on the way home from the lab.

[thank Oliver Obst for introducing me to robotics, machine learning, scientific writing
and many other things that were important for my later career.

I am deeply thankful to all of my students who supported and helped me in vari-
ous ways, especially Erik Berger, David Vogt, Henry Lehmann, Edith Kegel, Christian
Schlegel, Ralf Miiller, Maik Deininger, Stefanie Hofig, Peter Scheicher and Eric Kunze.

1l

Without the delicious couscous of Moncef Bouaziz, his constant support, as well as
his great humor, the writing of this thesis would have taken a significantly longer time.

A big Thank You! also goes to Martin Wiesenmayer for proofreading this thesis and
for keeping me up-to-date about recent cinematic activities.

I thank my sisters Hazar and Houyem for being an endless source of inspiration and
for cheering me up during the hard times of solitary writing and experimentation.

Finally, I want to thank my brother Heikel, my sister Hounaida and my parents Hedi
and Mesaouda Ben Amor for their moral support and for always being there when I
need them.

Freiberg, 2010

v

Contents

4.4.1. Motion Recording
4.4.2. Model Learning .
4.4.3. Posture Synthesis

1. Introduction
1.1. Motivation
1.2. Problem Statement
1.3. Methodology
1.4. Contributions
1.5. Thesis Outline
1.6. Overview of the Main Chapters
2. Related Work on Imitation Learning
2.1. Imitation in Humans and Animals
2.2. Programming by Demonstration
2.3. Computer Animation
2.4. Conclusion L
3. Mathematical Foundations
3.1. Articulated Structures
3.1.1. Kinematic Chains
3.1.2. Rotation Representation
3.2. Dimensionality Reduction 0L
3.2.1. Basic Concepts
3.2.2. Dimensionality Reduction Methods
3.2.3. Comparison of Methods
3.2.4. Estimation of the Intrinsic Dimensionality
3.3. Conclusion
4. An Imitation Learning Approach:
Probabilistic Low-Dimensional Posture Models
4.1. Introduction
4.2. The Three Steps in Imitation
4.3. Probabilistic Low-Dimensional Posture Models
4.4. Example: Pressing a Button o0

N O O W N -

11
15
20

21
21
21
23
24
25
26
38
42
44

45
45
47
49
o1
93
o4
60

Contents

5.

vi

4.5. Conclusion
Learning to Imitate Natural Human Grasping
5.1. Imtroduction
5.1.1. Problem Statement
5.2. Modeling the Human Hand
5.2.1. Grasp Taxonomies
5.2.2. The Kinematic Model
5.2.3. The Sensor Model
5.2.4. Grasp Parametrization
5.3. Grasp Quality Measure
5.3.1. Finger Distance
5.3.2. Anatomical Plausibility
5.3.3. Stability
5.4. Grasp Synthesis Algorithm
5.4.1. Initialization
5.4.2. Optimization L0
5.4.3. Computational Speedups
5.5. Ewvaluation and Resultso
5.5.1. El: Data Acquisition and Analysis
5.5.2. E2: Simple optimization setting
5.5.3. E3: Optimization with different Rotation Representations
5.5.4. E4: Optimization using different DR techniques
5.6. Other Approaches
5.7. Conclusion
. Learning to Imitate and Adapt Full-Body Motions
6.1. Introduction
6.2. Imitation from Motion Capture Data
6.2.1. Kinematic Modeling of Virtual Humans
6.2.2. Motion Recording
6.2.3. Motion Synthesis Lo
6.3. Programming Robots by Demonstration
6.3.1. Kinesthetic Bootstrapping
6.3.2. Learning
6.3.3. Experiment and Results
6.4. Programming Robots by Physical Interaction
6.4.1. Physical Interaction Learning Approach
6.4.2. The CB?2 Robot
6.4.3. Learning Method
6.4.4. Experiment and Results
6.4.5. Discussion

Contents

6.5. Other Approaches
6.6. Conclusion

7. Learning to Imitate Complex Action Sequences

7.1. Action Capture
7.1.1. Motivation
7.1.2. Overview of the Method
7.1.3. Example: Brewing an Espresso

7.2. Behavior Repertoire.
7.2.1. Look-At Behavior
7.2.2. Follow Trajectory Behavior
7.2.3. Pick Behavior
7.2.4. Place Behavior
7.2.5. Relax Behavior
7.2.6. Push Behavior.
7.2.7. Turn Behavior

7.3. Evaluation and Results
7.3.1. Virtual Espresso Machine Example

7.3.2. Virtual Kitchen Environment Example

7.3.3. Virtual Car Prototype Example
74. Conclusion oo

8. Conclusion

81. Summary
8.2. Contributions
8.3. Future Directions,

8.3.1. Application to Robotics

8.3.2. Application to Computer Animation

8.4. Concluding Remarks

A. Virtual Objects

B. Example Behavior Plans

B.1. Virtual Espresso Machine Example
B.2. Virtual Kitchen Environment Example
B.3. Virtual Car Prototype Example

Bibliography

Vil

Contents

viil

Mathematical Notation

(817 S92, 83)

(®(2), 2(5))

SH _NONavEley

Ssesxmy

§M><
gv

B WMT kg ezd

<
=S

(m)
N(@|p, X)

Error function.

Low-dimensional posture space.

Calculates the fingertip position.

Polygon spanned between three points sy, .., s3.
Calculates Euclidean distance between two vectors.
Fitness function used for optimization.
Dimensionality of input data.

Number of nearest neighbors.

Dimensionality of projected data.

Mapping from high-dimensional space R to P.
A matrix.

An entry of matrix W.

The data set in matrix notation.

Covariance matrix.

Heaviside step function.

Derivative of function f in z.

Number of points in the data set.

Probability density function.

A manifold (noted as a set).

The input data set.

The set of projected data points.

Mean of a data cloud.

Vector in a low-dimensional space.
Reprojected vector.

The ith vector of data set X.

Violation function.

Normal distribution with mean p and covariance X.

X

Mathematical Notation

Acronyms

ANN

BFGS
BIC

CCA
CDA
CNO
COF

DHC
DIP
DMP
DOF
DR

EA
EES
EM
ES
EVD

GCS

GMM
GMR
HMM

IK
Isomap

Artificial neural network.

Broyden-Fletscher-Goldfarb-Shanno.

Bayesian information criterion.

Curvilinear component analysis.
Curvilinear distance analysis.
Contact normal opposition.
Cone of friction.

Dynamic hill-climbing.
Distal-interphalangeal.
Dynamic motor primitives.
Degrees of freedom.
Dimensionality reduction.

Evolutionary algorithm.

Encapsulated evolution strategies.

Expectation-maximization.
Evolution strategies.
Eigenvalue decomposition.

Grasp coordinate system.
Gaussian mixture model.
Gaussian mixture regression.

Hidden Markov model.

Inverse kinematics.
Isometric feature mapping.

x1

Acronyms

LLE

MCP
MDS

NLDR
NLM

PbD
PCA
PHRI
PIP
PLDPM

RPROP

SGI
SOM

xii

Locally linear embedding.

Metacarpal-phalangeal.
Multidimensional scaling.

Nonlinear dimensionality reduction.
Sammon’s nonlinear mapping.

Programming by demonstration.

Principal component analysis.

Physical human-robot interaction.
Proximal-interphalangeal.

Probabilistic low-dimensional posture model.

Resilient backpropagation.

Stability grasp index.
Kohonen'’s self-organizing map.

1. Introduction

Virtual

The evolution of interfaces to computers and other devices resulted in the development
of a range of synthetic humanoids—artifacts with human-like appearance and behavior—
that are used in various fields, including research, entertainment and training. Some of
these synthetic humanoids exist in virtual space, like digital actors in movie productions
or avatars replacing human users in online games. In contrast to that, other synthetic
humanoids, such as humanoid and android robots, have a physical manifestation within
our real world. Yet, regardless of whether they exist in a virtual or real space, synthetic
humanoids need to move and behave in a realistic way in their environment in order to
appear lifelike.

So far, the generation of such motions is typically left to skilled experts. For exam-
ple, in most movie productions and video games animators manually set and modify
important postures, the so-called keyframes. In order to produce realistic movements
with this approach, they need to be well-trained in traditional animation techniques.
In robotics, motions are often specified in terms of computer programs written by ex-
pert programmers. In both cases the process of motion specification is labour intensive,
time-consuming and limited to a small number of experts. At the same time, synthetic
humanoids are faced with more and more complex application scenarios. In recent
years, virtual characters are increasingly used in environments with user-created content
in which they have to respond to unknown situations. Similarly, the application domain

1. Introduction

of robots is steadily expanding from well-defined environments in research labs and man-
ufacturing plants, to complex, cluttered environments like homes or schools. In order to
cope with these challenges, we need flexible motion production methods that meet the
following two requirements:

1. an easy and intuitive way of specifying new motions
2. the ability to adapt motions to the current context

The goal are synthetic humanoids whose repertoire of motor skills can easily be ex-
panded. In addition, the motion production algorithm must be able to synthesize vari-
ants of an acquired skill in order to cope with changes in the environment or changes in
the anatomical properties. For example, once a synthetic humanoid has learned to grasp
an object, it should be able to reproduce the skill even if the position and/or orientation
of the object is changed.

1.1. Motivation

In the last twenty years, the use of synthetic human-like agents has become increasingly
popular. In particular the entertainment and gaming industry proved to be a catalyst
for this development. The depiction of humans in games moved from simple pixel-based
sprites to nearly photo-realistic 3D models. At the same time, many other industry
branches adopted the use of synthetic humanoids for their purpose. Today, synthetic
humanoids are used in a wide range of applications including:

e simulation of pedestrian movement and evacuation scenarios

e ergonomic assessment and virtual prototyping of products

e simulation and visualization of stunts in movie productions

e virtual meeting rooms for remote meetings of business partners

Until recently, humanoid robots mostly remained the realm of research, yet, in recent
years the technology behind these robots significantly progressed and matured. Early
research was mostly concerned with walking skills for legged mechanical devices. To-
day, scientists are turning towards android robots whose visual realism has reached a
level, where they often cannot easily be distinguished from real persons anymore. The
RoboCup research community is even working towards: “a team of fully autonomous
humanoid robots that can play and win against the human world champion soccer team’
by the year 2050 [KAK*97].

The automotive industry has shown strong interest in humanoid and android robots.
Today all major Japanese car companies have efforts dedicated to the development of hu-
manoid robots. According to the estimations of the International Federation of Robotics

Y

1.2. Problem Statement

(IFR) [IFoR10], about 4.4 million domestic robots and 2.8 million entertainment robots
have been sold by the end of the year 2009. So far, only a fraction of these robots
has a humanoid appearance. However, the IFR reports note that humanoid robots
are an application area with strong growth potential. They also predicted that many
countries will use humanoid robots to provide everyday services in the public sector.
Japan is at the forefront of this development. Partly motivated by an ageing society,
Japanese researchers are working towards the use of robots for the assistance of humans
in everyday tasks. The city of Osaka is already working on a large facility in central
Osaka—the RobotCity Core—which opens in 2011 and will contain open laboratories
where researchers, robots and consumers can interact.

As evident from the examples above, the application domains of synthetic humanoids
keep steadily expanding. On the other hand, making them move in an intelligent way
in their environment remains a complex and time-consuming process. This thesis con-
tributes to the solution of these problems by providing new methods that simplify the
motion generation process while at the same time improving the robustness of the re-
sulting motor skills with regard to changes in the environment. Our work is part of an
international research effort dedicated to this problem. More precisely, the work pre-
sented here was carried out within two research projects, the Virtual Workers project
(Germany, website: http://vr.tu-freiberg.de/virtualworkers/) and the JST ER-
ATO Asada Synergistic Intelligence Project (Japan, website: http://www.jeap.org/).
The Virtual Workers project aims at developing autonomous virtual humans for pro-
totyping scenarios, whereas the Synergistic Intelligence project studies new types of
interactions between robots, humans and environments.

1.2. Problem Statement

The main problem adressed in this thesis can be stated as follows:

How can we teach dynamic motor skills in a natural and intuitive way to
synthetic humanoids, such that a learned skill can later be reproduced in
variable situations and environments?

The following sub-questions arise from this problem statement:

e How can we teach motor skills with a minimum of programming effort?

Is it possible to create a general approach for teaching motor skills that supports
both virtual humans and different types of physical robots?

How should human motion and posture be represented in order to support this
process?

How can trained motions be adapted to new situations?

1. Introduction

,_J ~

Model Learning

Motion Recoding Motion Synthesis

Figure 1.1: The imitation learning approach used in this thesis: Demonstrations of
the skill are recorded from a human demonstrator using motion capture or other tracking
devices. The recorded motions are then processed and a statistical model thereof is learned.
In the final step, the model is used to synthesize variations of the demonstrated skill. The
synthesis process takes into account the current situation.

1.3. Methodology

This thesis presents a general approach for teaching motor skills to synthetic humanoids
that lies at the intersection of artificial intelligence, robotics, computer animation and
human-machine interfaces. Our approach is inspired by imitation in natural beings.
Humans are able to learn even complex motions by observing and reproducing the be-
havior of other humans. Through the means of imitation we can incrementally expand
our repertoire of skills.

The approach presented in this thesis follows the same idea. First, a demonstrator
presents one or several examples of the skill to be learned (see Figure 1.1). The demon-
strations are recorded using modern sensor technology, such as motion capture systems
or robot sensors. However, in contrast to most other animation approaches the resulting
data is not simply stored in a database. Instead, it is used to derive models of the motion
at hand. The goal of this process is to automatically extract as much information as
possible about the demonstrated behavior, which in turn can be used to synthesize new
motions. To this end, we will propose a novel type of statistical models which is par-
ticularly well suited for the compact representation of human motion. Dimensionality
reduction and machine learning algorithms lie at the core of this model.

Once a statistical model is learned, it can be used to generate a large number of varia-
tions of the demonstrated motion. This allows us to search within the learned statistical
models for motions that best fit the current situation. Hence, even if the environment
changes, we can still synthesize meaningful motions. For example, if the position of an

1.4. Contributions

object changes after the recording of a grasping motion, a modified animation can be
synthesized so that the object is still correctly grasped. We will show that the approach
can be used at different scales of complexity including single finger movement, hand
movement and full-body movement. Furthermore, we will see that the approach can
successfully be used to perform different types of adaptations ranging from adaptations
to geometric constraints to the adaptation to a human interaction partner.

Our approach tries to bridge the gap between different disciplines. An important goal
in this regard is to ensure that the proposed methodology is applicable to different types
of synthetic humanoids. With this goal in mind, we will use the proposed approach in
scenarios that involve virtual humans, small, commercially available humanoid robots,
as well as state-of-the-art android robots.

Motor skills that are learned using this approach can be regarded as building blocks for
complex sequences of motions. Learned behaviors such as walking, grasping or pushing
can be chained together to produce sequences of arbitrary length. We will present a
new framework that enables the user to specify sequences of behaviors at a high level of
abstraction. Using this framework, a synthetic humanoid can be animated from textual
descriptions. The user specifies the behaviors to be executed as well as their timing and
the objects involved using an XML document. The document is then processed by the
framework and translated into an animation. Changes to the animation can simply be
performed by changing the original text document on which it is based. For example,
the user can change the object which is manipulated.

1.4. Contributions

This thesis makes five contributions to the control and animation of synthetic humanoids:

Models for Imitation Learning of Motor Skills. Probabilistic low-dimensional
posture models (PLDPM) are compact mathematical models of human motion that can
be learned from recorded example data. They are used to synthesize realistic variations
of a learned motor skill. PLDPMs lie at the core of a general imitation learning approach
that can be used to synthesize context-dependent motions for a wide range of synthetic
humanoids.

Data-driven Grasp Synthesis Algorithm. We present a data-driven animation
method for the synthesis of natural looking human grasping. Data acquired through
motion capture is used to learn mathematical models for different types of human grasps.
These models are used to rapidly synthesize realistic grasps on new graphical objects.

Robot Motion Programming through Kinesthetic Bootstrapping. Kinesthetic
bootstrapping is a novel touch-based programming technique that allows users to teach
dynamic, full-body motions to humanoid robots. The human instructs the robot by

1. Introduction

manually moving its joints and body to postures that approximate the intended move-
ment. The movement is then recorded and further optimized within a physics based
virtual environment.

Learning Algorithm for Physical Human-Robot Interaction. Physical interac-
tion learning is an online learning algorithm which aims at improving the interaction
between humans and humanoid robots in settings that involve close physical contact.
The algorithm uses human critique in order to adapt the behavior of the robot. In exper-
iments with a state-of-the-art android we show that the proposed algorithm significantly
improves the joint coordination during cooperative tasks. To the best of our knowledge,
these experiments are among the first experiments worldwide to feature close-contact
interaction between a human and a learning android robot.

Imitation of Action Sequences for Virtual Prototyping. Building upon the ac-
tion capture [JAHV10] technique, we present an animation framework for virtual humans.
The framework allows us to synthesize sequences of actions from textual descriptions.
These textual descriptions can be either hand-crafted or recorded from human interac-
tions in an immersive virtual environment. The framework is especially well suited for
virtual prototyping scenarios.

1.5. Thesis Outline

Chapter 2 reviews related work on imitation learning of motor skills. Our survey starts
with work on imitative capabilities in humans and animals, then proceeds to imitation
learning in the area of robotics, and finally reviews related techniques in the field of
computer animation.

Chapter 3 presents the mathematical background on articulated structures and di-
mensionality reduction. Articulated structures, and in particular kinematic chains, are
important for modeling moving human-like characters. Dimensionality reduction on the
other hand is an essential part of the imitation learning approach presented in this thesis.

Chapter 4 defines a new, general approach for imitation learning of motor skills
by synthetic humanoids. For this, the concept of probabilistic low-dimensional posture
models will be introduced and formalized. Additionally, optimization theory and actual
optimization algorithms will be introduced. Based on a simple example, the imitation
learning approach, as well as the specific steps involved are explained in detail.

Chapter 5 presents an algorithm for synthesis of natural human grasping that is based
on the proposed imitation learning approach. The chapter introduces basic anatomical
features of the human hand, different classification schemes for human grasping, as well
as metrics for assessing the quality of a given grasp. The second part of this chapter
describes our grasp synthesis algorithm as well as approaches to reduce the computation
times. The algorithm is then evaluated in a set of incremental experiments.

1.6. Overview of the Main Chapters

Chapter 6 expands the imitation learning approach to motions involving the entire
body of a synthetic humanoid. We show how locomotion skills of virtual humans are
learned from motion capture data. Furthermore, we present novel methods for program-
ming robots by tactile demonstration and by close-contact interactions.

Chapter 7 presents a framework for imitation of sequences of actions. First, in this
chapter we briefly describe the action capture method and how human interactions can
be recorded in a virtual environment. Then, we will present a set of behaviors which
can be combined to generate animations of action sequences. These behaviors cover a
wide range of manipulation skills. Finally, we show several virtual prototyping scenarios
in which the described behaviors are used to imitate long sequences of actions.

Chapter 8 concludes this thesis and outlines the most promising directions for future
work.

1.6. Overview of the Main Chapters

Figure 1.2 gives an overview of the main chapters of this thesis. Chapter 4 is the core
chapter of the thesis and presents the central idea and formalization of the proposed
learning method. For a better understanding of the involved steps, we present a simple
example for the imitation of motions for a single finger. With each consecutive chapter,
the scope of application then steadily expands. Chapter 5 presents the application of
the proposed method for the synthesis of motions and postures of a full hand.

In Chapter 6 three different scenarios are presented, which all deal with motions
involving the entire body of different types of synthetic humanoids. Section 6.2, deals
with imitation of motions recorded via motion capture. In Section 6.3 we present an
application of the method for programming humanoid robots by demonstration. The
demonstrations are not recorded via motion capture anymore. Instead, they are acquired
from touch interactions. Section 6.4 further extends this scenario and realizes learning
within close-contact interaction between a human caregiver and the robot. Here, we will
focus on adapting the timing of an android robot’s motions, so that interaction with a
human caregiver can be successful. Up to this point, single behaviors are learned and
added to the repertoire of the imitating agent.

In Chapter 7 we will finally show how sequences of behaviors can be imitated. The
action capture method which we will present in this regard, builds on the imitation
learning approach from Chapter 4 and extends it through an abstract representation of
behavior sequences.

1. Introduction

Learning to Imitate Complex
Action Sequences

Chapter 7

Learning to Imitation from Programming Programming
Imitate Natural Motion Capture Robots by R0b0t§ by
Human Grasping Data Demonstration Physical
Interaction
Chapter 5 Section 6.2 Section 6.3 Section 6.4

An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

The core chapter introducing the description and
formalization of our new imitation learning approach. Chapter 4

Mathematical Foundations

Introduces important mathematical concepts and techniques
for dimensionality reduction and modelling of articulated structures. Chapter 3

Figure 1.2: Overview over the main chapters.

2. Related Work on Imitation Learning

In this chapter, we present prior work on imitation learning from the domains of biology,
robotics and computer animation. Drawing from the analysis of imitative abilities of hu-
mans and animals, we turn to the state-of-the-art in computational models of imitation.
In particular, we discuss the use of imitation learning for teaching new skills to robots.
Next, we present current work in computer animation that, although not directly linked
to imitation, deals with variation and adaptation of recorded movements. Finally, we
explain how the work presented in this thesis draws upon previous research and extends
previous approaches using concepts of human imitation learning.

2.1. Imitation in Humans and Animals

According to Thorndike [Tho98], imitation is: “From an act witnessed learn to do an
act”. Although, intuitively clear, there is to our day disagreement about its exact inter-
pretation as well as about the species capable of this ability. According to recent research
results, it is safe to assume that dolphins [Her02], pigeons [ZSS96] and humans [MM?77;
MM97| are endowed with imitative capabilities. Yet, in the literature we find many
different terms describing manifestations of imitation, including observational learning,
response facilitation, goal emulation or stimulus enhancement. We will concentrate on
what is called true imitation [Tho63], i.e. the reproduction of a novel, previously unseen
motor behavior. True imitation requires that the demonstrated behavior is not already
part of the motor repertoire of the observer. Hence, reproduction of a newly seen tennis
swing falls within the definition of true imitation, whereas mimicking another ones facial
expressions does not. Additionally, it is required that the observer not only reproduces
the goal of the seen behavior, but also the demonstrators means of achieving this goal,
that is, the same movements.

Imitation in behavioral sciences Imitation of movements has been a major re-
search topic in behavioral sciences. Meltzhoff and coworkers [MM77] showed that im-
itation already takes place in newly born children. Their observations led to the four
stage model of progression of imitative abilities [Mel96]. In the first stage, a so-called
body babbling phase, the infant explores its body and learns how specific muscle move-
ments achieve elementary body configurations. The result is an internal model of the
infant’s own body. In the next phase, the infant uses its body parts to imitate observed
body movements. For this, it first activates the corresponding body part, then corrects

2. Related Work on Imitation Learning

the imitative response until convergence on an accurate match. In the third stage, the
infants learn to imitate manipulations on objects. This includes playing with toys in a
variety of contexts. In this stage, the imitative behavior becomes more goal oriented.
Although the child might not infer the purpose of the manipulation task, it is able to
understand the basic steps involved and reproduce the task under different conditions.
Such a generalization of seen behavior needs more sophisticated internal models, in which
relations between actions and objects are stored, too. Finally, in the last phase, infants
are able to understand seen actions and infer goals and intentions. Generally, imitation
involves some kind of adaptation or generalization, that is, the ability of adapting a
learned behavior to a new situation or environment. This entails the ability to produce
many variations of a seen movement. For example, a learned manipulation movement
can be adapted to fit the shape or location of a new object. We will see in Section
4, that adaptation and variation are also the basic concepts for imitation in synthetic
humanoids.

Neurophysiological basis of imitation The neurophysiological basis for imitative
capabilities, the so-called mirror neurons [DFFT92; RFFG96; GFFRI6), was discovered
towards the end of the 20th century. It was observed that many neurons in the ventral F5
area of a macaque monkey’s brain showed activity both during execution and observation
of an action. In the study, single cells in the brain of the monkey both fired when
the monkey performed a grasp and when it observed a grasp being executed by the
experimenter or another monkey. This was seen as an evidence for overlapping neural
substrate for action execution and observation in humans as well as other primates.
In other words, these neurons mirrored the observed behavior onto the motor system.
Because of this behavior they were dubbed ‘mirror neurons’. The exact role of mirror
neurons and mirror neuron systems is still an issue of debate. Yet, there is evidence that
links mirror neurons to action understanding, empathy and imitation. In particular, the
mirror neuron system is often considered to be the neural basis for imitation learning.
In [ABIO00] Arbib and colleagues hypothesize: “mirror systems orchestrate the various
components involved in the sensorimotor transformations required by imitation”.

Computational models of mirror neurons Several computational models for im-
itation learning have been proposed which are to different degrees based on the findings
we discussed in the last two paragraphs. Billard presents a learning architecture that is
loosely based on the neurological findings in primates in [Bil00]. It includes an abstract
model of the spinal cord, primary motor cortex, the premotor cortex, the temporal
cortex, and the cerebellum. The neurons in the neural network model of the premo-
tor cortex respond to both visual observation of movements and to corresponding motor
commands. Using different movement patterns it is shown that the model can be used to
train virtual avatars by imitation. Another computational learning model that is based
on the concept of mirror neurons was presented by Oztop [Ozt02]. Artificial neural net-
works and kinematic simulations are used to model the development of grasp learning in

10

2.2. Programming by Demonstration

infants. The results of these simulations indicate that self-executed, exploratory grasp
actions during childhood can adapt parietal and premotor connections to shape mirror
neurons. Triesch et al. [TJD07] presented a reinforcement learning algorithm which
tries to reproduce the emergence of gaze following capabilities in human infants. The
learned pre-motor representations exhibit many properties characteristic of mirror neu-
rons. Other computational models for mirror systems can be found in [WWO01], [BL09]
and [TIS04]. The mirror neuron theory provides an interesting view on action recogni-
tion and generation in humans and animals. Yet, there are many opposing views on the
subject and many early hypotheses on the role of these neurons remain controversial.
Most notably, it is questioned, whether mirror neurons are an important requisite of
imitation. Therefore, most published computational models based on mirror neurons
are used to generate simulation results that are in favor of or that challenge existing
theories.

Consequently, the mirror system is still not sufficiently understood to be used as a
basis for computational approaches to imitation learning. Existing computational real-
izations focus on specific phenomena, such as the reproduction of simple arm oscillatory
movements, and do not scale up to more complex movements. Additionally, to the best
of our knowledge, there is only little work investigating how imitated behaviors can be
adapted to new environments or situations. In contrast to that, more promising and
general computational approaches to imitation learning have been investigated in the
context of programming by demonstration, which we discuss in the following section.

2.2. Programming by Demonstration

Computational approaches to imitation learning have received increasing attention in
robotics. Often referred to as Programming by demonstration (PbD), imitation learn-
ing is viewed as: “a promising route to automate the tedious manual programming of
robots” [Sch99]. In PbD a user does not specify the robot’s movements using traditional
programming languages. Instead, he only provides a demonstration of the desired be-
havior. Based on this example, the robot autonomously generates a control program,
allowing it to reproduce the skill in different situations.

According to Billard et al. [BCDS08], there are three reasons for the ongoing interest
in computational approaches to imitation learning. First of all, imitation learning helps
to reduce the search space for learning. The provided examples can be used to bootstrap
learning algorithms and to focus on a small set of potential solutions. Second, imitation
learning provides a more natural and user-friendly way of programming robots. It does
not require any expert knowledge, as most people are already familiar with it from
childhood and daily experience. Finally, by studying imitation in robots and artificial
agents, we may learn more about the same processes in natural beings.

11

2. Related Work on Imitation Learning

Early approaches to Programming by Demonstration First attempts to robot
imitation learning were realized in the late 1970s and the early 1980s in the context of
manufacturing robots. These approaches were termed teach-in, guiding or play-back and
had low generalization capabilities [LP83]. Typically, a user manually moves a robotic
effector to locations important for achieving the task and selects from a given set of
executable operations, e.g. closing the gripper. Meanwhile, the robot records all internal
joint coordinates as well as the executed operations. At the end of this process, the robot
is able to generate an exact reproduction of the demonstrated actions by executing the
recorded data in sequence. While this approach makes robot programming accessible
to lay people and allows for precise reproduction of motion trajectories by the robot, it
still suffers from major limitations. In particular, it is not possible to alter the recorded
sequence of operations and movements later on. Consequently, the robot is not able
to respond to changes in the environment at execution time. Later approaches to this
problem try to synthesize robot control programs from the recorded low-level data. This
is done by segmenting the trajectories into sequences of basic operations such as grasp-
object, move-to or close-to. Both actions as well as spatial relationships between actions
are represented in a symbolic way. Symbolic reasoning and planning are then used to
adapt an already learned action sequence to a new context. Many of the early PbD
systems based on symbolic representations provide highly task-specific solutions. In
[K1194], for example, a system for the imitation of block assembly tasks is introduced. In
a similar vein, Kang and Ikeuchi developed a system for automatic replication of grasps
[KI95]. A data glove is used to record and classify the grasps to be reproduced. While
suitable for assembly robots, these early approaches to PbD did not account for learning
complex dynamic or ballistic movements. The focus was on the reproduction of the right
sequence of predefined actions, rather than reproducing complex new movements.

Numerical approaches to Programming by Demonstration In recent years, nu-
merical approaches to PbD have received increasing attention. For example, Ijspeert
and colleagues proposed a method based on dynamical systems [INS02] which was later
termed dynamic motor primitives (DMP). DMPs are based on the following approach.
First, the teacher’s demonstrations are recorded as trajectories of the important limbs,
e.g. hands and legs. Then dynamical systems and a memory-based regression method
[CDS88| are used to derive a compact numerical representation of the trajectories, a so-
called control policy. In subsequent publications, they showed that this approach can be
used to learn a variety of movement skills including tennis swings [INS02], locomotion
or drumming [DSRI06].

Another way of encoding trajectories is to use statistical modeling methods. In the
Mimesis Model [TYS*06], for example, a continuous hidden Markov model (HMM) is
used for encoding example trajectories. It can later be used to generate a trajectory
that is close to the example via the Viterbi algorithm. The model can also be used to
recognize and classify trajectories. A similar approach to motion generation is presented
by Calinon et al. [CGB07]. A set of example trajectories are encoded using Gaussian

12

2.2. Programming by Demonstration

mixture regression (GMR). Using GMR a smooth generalized version of the trajectory
for the encoded skill can be extracted. Additionally, the task constraints can be mod-
eled in a probabilistic fashion. As a result, the robot recognizes the parts of the task
space where deviation from the generalized trajectory is allowed and in which parts the
generalized trajectory must be reproduced exactly. For example, when picking up a
chess piece, the robot can move his gripper in different ways to the object. However,
at the end, the gripper has to be at a specific position in order to successfully pick up
the chess piece. Using GMR such constraints can automatically be reconstructed from
example trajectories. In later work (see [HGCBOS8]), this approach is combined with the
dynamical models discussed earlier, in order to account for goal-directed motions. The
target of the reaching motions is modeled as an attractor, guaranteeing that the system
can adapt to displacements of the target’s position. Another probabilistic approach to
imitation learning is used in [AAGDO0S]. Common key points from demonstration tra-
jectories were extracted and a corresponding HMM is learned. The approach is used
to generate dual-arm object manipulations. However, the GMR model by [CGBO07] is
superior to similar HMM based approaches. This is mainly due to its continuous model-
ing of trajectories. HMM based approaches assume that the trajectories are discretized
into a small set of control points, which results in discontinuities during generation. The
method presented in this thesis is inspired by probabilistic techniques. In particular, the
concept of modeling observed data with means of Gaussian mixtures will be adopted.
However, we will not limit the imitative capabilities to trajectories only. Instead, we
will show how above approaches can be extended to the modeling and reproduction of
full-body motions.

Techniques based on artificial neural networks Other interesting approaches to
PbD are based on artificial neural network (ANN). Ito and colleagues [IT04], for instance,
use a recurrent neural network for teaching a humanoid robot cyclic movement patterns.
The network shows a similar behavior as biological mirror systems, i.e. the neurons
both fire when a movement pattern is observed and when it is generated. Artificial
neural networks can learn complex, nonlinear mappings between sensory information
and the desired response. For example, given a set of demonstration trajectories and
the environmental settings in which they were triggered, an ANN can learn how to
produce these trajectories as a function of the context. Accordingly, when the setting
changes the ANN adapts to these changes and produces an appropriate output. In
reference [TNNIOS], recurrent neural networks are used for teaching a robot how to
perform manipulations on toy objects. The system allows a human to interact and guide
the robot during learning, in order to reduce the number of trials needed. In [TNO03],
Tatani and colleagues present a hierarchical ANN that performs a bidirectional mapping
from a robot’s control inputs to a low dimensional internal representation of learned
motion patterns. By using a special network topology, the ANN can be forced to perform
dimensionality reduction during learning. This feature is useful in order to control the
robot using a low number of parameters. In [MMMIO7] an ANN is used to map the

13

2. Related Work on Imitation Learning

motions of a human demonstrator onto an android robot. The goal is to achieve realistic
human-like motion including subtle features of biological movement in order to increase
the believability of the robot. In an experiment, the ANN learned a mapping from the
subject’s current posture, recorded via motion capture, to the android’s control inputs.
The robot simultaneously replicated the movements of the human teacher. Differences
in posture between the robot and the teacher were recorded by the motion capture
system and consequently used for improving the mapping. However, the android did
not develop any internal representations of the seen actions. In [WWO01] it is shown that
ANNSs are usable to learn behaviors based on multimodal input. During observation the
student robot receives the position and motor commands of the teaching robot as well
as a language description of the task performed, e.g. go or pick. After learning, the
student robot reproduces the seen actions from language instructions. Further, it is able
to recognize and predict the teacher’s behaviors.

Despite the remarkable results presented in the earlier publications and literature,
ANNSs still have several major drawbacks. First of all, ANNs can be difficult to
parametrize. Parameters such as the appropriate network structure, learning rate, or
neuron type need to be determined before learning. A wrong choice for these parameters
can have a significant impact on the outcome of the learning process. This requires the
user to have sufficient knowledge about theory and mechanics of neural systems, as well
as the heuristics and the rules of thumb used in the community. Further, ANNs employ
a distributed representation of knowledge with information disseminated among a set
of neurons, which makes the analysis and introspection of their behavior very difficult.
Debugging and error look up is time-consuming and inefficient. Finally, depending on
the task at hand, neural network learning can take a considerable amount of time.

Imitation and dimensionality reduction Alternative approaches to PbD, that are
becoming increasingly popular, rely on dimensionality reduction as a preprocessing step.
For example in [CGGRO7], principal component analysis is used in conjunction with
ANNSs, in order to teach a robot how to walk through imitation. For this, human walk-
ing gaits is first recorded using a motion capture system. The resulting data is then
processed using PCA in order to generate a low-dimensional space of postures. Finally,
an ANN is used to learn a control policy in the reduced space of postures. The work
of Chalodhorn and colleagues mainly focuses on walking gaits and does not present a
general approach for imitation of arbitrary motor skills. Additionally, the correspon-
dence problem occurs—the problem of mapping observed movements to the imitator’s
body. In Chapter 6 we will discuss how this problem can be circumvented by using other
teaching modalities. Another approach based on dimensionality reduction is presented in
[JMO03]. Movement primitives are automatically segmented from a given motion stream,
using a spatio-temporal version of the Isomap algorithm [TdL00]. The resulting primi-
tives are regarded as a vocabulary from which more complex motion sequences can be
recomposed. In a similar manner, Thurau et al. [TBS04] use dimensionality reduction
techniques to derive movement primitives for game characters. The movements of an

14

2.3. Computer Animation

expert user are recorded and the corresponding motion streams are segmented into dis-
tinct elementary movements. During a game, the computer-controlled character uses
probabilistic reasoning in order to decide which of the learned primitives to reproduce.
Thurau et al. argue that this approach leads to the emergence of lifelike computer game
characters exhibiting similar behavior as human players. An advantage of this approach
is that the game characters steadily increase their playing skills. Their abilities and
intelligence scale with the familiarity of user with the game. The better the human
player becomes, the better become his enemy characters. Recently, DR techniques have
also been combined with DMPs (see [BV09]). The promise of this approach is to reduce
the computational complexity of the DMP algorithm, while at the same time providing
regular representations of the demonstrated movement which are easier to interpret.

DR has many interesting features such as the possibility to visualize a learned model
and a rigorous mathematical foundation. However, prior research on DR and imitation
often focused on specific problem domains, such as locomotion. It did not provide a
general approach suitable for learning different kinds of behaviors. Most importantly, the
implementations already mentioned only allow for limited generalization and adaptation
capabilities. In contrast, we will show in this thesis, how more complex adaptation
capabilities can be achieved through the combination of dimensionality reduction with
other methods.

2.3. Computer Animation

In computer animation, imitation is not in the focus of the scientific discussion. Yet,
many problems that are tackled within this community are closely related to imitation.
In particular, the synthesis, variation and adaptation of motion sequences is of great
importance to computer animation. Synthesized motion sequences are often based on
example data recorded by motion capture. The process of adapting observed data to new
situations, characters, environments is reminiscent of imitation in humans and animals.

Modeling stylistic variations An interesting line of research within the computer
animation community is concerned with algorithms for modeling stylistic features of
human motion. The goal of this research is to increase the realism of virtual humans by
generating variations and distinct styles of movements. For instance, a simple walking
gait can be turned into a sneaky, or a joyful walk. Most important, this research tries
to avoid repetitiveness in a virtual character’s motions. In current computer games, for
example, only a relatively small number of different motion clips is used for animation.
However, the exact repetition of these clips at different times, renders the generated
movements unnatural or ‘robotic’. An early approach to the synthesis of varying human
motion is presented in [PG96]. Perlin uses an additive noise component on top of
procedurally generated animations, in order to make them appear more realistic. He

15

2. Related Work on Imitation Learning

introduces a special type of noise function to this end. However, in order to make the
noise match the underlying animation, some parameter tuning is necessary.

In [PB02], style is added to a keyframed animation by decomposing it into fragments,
such that each fragment can be replaced by a similar motion from a motion capture
library. The user can select important joints, which should drive the replacement pro-
cess. A matching algorithm then finds motion clips which are similar with respect to
the selected joints. After the matching, the motion capture data is merged, in order to
remove any discontinuities. An interesting property of this approach is that it requires
only a subset of joints to be specified. For example, when animating a walking gait, it
is sufficient to specify the joint angles of the legs only. The remaining degrees of free-
dom and stylistic features are automatically added. A different approach is described in
[LWS02]. Here, a statistical model of the animation is learned using linear dynamical
systems, from which later new, slightly different motions can be synthesized. The main
advantage of such data-driven approaches is that they reduce the amount of parameter
tuning needed to generate natural-looking animation significantly. The important infor-
mation is extracted from the given motion capture data. This ensures that synthesized
variations obey the same dynamics as the original data. Recently, a similar approach us-
ing bayesian networks was presented [LBJKO09]. In contrast to other methods, bayesian
networks can synthesize new variants from a single example motion.

In [BHOO] a powerful approach for synthesizing animation in a broad variety of styles
was presented. The so-called style machines are generative probabilistic models that in-
terpolate and extrapolate stylistic variations learned from example data. Basically, style
machines are a special type of hidden Markov models. In contrast to traditional hidden
Markov model however, style machines include an additional parameter. During synthe-
sis, this parameter allows the user to modulate the style of the generated animation. In
contrast to some of the approaches discussed earlier, style machines do not require the
training data to be segmented into fragments. Other work targeting style extraction and
translation was presented by Shapiro et al. [SCF06] and Hsu et al. [HPP05]. Style-based
inverse kinematics [GMHPO04] showed that data-driven approaches can help us to find
new solutions to well studied problems. Originally, the problem of inverse kinematics
(IK) is tackled by using geometric or iterative methods. However, the results achieved
with these techniques often appear unnatural or anatomically infeasible. Furthermore,
these approaches are typically restricted to individual limbs. Style-based IK, however,
generates realistic, full-body solutions. A low-dimensional model is derived from a set
of example postures. The model is the used to search for postures satisfying the IK
constraints.

Instead of focusing on synthesis, the work in [RPE*05] targets the analysis of given
animations by defining methods for quantifying the naturalness of motion. Using these
methods it is possible to estimate whether an animation appears natural or not. For
example, this can be used to verify if a motion editing step preserves the naturalness of a
recorded motion. The approach uses machine learning techniques to extract a likelihood
function from a large corpus of motion capture data. This likelihood function returns

16

2.3. Computer Animation

the probability that an input motion sequence could be generated by the same statistical
model as the training data. It assumes that motions that occur repeatedly are judged
natural, whereas motions that happen rarely are not.

Our work is closely related to above approaches. We seek to develop efficient tech-
niques that allow us to generate variations of recorded motion. We are also interested
in quantifying the naturalness of the results. However, the goal of our work differs fun-
damentally from above efforts: our primary goal is not style translation or modification,
but rather adaptation. We want to be able to produce variants of a demonstrated be-
havior, from which we can pick the ones which best fit the demands imposed by a new
context.

Adaptation and Retargeting Retargeting means the adaptation of an existing ani-
mated motion from one setting to another or one character to another. The retarget-
ing problem has attracted a substantial amount of research. For example, in [Gle98]
a method is introduced which uses optimization techniques to adapt a given motion
to a different character while retaining its distinct look. Additional constraints, so
called spacetime constraints, are formulated and solved using nonlinear optimization
techniques. Spacetime constraints specify the desired positions or orientations of an
end-effector. Solving the optimization problem results in a deformation of the origi-
nal motion, which satisfies the posed constraints. Using this approach, it is possible
to force a character to walk in predefined footsteps, even if the lengths of its legs are
changed. In [LS99], a hierarchical solution to this problem was introduced, which avoids
solving large optimization problems by using inverse kinematics on a local scale. Re-
cently, Hecker et al. [HRE*08] proposed a real-time motion retargeting technique which
handles arbitrary morphologies of virtual characters. This approach is particularly in-
teresting for application domains where much of the content is user generated, e.g. video
games. Inverse kinematics approaches have also been successfully used in [KSG02;
IAF06] to solve the problem of footskating. Footskating refers to situations where a
character’s foot unnaturally penetrates or slides across the ground. The character’s leg
and foot configuration are adjusted to ensure that ground contact is maintained.

A different approach is introduced by motion warping [WP95]. Motion warping models
the angles of each joint as a cardinal spline encoding the angular value as a function of
time. The parameters of these splines can be modified to create variations of the original
motion. During a motion warping session, a user selects a frame in the animation and
poses the model interactively. Then the splines of the original motion are deformed such
that their curves pass through the joint values derived from the desired pose. Motion
warping can therefore be seen as a simple blending or interpolation operation. A similar
approach is introduced in [BW95]. Here, an animation is regarded as a set of one-
dimensional curves on which signal processing methods can be applied. Bruderlin and
Williams show that operations such as multiresolution filtering, waveshaping or the
addition of smooth displacement maps can be used to modify a given animation. In a
similar manner, Unuma et al. [UAT95] applied Fourier-analysis to this task.

17

2. Related Work on Imitation Learning

Many motion blending techniques synthesize new animations by reassembling and in-
terpolating between pieces from a motion database. For example, the verbs and adverbs
approach of Rose et al. [RCB98] allows a user to interactively generate new animations
based on interpolation of existing motion clips. Research on blending techniques also
lead to the development of motion graphs [KGP02]. A motion graph is a directed graph
used to represent the sequence of actions during an animation. The edges of a motion
graph are motion fragments, whereas nodes correspond to choice points that connect
different clips. Motion graphs are used to rearrange and seamlessly blend short motion
fragments in order to synthesize a large number of new movements.

Most of the above motion techniques focus on simple kinematic constraints, such as
ensuring particular end-effector positions. These approaches are not suitable for complex
retargeting tasks, such as retargeting a recorded grasp to new objects. In the case of
grasping, the relationship between the fingers and the object and the interdependency
of the fingers has to be reflected in the optimization. Point and angular constraints
are not sufficient to model a realistic and stable grasp. Additionally, it must always be
ensured that the resulting grasps are feasible within the human anatomy. In contrast
to these methods, this thesis seeks to develop techniques that are not limited to simple
retargeting problems. We are interested in retargeting grasps to new objects, adapting
walking gaits to new terrain, and the interactive adaptation to a human interaction
partner.

Physics and Optimization Physics-based approaches to computer animation [WB97]
simulate Newtonian mechanics in order to create dynamic environments. In addition to
geometric properties, they also allow for the specification of physical properties of an
object, including its mass or elasticity. Animations are then generated by simulating
physical phenomena acting in the virtual environment, such as forces, torques or ener-
gies. This approach spares the animator of having to specify all required animations
beforehands. Additionally, it allows for realistic, interactive environments. The back-
side of this, however, is that the algorithmic control of simulated characters becomes
highly complex. More specifically, characters in physically simulated environments need
to be actuated in terms of forces and torques, rather than in terms of simple joint angle
differences.

One way to overcome this problem is to implement special-purpose controllers for each
of the behaviors in the character’s repertoire. A controller takes the current state of the
character (and possibly also the state of the environment) and computes the torques
necessary to accomplish the intended task. Controllers have long been used in robotics
to drive autonomous robots. In the last 15 years a number of controllers have been de-
veloped in the computer animation literature, including controllers for standing up after
falling [FvT01], for balance recovery [SCCHO09], walking [YLv07], or cycling [HWBO95].
Most of these controllers are hand-crafted and based on biomechanical principles. While
this procedure leads to physically plausible and highly realistic animations, often expert
knowledge is needed to tune the parameters of these controllers. A less labour inten-

18

2.3. Computer Animation

sive approach to the synthesis of physics-based animation was first proposed in [WK88].
Witkin and Kass called their approach spacetime optimization. It uses numerical op-
timization techniques in order to automatically derive the forces needed to actuate a
virtual character. Important aspects and goals of the animation are specified in terms
of constraints that are later satisfied by the numerical optimization process. For exam-
ple, the animator can specify constraints for the location of a virtual character at the
start and end of an animation. A constraint-based optimization technique then searches
for an animation that satisfies the constraints and minimizes a given objective function
simultaneously. Objective functions penalize non-physical and ineffective movements.
Objective functions are typically based on some physical criterion, e.g. minimal torque
change [UKS89], muscle exertion [RGBC96], or joint angle acceleration [FP03]. Over the
years, the original spacetime approach was refined by many other researchers. For in-
stance, in [LHP05] muscle preferences and joint stiffness are extracted from experimental
data and used to parametrize the physical environment.

Spacetime optimization is generally a promising approach to the motion synthesis
problem. The animator can concentrate on the artistic side of the animation, while a
numerical procedure ensures physical plausibility and realism. This approach can synthe-
size animations which would normally require highly skilled animators. In their original
paper, Witkin and Kass show that the synthesized motions obey many of the principles
of animation! as used in the film industry. Still, spacetime optimization remains to date
‘the realm of academic research’ [KA08]. Partly, this is due to the fact that simulation
of physical environments is a highly complicated process. The most important reason,
however, is the underlying nonlinear optimization. Optimization is typically a time-
consuming process. Especially for complicated humanoid characters, optimization can
take a considerable amount of time for convergence. Furthermore, convergence towards
an acceptable solution is not guaranteed. Therefore, in recent years, research is focused
on accelerating this process. For example, in [SHP04] the computational complexity
of optimization can be reduced by biasing the search process towards natural human
motion. In addition to efficiency problems, another difficulty when using spacetime opti-
mization are the required optimization constraints. The constraints have to be specified
by the user in terms of key-frames. For example, to synthesize a walking motion, a set of
postures must be specified along with information about timing and location in the ani-
mation. The optimizer generates a physically plausible motion that smoothly transitions
between the key-frame constraints. This procedure considerably reduces the complexity
of the animation process, in particular in contrast to traditional animation techniques,
but it still requires the detailed specification of constraints by a human user. We will
show in this thesis, that imitation learning can help to automatically extract important
constraints from training data. Optimization can then be performed on a more abstract

IThe twelve principles of animation were formulated by Johnston and Thomas in [TJ81]. While
working at the Disney studios they identified a set of rules or principles that can guide the animation
process. These rules have been adopted by other studios and practitioners and are considered, to
this day, the necessary ingredients for high quality animation.

19

2. Related Work on Imitation Learning

level. For example, when synthesizing fast walking motions for a robotic agent, we only
need to specify that a goal position needs to be reached as fast as possible.

2.4. Conclusion

The Computer animation and robotics share a common ground—the control of synthetic
humanoids such that they exhibit human-like behavior. Over time, each field developed
domain-specific approaches to this problem. At the same time, the way humans acquire
motor skills through imitation can be a good source of inspiration for both fields. Our
work draws upon concepts from natural imitation to tackle the problem of motor skill
acquisition and synthesis. Methods from both domains will be combined within a general
approach.

Our new approach aims to overcome several limitations of the techniques discussed in
this chapter. First of all, most of the above techniques are tailored for a specific type of
synthetic humanoid, e.g. animated characters or robots. The transfer to other domains
and other types of synthetic humanoids is non-trivial in most cases. We are interested in
a general approach that can deal with arbitrary realizations of synthetic humanoids, in-
cluding both simulated and physical agents. Another shortcoming of existing techniques
are the limited capabilities for the adaptation to new situations. Retargeting approaches
used in computer animation are often restricted to simple kinematic constraints and can-
not deal with adaptation to complex objects or environments. In this regard it is also
important to ensure that adaptations produce natural-looking, realistic postures and
motions. Most retargeting techniques do not explicitly adress this problem. Efficiency
is another important aspect that limits the application of several techniques discussed,
for instance in the case of spacetime optimization. Especially for application in the com-
puter animation domain, techniques with low computational demands are important in
order to ensure interactivity. Therefore, any new algorithm for motion synthesis should
feature a low response time.

20

3. Mathematical Foundations

In this section we will review the mathematical concepts which are fundamental for the
approach presented in this thesis and for the way humanoid structures are modeled and
animated. We will begin with a discussion of kinematic chains and rotation representa-
tions and then move on to discuss dimensionality reduction techniques in detail.

3.1. Articulated Structures

The human body is a highly complex structure that is articulated by an underlying
skeletal and muscular system. Through the interplay of these systems, humans are
capable of performing a wide range of movements and postures. Complex articulated
objects, such as virtual humans or humanoid robots, are modeled by means of kinematic
chains in robotics and computer animation.

3.1.1. Kinematic Chains

A kinematic chain is a hierarchical system of segments which are connected by joints.
Segments are rigid bodies that represent body parts of a synthetic humanoid. In contrast,
joints determine the configuration and, hence, the motion of the kinematic chain. Each
joint connects two segments and constrains their relative motion. There are various types
of joints, which mainly differ in the number of rotational degrees of freedom (DOF). For
example, ball joints produce rotations about any axis in a three-dimensional space. In
contrast, hinge joints only produce rotations about one axis.

The set of alternating joints and limbs forms a hierarchical, tree-like structure. Start-
ing from a root node, segments and joints are attached as child nodes, which in turn can
have futher child nodes. Changing the configuration of a parent node affects the under-
lying subtree. For example, by moving the shoulder joint, the position and orientation
of upper arm, lower arm, and hand are also changed. The configuration of child nodes
is specified relative to the configuration of the parent node. This is achieved using the
concept of local coordinate systems.

Figure 3.1 illustrates the concept for a simple humanoid shape. The end effector
represents one end of the kinematic chain, e.g. a hand. The position of this end effector
is specified in terms of the local coordinate system centered at the elbow joint. Similarly,
the position and orientation of the elbow joint is specified locally with respect to the
coordinate system of the shoulder, which in turn is specified locally with respect to the

21

3. Mathematical Foundations

End Effector

World Coordinate

Figure 3.1: A stack of local coordinate systems realizes a kinematic chain for a simple
humanoid wood figure.

coordinate system of the figure’s body. If we move the shoulder of the humanoid figure,
we want the position of the end effector should move accordingly. This is implemented
by using a stack of geometric transformations.

The configuration of each joint is represented by a corresponding transformation. In
a three-dimensional space a transformation can be written as a 4 x 4 matrix, having a
rotational and a translational component. In Figure 3.1, the translational component
between the coordinate systems is depicted using dashed lines. As explained before, the
transformations are relative to each other. That is, to determine the configuration of a
joint in the kinematic chain, all previous transformations need to be accumulated. For
example, given the position r of the end effector in coordinates of the elbow joint, the
following equation is needed to compute its global position:

pGlobal _ TBody Shoulder TElbow ., (3]_)

Note, that in this case the torso is the root of the kinematic chain, and that the
transformation TB°% is needed to position and orient the whole figure with respect to
the global coordinate system. The use of local coordinate systems ensures that limbs
stay attached to each other and simplifies the animation process significantly.

22

3.1. Articulated Structures

3.1.2. Rotation Representation

The transformations involved in the computation of kinematic chains contain a trans-
lational and a rotational component. The translation is always specified in terms of a
three-dimensional vector. In contrast, there exists a variety of different representations
that can be used for specifying rotations in space. Each of these representations has it
advantages and drawbacks depending on the desired application.

The fundamental theorem on rotation by Leonhard Euler (1707-1783) states that:

“Any rigid motion leaving a point fixed may be represented by a singular
planar rotation about a suitable axis passing through that point” [BT03]

As a consequence of this theorem, any rotation in space can be specified using an axis of
rotation v and a rotation angle . The pair (v, ¢) is called the azis-angle representation
of the corresponding rotation.

Another type of rotation representation, also introduced by Euler, is based on his
proof that any 3D rotation can be expressed as a sequence of three rotations about the
coordinate axes. These angles are known as FEuler angles. There are various conventions
in the literature on the axes about which to rotate and on the order in which rotations
must take place. In the following we will consider the heading-attitude-bank convention,
resulting in the following rotation matrix R¥:

cosf 0 sinf| |[cosp —sing 0 10 0
RE = 0 1 0 sinp cosp 0 0 cosyp —siny (3.2)
—sinf 0 cosf 0 0 1 0 sinvy cosvy

The representation by Euler angles exhibits a singularity of orientation at ¢ = +7,
resulting in the loss of one rotational DOF. This phenomenon is often termed gimbal lock.
The gimbal lock can be avoided by using the quaternion representation. Quaternions
are a noncommutative extension of complex numbers, which are particularly well suited
for the representation and interpolation of rotations. A quaternion is a vector of four
elements (w,z,y,2)T and can easily be derived from the axis-angle notation using the
following equation:

(w, z,y,2)" = (cos g, v, sin g, v, sin g, v, sin g)T (3.3)

Quaternions have become a de facto standard in modeling and animation of humanoid
characters in computer graphics. However, in recent years various researchers suggested
the use of an exponential map representation for rotations.

23

3. Mathematical Foundations

An exponential map specifies a rotation by the parameters a, b, and ¢ with:

' =a®+ b+ (3.4)

1
v=—(a,bc) 3.5
(p() (3.5)

Each of the above five rotation representations has its strength and weaknesses. Ma-
trices, for instance, are difficult to interpolate and invert, while Euler angles suffer of
the above mentioned gimbal lock. According to Grassia [Gra98]: “no single parametriza-
tion is best for all applications”. Hence, the choice of rotation representation should be
carefully made based on the target application.

3.2. Dimensionality Reduction

The goal of dimensionality reduction (DR) is to extract hidden structure from a given
data set. The underlying assumption is, that not all measured variables are important
and that many of them are correlated. By analyzing the intrinsic variability of a data
set, we can understand these correlations and, accordingly, remove all redundancies. For
instance, if we imagine the surface of the earth as a hollow sphere, then the coordinates
of each point on its surface can be specified by a three-dimensional vector in a Cartesian
coordinate system. At the same time, we can also specify the exact coordinates of each
point with only two dimensions, if we use the latitude-longitude representation. This
becomes obvious if we remember that maps of the earth are printed on sheets of paper.
Such a map can be seen as a projection of the original 3D coordinates onto a 2D space.
Hence, the three-dimensional, Cartesian specification of positions on the surface of the
earth is redundant. DR methods can be used whenever similar redundancies in a data
set need to be automatically extracted to derive a compressed representation.

DR also allows us to perform exploratory data analysis on any given high-dimensional
data set. For inspection and analysis purposes it is convenient to create a visual repre-
sentation of the data at hand. The resulting visualization helps to explore the data and
gain valuable insights into its structure. However, data sets with more than three or four
dimensions are difficult to visualize. We can overcome this problem by first projecting
the data to a 2D or 3D space to visualize the result. This can help us to better under-
stand the type of data gathered. In turn, an informed choice on the ideal algorithm for
processing or classifying the data can be made.

In the following we will introduce basic mathematical concepts and notations which
will be used throughout this thesis. We will then present various DR algorithms includ-
ing well known methods and state-of-the-art techniques. Finally, we will compare the
methods presented and discuss their properties.

24

3.2. Dimensionality Reduction

3.2.1. Basic Concepts

Original Data Projection Reprojection

Figure 3.2: Dimensionality reduction applied to a set of data points, sampled from a
S-shaped surface. The process projects the initially three-dimensional points into a two-
dimensional space. Projecting a point & on the manifold from the 3D space to the 2D
image space yields image coordinates . Reprojecting @ yields the point & in 3D space.

In Figure 3.2 we see an example of a dimensionality reduction process. On the left a
set of data points that are distributed on a smooth surface with a shape of the letter
S are shown. Although the points exist within a three-dimensional vector space, by
definition they reside on a two-dimensional surface. For a better understanding of the
latter statement, we can imagine the points as lying on a slightly folded sheet of paper.
Therefore, they have only two modes of variability, i.e. their coordinates can be expressed
in terms of a two-dimensional vector. The data points lie on a two-dimensional manifold
embedded in a space of higher dimensionality. The concept of manifolds is an important
concept when working with DR techniques. Formally, a manifold is defined as [Fom09]:

Definition 1 (Manifold). A set M is called a L-dimensional manifold if it is locally
homeomorphic with RE. That is, if for every x € X there exists a neighborhood Y, € M
and a homeomorphism f : Y, — RE.

where homeomorphism is defined as follows:

Definition 2 (Homeomorphism). A function f : X — Y is a homeomorphism if f is
continuous and invertible and the inverse function f=' is also continuous. The spaces
X and Y are then topologically equivalent.

The above definition can be translated into the following: a manifold can be divided
into a set of patches, with each patch having dimensionality L. The patch is said to be
locally L-dimensional. For example, a hollow sphere is locally a surface, hence, a two-
dimensional manifold, yet, it exists in a three-dimensional space. In summary, the sphere

25

3. Mathematical Foundations

is a two-dimensional manifold embedded in a three-dimensional space. Dimensionality
reduction techniques are used to automatically extract manifolds from a given set of input
data and represent them with as few variables as possible. The result is a condensed
representation of the manifold. If we apply this idea to the introduced S-curve, this
means that (ideally) by using DR techniques, we reduce our data to a 2D space, in
which all points lie on a flat surface, see 3.2(b).

Definition 3 (Dimensionality Reduction). Let X = {x(0),..,z(N)| =(i) € R7}
be a set of data points sampled from a L-dimensional manifold embedded in a H-
dimensional space, where L < H holds. Dimensionality reduction projects X to a
low-dimensional vector space with dimensionality L, leading to a new set of points
X ={z(0),..,x(N)| z(i) € RE}. A point (i) is called the lower-dimensional image of

Depending on the technique applied, the projection can have different objectives or
goals. Many techniques try to minimize the so-called reprojection-error. When project-
ing a set of points to a low-dimensional manifold and back to the original space, the
original data can ideally be perfectly reconstructed. While in general this is not realistic,
one can still try to minimize the loss of information introduced by this process. The
difference between the set of points X and the reprojected counterpart X should be as
small as possible with respect to a specified distance metric. The tilde and the hat are
henceforth used for specifying low-dimensional and high-dimensional points, respectively.
We will therefore adopt the following notation:

e Projected data will be marked by a tilde, e.g. @

e Reprojected data will be marked by a hat, e.g. &

An important feature of dimensionality reduction techniques is the fact that contin-
uous, smooth manifolds are derived from a discrete set of input data. As a result, we
can use the learned manifold to synthesize new points that contain the same type of
correlations between the variables as the input data. For the case of the S-curve exam-
ple this means, that we can parametrize an arbitrary point on the S-curve by specifying
its two-dimensional image coordinates and then reprojecting it back into the original
three-dimensional space. The synthesized points can be regarded as interpolations and
extrapolations of the input data. Figure 3.2 shows an example of this process: the image
point & is reprojected, leading to a point Z on the surface of the S-curve. This feature of
dimensionality reduction techniques is particularly important, as it allows us to create
simple synthesis models for any given data set.

3.2.2. Dimensionality Reduction Methods

In this section we will introduce seven important algorithms for DR. This includes well-
known algorithms such as PCA and MDS, as well as current state-of-the-art techniques
including Isomap and LLE.

26

3.2. Dimensionality Reduction

y y
[] e -,
. P
o ®) :'-./‘
- o
o L4 e "/. °
PY () o . g .
[J Y ® X") 1 ® X;
ole L% e
° /Q: °
. L ." L
[] s ([J
° <" e

Figure 3.3: Principal Component Analysis determines the directions of highest variability
in the set of data points. Left: The red and green arrows show the first and second
principal component, respectively. Right: The data points can be projected onto the first
principal component in order to reduce dimensionality while retaining as much of the
inherent information as possible.

Principal Component Analysis

Principal component analysis (PCA), also known as Hotelling transform or Karhunen-
Leuve transform, tries to reduce the dimensionality of the data while retaining as much
as possible of the contained information. This is done by searching for a linear subspace
with a lower number of dimensions L along which the data has maximum variance. PCA
extracts L orthogonal vectors, the so-called principal components, which form the basis
(the coordinate system) of the linear subspace. The data points can be reconstructed
using a linear combination of these principal components.

Figure 3.3 shows the application of PCA on data points sampled from a Gaussian
distribution. As already mentioned, PCA extracts the principal axes with the goal of
retaining as much of the variance as possible. Therefore, the first principal component
is in the direction where the data cloud exhibits the highest variability (red arrow). The
second principal component is in direction with second highest variability (green arrow),
and so on. The amount of spread in each direction can be used to assess the relative
importance of the corresponding principal component. This can be used to discard
principal components that have a low contribution.

To compute a PCA, we need to derive the covariance matrix ¥ of the data, which
requires the estimation of the sample mean p of the data cloud. This is achieved by:

27

3. Mathematical Foundations

u o= %Z””(“ (3.6)

N
1
Y = 1ZXm 1) (Xij — p47) (3.7)
k=1

where X is a matrix of the vectors x(i) as rows. The covariance matrix ¥ contains
information on the variability of the data in different dimensions. The matrix is factored
using spectral decomposition, also called eigenvalue decomposition (EVD). This yields
matrices V and A so that :

Y = VAVT (3.8)

where V is a square matrix whose columns are unit norm eigenvectors of &, and A is a
diagonal matrix containing the eigenvalues A\; of . The computed eigenvectors hold the
principal components of the data set, while the eigenvalues store the variance of the data
in each of the components. The eigenvalues can be used to determine the contribution
of a given principal component to the overall information contained in the data. For
instance, the first principal component—the principal component which captures the
largest part of the information—is the eigenvector with the largest associated eigenvalue.
The fraction:

Zf:l Ai

Zilil Ai
gives the cumulative proportion of the variance, which is the amount of information
captured by the first L principal components. For example, if we want to retain 95% of
the contained information, we need to keep the first L principal components for which
the calculation of the above fraction yields a value higher than 0.95. By analyzing this
fraction for different values of L, we estimate the intrinsic dimensionality of the dataset.
If the data is correlated, most of the information can be retained using only few principal
components (L < H).

The computed principal components form the basis of the lower-dimensional subspace
on which to project the data points. We can project any point from the original space
into this subspace. Conversely, any point from the subspace can be projected back into
the original space. The two operations, henceforth called projection and re-projection,
are arguably the most important operations when using dimensionality reduction tech-
niques. The projection from the original space to the subspace can be achieved by first
substracting the sample mean g and then computing the dot product of the result with
each of the L principal components. Each dot product returns the coordinate with re-
spect to the corresponding principal component. For example, in Figure 3.3 we see how
we can project each of the 2D points onto a 1D subspace. This is achieved by removing

(3.9)

28

3.2. Dimensionality Reduction

the mean value and then calculating the dot product with the first principal component.
In matrix notation the operation can be expressed as:

=W (x—p) (3.10)

where W is a matrix containing only the first L eigenvectors as columns. If we want
to reproject a point from the subspace back into the original space, we need to multiply
each coordinate value with the corresponding principal component. The sum of these
vectors plus the sample mean will be the searched vector in the high-dimensional space.
This can be expressed as:

Z=p+ Wy (3.11)

PCA has several features that make it applicable in many situations. The mathemat-
ics behind the technique is easy to understand and to implement. Furthermore, this
technique does not require any kind of hyperparameters found in other DR methods.

Multidimensional Scaling

Multidimensional scaling (MDS) is a classical technique in exploratory data analysis.
While there exist many variations of the algorithm, in general the term is used to refer
to the version due to Kruskal et al. [KW78]. MDS projects a data set to a lower-
dimensional space with the focus on preserving the pairwise distances of the data points.
Given two points x(i) and x(j), they are projected in such a way that their distance
D (x(i),x(j)) closely matches the distance D (x(i), Z(j)) of their image points (i) and
(7). The distance preservation property allows to draw important conclusions about
similarity or dissimilarity of data in the high-dimensional space by analyzing the pro-
jected counterpart.

MDS can be formulated as an optimization problem. The goal of optimization is to
minimize a cost function called stress, which measures how well the distances in the
high- and low-dimensional space fit. The stress function E is defined as:

Enps = Z [0 (& (i), () — 2 (2(i), ()] (3.12)

A good projection is determined by a set of image points X , such that Fy/ps is
minimized. This can be achieved by randomly initializing X and then using gradient
descent on the FEj;ps function. In each step of the algorithm, the X is changed in
the direction of the highest rate of decrease in the the stress function. After several
iterations, the algorithm converges towards the optimal image points. Another way of
computing an MDS works as follows. First, we compute the matrix of squared distances
with elements D;; according to equation:

29

3. Mathematical Foundations

D,; = [Z X = Xi1)*| Vi, je{1,..,N} (3.13)

k=1

where X is a matrix with «(7) in its rows. Note, that in this case the Euclidean
distance metric is used for the computation of the D;; values. Other metrics such as
the Manhattan metric can also be used. Next, the entries of the matrix are centered
according to formula:
1 N N LR
By =5 [Dij - > D= Dii+ = >N Dkl] Vi,je{l,.,N} (3.14)
k=1 k=1 k=

1 1=1

yielding matrix B of centered distances. The eigenvectors and eigenvalues of matrix
B can be calculated using EVD, as already discussed for PCA. The projection, or more
specifically the matrix of image points, can then be computed according to equation:

Xij =/ AVi; Vie {1, N},je{l,. L} (3.15)

where matrix V is derived from the eigenvalue decomposition. An interesting point
about the algorithm, is that the projection does not necessarily require the coordinates
of the points to be projected. The interpoint distances are sufficient for computing
the embedding. Due to this feature, MDS is particularly attractive for social sciences.
People are asked to rate the similarity between objects or other entities of the study.
The acquired similarities can then be processed using MDS to create a low-dimensional
visual representation showing the distances between these entities.

Locally Linear Embedding

Although the earth has a sphere-like geometry, for a long time it was believed to be a flat
surface. The reason for this misconception is the fact that smooth, nonlinear manifolds
appear linear on small scales. This idea is the basis for the locally linear embedding
(LLE) algorithm [RS00]. LLE tries to recover the global structure of a manifold using
a collection of locally linear patches. The goal is to identify these patches and find a
mapping to a space of lower dimensionality that preserves the neighborhood of points.
The first task in computing an LLE consists of characterizing the local geometry of
the patches by linear coefficients that reconstruct each data point from a set of nearest
neighbors. The number K of nearest neighbors is a parameter of the algorithm, which
has to be provided by the user. If the data set is sufficiently large, we can assume
that a value for K exists, such that the data point and its neighbors lie on or are close
to a locally linear patch of the manifold. The local geometry of these patches is then
characterized by linear coefficients that reconstruct each data point from its neighbors.

30

3.2. Dimensionality Reduction

A o) A
o
o
o
o ° o ©
o ® () °
X(I
®)
®
° (¢]
O
Oo ° (¢] (]
o o
O
—]
—>
1. Select neighbors 2. Reconstruct with linear weights 3. Map to embedded coord.

Figure 3.4: The steps involved in computing a locally linear embedding (based on [RS00]).

The reconstruction error that results from this process can be measured by:

N

Erre = Z

7

where the entry W;; of matrix W holds the contribution of the jth data point to the
1th reconstruction. The cost function E; 1 r computes the squared error between a point
and its locally linear reconstruction. In order to compute the weights W;;, the function
E g is minimized subject to the following two constraints:

2 (3.16)

(i) — Zvvij z(j)

e Each point &(7) is reconstructed solely from its neighbors, i.e. if a point x(j) does
not belong to the set of neighbors, then the weights are zero.

e Bach row of the weight matrix must sum to one: Zjvzl W;; = 1. This means that
each point is reconstructed from a convex combination of its neighbors.

These two constraints ensure an important property of the computed weights. For any
data point (i) the weights are invariant to rotation, scaling and translation. The weights
characterize intrinsic geometric properties of each locally linear patch. These properties
are valid in both the original high-dimensional space as well as the low-dimensional
embedding of the data. The process of LLE can be understood as taking each locally
linear patch and then placing it on a flat surface of lower dimensionality. In other words,
a linear mapping consisting of a translation, rotation and rescaling exists, that maps
the high-dimensional coordinates of each neighborhood to global internal coordinates
on the manifold. By design, the reconstruction weights W;; are invariant to linear
transformations. The same weights that reconstruct a point in a high-dimensional space
of dimensionality H can also reconstruct its manifold coordinates in a L-dimensional
embedding space.

31

3. Mathematical Foundations

Algorithm 1 Projection by linear interpolation: Given an point to @ to be projected,

the matrix of all training data X, and the matrix of image coordinates)2, the algorithm
computes the projected point .
Require: (z € R, X € RE*N X € REXN | K)

1: Select K neighbors Y € R?*¥ of x from set X

2: Create the image point matrix Y € RI*K

3: Compute covariance matrix :

1 N

Y, = mZ(Yik—wk)(Yj —x) Vi,je{l,., K} (3.17)
k=1

4: Compute weights W by solving the following equation:

K
1=) %W Vjefl,. K} (3.18)
j=1
5: Normalize weights:
W; :
Zj:l WJ'

6: Compute projection & € R by:

N
j=1

Given the optimized reconstruction weights W, the next step of the algorithm is to
compute the coordinates of the low-dimensional points @ (i) which reside on the mani-
fold. This is achieved by finding L-dimensional coordinates such that the following cost
function is minimized:

N

ELLE(i) = Z

2

2

#(0) - Y Wy 7)) (3.21)
j
Obviously this equation closely resembles Equation 3.16 with the difference that the
equation is not minimized for the weights W;;, but rather for the points z(z). The weights
have been computed in the earlier stage and are now used to find optimal embedding
coordinates. Another difference is the dimensionality. In contrast to Equation 3.16,
which uses the original points with dimension D, Equation 3.21 works on the image

32

3.2. Dimensionality Reduction

points, which have dimensionality L. The cost function in Equation 3.21 can also be
formulated as:

Errp(X) = XTMX (3.22)

with M = (I = W)T(1 — W) and | being the identity matrix. Figure 3.4 summarizes
the steps involved in computing an LLE. First, each data point is assigned a set of K
neighbors, which are nearest to it. Next, the weights W,;, which best reconstruct ()
from its neighbors, are computed. Finally, the image point ®(7) is found which minimizes
equation 3.21. In this final step, the weights are fixed and only the coordinates of the
image points are changed. In Algorithm 1 we find the general procedure for projecting
a new point, the so-called out-of-sample extension.

Isometric Feature Mapping

Many methods for dimensionality reduction use distance preservation as a criterion for
determining low-dimensional projections of data points. The image points are computed
in a way that their distances are as close as possible to the distances of the original data
points, like for the MDS algorithm introduced in Section 3.2.2. The isometric feature
mapping (Isomap) algorithm [TdLOO] builds on this idea of distance preservation and
extends it to nonlinear manifolds.

Figure 3.5: Dimensionality reduction builds on preserving interpoint distances, such as
the distance of the two points on the spiral curve (left). The Euclidean distance between
these points (middle) does not reflect their real distance with respect to the manifold. In
contrast, the geodesic distance measure (right) takes the intrinsic geometry of the manifold
into account (from [LLDVO00]).

In the original MDS algorithm, a Fuclidean distance metric is used to measure the
pairwise distances of points. However, applying this metric to nonlinear manifolds leads
to deceptive distance estimates. This fact is illustrated in Figure 3.5. The spiral is
an example for a one-dimensional manifold embedded in a two-dimensional space. This
becomes obvious if we image a spiral as a rolled straight line. Ideally, after application of
a dimensionality reduction algorithm, the spiral would be unrolled to a straight line again.
However, this unfolding is difficult for classical MDS because the pairwise Euclidean

33

3. Mathematical Foundations

distances after projection are larger than the Euclidean distances in the original high-
dimensional space. The reason for this can be seen in Figure 3.5. For two arbitrary
points the Euclidean metric in the high-dimensional space can go through shortcuts
leading to a low distance value. This distance does not accurately reflect their intrinsic
similarity. If we move along the manifold in order to get from one point to the other,
we find the points to be much farther apart then indicated by the estimated distance.
In order to accurately estimate the pairwise distance, we need to compute the shortest
path between the points along the manifold. Such a distance metric is called a geodesic
distance.

= DataPoints
= Starting Point

Data Points
= Start, End
—— Geodesic Path
= = Shortest Path

Figure 3.6: Left: Data points sampled from the S-curve benchmark. Middle: The
proximity graph based of the data points. Right: The Euclidean- and the graph-distance
for two given points.

The Isomap algorithm is based on this distance metric to transform classical MDS
into a nonlinear dimensionality reduction technique. The difficulty, however, lies in
estimating the geodesic distance. A priori we do not have any mathematical description
of the manifold on which our data set resides. Therefore, we can not compute the
true value of the geodesic distance of a given data pair. This problem is circumvented
by approximating the geodesic distances using a so-called graph distance metric. The
rationale behind the graph distance metric is twofold. First, for neighboring points, the
Euclidean distance provides a good approximation to the geodesic distance. Second, for
faraway points, the geodesic distance can be approximated by a sequence of short steps
along neighboring data points. For this, a proximity graph is created as can be seen
in Figure 3.6 (middle) for the S-curve benchmark data set. The nodes of this graph
correspond to the points in our data set, while arcs connect neighboring points. Given
the shortest path on this graph, we can estimate the geodesic distance by the sum of the
arc length along the shortest path linking both points. The computation of the shortest
path is typically computed using Dijkstra’s [Dij59] algorithm. After approximating the
geodesic distance between all pairs of points, classical MDS is applied to the resulting set
of graph distances. This constructs an embedding of the data in a L-dimensional space
that best preserves the manifold’s intrinsic geometry. In other words, the distances of

34

3.2. Dimensionality Reduction

the projected image points will reflect the geodesic distance of the original data points.
The main difference between Isomap and MDS is the use of the graph distance metric.
This difference, however, allows Isomap to unfold complex, nonlinear structures.

Sammon’s Nonlinear Mapping

Sammon’s nonlinear mapping (NLM) [Sam69], also referred to as Sammon mapping, is
a widely used variant of the MDS algorithm (see Section 3.2.2). An important drawback
of the classical MDS algorithm is that it focuses on retaining distances between faraway
points, while small distances have little influence on the stress function. As a result, the
low-dimensional embedding does not preserve the local structure of the manifold. How-
ever, in order to reveal the finegrained details of a given manifold it is often important to
preserve such local structure. Thus, the NLM algorithm focuses on accurately mapping
shorter distances rather than longer distances between data points. This is achieved by a
weighting factor which is inversely proportional to the distance in the high-dimensional
space. The stress function Eyr s which is minimized by NLM can be written as:

N

1 Y o (x(i),2(j)) — »
Enim = N N) ; -
Dict Zj>i@(w(z)vm(j)) Z; D (x(i), x

i=1

~ N\ o~y . 2
EOIED) -
(7))

This stress function, however, can not be minimized in a closed form. For finding an
optimal set of image points X minimizing the above equation we have to use optimization
techniques, such as gradient descent or Newton’s method. First, the image points are
initialized; either randomly or by first using classical MDS. Next, the gradient of the
stress function is computed and the coordinates of the image points are updated in
negative direction of the gradient. This procedure is iterated until the results of the
stress function converge.

The main drawback of this approach is that these optimization algorithms do not
guarantee convergence towards the global optimum and often get trapped in local optima.
Additionally, this renders NLM sensitive to initial parameter settings. In other words,
depending on the initial positions of the image points before optimization, NLM returns
different results.

Curvilinear Component Analysis

Curvilinear component analysis (CCA) was proposed by Demartines and Herault [DH97]
as an improvement of Kohonen’s self-organizing map (SOM) algorithm [KSHO01]. A SOM
is an artificial neural network that performs vector quantization and dimensionality
reduction at the same time. It consists of a discrete set of neurons arranged on a regular
grid. Each neuron encodes a vector in the high-dimensional space of input data. The
vectors are called prototype vectors. From a dimensionality reduction point of view the

35

3. Mathematical Foundations

Figure 3.7: A Self-Organizing Map at iteration 0, 1000, 10000 and 40000 of learning
(left to right). The process is reminiscent of a ‘fishing net’ slowly covering the data set.

prototype vector reflects the coordinate of the neuron in the high-dimensional space,
while its position on the grid reflects the low-dimensional coordinate. During learning,
the prototype vectors are modified to best fit the data cloud. In [LV07] this process
is compared to covering the data using an elastic fishing net. This process is depicted
in Figure 3.7. The projection of a SOM is both topology- and distribution-preserving.
Topology preservation refers to the feature of mapping similar input points onto nearby
neurons. Distribution preservation makes sure that more neurons are allocated to data
points that appear more frequently in the input space.

A major drawback of SOM is that the lattice on which the data points are projected is
fixed and must be specified by the user beforehands, i.e. the number of neurons, as well as
the structure of the lattice, and a function describing neighborhood relationships between
neurons has to be predefined. The output of a SOM is not a continuous low-dimensional
space, but rather a discrete set of representative points along the manifold. Accordingly,
it does not extract explicit mapping rules that allow us to project or reproject new
points. Additionally, from a mathematical point of view the self-organizing map is still
not well understood and convergence cannot be assessed. CCA adopts several ideas and
concepts of SOMs, while at the same time addressing the shortcomings.

Similarly to SOM, CCA performs both vector quantization and dimensionality reduc-
tion. In the original work of Demartines et al. [DH97] both steps were performed si-
multaneously. In most modern implementations, however, these two steps are separated.
Here, the first step of CCA consists of vector quantization. This can be performed using
an arbitrary vector quantization algorithm such as Dynamic Vector Quantization. The
vector quantization step drastically reduces the number of points which have to be used
for dimensionality reduction and, thus, reduces computation time. At the same time
the prototype vectors are computed in a way that they approximately retain the overall
structure underlying the original data points. Once vector quantization is finished, the
resulting prototype vectors are projected to the lower-dimensional embedding space.

36

3.2. Dimensionality Reduction

This is achieved by using the following stress function:
N
Ecoa =YY [o(x(i),2(j)) — 2(@(i), 2(j))]* #p0) (2 (@(i), Z(5))) (3.24)

=1 j=1

The function #) is used for weighting of the contribution of the distance of each pair
of points. Generally, a bounded and monotonically decreasing function is chosen. The
goal of introducing this factor is to favor the preservation of local topology, similarly to
the neighborhood function used in SOM. A common choice for #y(2 (i), z(j)) is the
Heaviside step function:

0 else

Hp(r) (2) :{ L if B(t) > 2 (3.25)

where [(t) is a function of time. Typically, exponential or sigmoidal functions are
used for this. Interestingly, the stress function of CCA closely resembles that of NLM.
In fact both techniques share the same approach and methodology. In both cases DR is
achieved through minimization of a given stress function. The main difference between
these techniques is the weighting factor. NLM weights the projection error of each data
pair based on their distance in the high-dimensional space. In contrast, CCA weights the
projection error based on the distance in the low-dimensional projection space. While
the result of o (x(i),x(j)) does not change during the course of optimization, the result
of »(x(i), (7)) changes with every optimization step. This idea is borrowed from the
SOM algorithm and allows to unfold highly folded data sets. If the distances can be
preserved, then it holds that o (x(i), z(j)) =~ 2 (x(i),x(j)). In this case CCA behaves
similarly to NLM. However, if » (2(i), 2(j)) < 2 (x(i), x(j)), then the manifold is highly
folded and the image points must be drastically changed to unfold it. Therefore, the
weighting function will assign a high contribution of the corresponding data pair to the
overall stress function.

Curvilinear Distance Analysis

While CCA is an important step towards dimensionality reduction of nonlinear man-
ifolds, it still shares an essential limitation with other techniques like MDS. The use
of the Euclidean distance on nonlinear manifolds yields misleading distance estimates
between pairs of data points. To remedy for this drawback Lee et al. [LLDVO00] pro-
posed curvilinear distance analysis (CDA) as an extension of CCA. CDA replaces the
Euclidean distance metric in the CCA algorithm by a graph distance metric (see Section
3.2.2). The graph distance metric is an approximation of the geodesic distance, which
measures the distance between two points along the manifold. The graph distance is a
much more faithful estimation of the pairwise distance than the Euclidean distance, and
improves the ability to unfold highly nonlinear manifolds onto low-dimensional spaces.

37

3. Mathematical Foundations

Thus, CDA extends CCA in the same way Isomap extends classical MDS. The stress
function optimized by CDA can be written similar to CCA as:

Ecpa = Z Z [26(@(i), 2(j) — 2@ (), 8())]" o (0 (@(i), E(j)) (3.26)

i=1 j=1

In contrast to CCA, however, the distance in the high-dimensional space is computed
using the graph distance metric.

3.2.3. Comparison of Methods

This section compares the introduced DR methods according to different criteria. First,
the techniques are classified according to their inherent characteristics. Next, the com-
putational complexity of the algorithms is analyzed theoretically. This step is important
for making informed choices about an appropriate DR algorithm when faced with a par-
ticular problem. As we will see, the computational complexity varies considerably among
different algorithms. Finally, the algorithms are evaluated on a benchmark problem in
order to assess the quality of the achieved embeddings.

Classification

By comparing the algorithmic details of the DR methods, we can observe, that some
algorithms share common basic principles while others are founded on different theoreti-
cal grounds. In the following we will provide a set of (nonexhaustive) qualifications that
allows us to classify and categorize DR methods.

DR techniques can be broadly divided into linear and nonlinear techniques. Linear
techniques assume a linear relationship among the variables and are therefore, from a
theoretical point of view, less powerful than nonlinear techniques. Nonlinear dimension-
ality reduction (NLDR) techniques can project data onto fewer dimensions, even if it
lies on a complex, a nonlinear manifold.

Another difference between DR techniques is whether they are based on continuous or
discrete models. Discrete techniques are based on a finite set of examples for which the
DR problem is solved. This set is used as a discrete representation of the manifold. This
leads to problems whenever a new point needs to be projected; the so called out-of-sample
extension. In this case, an interpolation procedure is needed to combine the information
from several points in order to interpolate the image coordinates of the new point. In
contrast, continuous techniques can be seen as a parametrized function, which takes
a given point as input and produces its image coordinates as output. This approach
is more accurate than its discrete counterpart, which often introduces discontinuities
into the projection and for which the question of accurate interpolation/extrapolation
remains problematic.

38

3.2. Dimensionality Reduction

Another important question is whether the DR process is based on exact or approx-
imate optimization. Several algorithms, such as CCA or NLM, use stochastic gradient
descent algorithms for computing the low-dimensional embedding. However, these algo-
rithms are prone to convergence towards local optima. As a result, it is not guaranteed
that the generated projection is globally optimal. The algorithm might generate differ-
ent results for different consecutive runs. In contrast, methods based on some kind of
eigendecomposition, so-called spectral methods, are guaranteed to converge towards the
global optimum.

Finally, the DR techniques are often classified into distance or topology preserving
methods. Distance preserving methods search for projections which retain the pairwise
distances of the data set. By preserving these distances, the geometrical structure of
the manifold can also be preserved. While this idea is intuitively correct, it leaves us
with the problem of how to accurately measure distances along the manifold. Topology
preserving methods try to retain the neighborhood relationships between points. Points
that are near to each other in the high-dimensional space, should also be near to each
other in the low-dimensional space, i.e. the exact distance does not play an important
role. This allows topology preserving methods to deform a manifold to achieve a better
embedding. However, such techniques are often based on a discrete representation of
the neighborhood, which involves additional neighborhood parameters that often need
to be supplied by the user.

Algorithm Linearity Preservation Model Solution
PCA linear - continuous exact
MDS linear distance discrete exact
LLE nonlinear topology discrete exact

Isomap nonlinear distance discrete exact
NLM nonlinear distance discrete approximate
CCA nonlinear distance discrete approximate
CDA nonlinear distance discrete approximate

Table 3.1: Classification of dimensionality reduction techniques into different categories
based on their inherent characteristics.

Table 3.1 summarizes the results of the classification of the introduced DR techniques.
Only LLE is a topology preserving method. Most other methods use a distance pre-
serving approach. This can be explained by the fact that topology preservation is often
difficult to specify in terms of a cost function. Often, prior knowledge about the approx-
imate shape of the manifold is needed to create such a cost function.

39

3. Mathematical Foundations

Complexity

Analyzing the computational complexity of the DR techniques is important in order to
assess their applicability in different domains, such as real-time environments. Both the
computational complexity as well as the memory complexity can be important criteria
on which to base the choice of DR technique. For most methods, the complexity is
dependent upon the number of data points NV, the dimensionality H of the original data,
the dimensionality L of the embedding space, and in some cases the number K of nearest
neighbors to take into account.

PCA performs an eigendecomposition on a centered covariance matrix. Here, the com-
putational complexity of preparing the matrix amounts to O(HN). The eigendecom-
postion of the H x H matrix is performed in O(H?). Figure 3.8 shows the computation
times for the eigendecomposition for different numbers of data points. The plot confirms
the theoretical analysis by empirical results and shows that the measured runtimes can
be fit using a cubic function. Storing the eigenvector matrix has a memory complexity

of O(H?).

1200 v
B Measurements //
— f(z)=7.6-10"8% 23 /

oo | — /@) o
= A
— /
g 7
o 600 4
g /7
< i g

300

— A
0 —_J_
0 500 1000 1500 2000 2500

Number of Points

Figure 3.8: The time needed to perform an eigendecomposition for datasets with in-
creasing size.

In contrast to PCA, MDS is much more computationally demanding and has a com-
plexity of O(N3). That is, for large datasets computing MDS becomes prohibitive. Sim-
ilarly, Isomap also performs the eigendecomposition on a matrix of size N x N leading
to a complexity of O(N?). Additionally, Isomap performs Dijkstra’s algorithm on the
neighborhood graph in order to approximate the geodesic distances. This has complexity
of O(NK + N log N) using a Fibonacci heap implementation [FT87]. Furthermore, N
nearest neighbor searches need to be performed with complexity O(HN log N) [KR02].
Finally, because the full N x N matrix is stored, the memory consumption increases to
O(N?) compared to PCA. Taken together, the above considerations show that compu-
tation of MDS and Isomap can be very slow. To reduce the runtime of the algorithm,
Isomap and MDS are often used in conjunction with preprocessing algorithms that se-

40

3.2. Dimensionality Reduction

lect a representative subset of so-called landmark points [dST04]. For instance, Vector
Quantization can be used for this. A faster variant of MDS can be found in [FL95].

LLE has the advantage of using a sparse matrix. As a result, the eigendecomposition
has a computational complexity of O(rN?), where r is the ratio of non-zero elements
in the sparse matrix. During the embedding, LLE computes eigendecompositons for N
matrices of size K x K with a complexity of O(NK?).

Non-spectral methods such as CCA or NLM are based on iterative algorithms. Fach
iteration of the gradient descent optimization in such techniques involves O(LN?) op-
erations and memory space. While this is slower than PCA, it is in most cases faster
than the computation of Isomap or MDS. This can easily be explained by the fact that
we typically perform projections, where L < N. Therefore, as long as the number of
iterations is smaller than %, non-spectral methods will be generally faster than Isomap.

Performance Benchmark

In the following experiment the DR techniques are applied to a data set sampled from
the earlier introduced S-curve. The S-curve is a standard benchmark that is commonly
used in the DR literature. The S-curve is an extruded S-shape, with a smooth, curved
surface. The color coding is only used for easier visualization of the manifold and is
irrelevant for the DR process. The task posed in this experiment, is to embed this
surface in a two-dimensional space without loss of information. For this, the algorithms
need to unfold the surface to a planar sheet.

Figure 3.9 shows the projections resulting from applying the different DR techniques
to the benchmark problem. All algorithms were run on the same data set of 2500 points
sampled from the S-curve benchmark. As can be seen, the results of PCA and MDS are
not satisfying. In both cases we see superpositions of data points. More specifically, the
red and blue parts of the manifold are intermixed with the green points. This effect can
easily be explained, if we imagine the process of linear projection as taking a picture with
a photo camera. Even if we vary the camera position, due to the shape of the S-curve,
some points will always be in front of other points. A similar effect can also be seen for
NLM. In contrast to that, the embedding performed by CCA appears more convincing.
CCA succeeds to unfold the data for a large part of the manifold. Still, in particular
at the boundaries of the manifold the embedding shows tearings. This introduces holes
and outliers into the projection. LLE and Isomap produce satisfying projections, only
slightly skewed or rounded at the boundaries. Finally, a perfect projection is achieved
by CDA. The S-curve is perfectly unfolded onto a planar surface.

In Figure 3.10 the results reprojecting the image points back into the original three-
dimensional space is shown. Confirming the above analysis, LLE, Isomap and CDA
succeed in reconstructing the S-curve. This is mainly due to the fact that their projec-
tions did not introduce superpositions of points. In contrast to that, we see for MDS
and NLM that in the upper (blue) and lower (red) part of the manifold several points
collapsed. As a result, only the middle (green) part of the manifold can be reconstructed.

41

3. Mathematical Foundations

PCA MDS LLE Isomap

NLM CCA CDA

Figure 3.9: Projections of the S-curve on two dimensions performed using different
dimensionality reduction techniques.

The worst reconstruction is exhibited by PCA, where all points are collapsed on a plane
positioned in the center of the original S-curve.

3.2.4. Estimation of the Intrinsic Dimensionality

Almost all dimensionality reduction techniques described so far require the user to specify
an input parameter L defining the dimensionality of the space on which to project the
data. Whether the value chosen by the user is reasonable, or whether it is over- or
underestimated is largely dependent on the data set and on the intended application.
Still, in most cases the following question is critical: What is the smallest value for
L, for which the data can be projected and reconstructed without loss of information?
Logically, for all values of L lower than this threshold, the data can not be reconstructed
without error. In the literature this threshold is called the intrinsic dimensionality of
a data set. Loosely stated, intrinsic dimensionality refers to the minimum number of
free variables needed to represent the data without information loss. In the case of the
earth example, we can perfectly specify the position of each city by only two variables
although the earth exists in three-dimensional space.

42

3.2. Dimensionality Reduction

NLM CCA CDA

Figure 3.10: Reconstructions of the S-curve from the projected points.

Various methods exist for the estimation of the intrinsic dimensionality from a given
data set. A simple way for achieving this, is the use of PCA. As already explained
in Section 3.2.2, the eigenvalues contain information about the amount of information
that is captured by each of the principal components. By computing Equation 3.9 for
different values of L we obtain the percentage of the retained information as a function
of L. Through the analysis of the resulting curve we can estimate the dimensionality
of the data set. In many cases, the amount of retained information quickly converges
towards 100%. The value of L for which this is the case can be used as an estimate of
the intrinsic dimensionality. While this approach is a good starting point and generally
gives good estimates, it still suffers from the fact that PCA is a purely linear technique.
For nonlinear manifolds it is likely to overestimate the intrinsic dimensionality of the
data.

The above limitation led to the development of Local PCA, which is arguably the most
popular dimensionality estimation technique in the field of machine learning. Local
PCA partitions the data set into small patches for each of which the dimensionality
is estimated separately. The partitioning can be performed using a K-Means [Mac67]
algorithm. The intrinsic dimensionality of the manifold is then computed by taking the
average of all local estimations. The idea is similar to the approach followed by LLE:
instead of processing the whole data set at once, divide it into locally linear patches and

43

3. Mathematical Foundations

process them separately. The underlying assumption is, that the investigated manifold
is approximately linear on a local scale. In order to determine the dimensionality of a
locally linear patch, Fukunaga et al. [FO71] introduced the Da criterion which regards
an eigenvalue \; as significant if the following inequality holds:

Ai
—— > (3.27)
argmax \;
J
where « is a given threshold parameter. In presence of noise the estimation of the
intrinsic dimensionality often cannot be performed accurately. Still, the results of this
process are often important in order to get an idea about the range of possible values and

the ratio between the input dimensionality and intrinsic dimensionality of the dataset.

3.3. Conclusion

In this chapter we introduced important mathematical concepts that are vital for the
imitation learning algorithm that will be developed and evaluated in this thesis. We first
introduced hierarchical modeling of geometric structures, as well as different rotation
representations that can be used to this end. Hierarchical modeling lies at the core of
animating articulated structures.

We noted that, from a theoretical point of view, each of the discussed rotation represen-
tations has its advantages, as well as limitations. Therefore, a general recommendation
as to which representation to choose can not be made. Instead, the rotation representa-
tion must be chosen with respect to the desired application domain.

In addition to hierarchical modeling, we also analyzed the mathematical concepts
of dimensionality reduction. The analysis covered seven dimensionality reduction tech-
niques, including both standard techniques and current state-of-the-art methods. The
techniques greatly differ in their ability to uncover the structure of a given data set.
A preliminary analysis of each of the techniques showed that nonlinear dimensionality
reduction techniques can successfully project data onto lower dimensions without losing
much of the intrinsic information. The analysis was, however, performed on a simple
data set as used in other literature. Conclusions drawn from such experiments often do
not generalize to other data sets or application domains. Therefore, in this thesis we will
not prematurely decide in favor of a specific dimensionality reduction technique. Instead,
in our experiments we will try to interchange the dimensionality reduction technique, in
order to assess how the different techniques perform in our application domain.

44

4. An Imitation Learning Approach:
Probabilistic Low-Dimensional Posture
Models

4.1. Introduction

Imitation has a number of interesting qualities that make it appealing as a general model
for programming synthetic humanoids. First of all, it is a fast way of transmitting knowl-
edge between individuals. By watching and imitating the behavior of a teacher, we are
spared of lengthy trial-and-error phases. Skills that may take weeks to learn by oneself,
can be learned within days or hours in the presence of a teacher providing successful
examples. Indeed, as stated in [BCDS08]: “(Imitation) is a powerful mechanism for
reducing the complexity of search spaces for learning”. That is, the observed demonstra-
tion can be used to rule out a large number of wrong attempts at mastering a skill.

From a computational point of view, imitation learning reflects a data-driven ap-
proach to the problem of motor skill acquisition. The traditional way of programming
such skills is a labour and time intensive task, which requires a large amount of expert
knowledge. In particular, it often involves the transformation of intuitive concepts of
motions and actions into formal mathematical descriptions and algorithms. Even in GUI-
based programming environments, where complex movements are specified as sequences
of postures defined in the graphical user interface, much time is usually spent for param-
eter tweaking. Due to the relatively large number of degrees of freedom, this process
becomes particularly cumbersome for the case of synthetic humanoids, such as androids
or virtual humans. Imitation learning avoids these problems by stressing the importance
of data. Information on how to perform a particular skill and what constraints to be
taken into account, is directly extracted from recorded demonstrations. Hence, the focus
of the user is shifted from programming to conveying ‘meaningful” demonstrations. This
is at the same time both a more natural and less labour intensive approach. While lay
people are not familiar with intricate details of programming languages and Al, it is safe
to assume that they have already been confronted with the situation of having to teach
something to another person.

Two closely related features of imitation in which we are interested, are adaptation
and wvariation. Adaptation refers to the ability to generalize a demonstrated posture or
motion to an unseen context (see an example in Figure 4.1). Ideally, once a virtual human

45

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

4 N N)

Figure 4.1: Generalization of a learned ‘box lifting’ behavior. The joint angles are
generated by taking into account the characteristics of the box (size, shape, position,..),
as well as the anatomy of the synthetic humanoid.

learned to lift up a box, it should be able to reproduce this behavior, even if size and
location of the box are changed. Variation refers to the ability to generate many variants
of the same behavior. Human motion is by nature highly variable. Differences in motion
can, for example, result from the genetic disposition, social and cultural background,
personality or emotional state or simply the task at hand [Par07]. Even if we try to
repeat a particular movement in the exact same way we are bound to fail. Natural
noise on the level of muscle activations automatically leads to small perturbations in
the joint configurations of the movement. Yet, such small-scale variations can have a
strong impact on the believability of a humanoid character. Variation also takes place
on a larger scale. The redundancy in human kinematics allows us to perform different
realizations of the same motion. Therefore, adaptation and variation are interrelated
properties of human motion.

Obviously, it is desirable to have a computational equivalent to natural imitation
with above mentioned properties. Unfortunately, to what kind of observed behavior
the term ‘imitation’ should refer, is still a matter of debate in the literature. This
renders the concept vague and not well defined. In the following we will concentrate
on what is called ‘true imitation’—the acquisition of novel, previously unknown, motor
skills. While biological plausibility is not our aim, we will build on various results
in neuroscience and psychology. In particular, we adopt the concept of behaviors—
primitives or building-blocks of motor control that can be combined to create a large
repertoire of movements. A behavior is conceptually above the level of motor muscle
commands and encodes complete temporal motor acts such as walking or dancing. There
is substantial evidence that motor systems in humans and animals [BAST02] employ a
modular organization based on a collection of primitives in order to generate a variety
of movements. Many examples such as flocking have proved that the combination of
seemingly simple behaviors can produce complex motion patterns. In neurophysiological
studies with spinalized frogs it was found that stimulating different parts of the spinal

46

4.2. The Three Steps in Imitation

Motion Model Motion
Recording l:} Learning I:} Synthesis

Figure 4.2: The three steps of our imitation learning approach: First, example motions
are recorded using motion capture or other tracking devices. The acquired data is then
processed and a model of thereof is learned. Finally, the model is used to synthesize
variations of the recorded motions.

cord resulted in different movements of the frog’s limb [MIGB94]. The forces acting
on the limb varied based on the limb’s position and on the stimulated spinal cord site.
By fixing the spinal cord site and changing the position of the limb, it is possible to
extract a force-field visualizing the forces encoded in a particular neuron group. Further
investigation revealed that only a small number of distinct force-field primitives is needed
in order to generate much of the frog’s motor repertoire. Complex limb motion results
from a linear superposition and sequencing of these primitives. Primitive behaviors can
therefore be regarded as a vocabulary from which a rich set of motions can be composed
[Mat02]. True imitation occurs, when a previously unseen behavior is learned and added
to the motor repertoire. This makes behaviors the fundamental substrate of imitative
capabilities.

Building on the above considerations we will now conceptualize a computational im-
plementation of imitation learning and provide a general approach as well as its indi-
vidual components. The presented imitation learning algorithm realizes ‘true’ imitation
by learning single behaviors, which can then be chained to form complex sequences of
actions.

4.2. The Three Steps in Imitation

Bakker and Kuniyoshi [BK96] identify the following three fundamental processes of
imitation: (1) observation, (2) representation, and (3) reproduction. A student, aiming
at imitating his teacher, first needs to observe one or several demonstrations. Then,
he must create an internal model of the seen behavior. Finally, he needs to reproduce
the behavior by himself, taking into account the current environment and situation.
Our imitation learning approach adopts this view, although slightly reformulating the
involved processes, to better fit the computational context. Hence, the approach consists
of the three steps illustrated in Figure 4.2.

First, example motions from human teachers are recorded. This can be done using
a variety of sensor technologies, such as motion capture systems, fingertracking, data

47

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

gloves or robot sensors. Once the example data is recorded, it is used to derive a
computational model of the corresponding behavior. In particular, we are interested in
generative models—models that can be used to synthesize variations of the demonstrated
behavior. Finally, whenever the behavior is triggered, the model is used to synthesize
the appropriate postures and motions taking into the account the context. These three
steps are the basis of our algorithm, and will be executed whenever a new behavior is
learned. The approach is flexible enough to be used with different realizations of syn-
thetic humanoids, in particular robots and virtual characters. We will see in subsequent
chapters, that this approach also supports different interpretations of imitation learning
scenarios, including kinesthetic and close-contact interactions between the teacher and
the student. To realize this approach the following components are needed:

1. Search Space: A space of behavior-specific postures derived from the recorded
demonstrations. For example, a search space for a ‘walking’ behavior, should
include a large number of typical walking poses.

2. Task Constraints: The set of constraints, in particular postural constraints,
present in the behavior. While some of these constraints might stem from the task
itself, we are also faced with anatomical limitations when dealing with synthetic
humanoids. As the goal is to have a human-like appearance, it is important that
the postures taken on by the agents appear realistic.

3. Metric of Imitation: The metric of imitation is an objective function which
assigns a cost value to each attempt at reproduction of the demonstrated behavior.
This is achieved by taking the current environmental situation into account. The
metric allows us to evaluate and improve the agent’s attempts at reproduction.

4. Synthesis Algorithm: An algorithm that takes the search space, the task con-
straints and the metric of imitation and produces a suitable variant of the learned
behavior.

The first two components, i.e. the search space and the task constraints, will be de-
rived using a novel learning method called probabilistic low-dimensional posture model
(PLDPM). This method is the key element of the presented imitation learning method
and is applied in the second step of our approach. The PLDPM construction algo-
rithm automatically extracts correlations and synergies inherent to the demonstrated
movements. These are then stored as a compact computational representation of the
corresponding skill. In the final step, the posture synthesis step, an optimization algo-
rithm is used in conjunction with the metric of imitation to synthesize a new posture
or animation. Here, the metric of imitation acts as the objective function of the op-
timization process. In other words, the metric provides the optimization process with
information about the quality of a given solution candidate. Using only this informa-
tion, the optimization process explores the search space for a solution which best fits
the criteria of the metric.

48

4.3. Probabilistic Low-Dimensional Posture Models

4.3. Probabilistic Low-Dimensional Posture Models

The PLDPM construction algorithm is an unsupervised learning method for generating
a compact description of the kinematic and anatomic laws underlying a demonstrated
behavior. It does so by exploiting the fact that natural motion can often be described as
a combination of a small number of components. For instance, it was shown in [SFS98|
using PCA that the first two principal components could account for more than eighty
percent of the variance of grasping movements. Alexandrov and colleagues showed in
[AFM98] that the first principal component captured more than ninety-eight percent
of trunk bending movements. Similar results have also been reported for walking gaits
[GBT04; SAD97], lip motion [RMGO96], catching movements [BTD10], typing [SF97],
and smooth planar movements [San00]. In all cases the motions can be described by sig-
nificantly fewer parameters than the total number of degrees of freedom. These findings
are also supported by results from neurobiology and physiology. D’avella and colleagues
[DB98] analyzed the frog hindlib response to vestibular stimulation and provided ev-
idence that the muscular responses can be explained by a superposition of only five
components.

Building on these findings, the PLDPM algorithm uses dimensionality reduction tech-
niques to automatically extract a minimal set of principal components from exemplary
kinematics data. This results in a low-dimensional posture space—a space in which
each point represents a posture typical for the modeled behavior. Additionally, PLDPM
also extracts the constraints, particularly anatomical constraints. These ensure that all
synthesized postures or animations appear natural and realistic. Statistical methods are
used to extract such constraints from the recorded data and represent them as proba-
bilities. Hence, no prior knowledge about the mechanics of the modeled humanoid is
needed. Formally, a PLDPM is defined as follows:

Definition 4 (Probabilistic Low-Dimensional Posture Model). Let set @ C R be the
set of recorded postures. The PLDPM of Q is a triplet (P, WV, ®), where:

e P C R” is a behavior-specific subspace of postures with L << H,

o U: R¥ — R is a function that returns for any vector ¢ € R its low-dimensional
image coordinates q € P,

o & : RE — [0..1] is a probability density function that returns the probability of q
belonging to the same distribution as the projected example postures Q.

The set Q is the training data of the algorithm and contains the recorded postures, i.e.
joint angle values of an articulated structure. A posture ¢ € Q can have any arbitrary
rotation representation, such as matrix, quaternion or Euler representation. To extract
the principle components from this data set, dimensionality reduction is applied. As
introduced in Section 3.2 different methods can be used for this purpose. At the end
of this step we have a posture space P, the corresponding mapping function ¥, as well

49

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

g ISR
R é:@zi
¥ IR N

|
-2.0 -2.0 0.0 2.0

Figure 4.3: Left: A visualization of the low-dimensional posture space for box-lifting.
Each point in the space corresponds to a posture. The postures of nine equidistant points
are shown. Right: A visualization of the low-dimensional posture space for walking. The
trajectory along the seven points specifies a walking motion.

as the projected images points Q. The function ¥ performs a mapping between the
high-dimensional space of training data and the low-dimensional posture space. We
can take any recorded posture g and determine its image coordinates g by performing
the operation W(q). In the other direction, we can take ¢ € P and reconstruct the
joint rotations using ¥~'(q). Note, however, that dimensionality reduction is a kind of
compression and typically leads to a loss of information. Therefore, in most cases the
expression U (¥(q)) = g will not hold. Still, by an informed choice of parameter L, we
may reduce the introduced reprojection error to arbitrarily low values.

The probability density function ® models the task constraints, and gives important
information about the feasability of a given posture. It is learned from the set Q of
image points. The rationale behing this, is that any new posture should obey the same
distribution as the training data. Postures for which the image coordinates are far
away from the vicinity of the training data, will most likely not meet the anatomical
constraints underlying the behavior.

An important property of a PLDPM is that it takes a discrete set of postures and
generates an infinite, continuous space of postures. Dimensionality reduction techniques
are used to extract this space by uncovering the manifold underlying these postures.
Based on a few recorded postures of a behavior, we can later generate an infinite number
of interpolations and extrapolations thereof. This is rendered possible by the principle
of duality between points in the extracted low-dimensional space and postures of the
targeted synthetic humanoid. Any given point ¢ € P is fully sufficient to derive all
kinematic parameters needed for specifying a posture g € R of the modeled humanoid.
At the same time it holds, that for any posture q there exists a low-dimensional point
qgecP.

20

4.4. Example: Pressing a Button

The principle of duality is illustrated in Figure 4.3 (left). A 2D posture space extracted
from a ‘box lifting’ motion sequence is shown. The space is continuous, infinite and
therefore we can generate an unlimited number of points therein. Due to the duality
property, we can visualize each point in this space by reconstructing the corresponding
joint rotations through W' (). In Figure 4.3 (left) this is done for nine different points in
the posture space. Each of these points represents a different postural configuration. Yet,
all of these postures are typical for ‘box lifting” and correspond to different situations.

The concept of posture-point duality is also the basis for the generation of motions
based on PLDPM. As can be seen in Figure 4.3 (right), an animation can be specified as
a low-dimensional trajectory. The figure shows a ‘walking’ animation specified through
seven control points in the posture space. Each control point represents a different key-
frame of the animation. Because walking is a cyclical motion, the last control point is
also the first control point; the postures at the beginning and the of a walking cycle
are identical. The animation can now be replayed by reprojecting each point along
the trajectory at different time steps. New animations or modifications of the original
animation can be produced, by specifying a new set of control points.

The problem of animation synthesis can now be reformulated as follows: Given a
learned PLDPM, find a low-dimensional point or trajectory, which optimizes a provided
metric of imitation. The metric of imitation evaluates how well a given imitation attempt
fits the current environmental context. The task of the synthesis algorithm is to explore
the posture space using the values provided by the metric as a guidance. In other words,
the task of posture synthesis is replaced by an optimization problem. Optimization
theory provides a number of different techniques for solving similar problems. Our
approach can be used in conjunction with any arbitrary optimization method.

In the remainder of this chapter, we will explain the details of the proposed imitation
learning approach using a concrete example: the imitation of ‘button pressing’. This will
help to easier understand the steps involved in the algorithm.

4.4. Example: Pressing a Button

In the following we will show how the introduced approach can be applied to imitate
the way humans press a button. Without loss of generality, we will limit the analysis to
the index finger.

The task of ‘button-pressing’ can be regarded as a simple goal-directed behavior,
because its execution is dependent on the location of a target button. More precisely,
we need to generate joint angles in a way, that at the end of the process the tip of the
finger touches the surface of the button. For this, the position of the button needs to
be taken into account when generating the motor signals. Before applying imitation
learning to this task, let us first take a look at the kinematics and anatomy of the index
finger.

51

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

2.0

Button

-2.0

Hand B .] -

Preshape

1 | | | 1
-2.0 0.0 2.0

Figure 4.4: Left: Side view on the index finger’s anatomy. Three joints realize the flexion,
extension, abduction and adduction movements of the finger. Right: Low-dimensional
trajectory going through three key postures.

The skeleton of the index finger can be modeled as an open kinematic chain of three
rigid bodies: the proximal phalanx, the middle phalanx, and the distal phalanx. The
behavior of the kinematic chain is determined by three joints, namely the matacarpal-
phalangeal (MCP), the proximal-interphalangeal (PIP), and the distal-interphalangeal
(DIP) joint, see Figure 4.4 (left). The two intephalangeal joints PIP and DIP are often
described as hinge joints having one DOF. They are responsible for the flexion/extension
movement of the finger. The MCP joint has a second DOF which allows for adduction
(movement towards the middle finger) and abduction (movement away from the mid-
dle finger). The finger joints are highly interdependent, as the activation of one of the
controlling muscles will typically result in a coactivtion of another muscle. Trying to
capture this interdependence by mathematical means, Rijkema and Girard [RG91] re-
lated the joint angle of the distal- to the proximal-interphalangeal joint by the equation
Oprp = %ep 1p. However, in [ES03] it was reported that this approximation is too coarse
for intricate control of the hand. Generally, such models can only be used as crude
approximations of the joint interdependencies, due to the large range of anatomical and
biomechanical properties which can be found in different humans. Other important fin-
ger parameters that are difficult to model are the joint limits. Depending on the joint
laxity of a person, the finger can flex and extend to a different degree. Due to genetic
dispostion or special training, such as sports or yoga, some people are more flexible than
others. A general rule describing the joint limits is therefore bound to fail.

Using the introduced PLDPM method, we will model the ‘button-pressing’” behavior as
a trajectory in a low-dimensional posture space. This space will be learned from recorded
example data. A visualization of a possible trajectory is given in Figure 4.4 (right). The
behavior can be specified as a trajectory through three control points in the posture space.

52

4.4. Example: Pressing a Button

The starting point represents a closed hand. The second control point, the ‘preshape’,
corresponds to an extended index finger. Finally, the last control point corresponds to a
hand configuration where the finger touches the button. In order to produce successful
realizations of the behavior, our synthesis algorithm needs to ensure that the index
finger always touches the button at the end of the animation. The metric of imitation
is, therefore, based on the distance between the tip of the finger and the button. Ideally,
the distance is zero, that is, the finger tip touches the surface of the button.

4.4.1. Motion Recording

The first step of creating a PLDPM for finger movements is the collection of example data.
For this, we used a fingertracking device capturing a test-subject’s hand movements.
Other recording technologies can also be used for this purpose.

During movement recording, a subject was asked to move its index finger for about 5
minutes and touch different buttons. The finger configuration was repeatedly captured
and stored as vectors of joint rotations. The rotations were represented as Euler angles,
thus, leading to a vector with 9 elements (3 angles x 3 joints). Note that due to our
expert knowledge about the finger anatomy, we could have reduced the number of entries
in the posture vector. We know that both the rotation of the PIP and DIP has only one
DOF and can therefore be represented using one value. However, we avoided using any
kind of expert knowledge in the design of the experiment. Note also that the storage
of the rotations in a Euler representation it is not mandatory. As we shall see in later
experiments, it can be beneficial to use other types of rotation representations.

After recording, we performed vector quantization as a first preprocessing step on the
gathered data. Vector quantization deals with the problem of how to encode a large set
of data vectors using a smaller, but still representative set of prototype vectors. This
reduces the number of data samples in the data set, while retaining the structure of the
manifold.

The reason for this step was already explained in Figure 3.8, which shows the time
needed to derive the matrix of eigenvectors as a function of the number of samples in the
training set. The computation of the eigenvectors is the core mathematical operation
for most dimensionality reduction techniques. There is a cubic relation between the
number of points and the needed computation time. With increasing number of points,
the derivation of the eigenvector matrix becomes more and more demanding and time
consuming. Therefore, whenever the dataset of training data is large, it is helpful to
first apply vector quantization.

A classical vector quantization algorithm is the K-means algorithm [Mac67], which
uses an iterative procedure in which two successive steps are repeated to find ideal
prototype vectors. Given the number of clusters as a parameter, the K-means algorithm
starts by (randomly) initializing the prototype vectors. Afterwards, the iterative two-
step algorithm starts. In the assignment phase, each data vector is assigned to the
nearest prototype vector, yielding a Voronoi partition of the original data set. In the

93

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

update step, the prototype vectors are updated, by computing the mean (center of mass)
of the points associated with it. The algorithm terminates when the protoypes stay fixed
during an iteration step.

To run the K-means algorithm, the number of clusters must be provided by the user.
However, the ideal number of clusters is heavily dependent on the data set at hand. If
this number is too small, the quantization error will be large. Conversely, if too many
clusters are allocated, the efficiency of quantization will be reduced, because some data
clusters will have two prototypes. Instead of fixing the number of prototypes, we use a
dynamic vector quantization algorithm.

In particular, the Neural Water algorithm [LH99] is used, which introduces an ad-
ditional parameter r specifying the radius-of-influence of each prototype. In K-means,
each prototype was influenced by all points in its Voronoi region, i.e. to which it is clos-
est. In contrast to that, in Neural Water each prototype is only influenced by points
inside the hypersphere of radius r. If a data vector is not inside a hypersphere of any of
the prototypes, then a new prototype is created. The radius-of-influence parameter is
computed based on the maximal distance maxdist between any two data vectors in the
original data set. In our experiments we always initialized it to » = 0.06 X maxdist.

4.4.2. Model Learning

Before learning a probabilistic low-dimensional posture model, we need to find out how
many DOF we shall retain in the data set. In other words: On how many dimensions do
we have to project the data? This question can be answered by estimating the intrinsic
dimensionality. In Figure 4.5 (left) we see a graph showing the results of dimensionality
estimation for the index finger data set.

PCA
4 1.0 T T T T
. = Data
05) - . -
'é‘ 3 LAY v \A'A'-n P~ A AWMW}\‘ S‘, , fde ! -
® 5 it e
5 |l M M 00 f-" T &Y.]
| AR e £ s
£ 2 g 8 -05 -
5 |
o | T
g | g 10 -
g1 - - _ _ &)
= - a=25% — a=10% =— a=17.5% — a=25% asl |
- a=5% — a=125% — a=20% a=27.5% .
o - a=75% a=15% — a=22.5% — a=30% 20
0O 20 40 60 80 100 120 140 160 180 200 10 05 00 05 10 15 20
Number of Voronoi cells Principal Component 1

Figure 4.5: Left: Intrinsic dimensionality analysis of a data set. The intrinsic dimen-
sionality is estimated depending on the number of Voronoi cells employed and the used «
value. Right: Projection of the data on two dimensions using PCA.

o4

4.4. Example: Pressing a Button

The plot shows the estimated dimensionality for different values of Da and different
numbers of Voronoi cells. Most estimates are in the range between two- and three
dimensions. However, with increasing number of Voronoi cells, most estimates slowly
converge towards two dimensions. This result is congruent with our earlier discussion
and confirms the fact that movement of fingersegments is highly interdependent. Yet,
it is remarkable that all our index finger movements, even the complex and intricate
ones, can be expressed with at most three variables. Based on this result, we can make
an informed decision on the number of dimensions on which to project the data. This
often involves a tradeoff between model complexity and desired reconstruction error. If
we have large values for the number L of dimensions, then the model retains its high
dimensionality and the effect of DR will be mininal. On the other hand, if we choose
too low values for L, then much information will be lost during the reduction process.

For our index finger example we will project the data into a 2D space. This is done by
applying any of the algorithms introduced in Section 3.2 to the set of training data. The
output of this process is the function ¥ which allows us to project any point into the
two-dimensional posture space and, conversely, any point in the posture space back into
the original domain. To analyze the amount of error introduced through this process,
we projected all training data into the posture space and vice versa and measured the
difference between the original and reprojected vectors. Table 4.1 presents the sum of
errors over all joints in Euler angles. For example, the sum of errors in joint angles for
PCA with one dimension is 10.047°, which translates to an error of approximately 3°
per joint.

Dim PCA LLE CCA CDA MDS ISOMAP NLM
1 10.047 8.71949 36.7324 12.6588 8.96973 9.03659 8.89414
2 7.41234 5.68799 39.0204 42.2875 5.9788 8.17665 5.72388
3 5.65845 4.77577 T75.138 48.6387 4.56159 5.49271 4.09325
4 1.58535 3.45906 77.7155 66.9494 0.798947 4.72576 0.788495
5 0.296043 2.03171 90.1142 80.0184 0.779449 4.38621 0.779471
6 0.296043 3.27663 67.4426 69.4863 0.778885 4.12079 0.779471
7 0.296053 1.3857 67.2208 76.7819 0.778842 4.0023 0.779471
8 0.296053 3.92034 61.6428 58.1566 0.778768 3.66253 0.779471
9 0.296053 3.63381 54.5828 58.9622 0.778663 2.79237 0.779471

Table 4.1: The reprojection error introduced by using different dimensions of the low-
dimensional space and different DR techniques.

Analyzing the results of Table 4.1 we find that LLE, NLM and MDS achieve the best
results among the DR techniques investigated. The worst performance is due to CCA.
PCA has a slow start with mediocre reprojection error for the first four dimensions. At
the same time we notice that, beginning from dimension five, PCA has the lowest repro-

55

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

Principal Component 2

Principal Component 1

Figure 4.6: Projection of the finger kinematics data using different dimensionality re-
duction techniques.

jection error of all techniques. Further, this value remains unsurpassed by the results
of other techniques even with a comparably higher number of dimensions. Obviously,
various other techniques are better than PCA in compressing the data using fewer di-
mensions. On the other hand, PCA is the method of choice whenever the original data
needs to be closely reconstructed.

Figure 4.6 shows the projected training data in different low-dimensional spaces. The
projections explain why LLE, NLM and MDS achieve similar results. Apart from the
range of values, the results of LLE and NLM appear nearly identical. The MDS result
also resembles these projections, only mirrored. In contrast, the results of CCA and
CDA are in no way comparable to the results of any other technique. Instead of a data
cloud the set of projected points take slightly star shaped form with long streaks of
outliers in different directions. This is a strong indicator for an unsuccessful embedding,
given that the data was captured from continuous finger motions with only slight angular
differences between successive frames. This hypothesis is also backed by the results in
Table 4.1. Both CCA and its variant CDA are the two worst performing techniques in
this scenario. The reason for this result can be traced back to the neighborhood function

26

4.4. Example: Pressing a Button

employed by both techniques. It allows us to focus on the preservation of distances on a
given scale only and is generally an important tool for unfolding manifolds with complex
shapes. In some cases however, in particular in the presence of noise, it might introduce
some unnecessary tearings of the data.

Figure 4.7: The first three principal components extracted using PCA. Left: The first
principal component stores the rotation around the MCP joint. Middle: The second
PC encodes the flexion and extension of the finger. Right: The third PC encodes the
abduction and adduction movements of the finger.

Figure 4.7 visualizes the first three principal components extracted via PCA. The
components correspond to a rotation around the MCP, flexion/extension, and abduc-
tion/adduction. This shows the interesting feature of PCA of extracting ‘meaningful’
components, i.e. components that can be linked to existing concepts, for example in
biomechanics. Nonlinear DR techniques on the other hand extract components that are
difficult to analyze and which often cannot be categorized into existing traits or concepts.
Here, one component often combines different tasks. While this renders human analysis
difficult, it results in higher compression rates of the data. In our particular example, a
principal component extracted via NLDR techniques might encode both flexion/exten-
sion and abduction/adduction to some extent.

Modeling Anatomical Constraints

At this stage, we have a set of image points in a two-dimensional posture space. The
projections do not cover the whole posture space. Instead, we find the projections to
be distributed in particular areas or clusters in the posture space. This is due to the
anatomical limitations of the human body. Not all postures that are reflected in the
posture space are anatomically plausible and reproducable by a real human. The joint
limits strictly constrain the human body to particular types of postures. To uncover and
model these constraints, PLDPM employs probability density modeling. Concretely, a

o7

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

Gaussian mixture model (GMM) is used to create a statistical model of the distribution
of recorded finger motions in the posture space. Regions with a high density of projected
points will be assigned to a high probability. On the other hand, regions with few
projected points will receive a low probability. The resulting probability density function
can be regarded as a data-driven approximation of the anatomical plausibility of finger
postures. During synthesis, the statistical model can be queried for the probability of a
given finger posture. Hence, postures with low anatomical plausibility can be avoided.

The main problem in density estimation can be formulated as follows: Given an arbi-
trary set of data vectors with no or little prior knowledge of their structure, how can we
devise a probability density function which best fits this data set? One possible solution
to this problem is to fit a Gaussian distribution to the data. However, if the data set
is not normally distributed, the resulting fit would give a poor description of the data.
This problem can be overcome, by using a mixture of Gaussian distributions. The ratio-
nale behind this approach is that any continuous density function can be approximated
with arbitrary accuracy using a superposition of Gaussian distributions. The resulting
model is therefore called a Gaussian mixture model. Given all data points, the GMM
estimates a probability density function by a weighted sum of K Gaussian distributions.
The probability density function can be written as:

Zﬂ'k (| gy, Xk) (4.1)

with NV (x|, i) being the k-th Gaussian distribution and 7, being the corresponding
weight. The Gaussian distribution has dimensionality L and is defined by:

1 _
/\/’(m|u,k’ Zk) = e%((m—ﬂk)T zkl(m_l"k)) (42)

V2 \/det(Ty)

with mean g, and covariance matrix ¥,. The parameters { g, X, 71} can be estimated
using a maximum likelihood estimation. For this, we need to maximize the likelihood of
the data given the model parametrized by {u,, Xr, 7w }. The logarithm of the likelihood
function of Equation 4.1 can be written as:

Z In [Z 7 (x(n)| g, zk)] (4.3)

To maximize the log-likelihood we can use the expectation-maximization (EM) algo-
rithm [DLR77]. EM estimates the parameters of a GMM using an iterative scheme
involving two steps. In the first step, called the expectation step, the posterior probabil-
ity for each of the kernels is evaluated. The posterior probability can be regarded as the
probability that a particular kernel £ produces the observed data. This is sometimes

o8

4.4. Example: Pressing a Button

also referred to as responsibility: the responsibility of kernel k in explaining the observed
data. The estimation is done according to the following formula:

e N(x(n)|py, Zk)
Sy m N((n)|p,,)

The posterior probabilities are then used in the maximization step to reestimate the
parameters of the GMM:

O (k|n) = (4.4)

SN @ (k|n)
S, (kln) x(n)

i > a(kn))
= (x(n) — ;) (2(n) —)"

Y o — d(k|n ~ 4.7
Z (i) S O(k|n) (47

An important theoretical result of Dempster et al. [DLR77] is that with each iteration
of the above two steps, the log-likelihood is guaranteed to increase. This leaves us with
a simple iterative procedure for the maximization of the log-likelihood, in which the
expectation and maximization steps are repeatedly performed until the parameters do
not change. Unfortunately, the algorithm is only guaranteed to converge towards a
local optimum of the likelihood function. Similarly to K-means, the application of the
algorithm with varying initial values leads to different results. Therefore, in application
the algorithm is run various times and the result with the highest log-likelihood is then
used.

The K-means algorithm and the GMM algorithm are closely related. In fact, it can
be shown that the K-means algorithm is a special case of the GMM algorithm. The
EM algorithm is computationally much more demanding and also with respect to the
number of iterations slower than the K-means algorithm. Additionally, GMMs have
problems dealing with high-dimensional data sets and their use is often limited to data
sets with few dimensions. The estimation of the parameter K is, similarly as in K-means,
a non-trivial question. A common approach to solve this problem is to compute a set
of GMMs with increasing values for K. Afterwards, the Bayesian information criterion
(BIC) can be used to evaluate each model according to how well it fits the training data
and how complex it is. This approach can be computationally demanding. A more
efficient approach is to first apply a K-means algorithm on the data before executing the
GMM algorithm.

In Figure 4.8 the process of estimating a probability density function from a set of
points projected via the Isomap algorithm is shown. Using the Neural Water algorithm,

99

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

Projection Kernels Gaussian Mixture

-1.0

Figure 4.8: Learning a Gaussian mixture model for the projected finger kinematics.
Left: Projected data points. Middle: Five Gaussian kernels are fitted to the data set
using the EM algorithm. Right: A grayscale representation of the encoded probabilities
of the posture space.

a number of Gaussian kernels are fit to the data. In Figure 4.8 (middle) each point
is colored based on the kernel to which it belongs. The result is then processed by a
GMM, leading to a probability density function ®, visualized in Figure 4.8 (right). Here,
each point x in the posture space is assigned a gray value according to the probability
®(x). White areas correspond to spots of high probability, and therefore high anatomical
plausibility. Dark areas correspond to postures of low probability. The dashed blue curve
in Figure 4.8 (right) encloses the area where all points have a probability which suffices
the inequality ®(x) > 7, where 7 = 0.0001. In the synthesis algorithm which will be
discussed in Section 4.4.3, all postures corresponding to points outside this area will be
discarded.

4.4.3. Posture Synthesis

We can use the learned PLDPM to synthesize new postures and motions for the index
finger using optimization techniques. In the following we will introduce the basic con-
cepts of optimization and different types of optimization algorithms, namely gradient
descent, hill climbing, and evolutionary algorithms. Then, we will explain in detail how
optimization is used for imitation.

Theory of Optimization

Optimization is a search process for the optimal parameters of a system with respect
to a given criterion, which is called the objective function of the optimization process.
The objective function evaluates a particular candidate solution and assigns a numerical
value to it. This numerical value indicates the ‘score’ or ‘goodness’ of the evaluated
solution.

60

4.4. Example: Pressing a Button

An objective function f : 2 — R is a mathematical function which is subject to
optimization. From an optimization point of view, the concept of ‘metric of imitation’
introduced earlier is just an objective function. Optimization algorithms try to find
solutions in the search space 2 that lead to an optimal value of the objective function.
Accordingly, an optimization problem is defined as:

Definition 5 (Optimization Problem). An optimization problem is a tuple O = (Q, f, =)
where) is the search space, f : Q@ — R an objective function and “ =" € {<, >} a
comparison operator defined on R. The goal is to find a point & € Q) which is a global
optimum of f.

The comparison operator is used in order to compare the score of two points in the
search space. The inequation f(x) > f(«') means: the score of @ is higher or equal
to the score of @’. The goal of a global optimizer is to find the global optimum of the
objective function f.

Definition 6 (Global Optimum). A point & € Q of the search space is called a global
optimum with respect to = if,

V' € Q: f(x) = f(z') (4.8)

From this definition follows that a global optimum is the point & with the highest
objective score among all points in the search space. In contrast, a local optimum only
needs to have the highest score among all points within a vicinity specified by e.

Definition 7 (Local Optimum). A point « € Q of the search space is called a local
optimum if,
JeeR,e>0Ve € Q:||lx—2'|| <e= f(x) = f(2) (4.9)

FEach global optimum is also a local optimum. The inverse statement does not hold.

Depending on the point of view and the terminology, optimization can be formulated
as a minimization or a maximization problem. If the result of expression f(x) reflects
the cost of using solution @, then optimization is cast as a minimization problem. In
contrast, if the results of above expression reflect the utility of solution «, then the
problem is formulated as a maximization problem.

Optimization Algorithms

A naive way of optimizing a given function, is to perform an exhaustive search over its
parameters. All possible parameter settings are tried and the corresponding objective
values are recorded. At the end, the setting which has the highest objective value is
selected. Although this approach ensures that no optimum is overlooked, it is, even for
relatively simple problems, impractical. Modern optimization algorithms try to optimize
a function by using a minimal number of iterations. This can be achieved in different

61

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

ways. In the following, we will introduce three families of optimization algorithms and
discuss their characteristics.

Gradient Descent

The gradient descent algorithm is a fundamental method of optimization and the basis
of many machine learning algorithms. The general idea is to determine the direction of
the maximum rate of increase at a starting point @, and then walk into the opposite
direction until a minimum of the function is found. The direction of maximum rate
change of function f at a point @ is determined by computing the gradient V f(z). By
following the negative gradient, we iteratively go downhill in the direction of a (local)
minimum. Algorithm 2 presents a generic gradient descent algorithm.

Algorithm 2 Gradient descent optimization algorithm with starting point «, step size
n, and threshold 6
Require: x,n,0
while |V f(x)| > 6 do
Calculate the gradient vector V f(x)
z—x—nVf(z)
end while

The parameter n denotes the step size of the algorithm. In the machine learning
literature this parameter is often called the learning rate. As the name suggests the
parameter defines the size of the steps with which the algorithm proceeds downhill at
each iteration. A large step size results in fast descent towards the minimum, but also
bears the risk of overshooting the minimum. In this case the algorithm never finds the
optimum, because it always passes it which leads to an oscillatory search behavior. On
the other hand, a small step size trades the increased probability of finding the exact
value for the minimum for a slower convergence rate. The search is repeated until the
gradient is smaller than a user-supplied threshold 6.

The step size has a strong impact on the performance of the algorithm and is in
practice often difficult to choose. Over the years many suggestions have been made in
order to determine good values for n. However, experience has shown that most of these
approaches do not lead to a general improvement of the algorithm performance. This can
be explained by the fact that the size of the update step does not only depend on the step
size parameter, but also on the partial derivative. Therefore, even if an appropriate value
for n is found, the effect can be “drastically disturbed by the unforeseeable behavior of
the derivative itself”[RB93]. This problem was observed by Riedmiller and Braun and
led to the development of the resilient backpropagation (RPROP) algorithm [RB93].
The RPROP algorithm is an adaptive optimization technique developed in the context
of Neural Network learning. Adaptive means, that the parameters, in this case the step
size, are changed at runtime.

62

4.4. Example: Pressing a Button

Other gradient-based optimization techniques are, for example, the conjugate gradi-
ent method, the Newton method, or the Broyden-Fletscher-Goldfarb-Shanno (BFGS)
method. The Newton method is a second-order technique which uses not only the gradi-
ent, but also the secondary derivatives, represented by a Hessian matrix. However, this
comes at the price of storing and inverting the Hessian matrix, which is a computationally
expensive task with a quadratic time and space complexity. The BFGS algorithm tries
to circumvent this problem by estimating the Hessian matrix from successive gradient
vectors.

In [IHO3| an empirical evaluation was performed, comparing variants of RPROP to
BFGS, conjugate gradient and other algorithms in the domain of machine learning.
Despite being a first-order method, it was shown that RPROP outperforms both BFGS
and conjugate gradient in that domain. Additionally, RPROP has elegant features
like linear time and space complexity, robustness with respect to internal parameters,
robustness with respect to numerical error!, and an easy implementation.

Note, that gradient-based algorithms require the computation of the gradient and
assume a continuously differentiable objective function f. Of course, these problems
are interconnected. Given that the function is continuously differentiable, we can nu-
merically compute the gradient by finite differences. However, this requires additional
evaluations of the objective function. Finite-difference approximation is also susceptible
to truncation and round-off errors and is therefore of limited accuracy. A more accurate
and efficient way to compute the gradient is to use automatic differentiation [GC91]. Au-
tomatic differentiation techniques perform differentiation on code-level. In other words,
an objective function given as source code in a certain programming language is object
to the derivation procedure. By applying a set of transformations such as the chain
rule, the source code for computing the objective function is transformed into the source
code for computing the derivative thereof. In contrast to finite-differences, results of
high-accuracy can be achieved by these techniques. However, this still requires the ob-
jective function to be continuously differentiable, which is often not the case. Indeed,
most objective functions that have been investigated during the writing of this thesis
do not fulfill this requirement. A prominent approach to tackle this problem is to use
stochastic optimization methods which we will discuss in the following.

Hill-Climbing

The need for first-order derivative information is an important drawback of gradient de-
scent algorithms. In many application domains such as robotics, the objective function
is calculated by running a simulation or a real-world experiment. In this case, it is dif-
ficult and sometimes even impossible to derive an analytical formula for computing the
gradient. Unfortunately, many real world applications are not even continuously differ-

! This feature is due to the fact, that the update rule is only dependent on the sign of the derivative
and not its amount. Therefore, the algorithm is not susceptible to noise or error in the estimation
of the derivative.

63

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

entiable and therefore do not meet the requirements for gradient descent optimization.
Hill-climbing refers to a family of techniques which are applicable in domains where
the gradient is not available, or where other requirements for traditional optimization
techniques are not met.

Hill-climbing starts at a random point in the search space. The point is then changed
by adding small variations to its coordinates. If some new point has a better objective
value, then this point becomes the current point, and the next iteration is started. The
algorithm terminates when no further improvement is made. As the name suggests, hill-
climbing can be imagined as the process of climbing to the top of the objective function,
a local maximum. This is achieved by making random steps and choosing the one going
uphill. Hill-climbing algorithms belong to the class of greedy algorithms, as they always
jump to points having a better objective value. In other words, they always strive for
uphill movements, even when a downhill movement leads to a better objective value in
the long run.

Yuret and De la Maza [Yur94] present a powerful, yet astonishingly simple hill-
climbing method called dynamic hill-climbing (DHC). DHC combines several ideas of
genetic algorithms and more traditional optimization techniques such as gradient descent.
Basically, DHC consists of the following three heuristics:

e Remember the locations of local maxima and restart the optimization program at
a place distant from previously located maxima.

e Adjust the size of probing steps to suit the local nature of the terrain (of the
objective function), shrinking when probes do poorly and growing when probes do
well.

e Keep track of the directions of recent successes, so as to probe preferentially in the
direction of most rapid ascent.

Hill-climbing algorithms are easy to implement and can be applied to a wide range of
problems. However, they focus on local optimization by design. This means, that they
are likely to get stuck in local optima. The simulated annealing [KGV83] algorithm tries
to avoid this problem using the analogy of annealing as found in metallurgy. During
the process of annealing, a metal is repeatedly heated to a high temperature and then
gradually cooled down. This allows the atoms of the material to find low energy crys-
talline configurations. In contrast to DHC, simulated annealing allows also for downhill
movements. For this, a new parameter called temperature is introduced. The tempera-
ture is continuously cooled down based on a specified cooling schedule. In each iteration
the algorithm generates a random point. If the point improves the objective value, it is
accepted. Otherwise, it is accepted with a probability that depends on the temperature.
If the temperature is high, even bad points are likely to be accepted. However, when
it decreases, points leading uphill are more and more preferred. Other hill-climbing
algorithms include, for example, tabu search [GL93], beam search [Bis87], and parallel
hill-climbing [Mah95].

64

4.4. Example: Pressing a Button

Evolutionary Algorithms

Evolutionary algorithms (EA) adopt the concepts and terminology describing biological
evolution and apply them to complex optimization problems. Over millions of years,
natural evolution has led to the emergence of organisms of extreme perfection and com-
plication. At present, the most accepted theory of evolution is the one formulated by
Charles Darwin in his book “On the Origin of Species” [Dar72]. According to the Dar-
winian theory, evolution favors those species, which are better adapted to their environ-
ment. Replication errors during reproduction and other mutations introduce variations
into the hereditary information. In turn, these mutations lead to novel characteristics
in the affected species. In some cases the novel trait reveals advantageous and improves
the organisms chances of survival. In other cases, however, the organism perishes from
the population by the effects of such a mutation. This phenomenon is called natural se-
lection and can be explained as follows. Organic beings often produce far more offspring
than needed. Under optimal living conditions, this leads to an exponential increase of
the population size. But finite resources as well as predators act as limiting factors to
this growth. The consequence is a fierce competition between the organisms for food,
water and other resources. The only rule which characterizes this competition is often
termed “survival of the fittest”.

EAs act upon a population of solution candidates, the so-called chromosomes. As in
other optimization algorithms, each solution candidate is a vector of fixed dimensionality.
The elements of the vector are called genes in reference to the terminology used in
genetics. Further, the varying values used at specific positions are called alleles. Based
on an initial population of chromosomes, EAs simulate natural evolution through the
processes of reproduction, mutation, competition and selection. In Algorithm 3 we
present a generic evolutionary algorithm.

Algorithm 3 The generic evolutionary algorithm.
Require: O = (Q, f,»)
10
P « create random population of size n, P C €2
evaluate(P, f,) {calculate the fitness value for each individual}
while not terminate do
P’ — select(P,n){select n parents from population}
P «— crossover(P’',m) {create m children through crossover from population}
P «— mutate(P) {mutate individuals in population}
evaluate(P, f,) {calculate the fitness value for each individual}
t—t+1
end while

}_.
e

The population is first initialized with a number of random values (see line 2 of
Algorithm 3). Random initialization is mainly performed, because it is not clear in which

65

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

part of the search space the optimum lies. If domain specific information is provided,
then the start population can be chosen from a particular part of the search space. Once
initialization is finished, each chromosome is evaluated using the objective function f.
The resulting fitness value is used as a measure of the individual’s quality with respect to
the given problem. The best individuals are selected as parents for the next generation
and inserted into the intermediate population P’. Selection eliminates chromosomes
which are not appropriate for solving the problem at hand. Good individuals survive,
less fit individuals get removed from the population. The parental chromosomes are
combined by a crossover operator, in order to form the chromosomes of the descendants.
The recombination operator simulates sexual reproduction and defines how an offspring
is generated from two parents. Afterwards, the mutation operator introduces random
variations into the offspring chromosomes. Altering the individuals in this way ensures
genetic diversity and decreases the probability of getting stuck in a local optimum. After
application of crossover and mutation the generation counter is increased and the whole
process is repeated. This loop is continued until a termination criterion is met.
Typically, an EA terminates after a specified number of generations. However, there
are various other termination criteria, such as termination upon convergence, in which
the algorithm stops after reaching a desired fitness value. Upon termination, the popu-
lation member with best fitness is returned as the best solution to the posed problem.

Synthesis of Finger Motions

Using the optimization algorithms and a learned PLDPM, we can generate index finger
movements, by taking the position of the button into account. For this, we need to
specify the metric of imitation. A simple metric of imitation for ‘button-pressing’ is
based on the distance of the tip to the goal position at the end of a given animation. In
the optimal case, the distance between the tip and the goal position is zero. Of course,
we can think of more complex metrics, which would include the wrist position or the
orientation of the finger. However, for reasons of clarity and comprehensibility we will
use a simple metric in the following.

Let © be a function, which takes a joint angle configuration as input and returns a
corresponding vector of Cartesian coordinates of the fingertip. Further, let b be the
position of the button. The metric of imitation (or fitness function) can be defined as:

F(z) = [|o(W(z)) - bl (4.10)

Given the above metric of imitation F' as objective function, we can use an optimiza-
tion algorithm to determine the ideal finger configuration. The ideal (two-dimensional)
vector g € P for the final frame of the animation, is determined by solving the following
optimization problem:

argmin ['(q) subject to ®(g) > 7 (4.11)

qge b

66

4.4. Example: Pressing a Button

where 7 is a threshold for the probability of posture. Postures with a probability
below 7 are not accepted as solution candidates. In each step of optimization, ¥~(q) is
computed, and the rotations are applied on a virtual model of the index finger. Then, the
discrepancy between the position of the button and the current tip position is calculated
to yield the fitness value F'(q). The resulting objective value is used by the optimization
algorithm to determine new coordinates for g in the next iteration. This is repeated
until the distance between the tip and the button is sufficiently low. Note, that we used
®(q) > 7 as a hard constraint in our optimization. Hard constraints are constraints that
must never be violated by potential solutions. However, they can have a negative effect
on optimization efficiency because they restrict the exploration process. We will see in
later chapters, that we can avoid such problems by including the task constraints in a
‘soft” way into optimization.

Resilient Propagation Dynamic Hill Climbing Evolutionary Algorithm

Figure 4.9: Search behavior of different optimization techniques. The red points show
the solution candidates that are evaluated during the optimization process.

Figure 4.9 depicts this search process for three different optimization techniques. The
colormap and the corresponding contour plot represent the objective value at different
parts of the search space. White spots represent high-fitness areas of the search space,
while dark areas correspond to low-fitness areas. The red trajectory shows the position
of q after each iteration of the optimization algorithm. We can see in Figure 4.9 (left)
how RPROP slowly converges towards the white high-fitness area of the search space. It
does so by empirically estimating the gradient and then searching in that direction. If we
compare it to DHC (Figure 4.9 (middle)), we see that the search strategy of DHC gets
faster to the high-fitness area. After each successful move DHC multiplies the stepsize
by two. As a result, it makes larger steps towards the optimum. In contrast to that,
RPROP has a nearly equidistant stepsize between successive iterations on this objective
function. A totally different search strategy is observed for the EA (Figure 4.9 (right)).
It performs large, chaotic looking jumps in the search space. Thus, improvement is not
steady but rather abrupt. This can be advantageous when exploring large search spaces.
On the other hand the algorithm might overlook local optima because of this strategy.

67

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

Optimization Error

RPROP DHC EA
Average 0.0257 0.0256 0.0697
Std. dev. 0.0257 0.0172 0.0441

Table 4.2: Averaged optimization error over 100 trials of the ‘button-pressing’ imitation
task for different optimization algorithms.

In Table 4.2 we see the distance between the finger tip and the button position averaged
over 100 trials. In each trial the position of the button was changed and the distance
between tip and button after posture synthesis was calculated. For a fair comparison,
in each trial, optimization was run for exactly 400 evaluations of the objective function.
The dimensionality reduction technique used in all experiments was PCA. The two best
performing optimization algorithms for the ‘button-pressing’ task are the DHC and
RPROP algorithm. DHC was even slightly better than the RPROP algorithm, with a
significantly lower standard deviation of the results. The results of EA in this problem
domain are not satisfying. In later examples found in this thesis, we will see that
evolutionary search becomes preferable when faced with more complex search spaces
containing many equally good local optima.

Optimization Error

PCA LLE CCA CDA MDS ISOMAP NLM
Average 0.0256 0.0417 0.2530 0.3535 0.0577 0.1456 0.0631
Std. Dev. 0.0173 0.0559 0.2672 0.2446 0.0656 0.1169 0.0782

Table 4.3: Optimization error on the ‘button-pressing’ task, when using different dimen-
sionality reduction techniques for learning of the PLDPM.

In the next experiment, the DR techniques were varied, in order to understand the
influence of DR on posture synthesis. Table 4.3 summarizes these results. Here, the
best performing algorithm found in the earlier experiment, namely DHC, was used in
conjunction with PLDPMs learned using different DR techniques. Apart from the DR
method, the execution of the experiment remained the same. The results achieved using
PCA outperform all other methods sometimes by a factor of ten. The reason for this
phenomenon can be understood by analyzing the structure of the objective function
given different DR techniques, as shown in a 3D plot in Figure 4.10. In contrast to
Figure 4.9, here, the fitness value of each point is represented by the height of the

68

4.4. Example: Pressing a Button

PCA LLE CCA

SN
SISO
Sty

$S 5% e et Senss
S OOSISISISS,

=
e

LS
KIS 5 R
\3““‘ () “\‘“ RN I/III
s 7

NLM

Isomap

MDS

.'z‘fif‘i‘v:‘\‘ §}{\
X o W
SR
(OO
OISR
RN RS
m 000
o
\

3\
NN

N
SRR

% 05

2
2
XK

s

X o

TING

\Y
05 | XIS TN o
A) SRR
0 N 7555 0 (K
Y 4 g NS
v Y 7 KIS
XA) 7 7

% Vs
450

Figure 4.10: Fitness landscapes for different dimensionality reduction techniques.

landscape at that point. The result is a landscape that henceforth will be called fitness
landscape. As can be seen, the fitness landscape for PCA is a smooth, differentiable
function with one local minimum. Optimization on such a smooth landscape can be
better understood by imagining the behavior of a virtual marble on top of it. In the case
of PCA, it does not matter where we place the marble; because of the smooth landscape,
the marble will always travel downhill, until it settles down at the local minimum. The
local minimum is said to act as an attractor. The fitness landscape for LLE also exhibits
a smooth surface, which is also reflected in a low optimization error achieved. A slightly
higher optimization error is produced by NLM and MDS, which have rugged but still
continuous landscapes. In the case of CCA, however, the fitness landscape is highly
rugged and contains many local optima. The optimization error is significantly higher
than with the methods analyzed before. Using the marble analogy we could say: It
is unclear where the virtual marble will settle at the end of the optimization process.
This phenomenon is a sideffect of the strong nonlinearities introduced by the DR and
renders posture synthesis more difficult. This clearly shows that the fitness function is
dependent upon the DR technique employed. Ideally, the combination of DR and fitness
function should lead to a smooth, unimodal (only one optimum) fitness function. This
property is often fulfilled when using PCA as a DR technique.

69

4. An Imitation Learning Approach: Probabilistic Low-Dimensional Posture Models

N\
n A

Figure 4.11: Synthesized final postures of ‘button-pressing’ behavior. The shape of the
virtual hand depends on the postion of the button.

Figure 4.11 depicts a set of hand configurations optimized for different locations of
the button. We only optimized the final hand configuration during the ‘button-pressing’
task. Hence, the depicted pictures only show the final hand configuration. To produce
an animation of the full movement of the hand, all that needs to be done, is to reproject
the points along the trajectory going from the starting point, through the preshape point
to the (optimized) final point in the posture space.

4.5. Conclusion

In this chapter, we presented a general approach for learning motor behaviors by im-
itation. The approach consists of three steps and is neither restricted to a particular
synthetic humanoid, nor to a specific motion recording technology. Further, we intro-
duced the probabilistic low-dimensional posture model construction algorithm. This
algorithm exploits the fact that natural, human motion can often be described as a
combination of a small number of components. The result of the algorithm are compact
representations of observed human motion and the inherent anatomical constraints. In
conjunction with optimization techniques, these representations can be used to imitate
the observed behavior. The imitation and motion synthesis process adapts the behavior
to the current context, e.g. the current position of the button.

While for explanatory purposes we used a simple application example in this chapter,
we will show in the next chapter that the approach can also be used to learn more
complex motor abilities. In particular, we will show how natural human grasping can
be imitated using this approach.

70

5. Learning to Imitate Natural Human
Grasping

5.1. Introduction

Grasping is considered as one of the most flexible and complex abilities of human beings.
We use it in our everyday life to lift, transport or manipulate an object. The importance
of grasping is not limited to physical interaction with our environment. There is also
scientific evidence suggesting that the emergence of complex grasping abilities is an
important step in the evolution of human language [Arb08].

Providing synthetic humanoids with grasping abilities is also regarded as one of the
great challenges of robotics and computer animation. With the advent of highly realistic
android robots and computer animated actors, the automatic generation of grasping
behavior has become a key issue in these fields. In order to act in a convincing way in
a virtual environment, virtual humans need to be able to perform grasping tasks on a
variety of everyday objects. This calls for fast and efficient grasp synthesis algorithms
that produce high quality hand shapes with natural appearance. However, this remains
a challenging task, as evident from the following quote:

“the human hand is a highly complex structure that in many ways defies
understanding” [MI94]

71

5. Learning to Imitate Natural Human Grasping

i

Hand Model
Anatom. Constraints

-+
Object
Intended Task

Optimal Grasp

Figure 5.1: The general flow of a grasp synthesis algorithm. A model of the used hand
as well as a set of constraints is supplied, along with information on the task intended
after grasping. An optimization algorithm evaluates a large number of potential solutions
and searches for a hand shape which best fits the specified constraints.

A high number of interdependent degrees of freedom in the hand makes the generation
of grasping behaviors particularly difficult. At the same time, the contact of the hand
with the object surface must be optimized to ensure the stability of the grasp. Pure
motion capture, as used in computer animation, does not solve the problem. More
specifically, motion capture does not provide support for the task of closely fitting the
hand shape to new objects, i.e. the retargeting problem [Gle98].

In the following a PLDPM based method for the efficient synthesis of natural looking
hand shapes for grasping animations is presented. A first step is to collect a set of
hand shapes using motion capture techniques. Then, the PLDPM approach is used to
create low-dimensional models of these postures. It was already reported by Santello
and colleagues that the first two and three principal components account for more than
80% and resp. 87% of the variance in hand posture [SFS98]. The space encoded in
the learned model is small enough to be searched through at interactive rates using
optimization strategies. Additionally, because the grasp is synthesized from a PLDPM,
the resulting hand configurations imitate the human grasps supplied during learning.

5.1.1. Problem Statement

In the following, we will consider the problem of generating natural grasps for synthetic
humanoids. Given a geometric description of a target object, our goal is to generate
a hand shape that results in a natural-looking and stable grasp. The process can be
seen in Figure 5.1. In order to generate such a hand shape, an algorithm needs to
take the geometry of the object, as well as its position and orientation into account.
However, for most objects, e.g. a bottle, there exist many possible ways to grasp them.

72

5.1. Introduction

PLDPM-Learning

Figure 5.2: The proposed grasp synthesis method: recorded motion capture data (left)
is transformed into a probabilistic low-dimensional posture space (middle). Using opti-
mization techniques the space can then be searched for appropriate grasps of new objects.

Therefore, a task description is needed, which reduces the redundancies and ensures
that the generated grasp best suits the task at hand. Still, for many objects there is no
single ‘optimal’ way of grasping. Following [Pol94], the problem of grasp synthesis can
be stated as follows. Given:

e a geometric model of the target
e a specification of task

e a geometric and kinematic model of the synthetic hand

find a grasp for the target object that is suitable for the given task. One way to achieve
this goal is to write specialized programs for each grasping task. For example, we can
write a program that grasps a bottle. Given the sensory information about the location
and orientation, the program generates a hand posture that grasps the bottle. Such
approaches require expert knowledge and are typically restricted to a set of predefined
object shapes. Additionally, such approaches do not ensure that the resulting grasp
looks convincingly human-like. While this requirement is often not essential in robotics,
especially when anthropomorphism is not intended, it is a fundamental necessity in most
computer animation scenarios.

In the following we will present a different approach to the problem. Based on the
imitation learning technique introduced in Chapter 4, the grasp synthesis algorithm
consists of three steps: observation, representation and reproduction. This can be seen
in Figure 5.2. During the observation phase a set of example grasps is recorded using
a fingertracking device. After that, the recorded data is used to learn one or several
PLDPMs for grasping. As can be seen in the figure, some grasps within the posture
space are anatomically infeasible. The probability density function (grayscale graph in
Figure 5.2) encoded by the GMM helps to identify these grasps. Using optimization

73

5. Learning to Imitate Natural Human Grasping

techniques we can then search for anatomically feasible grasps which best fit a given
target object and task.

The hand shapes generated by this algorithm closely resemble the recorded examples.
This feature can be exploited to synthesize particular types or styles of grasps. For
example, if we train the PLDPM with spherical grasps solely, then the generated hand
shapes will always be spherical. Another feature of this algorithm is that not only the
hand shape, but also additional parameters such as the hand position and orientation
are optimized.

In the following we will introduce the details of this grasp synthesis algorithm. First,
we discuss the modeling and representation of human grasps within a computational
setting in Section 5.2. In Section 5.3, we focus on the metric of imitation. We introduce
measures for assessing the quality of a given grasp. In Section 5.4 we then explain the
optimization algorithm, as well as possible initialization strategies and computational
speedups. Finally, in Section 5.4 we evaluate the proposed algorithm on a set of virtual
objects and discuss the results.

5.2. Modeling the Human Hand

This section explains how the human hand and grasping in general is modeled with the
PLDPM approach. This includes descriptions of the kinematic model, grasp taxonomy
and hand sensors. The concepts and terminology introduced here define the foundation
for our grasp synthesis algorithm.

5.2.1. Grasp Taxonomies

The human hand is capable of taking on a great variety of shapes. Despite that, most of
the time we employ only a small set of re-occurring hand shapes. Whether we grasp an
orange, an apple or a tennis ball the resulting hand shape is similar. Since the beginning
of the 20th century, scientists have been trying to categorize human hand configurations
into a discrete set of equivalence classes. Such a tazonomy facilitates the analysis and
documentation of hand shapes as well as their duplication by mechanical devices.

One of the first and most widely used taxonomies for human grasps was put forth
by Schlesinger [Sch19] (see Figure 5.3). After the end of the first World War there was
a substantial need for an analytic and systematic approach to the design of prosthetic
hands. Schlesinger analyzed the functionality needed to perform different grasping and
manipulation tasks and proposed a suitable taxonomy. Building on this work, Taylor and
Schwarz [TS55] introduced English names for the most important grasps investigated
by Schlesinger: cylindrical, tip, hook, palmar, spherical and lateral grip. According to
[MI94], the Schlesinger grasps have the following characteristics:

e Spherical: A hand shape for grasping spherical objects that can be enveloped
by the human hand. The fingers spread, while the palm is arched. The thumb

74

5.2. Modeling the Human Hand

Cylindrical Hook Lateral Palmar Spherical Tip

Figure 5.3: The grasp types of the Schlesinger taxonomy.

stabilizes the object in the hand by exerting opposing forces in direction of the
other fingers.

Cylindrical: A hand shape for grasping cylindrical objects such as a cup, a beer
mug or a hammer. The four fingers envelop the object and press it in direction of
the palm.

Hook: A hand shape suitable for grasping objects with a handle, e.g. a suitcase.
The handle presses against the palm, while the hand takes the form of a hook.

Lateral: A hand shape for grasping small, flat objects, e.g. disks, keys, or a piece
of paper. The object is held between the curled index finger and the pulp of the
thumb.

Palmar: A hand shape for grasping flat, thick objects, e.g. books, videotapes, or
a matchbox. The object is held by opposing forces exerted by the thumb on one
side, and the index finger and potentially other fingers on the other side.

Tip: A hand shape suitbale for grasping small objects, e.g. a needle, a pen or a
marble. The object is held between the tip of the index finger and the tip of the
thumb.

The elegance of the Schlesinger taxonomy lies in the fact that it accounts for a large
number of situations using only a small number of distinct grasp types. Other tax-
onomies have, for example, been proposed by Napier [Nap56], Cutkosky [Cut89], and
Kamakura [KMI*80]. The Napier taxonomy differentiates between only two types of
grasps: the power grip which clamps an object firmly using the palm, and the precision
grip where the thumb and other fingers pinch the object. Obviously, the distinction

75

5. Learning to Imitate Natural Human Grasping

between only two types of grasps is too coarse to allow for the degree of control that
we are aiming for. The taxonomies by Cutkosky and Kamakura have 16 and 14 grasp
types, respectively. However, many of the grasp types are very similar to each other and
differ only in the task to be executed afterwards. In the remainder of this chapter we
will therefore focus on the Schlesinger taxonomy.

5.2.2. The Kinematic Model

In order to generate realistic hand shapes in virtual environments, we need a sufficiently
realistic model of the human hand. In particular, we are interested in the hierarchy of
bones and joints used for articulation. Figure 5.4 (left) shows the anatomy of the human
hand, including all bones and joints.

Radius
= d

Ulna - Lunate
Head of Ulna —4--~ r
. _- Scaphoid
Triquetrum ———-- -
Pisiform ———_f _.- Trapezium
Capitate --- __—— Trapezoid

“~~ First Metacarpal

~._ Metacarpophalangeal

* joint of thumb (MCP)
MCP ---
~~.. First
Proximal phalanx

R \ >~ First
PIP Distal phalanx
DIP--- ---- Proximal phalanx

-—-. Middle phalanx

Figure 5.4: Left: The anatomy of the human hand. Right: A simulated skeletal repre-
sentation of the human hand.

The proximal interphalanageal joints (PIP) and the distal interphalangeal joints (DIP)
of the fingers (introduced in Section 4.4), as well as the interphalangeal joint (IP) of the
thumb, are so-called hinge joints. These joints are only capable of flexion or extension,
and have therefore only one degree of freedom. In contrast, the metacarpophalangeal
joints (MCP) have a second DOF for adduction and abduction. The carpometacarpal
joint (CMC) of the thumb is said to have a third DOF, because the two axes of rotation
are not completely perpendicular to each other.

76

5.2. Modeling the Human Hand

pa 1 h1 2 h2 3
pi
ri
mi

id

th

Figure 5.5: Size and position of the sensors in the virtual hand model.

In our approach, the hierarchy of bones is modeled using skeletal animation tech-
niques. The virtual skeleton consists of virtual bones arranged in a kinematic chain.
The topology of the kinematic chain is based on the human anatomy. Each element in
the kinematic chain has a local coordinate system which is dependent on all anterior
coordinate systems in the hierarchy. Figure 5.4 (right) shows a virtual model represent-
ing the skeleton of a simulated human hand. In contrast to the earlier analysis of the
biological human hand, the virtual skeleton does not include any limitation of possible
finger rotations so far. Each joint is therefore modeled as a two DOF joint. In order to
account for the third DOF of the thumb, an additional joint is added here. Additionally,
the model also includes a joint for the wrist.

Given the above virtual skeleton, a variety of shapes of the human hand can be gener-
ated. This is done by applying a rotation on each of the modeled joints. After applying
the rotations, the hierarchy of the skeleton is traversed and the new world coordinates of
the virtual bones are computed and applied to the rigid bodies representing the bones.
Note that the system does not include any model on the anatomical constraints of the
hand, so far. Generated grasps may not necessarily appear human-like. We will see
later, how this problem can be overcome by utilizing statistical information gathered
from example grasps.

5.2.3. The Sensor Model

Sensor models are often used for proximity computation in virtual grasping [ST94]. Con-
cretely, they are used for fast collision detection between the simulated hand and scene
objects or for computing distances. Using such sensors enables us to perform these com-
putations without having to resort to the complete geometry of the hand. Based on this
idea, we fit a set of spherical sensors to the introduced hand model.

77

5. Learning to Imitate Natural Human Grasping

Figure 5.5 shows the size and position of the sensors in the virtual hand. The sensors
have different radii depending on their position and task:

e Large: Four sensors at the end of the metacarpal bones in the palm.
(pal, pa2,p3 and thl). The radius of the sensors is 1.2 cm.

e Normal: Nine sensors located at the joints of the fingers.
(th2,id1,id2, mil,mi2,ril,ri2, pil and pi2). The radius of the sensors is 0.9 cm.

e Small: Five sensors located at the tip of the fingers.
(th3,id3,id3, mi3,ri3 and pi3). The radius of the sensors is 0.7 cm.

The area of the palm and the fingers is filled with additional sensors
pahl to pahb and in the empty spaces within the fingers the sensors
thh2,idhl,idhl,idh2, mihl, mith2,rihl, rih2, pihl, pih2 are added. These sensors are
called helpers as they are only used to ensure that the space between the major sensors
is free of any collision with an object.

Not all sensors are used when a grasp is optimized. Depending on the grasp type, a
set of relevant sensors is selected. Additionally, the sensors are categorized depending on
their importance. More specifically, the sensors are classified into three distinct groups.
Primary sensors Sp are directly involved in the formation of the grasp. They strictly
need to touch the surface of the target object. Secondary sensors Sg are only indirectly
involved in the grasp. Secondary sensors need to be as close as possible to the surface of
the target object. Finally, helper sensors Sy are not involved in the grasp at all. They
only need to ensure that no collision with the object occurs.

Table 5.1 summarizes the assignment of primary, secondary and helper sensors based
on the grasp type to be performed. In our earlier introduction of the Schlesinger grasp
types we specified that for a tip grasp only the tips of two fingers exert opposing forces
on the object. This fact is reflected in Table 5.1. The tip grasp requires only two sensors
to be touching the object, namely the th3 and id3 sensors.

5.2.4. Grasp Parametrization

We will now address the question of how to parametrize a grasp such as to support
later optimization. Our goal is to find a minimal set of parameters that are sufficient
to uniquely describe a large number of grasps. This set should be minimal in order to
ensure that optimization can be efficiently performed. We will divide the parameter set
into extrinsic and intrinsic parameters. Intrinsic parameters specify the shape of the
hand, while extrinsic parameters specify its position and orientation.

As intrinsic parameters we will use the low-dimensional coordinates of the grasp. In
mathematical terms, a point g in posture space P fully specifies the intrinsic parameters
of the corresponding grasp. By reprojecting the point g back into the original space of
joint rotations, we get all information necessary to realize the hand posture. We will

78

5.2. Modeling the Human Hand

Grasp Type Primary Sensors Secondary Sensors Helper Sensors

Spherical th3, mi3, pi3 pa2,id3, rid pal,pa3d,thl, th2,
id1,1d2, mil, mi2,
ril, ri2, pil, pi2

Cylindrical pal, pa2, pa3,thl th3,1d3, mi3, ri3, ;3 th2,idl,1d2, mil,
ma2,ril, 2, pil,

L2
Hook pal, pa2, pa3, pil 1d3, mi3, ri3, pi3 thl,th2,th3,id2,
1dl,mal, ril, mi2, ri2, pi2
Palmar th3,1d2,1d3 thl,th2, id1 pal, pa2, pa3, mi2,
mid, ril, ri2, ri3,
pil, pi2, pi3
Lateral th3,1d2 1dl,1d3 thl,th2
Tip th3,1d3 none thl,th2,id1,1d2

Table 5.1: Categorization of sensors into primary, secondary and helper ssensors based
on the grasp type to be performed.

introduce a local coordinate system, the grasp coordinate system (GCS), to specify the
extrinsic parameters. To define the GCS we need to set the origin b, and the two axes
b, and b, of the coordinate system. The third axis b, can be trivially computed by
b. = b, x b,. The position of the hand is always specified within the GCS and must be
transformed into global coordinates before application.

Similarly, the orientation of the wrist is locally specified in the GCS by a € R3.
Each of the entries in « specifies a rotation angle for rotation around one of the axes
of the GCS. To summarize, an arbitrary grasp can be uniquely specified by setting the
parameters:

e Position of the wrist p € R?
e Orientation of the wrist o € R3
e Shape of the hand in a posture space q € P

Figure 5.6 visualizes the specification and use of a GCS. Typically, the GCS is specified
relative to the object to be grasped, e.g. on the surface of the ball. The orientation of
the GCS can be set based on the task to be achieved or the direction from which the
object needs to be grasped. Initializing the hand position inside the GCS ensures that
the extrinsic parameters take on reasonable values. The hand will be initialized near the
object and it will be correctly oriented.

79

5. Learning to Imitate Natural Human Grasping

y

Figure 5.6: The grasp coordinate system. The GCS specifies the extrinsic parameters of
the hand, i.e. the position and orientation of the hand. These values can be determined
based on the object to be grasped, e.g. the Tennis ball.

5.3. Grasp Quality Measure

As discussed in Chapter 4, a PLDPM requires the specification of an imitation metric
which defines a measure of how successful a given attempt at imitation is. In the case of
grasping, the metric of imitation needs to evaluate and rate the quality of a given hand
shape. Metrics for grasping have long been the focus of studies in robotics and can be
summarized by the term grasp quality measures [MF96).

Given the geometric (and physical) properties of an object, as well as the grasp to be
performed, a grasp quality measure computes a scalar fitness value which measures the
suitability of the intended grasp with respect to the object. For the generation of natural
and successfull grasps, we need a reliable grasp quality measure that combines various
important aspects, e.g. anatomy and stability, when computing the fitness values.

Many grasp quality measures in the literature focus on the physical properties of a
grasp. The goal is to produce stable grasps, meaning that the grasp resists the largest
possible set of external forces or torques. Following this rationale, many grasp quality
measures are based on the concept of wrench spaces. Wrench spaces are used to de-
termine the set of all external disturbances that can be balanced by a particular grasp
configuration. Other grasp quality measures use the geometric relationships between
fingers and the object in order to assess the quality of a grip.

The following section introduces a simple grasp quality measure which targets appli-
cations in computer animation and virtual reality domains. The quality of the grasp is
computed as a sum of three components:

e The stability Fs of the grasp
e The distance Fp of the fingers to the object

e The anatomical plausibility F4 of the hand shape

80

5.3. Grasp Quality Measure

The overall grasp quality measure is therefore a function F"

F(p>ava):FD(paa>®+FS(paaa®+FA(a) (51)

In contrast to other metrics, this measure mainly focuses on the natural appearance
and visual quality of the generated grasps. The main goal of this measure is to evaluate
how convincing the appearance of a grasp is. While basic stability properties are taken
into account in this evaluation, other physical aspects of the generated grasp, such as
force closure or grasp wrenches, are not considered. The main reason for this choice is
efficiency. The targeted application domains often do not rely on physical models and
are mainly concerned with the visual quality of the results. Yet, the algorithm which
we will present works with any arbitrary grasp quality measure. Other metrics, like the
ones used in the robotics literature can be employed, too.

Before we discuss the components of this grasp quality measure in more detail, we
will first introduce the following violation function Vg(m). We will use the violation
function in order to introduce a nonlinear scaling for the penalties computed for each of
the components of the fitness function. The violation function has the following general
form:

Vig(m) = (e*'F 1) (5.2)

The above function has exponential growth and is symmetric with respect to the
ordinate. Further, the equation Vp(£B) = 1 holds. Hence, the parameter B can be
used to control the degree of exponential growth of the function. The violation function
is used to weight the contribution of different components to the overall fitness function.
The function takes an error value computed by a grasp metric as input. The violation
function then scales this value nonlinearily. As a consequence, high error values are
more severly penalized in comparison to small error values. The specific values for B
and m are, however, dependent on the actual component of the fitness function and will
be discussed in more detail in the following section.

5.3.1. Finger Distance

A Schlesinger grasp requires touching the object with at least two fingers. The fingers
involved in the grasp must have contact with the object’s surface. In contrast to a real
situation, in simulated environments the fingers can also penetrate the object. However,
to synthesize a natural grasp, we need to ensure that no such finger-object penetration
occurs.

The Fp component of the grasp quality measure uses the distances between the finger
sensors and the object surface to realize this goal. In an ideal grasp, all primary and
secondary sensors touch the surface of the object. This is the case if for every sensor
s the distance d, between the sensor and the object surface is zero. If this is not the

81

5. Learning to Imitate Natural Human Grasping

case, then one of the following two situations apply: (i) If d, is negative, then the sensor
is inside an object, i.e. a penetration occurred. (ii) If the distance is positive, then the
sensor is on the outside the object and is not in contact with it.

The finger distance penalty term Fp is computed as a sum of individual distance
penalties computed for each of the finger sensors s. The individual distance penalties
are based on the particular type of the analyzed sensor. For example, helper sensors are
only used to make sure that no penetration between the object and other parts of the
hand occurs, i.e. they only contribute to the distance term, if d, is negative. Therefore,
the overall finger distance penalty term can be calculated as follows:

Vos(ds) if s is a primary sensor
Fp = Z Vio(ds) 1if s is a secondary sensor (5.3)
ses | Voas(ds) 1if s is a helper sensor

Fp computes a weighted sum of the distances between the sensors and the object
surface. If the sensor is a primary sensor, then a distance of 0.5 c¢m is sufficient in order
to generate a penalty value of one. If s is a secondary sensor, then a distance of 1 cm
is needed to produce the same penalty as for a primary sensor. Helper sensors only
produce penalties if they are located inside the object. However, such a penetration is
highly penalized, and therefore the function V' will produce large values in this case.

5.3.2. Anatomical Plausibility

The goal of the grasp optimization process is to find a natural looking hand shape leading
to a stable grasp on a user provided 3D object. An important question in this regard,
is how to ensure that the generated grasp is natural, or in other words, anatomically
plausible. Instead of relying on biomechanical models, we will use the probability density
function of the PLDPM for solving this problem.

The probability ®(q) of a grasp estimates the likelihood of the vector of the posture
space q obeying the same statistical model as the recorded training grasps. Assuming
that enough grasps were used for training, this result is an indicator for the anatomical
feasibility of the hand shape. Accordingly, the penalty function for the anatomical
plausibility of a grasp can be defined as follows:

Fa(q) = %_6 : <% - 1) (5.4)

where " is the maximal value of the probability density function. The constant
€ is used to normalize this function. It specifies the percentage of the maximal value
®™ which is still sufficient to regard a given grasp as natural. The penalty is zero, if
the probability of the grasp is maximal, i.e. if the grasp is perfectly natural. On the
other hand, the penalty is one, if ®(q) = €- ®™*, i.e. for unrealistic grasps. In all of the
experiments of this thesis, we use the value ¢ = 0.01.

82

5.3. Grasp Quality Measure

5.3.3. Stability

Another important aspect that needs to be included in the evaluation of potential hand
shapes for grasping is stability. Analyzing the stability of a given grasp, we can decide
if the object is correctly fixated for later manipulation tasks. According to [RS06], the
quality of a grasp with respect to stability can be determined by analyzing the following
features:

e The location of contact points on the object
e The configuration of the finger joints

e A combination of above two points

We will use a stability estimation measure which is based on the contact points be-
tween the finger sensors and the object. However, during optimization many potential
grasps will be generated, for which the sensors are not located on the object surface.
To circumvent this problem, we will first compute the nearest positions on the object
surface. These are taken as estimates of the contact points of the sensors with the object.
Next, the stability of the resulting set of contact points is estimated using a number of
heuristics, which are derived from literature on robotic and human grasping. For grasp
types that produce enveloping grasps, such as the spherical grasp, the stability grasp
index (SGI) [RS06] will be used for estimating the corresponding stability. For grasp
types that are based on oppositions of finger groups, such as the palmar grasp, a com-
bination of the cone of friction (COF) [MI94] and a novel contact normal opposition
(CNO) measure will be employed.

In the case of the SGI, the stability is measured by analyzing the inner angles of a
planar polygon spanned between the contact points. This is motivated by the fact that
contact points are ideally uniformly distributed on the object surface. To quantify the
distribution of the fingers on the object, we can calculate how much the internal angles
of the grasp polygon deviate from those of a regular polygon. In the following we will
always decompose the grasp polygon into a set of triangles and compute the SGI on the
resulting set. Figure 5.7 shows an example for the computation of the grasp stability
index. The inner angles of two triangles spanned between the contact points of different
sensors with the object are evaluated. According to [RS06], given a triangle with internal
angles 3 € R3, the SGI can be computed as:

1 3
Mi(8) = 555+ D 16 = 60) (5.5
i=1

In the worst case, the triangle degenerates into a line. In this case, one internal angle
is 180° while the remaining two internal angles are zero. Consequently, the SGI of such

83

5. Learning to Imitate Natural Human Grasping

Do

Stability Grasp Index Cone of Friction Contact Normal Opposition

Figure 5.7: The three quality measures used for grasp evaluation. Left: The grasp
stability index analyzes the inner angles of a planar polygon spanned between the contact
points. Middle: The cone of friction measure computes the angle between the contact
normal and the line connecting the contacts. Right: The contact normal opposition
measure computes the angle between the contact normals.

a configuration will be one, as exemplified by the following equation:

1

l=—-
240

<|180°—60°| 4 160° — 0°] + |60°—0°|> (5.6)
For an equilateral triangle (the best case), the SGI will be zero. The result of the SGI
is then used as input to the violation function in order to compute the overall penalty:

Fogi(8) = Vou (Meyi(8)) (5.7)

The set of triangles that are evaluated to compute the SGI is dependent on the choice
of the grasp type. We will discuss this aspect in more detail below.

Another metric for measuring the stability of a grasp is the so-called cone of friction.
According to MacKenzie and Iberall [MI94], the cone of friction is a geometric interpreta-
tion of the maximally allowed angle w between the surface normal and the applied force
vector. If the applied force at the contact point makes an angle 6., with |d.f| < w, then
no slip will be produced at the fingertip. The angle w is determined by the coefficient of
friction of the grasped object. To determine if a grasp induced by two antagonist finger
sensors is stable, we first compute the vector ¢ connecting the corresponding contact
points. The angle d.,s can then be calculated using:

—c-n
Ocof = AICCOS <7) (5.8)
lle][- ||

84

5.3. Grasp Quality Measure

where m is the surface normal at the contact point. In the ideal case, the angle 0.,
equals zero meaning that the vector of the applied force is parallel to the surface normal.
In the same manner as for SGI, the angle 0., is weighted using the violation function.
Hence, the penalties according to the COF criterion can be computed by the following
formula:

Feor = Vis(0cof) (5.9)

In Figure 5.7 (middle) the cones of friction are depicted as green triangles centered at
the contact points. The angle 6., is spanned between the contact normal (black arrow)
and vector ¢ (red line).

Finally, as a last criterion for estimating the stability of a grasp, we introduce the
contact normal opposition (CNO) measure. The CNO measure evaluates the angle
between the two surfaces where the investigated antagonistic sensors make contact with
the object, as illustrated in Figure 5.7 (left). Let m(1) and m(2) be the two contact
normals, then the angle J.,, can be computed as follows:

n(l)-n(2)]
()] - [[n(2)]]

In the ideal case, the two contact surfaces are parallel, and the contact normals face
opposite directions. In the worst case, the contact normals both point in the same
direction. After computing the values for d.,,, they are normalized according to the
general scheme leading to the penalty function:

Oeno = arccos [(5.10)

FCNO = ‘/23.5(5cno> (511)

Consequently, the function returns a penalty of one, if the angle d.,, equals 23.5°.
The stability metrics introduced are used in different combinations for estimating the
stability of a given grasp. Note, for example, that the CNO measure alone is generally not
practical as a grasp stability measure and will subsequently always be used in conjunction
with the COF. Next, we will discuss the stability analysis process with respect to the
intended grasp type.

Enveloping Grasps

We will use the term enveloping grasps to refer to spherical, cylindrical or hook grasps.
In all of these grasps the fingers are flexed, so as to envelop the target object. For all
enveloping grasps the SGI is used to estimate the stability. The only difference between
these computations are the sensors used.

85

5. Learning to Imitate Natural Human Grasping

In the following we will use the A(sq, s2, $3) operator to specify a polygon (triangle) with
vertices located at the position of the sensors sq, s, and s3. For the derivation of the
stability we make use of the following polygons:

Polygon Angles

A (th3,id3,1i3) a(l) = ()
A>(th3,mi3, pi3) «a(2) = (a1, agg, a3)
Ag(pal, 1d2, Zd3) a() (agl, Q39, Oﬁ33)
Ay(pa2,mi2; mi3) a(4) = (a1, 0o, Qy3)
As(pa2,ri2;ri3) a(b) = (a1, oz, ais3)

((6) = ()

((7) = ()

Ag(pa3, pi2, pi3) (o7 Qi1 , Og2, O3

A;(thl th2,th3) « Qrp, g, Q3

The stability grasp index for the spherical, hook and cylindrical grasp can be calculated
according to equations:

Spherical - _ %~(Fsgi(a(l))jLFsgi(a@))) (5.12)
FAE = 2 Fladi) (5.13)
FSutindrical é.ZFsgi(a(i)) (5.14)

(5.15)

Note, that the only difference between the hook and the cylindrical grasp is the in-
clusion of the thumb into the calculation of the stability in the latter case. This choice
becomes obvious if we analyze the hook grasp. This grasp is typically used to lift an
object with a handle. Gravity plays an important role in these tasks and acts like a
virtual finger that generates forces opposing those of the palm. As a result, the object is
suffiently stabilized through the interplay of handle, hand and gravity without needing
the thumb. In contrast, in the case of the cylindrical grasp, the thumb plays an impor-
tant role in stabilizing the object in the hand. Without the thumb, we cannot exert
sufficient forces on the object in order to lift it.

Fingeropposition Grasps

In this class of grasps, groups of antagonistic fingers apply a force in opposition to each
other in order to hold the target object. It includes grasp types such as the tip, lateral
and palmar grasp. In case of the lateral grasp, only the thumb is actively exerting
force on the object. The other fingers, in particular the index finger, are only passively

86

5.4. Grasp Synthesis Algorithm

fixating the object. An estimation of the stability of such grasps is performed using a
combination of the COF and CNO measures introduced earlier.

The palmar and lateral grasp mainly stabilize the object between the thumb and the
index finger. During a tip grasp, the object is stabilized through the opposition of the
tips of two fingers only. For these grasp types we will compute the stability value based
only on two antagonistic sensors. For the palmar and lateral grasp we will use the th3
and ¢d2 sensors. In contrast to that, we will use the th3 and id3 sensors for the tip
grasp.

Let e(1) and e(2) be the contact points of the two sensors and n(2) and n(2) be
the corresponding contact normals. Then, the contact forces exerted by the fingers can
be approximated as f(1) = e(2) — e(1) and f(2) = e(1) — e(2). The stability of a
fingeropposition grasp can then be estimated by:

FQprosition _ FCOF(F(1), n(1)) + FCOF< £(2), n(2)) ¥ Fono (n(1), n(2)) (5.16)

The metrics and heuristics discussed so far have low computational demands and allow
us to generate estimates of the grasp stability based on a purely geometric analysis. As
already described in the beginning of this section, the overall fitness of a given grasp is
computed as a sum of the results of the component metrics for stability, distance and
anatomical plausibility (see Equation 5.1).

5.4. Grasp Synthesis Algorithm

In this section, we will discuss how the introduced concepts fit together. Specifically,
we will disucss how optimization can be used to search for a specific grasp taking into
account the learned PLDPM, the fitness function and the target object. We will start
with strategies for an intelligent initialization of the optimization parameters. After
that, we will discuss the iterative optimization algorithm used for the synthesis process.
Finally, we will also discuss computational speedups and efficiency aspects of our grasp
synthesis algorithm.

5.4.1. Initialization

Optimization can be a time consuming and computationally demanding process. How-
ever, the computation time can often be significantly reduced through the use of simple
initialization heuristics. Such heuristics are used to generate an estimation of the start-
ing point of optimization. Ideally, the estimated values correspond to a starting point
which is near to a (local) optimum of the fitness function. In this case, the optimizer
needs only few iterations to find a good solution.

87

5. Learning to Imitate Natural Human Grasping

An estimate for a good wrist position is generated, by combining information about
the grasp coordinate system and the size of the palm. More specifically, given the the
width w?®™ and height h%™ of the palm, the position can be initialzed according to
Table 5.2.

Grasp Type X y z

Spherical —3 - pPalm 0 0

Cylindrical —pPalm 0 0

Hook —pPalm 0 0
Palmar —pPaim 0 —qPalm

Lateral —pPelm 1. pPaim 0
Tip _hPalm 0 _hPalm

Table 5.2: Initialization rules for the wrist position in the grasp coordinate system
depending on the generated grasp.

Next, we estimate good initial values for the intrinsic parameters. Empirical evalua-
tions showed that an open hand is often a good starting point. However, in order to
make use of this heuristics, we need to determine the initial image coordinates q, cor-
responding to an open hand. To this end, we formulate a simple optimization problem:
find a vector g, such that ®~!(q,) corresponds to a maximally opened hand. For cylin-
drical, spherical and hook grasps, the openening of the hand can easily be determined
by the measures found in [R6t07], such as the ‘pentagon plane’ approach. For the tip,
lateral and palmar grasps we employ a different measure. Precisely, we compute the dis-
tance between the tip of the index finger and the tip of the thumb. Using optimization,
we try to find a hand shape g, such that the distance equals the length of the palm
hrem - Similarly, for the lateral grasp we evaluate the distance of the thumb to the plane
spanned by the joints jidl, jid2 and jid4. Ideally, this distance equals % - hFem - Finally,
for the palmar grasp, the ideal distance of the thumb to the jid3 joint equals A7%™.

5.4.2. Optimization

The goal of optimization is to find a hand shape fulfilling the requirements identified
by the grasp quality metric. Different values for the extrinsic and intrinsic parameters
need to be tried, until a satisfactory grasp with respect to the metric is found. In
turn the metric is dependent on the 3D models used to represent objects in the virtual
environment.

Such 3D models are specified in terms of polygon-based approximations of physical
objects. Hence, they generally do not have a smooth, continuous surface. We also cannot
assume that the fitness function defined by the metric is continuously differentiable. Op-
timization techniques based on the computation of gradients are therefore not applicable

88

5.4. Grasp Synthesis Algorithm

to this problem. On the other hand, because an object can be grasped in many ways, we
can expect the fitness function to have many local optima, i.e. it is multimodal. We there-
fore need an optimization algorithm that can deal with non-differentiable, multimodal
fitness functions.

These properties are met by a special type of evolutionary algorithms called evolution
strategies (ES). ES represents each solution candidate (or chromosome) as a floating
point vector. Selection in ES can be done in two ways, the so-called comma-selection
and the plus-selection. According to the notation used in EA literature, the two selection
operators can be written as (u, A\) and (u + A). The variable p denotes the number of
parents, whereas A denotes the number of offspring to produce. In plus-selection, the
parents compete with their children for a place in the next population. In comma-
selection, only the children compete among each other. The competition is won by the
it chromosomes which have the highest fitness. Mutation is considered to be the main
search operator in ES, whereas reproduction is typically neglected and will not be used in
the following. The mutation step adds random noise sampled from a normal distribution
to the variables of a chromosome. A distinguishing feature of ES is that chromosomes do
not only carry parameters specific to the target problem, but also strategy parameters
of the ES itself. In our case, we will encode the step size o of the mutation operator into
the chromosome. Hence, the mutation operation can be written as:

o «— o-In[N(0,1)] (5.17)
r «— x40 -N(0,1) (5.18)

The control parameters like o are evolved according to the rules which govern the
ES. This feature of ES is often termed self-adaptation. It removes the necessity to
exogenously define the control parameters, e.g. by a user, or a fixed schedule.

In the following we will use a particular type of ES called encapsulated evolution
strategies (EES) [GUS99]. EES is a nested variant of evolution strategies, in which an
outer (high-level) evolution process repeatedly triggers a set of inner (low-level) pro-
cesses. Thus, the method performs a combination of local and global search. Each of
the A% offsprings generated by the high-level evolutionary process is used as a par-
ent chromosome for an isolated population of ;@ individuals. Each of the generated
populations is then evolved through a separate low-level ES for 7“4 generations. Once
the low-level processes are finished, the fittest individuals are propagated back to the
high-level process. The best individual among these solutions is then selected and used
to spawn a new set of low-level populations. This is repeated for v9°%* generations.

An algorithmic description of the grasp optimization procedure is given by Algorithm 4.
First, both extrinsic and intrinsic parameters of the grasp are initialized according to
the scheme explained in Section 5.4.1. The initialization process uses simple heuristics
such as to avoid starting from a bad area of the search space. Then a first chromosome
x is created. The chromosome includes the extrinsic parameters p € R3 (position of

89

5. Learning to Imitate Natural Human Grasping

Algorithm 4 An algorithm for grasp optimization based on encapsulated evolution
strategies. It outputs the image coordinates of the grasp q, the wrist orientation c«, and
the position of the hand p.

Require: ,ylocal’ ,yglobal’)\local’)\global
1. {Part 1: Parameter Initialization}
2 tglobal —0
3: (p,a,q) <—initialize(p, @, q)
4: p — (p’ Q, &” o.global’ Ulocal)
5. {Part 2: Global optimization loop}
6: while t9lebal < global qq
7 E—10
8: PIlebal create A9 copies of x
9: Pt mutate(PI°%!) {mutate chromosomes using o9°* of each individual}
10: for all =’ € P9l do
11: tlocal — 0
12: {Part 3: Local optimization loop}
13: while tloe! < ~local qo
14: Plocal create Al°e copies of x’
15: Plocal mutate(P) {mutate chromosomes using o'°“* of each individual}
16: evaluate(PYl I <) {calculate the fitness value for each individual }
17: 7'« select(Plel <) {select individual with lowest fitness}
18: tlocal P tlocal +1
19: end while
20: E — EU{a'} {add best individual from current run to set of elites}
21: end for
22: 1z« select(&, <) {select individual with lowest fitness}

23 tglobal - tglobal +1
24: end while
25: return (p, a,q) {intrinsic and extrinsic parameters of the synthesized grasp}

the hand) and e € R? (orientation of the hand), as well as the intrinsic parameter
q € P (shape of the hand). The chromosome also includes the parameters o9°%! (global
mutation step size) and o (local mutation step size).

The outer optimization loop generates a set of inmer evolutionary processes. At
the end of each of these processes, the individual with the best fitness is added to
the elite-list £. This list contains all grasps that have been generated in the local
evolutionary processes. After 9% Jocal ES have been run, the best grasp in the elite-
set is determined. This grasp is then used as a starting point for the next set of local
ES. Note, that the computation of the fitness values for each grasp requires a learned
PLDPM, as well as the geometry of the object to be grasped. After termination, the
algorithm returns the best individual recorded in the elite-list. The combination of global

90

5.4. Grasp Synthesis Algorithm

Figure 5.8: Visualization of the optimization process. The hand position and posture is
varied until a satisfactory grasp with respect to the fitness function is found.

optimization with local fine-tuning allows for a good tradeoff between exploration and
exploitation. We can explore the search space for different types of solution candidates,
while we are at the same time locally optimizing the parameters of each of these potential
solutions. This can easily be understood, by taking a look at Figure 5.1. Each of
the grasps shown in the gray box is a solution from a local ES. On a local scale, the
parameters of each of these grasps is optimized, in order to avoid penetrations or other
unfavorable characteristics. Then, on a global scale, the results of the local ES are
collected and a single overall best grasp is determined.

Figure 5.8 shows an example of the evolutionary optimization process. As we can see,
the initialization heurisitics ensure that even at iteration zero the hand is close to the
object to be grasped. Throughout the course of optimization, the position, orientation
and shape of the hand are adapted until they slowly converge to the ideal grasp.

5.4.3. Computational Speedups

A simple and efficient way to speed up the grasp synthesis algorithm is to use a low-
polygon version of the object model for the optimization process. For graphical display,
however, the original model can still be used. For example, when optimizing a grasp for
the Stanford bunny, we use the high resolution version with 26332 polygons for display
and a low-polygon version with 453 polygons for optimization. In general, however,
it is also important that the shapes of the original model and the reduced model do
not deviate too much. Another way to speedup computation while at the same time
increasing the control over the optimization process, is the specification of an area of

91

5. Learning to Imitate Natural Human Grasping

Figure 5.9: Left: Visualization of the polygons used for modeling the Stanford bunny.
Middle: The low-polygon version is used for fast optimization. Right: The definition of
an area of interest (green circle) specifies which part of the object should be grasped.

interest. This allows the user to define a specific part of the object within which a grasp
should be generated. Figure 5.9 (right) shows an example for a spherical area of interest.
In this example, we want the optimizer to find a grasp which grasps the left ear of the
bunny model. Therefore, we placed the area of interest in a way that it envelopes all
triangles of the left bunny ear. All polygons outside of the area of interest are discarded
from the optimization process. In our specific case this reduces the number of polygons
to evaluate from 453 to 120 polygons. Generally, using an area of interest leads to
noticeably lower computational demands.

5.5. Evaluation and Results

The quality of the grasp synthesis algorithm proposed is affected by the correct choice
of its parameters, such as the recorded grasps, the employed DR method, and the ro-
tation representation. An important goal of the conducted evaluation, is to find ‘ideal’
values for these parameters. Another goal of the evaluation is a better understanding
of the dependency between the quality of generated results and particular parameter
settings. Therefore, a set of incremental experiments was performed. The word incre-
mental refers to the fact that the results of anterior experiments are incorporated into
consecutive experiments. For example, if a particular DR technique is found to yield the
best results in experiment A, it is used as the DR method of choice in the subsequent
experiment B. Thus, with progressing experiments, more and more parameters are set
to fixed values. Overall, four experiments F'1 — F4 have been conducted, where each ex-
periment focused on a particular parameter or variable of the grasp synthesis algorithm.
The following sections present each of these experiments as well as the corresponding
parameter settings.

92

5.5. Evaluation and Results

5.5.1. E1: Data Acquisition and Analysis

During data acquisition, ten subjects were asked to provide demonstrations of natural
grasping hand shapes. An optical fingertracking system by A.R.T. [ARTG10] was used
as capturing device for hand shape data. The system tracks movements of all 5 fingers
of the hand and comes with software that computes, among other data, the position and
orientation of the hand, the fingertip positions, and the rotations of finger joints. Before
application, the fingertracking system was calibrated in order to estimate the size and
parameters of the user’s hand. Calibration was performed using the vendor provided
software tool and typically takes about two minutes per user.

The ten subjects were asked to perform grasps of the Schlesinger taxonomy using
the fingertracker. For each grasp type the data was recorded seperately, yielding six
different sets of observation data per user. During a recording session, each user was
asked to grasp various physical objects. Hand shape data was collected continuously,
both during the closing and the opening phase of the hand. This means that the hand
shape database is not restricted to ‘peak’ hand shapes where an object is fully grasped.
The typical duration of the data acquisition phase was about 15 minutes. Hand poses
in the database are stored as rotations of finger joints (3 ball joints per finger, i.e. 45
degrees of freedom in total). The first post-processing step is to transform the joint
rotation data into an exponential map representation [Gra98]. The result is a set of
45-dimensional vectors, each of which represents a single hand posture. The reason for
using the exponential map representation is that it transforms the rotation into a linear
space. It was argued in [EMMTO04] that the application of DR techniques benefits from
such a representation. However, this hypothesis will be investigated in more detail in
experiment F3.

Next, the recorded data sets were processed in order to construct corresponding
PLDPMs. Different types of DR techniques were applied on the data sets. For each
user and each grasp type, a different PLDPM was learned. The goal of this experiment
was to find answers to the following questions:

e How well do the different DR techniques compress the experimental data?
e How does the recorded data vary among the different grasp types?

e How does the recorded data vary among the different test subjects?

Figure 5.10 shows the result of applying different DR techniques on recorded grasps.
The figure depicts the angular difference between the original hand shapes and their
reconstructed counterparts after applying a particular DR technique. Along the x-axis
are the different values of dimension L of the low-dimensional space. We observe for
PCA, MDS, and NLM that the projection error becomes smaller with increasing value
of L. This is not the case for the other DR techniques. For example, the LLE algorithm
shows a peak error when projecting into a space with 12 dimensions. This can be

93

5. Learning to Imitate Natural Human Grasping

45

3

8
&

[y
(&
8
T

Mean error in degrees
Mean error in degrees

[
[&)]
T

N
lindrical
0 5 10 15 20
Number of Dimensions Number of Dimensions

Figure 5.10: Result of applying different dimensionality reduction techniques on recorded
grasps. The number of dimensions L on which to project was varied and the reprojection
error was measured. The y-axis shows the error (in degree) for a full pose.

explained by numerical problems occuring when the number of dimensions equals the
number of neighbors used for the local embedding. Still, we can see in the graphs, that
for all grasp types the recorded data can be projected onto a few dimensions without
loosing much of the information contained. For example, in the case of the cylindrical
grasp, an error of about 35° ~ 50° is introduced by projecting onto a low-dimensional
space with L = 3. Divided by all joints of the hand, this translates to an error of about
2°to 3° per joint.

To better understand this result, Figure 5.11 (left) summarizes the projection error
(computed over all test subjects) when projecting onto a three-dimensional space. Ob-
viously, the best compression of the data was achieved using CCA. MDS, Isomap and
NLM stay significantly below the barrier of 30°. Using these techniques we can keep the
per-joint reconstruction error below 2°. It is noteworthy though, that MDS, a linear DR
technique, achieves competitive results compared to the newer and more sophisticated
NLDR techniques.

Figure 5.11 (right) shows the projection error for different grasp types when performing
a PCA with L = 3. We see that the projection error varies significantly among the
investigated grasp types. The smallest error (=~ 19°) was achieved for the tip grasp.
This can be explained by the fact, that the tip grasp only involves two fingers and does
not leave much room for variation. The highest error (& 75°) can be observed for the
hook grasp. This might be explained by the fact that during a hook grasp several markers
on the fingertracking device can not be monitored by the tracking cameras anymore. As
a result, the recorded hand shape information gets corrupted. Another grasp with a
high projection error is the lateral grasp. This is surprizing because the lateral grasp,
similar to the tip grasp, does not involve many active fingers.

In summary, hand postures can be efficiently compressed using DR techniques. In
this regard, our observations are consistent with the results found in [SFS98]. Also, we

94

5.5. Evaluation and Results

40° 80°

Spherical PCA

Average error in degrees
w w
o S, S
Average error in degrees
= =
S g

S
w0
<

o PCA LLE CCA CDA MDS Isomap NLM v Spherical ~ Cylindrical Hook Palmar Lateral Tip
Figure 5.11: Reprojection error of poses (in degree) introduced through the application
of dimensionality reduction and projection on three dimensions. Left: Results of different
dimensionality reduction techniques applied on the same data set. Right: Results of PCA
on data sets corresponding to different grasp types.

observed that CCA, MDS, Isomap and NLM seem to be slightly better suited for this
task than the other DR techniques. Further, the performance of the DR techniques is
dependent on the variability inherent to a particular grasp type. Grasp types with low
variability, such as the tip grasp, can be represented using a smaller number of principal
components.

5.5.2. E2: Simple optimization setting

The PLDPMs learned in experiment E'1 are used to synthesize grasps on virtual objects.
For a first evaluation of the results, only PLDPMs learned with PCA were used. This
allows for a first, thorough analysis of the synthesis algorithm in a restricted setting.

The synthesis algorithm was run for PCA-based PLDPMs on the set of twenty-one
virtual objects, i.e. a bottle, a coffe jug, a table, a screwdriver, a hammer, a joystick,
a case, a computer mouse, a CD, a matchbox, a key, a suitcase, a card, a pencil, a
taperoller, a bag, a rubber, a Tennis ball, the Stanford bunny, a toy, and a nail (see
Appendix A). For each grasp type, six grasps with different objects were generated,
resulting in 36 grasps per test subject. The resulting grasps were then automatically
classified into good, acceptable, and bad according to their fitness. A threshold x was
introduced for this purpose and all grasps that yielded a fitness smaller than % - K were
regarded good grasps. Grasps in the interval [% -k, k] were labeled acceptable. Finally, all
grasps with a fitness higher than x, were deemed bad. Appropriate values for x can be
derived by computing the sum of the weights of the sensors involved, the stability term,
as well the anatomical plausibility term. The reason for this, is that each term of the
fitness function is configured to generate a value smaller than or equal to one for grasps
that are acceptable or good. This is a direct consequence of the violation function V'
used here. Table 5.3 shows the grasp dependent values of k and how they are computed
as a sum of the different weights.

95

5. Learning to Imitate Natural Human Grasping

Weighting of fitness components

Grasp Type Fp Fy Fy K
Spherical 6 1 1

Cylindrical 9 1 1 11
Hook 11 1 1 13
Palmar 6 3 1 10
Lateral 4 3 1 8
Tip 2 3 1 6

Table 5.3: Calculation of the value k as a sum of weights for the individual components.
Because the number of sensors varies depending on the grasp type, the resulting fitness val-
ues can have different value ranges. k scales the results to the same range and is calculated
based on the number of sensors and components involved in the fitness computation.

In our experiment, we employ the automatic classification in order to address the
following imporant questions:

e What is the percentage of good grasps among all grasps generated?

e Does the quality of the synthesized grasps vary among different grasp types?

In order to ensure a fair comparison among the grasp types, we classified the results of
each type according to table 5.3. For each grasp type, each of the 60 synthesized grasps
(6 objects x 10 subjects = 60 grasps) is classified as good, acceptable or bad. The results
are presented in Figure 5.12. Although we incorporated the intrinsic difficulty of each
grasp type into the analysis, the hook grasp is still among the most difficult to synthesize.
In the case of this grasp, about a third of the results are classified as bad. In comparison
to that, in the case of the lateral grasp, only good or at least acceptable grasps were
synthesized. Similarly, in the case of the cylindrical and spherical grasps only a small
number (< 5) of grasps were found unusable. For cylindrical, spherical, lateral and tip
we observe that at least 50% of all synthesized grasps are good. As expected, the lowest
number of good grasps (14) was achieved for the hook grasp. Still, if we consider all
grasp types, good and acceptable grasps represent more than 85% of the results.

In summary, in this analysis we found that the complexity of synthesizing new grasps
varies among the grasp types. Among the most complex grasps to synthesize are hook
grasps. At the same time, we find that about 85% of the grasps generated in this setting
were acceptable or better.

96

5.5. Evaluation and Results

35
30
25
20

15

sdsei Jo saquiny

10

Good

/ Aeceptapy,

B

°Ok

Figure 5.12: Classification of synthesis results into good, acceptable and bad grasps.

5.5.3. E3: Optimization with different Rotation Representations

In the next experiment we investigated the choice of rotation representation. As already
explained, rotations can be specified using different representations. It was argued in
[EMMTO04] and [SCF06] that an exponential map representation is best suited when
using DR techniques. However, to our knowledge, there is no empirical evidence backing
up this hypothesis. Therefore, in this experiment, we repeated experiments E1 and E2
for different rotation representations. For this, we transformed each recorded data set
into a different rotation representation and learned corresponding PLDPMs. Then, the
learned PLDPMs were used to synthesize grasps as explained in experiment F2. Most
importantly, we tried to understand whether the choice of rotation representation affects
the optimization results.

Using the automatic classification introduced in experiment E2, five rotation repre-
sentations, axis-angle, Euler, exponential map, matrix, and quaternion were compared.
Figure 5.13 shows the results of these experiments. The green, yellow and red colored
segments depict the ratio of good, acceptable and bad grasps, respectively. We can see
that there is a substantial difference in the results. The axis-angle representation, as well
as the Euler representation produce about 40% good grasps and 40% acceptable grasps.
Hence, with these representations an overall success rate of about 80% is achieved, where
good and acceptable grasps are equally probable. In contrast to that, the exponential
map, matrix or quaternion representation all achieve an overall sucess rate of about 85%.
A more detailed analysis of these results shows that the quaternion representation out-

97

5. Learning to Imitate Natural Human Grasping

100%
TR R ER
80%

70%
60%

50%
40%
30%
20%
10%

0%

Axis Angle Euler Exp. Map Matrix Quat
B Good Acceptable M Bad

Grasp Quality

Figure 5.13: Percentage of good, acceptable and bad synthesized grasps depending on
the used rotation representation.

performs all other representations used. In particular, quaternions result in 60% good
grasps compared to 50% or 40% as achieved by the other representations.

Returning to our original question, the experiment reveals that the choice of rotation
representation substantially influences the results of the optimization algorithm. Hence,
it should be chosen with care. The exponential map representation, together with matrix
representation and quaternions is well suited for our application domain. At the same
time, the results indicate that using quaternions improves the quality of the results as
compared to all other rotation representations. While the overall success rate of 85%
from experiment E2 could not be improved, there is still a significant difference in the
percentage of good grasps generated. When quaternions were used, about 60% of the
synthesized grasps were high-quality grasps.

5.5.4. E4: Optimization using different DR techniques

In this experiment the effect of different DR techniques on grasp synthesis was evaluated.
A similar experiment as in F2 was performed on the data set of one of the test subjects.
In contrast to E2, however, the experiment was repeated with different DR techniques.
Additionally, the rotation representation was chosen based on the results of experiment
E3. The aim of the experiment was to answer the following questions:

e Does the choice of the DR technique affect the quality of the synthesized grasps?
e Does a good fitness value also lead to a visually appealing grasp?

e How much time is needed to successfully synthesize a grasp?

98

5.5. Evaluation and Results

The experiment is performed with PLDPMs learned using different DR techniques.
Following the insights gained by experiment F3, quaternions were adopted for specifying
the rotations. Running the optimization algorithm on each of these settings resulted in 36
grasps per DR technique. Each of the grasps was then automatically labelled according
to the scheme introduced earlier in Section 5.5.2. Table 5.4 summarizes these results.

Grasp Synthesis Results
Good Acceptable Bad Av. time/s

CCA 26 6 4 17.99
MDS 24 7 5 18.01
NLM 23 9 3 17.75
PCA 23 8 4 2.62
Isomap 19 9 8 17.75
LLE 18 14 4 17.80
CDA 18 13 5 18.00

Table 5.4: Classification of the synthesized grasps into good, acceptable and bad results.

The results suggest that the choice of the DR method also has an important influence
on the optimization process. More specifically, CCA, MDS, NLM and PCA seem to
be well suited for the task, as they generate 23 to 26 good grasps for this specific user.
In contrast, the Isomap, LLE and CDA do not perform well for the current task. The
best result, 26 good grasps, is achieved by the CCA algorithm. The latter results are in
close accordance with the results of experiment F'1, where CCA, MDS and NLM already
showed good performance in compressing the data.

Now, if we turn to the runtime of each of the settings, we find that except PCA all
DR methods have an average runtime of about 18 seconds per grasp. The bottleneck
is Algorithm 1, which is used to reconstruct a posture from its low-dimensional image
point. It requires searching for K nearest neighbors of the image point, a computationally
demanding step. In contrast to that, by using PCA a grasp can be synthesized in about
3 seconds. This can be explained by the fact, that reconstruction of postures with PCA
is a simple matrix multiplication. Figure 5.14 shows several examples of the synthesized
grasps and the corresponding classification.

99

5. Learning to Imitate Natural Human Grasping

M Good Acceptable M Bad

Figure 5.14: Results of automatic classification of synthesized grasps into good, accept-
able and bad grasps, based on the introduced classification scheme.

5.6. Other Approaches

By now, there is a considerably body of research on realistic virtual grasping. Generally,
the explored approaches can be divided along several criteria axes. Some approaches
use an underlying physical simulation of the human hand, whereas others solely rely on
graphical geometry. We will refer to the former as physics-based or simulation-based,
e.g. [BI05; PZ05; KP06], whereas the latter will be referred to as geometry-based [ST94;
WHAJ06; HUWKO7]. Another criterion is whether data of grasp examples (generally,
motion capture data) is used for the grasp synthesis process or whether the grasps
are the product of a set of controller functions or algorithms (model). The former
type of approach is often called data-driven or example-based, e.g. [LFP07| whereas
the latter one is called model-driven or behavioral, e.g. [ST94; KT99; KL00; DLB96;
RGI1]. Recently, several hybrid approaches have emerged which strive to combine the
strenghts of the various types while compensating the weaknesses.

A classical geometry-based and model-driven approach is described in [ST94]. Objects
are represented as one of three primitive shapes which are then mapped to an appro-
priate grasp in a corresponding taxonomy. Fingers are closed until contact between the
geometric hand representation and the object occurs. Limitations of this approach are
the not very lifelike movements, the absence of real interaction with virtual objects and
the restriction to primitive shapes.

Simplifications based on primitives are also employed in modern grasp synthesis al-
gorithms. In [GHBKO9], the object is first decomposed into a set of bounding volumes.
Then, edge-detection methods are used to find good grasp regions on the surface of the
object. A similar approach is used in [GALP07] and [XKZDO09]. Given a 3D object,

100

5.6. Other Approaches

first, a so-called ‘decomposition tree’ is generated which is a hierarchical approximation
of the object’s shape using simple primitives. This tree is then used to prune the space
of possible grasps and, hence, render the synthesis process more tractable. Approaches
that are based on this kind of decomposition bear various drawbacks, as each new object
has to go through a pre-processing phase before it can be used. Additionally, because of
the approximation involved, the grasps cannot be adapted to fine details of the object’s
surface. Hence, these approaches are mostly restricted to coarse types of grasps.

A simple and flexible geometry-based approach for hand-object interactions in virtual
environments is presented in [HUWKO7]. It aims at a visually feasible output and
not a realistic simulation. A simple grasp condition based on an arbitrary number of
sensors yields an object transformation based on contacts with the spherical sensors
of the virtual hand. Multiple objects can be manipulated by multiple fingers at the
same time. However, since there is no real dynamics simulation, no finger manipulation
beyond grasping is possible, e.g. pushing with a single finger.

Recently, the integration of physics-based approaches has become more widespread,
since they overcome some of the limitations mentioned above and produce more realistic
looking interactions. In [PZ05] a physics-based approach is outlined, where controller
parameters are derived from a database of example grasps. The goal was to create hand
motions similar in quality to motion capture data, but usable for varying object sizes
and shapes as well as different hand sizes. The proposed controller combines passive and
active control which enables the hand to be influenced by moving objects in addition to
the hand manipulating scene objects (rigid bodies) in a physically plausible way. The
hand is controlled by calculating torques for each of the finger joints. Although general,
relatively simple and consistent for movements with or without contact, the approach
still has some limitations. No automatic hand orientation is done and the type of grasps
supported is limited to cylindrical enveloping hand shapes.

Some of these limitations are addressed in [LFP07]. Again, backed by a grasp database,
several possible ways to grasp an object are identified and evaluated with respect to a
given grasp quality metric. A shape matching algorithm is introduced to identify the
hand orientation and finger pose towards the object, so that the grasp fulfills require-
ments for a given user-specified task. These requirements refer to forces applied to the
object and are evaluated on the basis of an anatomical hand model involving tendons
and muscle force limits. While providing a flexible set of plausible grasps, still some
limitations remain. The approach is not realtime capable (runtimes of several minutes
to identify candidate graps), only semi-automatic (the user has to pick from the pre-
sented set of candidates) and limited to hand models which are very similar in size to
the captured hand in the database. Again, the type of grasps is limited to enveloping
power grasps.

Instead of guessing or specifying hand compliance parameters, in [KP06] contact force
parameters are measured during user interactions with (real) objects via specialized
hardware. This enhanced version of motion capture is referred to as interaction capture.
An intermediary representation in form of an interaction trajectory containing motion as

101

5. Learning to Imitate Natural Human Grasping

well as contact forces is generated. On this basis grasping animations can be synthesized
involving virtual objects with variations in shape size and physical parameters. The
employed hand model is a regular kinematics chain with added compliance values at the
joints while the movement of the virtual objects is simulated with a rigid body dynamics
simulation.

In terms of the categorization above, our approach falls in the category of geometry-
based, data-driven approaches. The aim is to find a good (w.r.t. a given grasp quality
metrics) positioning of the hand and the fingers on an arbitrary virtual object while
maintaining the style and naturalness of the human-demonstrated examples. As such
our goal is related to that adressed in [LFP07]. However, our approach is automatic,
fast enough to be used in interactive scenarios and can be used for arbitrary types of
grasps (w.r.t. a given grasp taxonomy). Hence, it fulfills the demands of virtual reality
applications, especially action capture as described in [JAHWO6].

5.7. Conclusion

In this chapter, we presented a new method for the imitation of human grasping abilities.
The proposed approach is based on motion capture data recorded from human subjects,
which is used to train a PLDPM. Possible hand postures assumed during grasping actions
are encoded this way. Grasp synthesis is then realized by searching the grasp space for
a hand shape that optimizes the given grasp quality metrics. The grasp spaces encoded
by the PLDPM can be searched through efficiently, while being large enough to contain
a variety of plausible grasps.

The experiments revealed that CCA, MDS, NLM and PCA are well suited for the
low-dimensional compression of grasps as well as the later synthesis thereof. The best
performing dimensionality reduction technique with respect to the quality of synthe-
sized grasps is CCA. However, PCA achieves a better tradeoff between computational
demands and quality of results. With PCA most grasps were synthesized in about three
seconds, which amounts to é of the time needed by the other methods. The experiments
also show that the type of rotation representation used can have a strong influence on
the result. The best results are achieved using a quaternion representation. Finally, the
experiments also show that about 85% of the grasps generated by the grasp synthesis
algorithm are acceptable or better.

A strong point of the algorithm is the fact that it does not require any preprocessing
of the object to be grasped, i.e. any arbitrary 3D model can be used. Other approaches
to automatic grasping reported in the literature (e.g. [XKZD09]) often require a prepro-
cessing step in which the user or an algorithm decomposes the object into basic shapes.
This is labour intensive and typically results in a crude approximation of the original
shape. Such a decomposition becomes particularly difficult, when dealing with curved,
smooth objects. Similarly, other approaches use preprocessing steps, such as clustering,
shape-matching or pruning in order to generate a database of viable grasps from which to

102

5.7. Conclusion

Figure 5.15: A comparison between human hand shapes and synthesized grasps.

choose later. All these steps are not necessary for the algorithm presented here. Another
strength of our algorithm is the underlying data-driven approach. A new PLDPM can
be trained within minutes, by recording demonstrations via motion capture. This way,
the appearance of the generated grasps can easily be adapted to the anatomical features
of a particular subject without having to change the synthesis algorithm. Hence, shape
and style of the synthesized grasps imitate those of the human teacher. In Figure 5.15
we see comparisons between recorded and synthesized grasps. The results produced by
the algorithm closely resemble the human demonstrations.

One aspect that needs further improvement is the computation time. Using PCA
as DR technique, a grasp can be generated within a few seconds. While this is orders
of magnitude faster than results reported in other publications, it is still not sufficient
for real-time environments such as video games. The temporal bottleneck here is the
computation of distances between the sensors and the object. One idea for speeding
up this process, is to perform these computations on the graphics card, i.e. to develop
dedicated vertex shaders. The calculations could then be performed in parallel, resulting
in a substantionally lower computation time. Yet, even in its current form, the grasping
algorithm is well suited for a wide range of application domains. For instance, it can
be used for animation of grasping interactions in motion picture productions. Here no
strong real-time requirements need to be met.

For a fine control over the type of the grasp generated, the animator is provided with
four principal means of parameter adjustment:

1. an approach direction and orientation of the hand can be specified
2. a region of interest can be defined, i.e. the part of the object to grasp
3. a specific PLDPM can be trained and applied to control the grasp type

4. different grasp stability criteria can be employed in the optimization method to
fine-tune hand—object contacts

103

5. Learning to Imitate Natural Human Grasping

Figure 5.16: Grasps from the Schlesinger grasp taxonomy synthesized using the intro-
duced optimization approach. From left to right: spherical, lateral, cylindrical and palmar

grasp.

The training of specific grasp models was demonstrated using the Schlesinger taxon-
omy (see Figure 5.16). Clearly, the method can also be applied to other grasp taxonomies.
The animator might even choose to train highly specific grasp models for individual ob-
jects. When physical objects are grasped, further degrees of freedom of the hand shape
may be created by the contact between the hand and the object. If a high degree of re-
alism is required for the animation, such effects could be reproduced by training models
from grasp demonstrations on physical objects only.

As grasp stability measurement, the method has been tested with purely geomteric
criteria for estimating the grasp quality. This decision was intentionally made so as to
free the animator from the necessity of modeling physics-related object properties. The
presented method itself does, however, not depend on a particular optimization criterion
and is compatible with more complex grasp quality measures as researched, e.g. in the
Grasplt project [MCO03].

The presented grasp synthesis algorithm is also an important component of the action
capture method [JAHWO06] which will be presented in Chapter 7. Based on the algorithm
presented here, action capture allows virtual humans to imitate object manipulations
in changing environments. As we will see in Chapter 7, this approach is particularly
attractive for virtual prototyping applications.

104

6. Learning to Imitate and Adapt
Full-Body Motions

6.1. Introduction

First, we have applied our approach to single finger motions, and then moved on to
focus on the generation of grasping behavior for an entire hand. In this chapter, we
will investigate whether the proposed approach scales up to the imitation of motions
involving the whole body. The synthesis of full-body motions, like walking or other
locomotion tasks, is a key requirement for our target application domains.

Simultaneously, we try to explore different variations of the imitation learning setting
used in this thesis. More precisely, we will progressively perform the following modifica-
tions to our standard setting:

1. employ different synthetic humanoids
2. synthesize behaviors in dynamic environments
3. explore different means of conveying demonstrations

Especially for applications in the domain of robotics it is important to show that the
proposed approach can synthesize motions for different implementations of synthetic
humanoids. We must be able to generate motions for virtual humans and robots of
different sizes and with different physical properties. Therefore, in the following sections
we will provide examples of behaviors synthesized for a set of different virtual humans,
a simulated humanoid robot, a real humanoid robot, as well as a sophisticated android
robot.

The second point of the list above refers to the environment in which the behaviors
are synthesized. So far, we only considered virtual worlds that were based on geometric
modeling; the aspect of dynamics was left out. However, our real world is governed
by the laws of physics. As a result, physical phenomena such as gravity or friction
have a strong impact on human motion and behavior. Standing up, keeping balance,
and walking are examples of behaviors that result from the interplay of internal forces
exerted by our muscles and external forces originating from the environment. In Section
6.3 we will discuss an imitation learning setting in which physics is modeled.

Finally, the last point of the list refers to the way demonstrations and example mo-
tions are recorded. To this day, motion capture has been the predominant approach

105

6. Learning to Imitate and Adapt Full-Body Motions

for recording motions in imitation learning scenarios. Motion capture has several fea-
tures that make it very attractive for this purpose. Most importantly, it enables us to
record demonstrations with a high degree of precision and without the need for complex
postprocessing. At the same time, motion capture bears many disadvantages, such as
high costs for tracking devices and spatial requirements. One of the most important
limitations of motion capture, however, is the limited mobility; motions can only be
recorded at dedicated special-purpose facilities. To overcome these problems, other, less
demanding forms of motion recording can be used. In this chapter we will explore two
slightly different approaches to this end. In Section 6.3 we will use a technique that is
reminiscent of puppeteering. Herein, a robot is kinesthetically manipulated by a human
user. The robot is only passively involved in the recording process. In contrast to that,
in Section 6.4 we will present a method that is based on the physical interaction between
a human and an android robot.

6.2. Imitation from Motion Capture Data

In this section, we will investigate the use of motion capture data for learning locomotion
skills. Locomotion is, like grasping, an essential skill for virtual humans. In order to
inhabit a virtual environment in a realistic and meaningful way, virtual humans need to
go from one place to another. For this, they might need to climb stairs, walk, run or
perform evasive side steps. During the creation of a virtual environment, e.g. for a video
game, the programmer must anticipate these situations and provide the game character
with routines that generate the corresponding skill.

However, producing realistic simulated walking and locomotion skills is an ongoing
topic of research. Currently, popular approaches to the synthesis of walking skills use pre-
recorded motions which are rearranged in longer animation sequences. Such approaches
do not adequately reflect the dynamic nature of locomotion. In order to produce con-
vincing results, a simulated locomotion skill must respond to properties of the current
terrain, such as gaps, obstacles or height differences. Optimization-based approaches to
simulated walking can dynamically adapt the generated motion to the current context.
This flexibility often comes at price: the gaits produced appear unnatural. The difficulty
here lies in the fact that the human visual system is highly sensitive to biological motion.
This sensitivity allows us to extract information about gender, intentions and emotions
of an observed person. Even small imperfections in the generated animation can have
an uncanny effect on the viewer. Hence, the generation of simulated locomotion skills
must entail both the adaptation to a new context as well as the production of convincing,
high-quality movements.

In the following we will see, that the imitation learning algorithm proposed can be used
to overcome above mentioned problems. The steps involved in this process are depicted
in Figure 6.1. Data collected from a full-body motion capture session is used to learn
a compact model of the observed behavior using the PLDPM construction algorithm.

106

6.2. Imitation from Motion Capture Data

PLDPM-Learning
;oA

N

P oy . e ¥

P o W ¥ ¥

Figure 6.1: Imitation learning of a walking skill from motion capture data. After record-
ing the data, the PLDPM construction algorithm is used to produce a compact model of
the behavior. The model can then be used to synthesize new walking gaits with respect
to the current terrain.

In a similar way as in our previous example, we can use the extracted posture space
and probability density function to generate a variety of walking gaits. At runtime, the
PLDPM is used in conjunction with optimization techniques to synthesize a new walking
gait which best fits the current terrain as well as the anatomy of the virtual human. By
the combination of motion capture data, imitation learning and optimization, we can
generate adaptive, high-quality animations.

We will demonstrate the method based on two behaviors: ‘walking’ and ‘climbing
up a stair’. The goal is to have virtual humans that can step over gaps or adapt the
height of their step to the level of a staircase. At the same time, we will see, that the
PLDPM approach allows for intuitive visual inspection and analysis of a behavior. Note
that, although the following discussion focuses on locomotion skills, the approach is also
applicable to any other kind of physical motor skill.

6.2.1. Kinematic Modeling of Virtual Humans

Virtual humans are articulated by skeletal modeling techniques, as used for the hand
example in Chapter 5. The configuration of the kinematic chain representing the skeleton
of a virtual human is modified to produce different postures thereof. The mesh of the
virtual human is automatically deformed to fit the new skeletal configuration. In Figure
6.2, we see a visual representation of a skeleton, as well as the resulting pose. The figure
also includes the names of joints which are relevant to the subsequent experiments. The
joints are named according to the naming convention of the H-ANIM standard [H-A10],

107

6. Learning to Imitate and Adapt Full-Body Motions

skullbase

sternoclavicular ve7

vt6

shoulder

) elbow
wrist

vt10

vt15
hip

knee

ankle

metatarsal

Figure 6.2: Joint names according to the H-ANIM standard.

which defines a common denominator for names, orientations and hierarchies of bones
used for animating virtual humans.

In order to articulate a virtual human and produce realistic animations, the state
of the kinematic chain must be changed for every frame. The joint orientations of all
modeled joints need to be provided for each frame. Such an animation scheme controls
characters on a purely kinematic level; no physics is used. The inclusion of physics will
be discussed in Section 6.3.

Similarly to real humans, their virtual counterparts come in all sorts of shapes and
sizes. Figure 6.3 shows a set of virtual humans with varying anatomical properties,
e.g. tall and small characters. These differences need to considered when synthesizing
walking gaits. Applying the same joint orientations on a small and a tall virtual character
will likely result in different step sizes. Due to the length of the limbs a tall character can
make larger steps. If we want to ensure that both characters walk with the same speed,
we need to generate more steps for the smaller character. This problem is further intensi-
fied by the fact that virtual environments allow for arbitrary anatomical configurations,
including exaggerated proportions of the limbs of cartoon or alien characters.

6.2.2. Motion Recording

The training data was recorded using a motion capture system by ART [ARTG10]. A
set of twelve cameras with a frame rate of 60Hz was used for tracking. Six students,
three men and three women, served as models for collecting example locomotion data.

108

6.2. Imitation from Motion Capture Data

Figure 6.3: Virtual humans with varying anatomical properties.

Their ages ranged between 18 and 23 years. To acquire the motion data, each participant
was equipped with a set of 59 retroreflective markers. The markers were attached to 12
different targets used to track the motion of the head, arms, pelvis, legs and feet of the
participants.

For recording ‘walking’ examples, the participants were asked to walk in normal speed
inside the tracking spot of the ART cameras. For ‘stair climbing’, a simple setup of
plastic boxes was used to simulate a staircase. The participants were asked to climb up
this setup as if it were a staircase. During each motion capture session, the ART cameras
recorded the position of the markers and forwarded them to a tracking server. The server
then analyzed the recordings and calculated global orientations of the targets. In turn,
our animation system used these orientations to derive twelve local joint orientations for
the kinematic chain of a virtual human.

The recorded training data was then processed using the PLDPM construction algo-
rithm (see Chapter 4). Table 6.1 shows the reprojection error for different dimensionality
reduction techniques and different dimensions. Please note that the reprojection error is
computed by calculating the difference between the original data points and the repro-
jections. For a posture space with two dimensions, PCA introduces an error of about 30°
for each posture. Divided by the number of joints, this translates to an error of about
2.5° per joint. Analyzing the results of Table 6.1 in more detail, we find that overall
PCA, MDS, and NLM outperform other techniques for this dataset. This is quite aston-
ishing, given the fact that these methods are among the first dimensionality reduction
techniques to be invented. Further, two of these three techniques, namely PCA and
MDS, are linear methods, which are considered to be less powerful than their nonlinear
counterparts.

Figure 6.4 depicts the first three principal components of the walking dataset, as
computed with PCA. Moving along the first principal component, the legs of the virtual
human are bent to perform forward steps. In the negative direction of this axis the left

109

6. Learning to Imitate and Adapt Full-Body Motions

Dim. PCA/° LLE/® CCA/° CDA/° MDS/° ISOMAP/° NLM/°
1 38.9772 46.1369 55.5424 43.6217 38.2014 41.2223 37.142
2 32.7846 36.912 455224 74.5078 31.5238 34.2774 32.8997
3 31.2088 36.8654 66.7387 69.2383 20.8778 32.266 29.3771
4 27.7332 37.8122 70.0059 77.0528 26.9743 29.7088 27.9316
5 26.0983 36.7741 76.9623 77.0878 25.1738 30.4915 25.239
6 24.1097 35.0048 97.6533 85.065 22.0688 29.8557 22.3293
7 21.2586 32.8004 75.3553 60.7615 20.7132 28.3085 21.4665
8 19.4655 31.9327 78.7092 79.2587 19.7922 26.5732 20.0625
9 16.6463 27.5094 79.6683 94.6961 18.34 25856 19.1346
10 253733 36.8526 745771 77.1858 27.1986 31.2925 25.6252
@ 26.3656 35.8601 72.0785 73.8476 25.9864 30.9852 26.1208

Table 6.1: Reprojection error in [degree] for reconstructed ‘walking’ postures.

k t t A% A; t t t t t t t 1
-30 -25 -2.0 -15 -1.0 -0.5 0.0 0.5 10 15 20 25 30

Principal Component 3

k t & & t t t t t t t t 1
-30 -25 -2.0 -15 -1.0 -0.5 0.0 0.5 10 15 20

25 30

Principal Component 2

k A A t t t t t }§ }Q 3 t 1
-30 -25 -2.0 -15 -1.0 -0.5 0.0 0.5 10 15 20

25 30

Principal Component 1

Figure 6.4: Visualization of the first three principal components of walking gaits com-
puted by PCA.

leg is moved forward, while on the positive part the right leg is moved forward. The
second principal component corresponds to different balancing poses. In the positive
direction of the axis the virtual human leans backwards, while in the negative part it
leans forwards. Finally, the third principal component corresponds to taking steps of
different sizes.

As in our earlier examples, this shows the ability of PCA to extract meaningful compo-
nents. Each of the above components reflects a property of walking gaits, which can also
be described in simple terms. More interesting discoveries can be made if we analyze the

110

6.2. Imitation from Motion Capture Data

space spanned by the first and the third principal component. A visual representation
of this space can be seen in Figure 6.5. Equidistant points in the space are reprojected
and the corresponding posture of the virtual human is displayed. The result is a whole
continuum of postures, which are typical for walking. The origin of this space corre-
sponds to a standing posture, the legs are not extended at all. The more we move to
the corners of the space, the more extreme the postures of the virtual human.

AAAAAXAALAL
AN A A A A
AXAAAA
AAAAAA

s

Principal Component 3

=Y

S S S i i e e S e B

S

A
b
)
!
|
!
Ey
A
A
A
A

)b)vﬁwwwww»»
)w)»&w:»-mwwws-»w

wwﬁ?ﬂ?ﬂ)’)‘”)"
WWWMW‘JW')"}"

A
A
N
b
v
!
L
:

?w?wwwu-*w:w}v
>~:>~b

A A A A A

Principal Component 1

Figure 6.5: Visualization of the posture space spanned between the first and the third
principal component.

111

6. Learning to Imitate and Adapt Full-Body Motions

The legs become more and more stretched and are more reminiscent of running than
walking. We also observe that nearby points in the above space correspond to similar
postures of the virtual human. In other words, the space is continuously differentiable.
Small changes introduced to a low-dimensional point in this space, lead to small changes
in the reprojected kinematic configuration. As already discussed in Chapter 4, this
property of the posture space allows us to generate smooth animations by specifying
continuous trajectories.

The most interesting observation, however, is made by if we analyzing the postures
along a circular trajectory inside the posture space: every such circular trajectory (cen-
tered at the origin) corresponds to a walking gait with two steps. Circles with small
radius represent slow walking, while circles with larger radius represent faster walking,
or even running. To confirm this finding, we projected recorded walking motions of
participants into the posture space. Figure 6.6 shows a typical trajectory resulting from
such an operation.

20 T T T T T T T T T T T T T T T 20 T T T T T T T T T T T T T T T
15 . 15 .

S 10 - - 2 10 - -

T |] g |]

& o5} . § osf .

Q.) Q. !

E ool ' E ool '

§ oo i 1 8§ oo i 1

8 o5t § 8 osf .

'S I] 'S I]

[[

T -1or . T -Lor .
-15 . -15 .
_20 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] _20 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 -15 -10 -05 00 05 10 15 20 20 -15 -10 -05 00 05 10 15 20
Principal Component 1 Principal Component 1

Figure 6.6: A low-dimensional trajectory resulting from projecting recorded walking
motion into the posture space.

While the trajectory does not correspond to a well-shaped circle, it still features a
roughly elliptic, circular shape. Because the participant performed several steps, the
trajectory contains two overlayed circular shapes. To further undermine our hypothesis,
that circles in the posture space correspond to different walking gaits, we next analyze
the change of step size. In a normal walking gait, the distance between the feet increases
when the left leg is moved forward. In the next phase, the right leg is moved forward
until it passes the left leg. In this process, the distance between the feet decreases and

112

6.2. Imitation from Motion Capture Data

o radius1l.0 O — VHuman 1
10| o radius2.0 b 18 | J — VHuman 4
A —— VHuman 5
DEQEE%] 16 | & —— VHuman 8
[m]
08 o EEJD %) 14
] o o
o D
9 l O 812
& a] o g 8
S o6 3 o 7 o}
= o A 10
a
9 o o 0090 g e
§ o % % S
00g u} o o L 08
04+ © %o g B 5% o 0 B
% o o O o
° g 0 o0 06
Oo = o © oo% -
o0 oo a 0O 0.4
02t OC% 5 @ o
oo B g o
%‘P . 0.2
o) o] [119 [e] &
00 . © . . \ 00 , , , , , , ,
-3 -2 1 0 1 2 3 0 1 2 3 4 5 6 7 8
Angle [-m;7] Radius

Figure 6.7: Analysis of the distance of the feet of the virtual human. Left: Two circles
with different radii are specified in the low-dimensional space. A radius and an angle (x-
axis) specify a point in polar coordinates in the low-dimensional space. The y-axis holds
the distance of the feet of the corresponding posture. Right: The maximal distance of the
feet for different virtual humans and different radii of the low-dimensional circles.

increases again. In other words, the distance of the feet in a walking cycle obeys a
rhythmic up and down movement, similar to a sine wave. To check if this also translates
to animations generated from circular trajectories in posture space, the following test
was performed. Circles with different radii were specified in the space spanned by the
first and second principal component, and the postures along these trajectories were
computed through reprojections. Then, for each of these postures, the distance between
the feet of the virtual human was computed. Figure 6.7 (left) shows the resulting
distances. The positions in the posture space were encoded in polar coordinates. The
abscissa of the graph corresponds to the angular value, while the different colors and
markers encode the radius.

The graphs contain a sinusoidal, repetitive oscillation with two peaks. The peaks
correspond to the two phases of maximally extended limbs; one peak for the left leg,
and one for the right leg is moved forward. Based on the above results, we can also
confirm that the radius of a circle determines the speed of the walking gait. For example,
a radius of 2.0 in the posture space translates to a maximal distance of the feet of
about 90 cm, while a radius of 3.9 generates a maximal distance of about 1.5 m. In
order to understand the relationship between the circle radius and the maximal feet
distance, an additional experiment was performed. Here, the radius of the circle was
slowly increased and the maximal distance during the animation was recorded. The
experiment was performed for different virtual humans, in order to reveal the influence

113

6. Learning to Imitate and Adapt Full-Body Motions

of the anatomy on the maximal stepsize. Figure 6.7 (right) shows the maximal stepsize
as a function of the circle radius. The differently colored curves show how the values
change for different virtual humans. The anatomy of a virtual human obviously has
an effect on the maximal step size. To summarize our observations, we can say that
walking gaits can be synthesized by generating cyclic trajectories—in the most simple
case, circles—in posture space. The size of the circle has to be optimized to generate
goal-directed behavior. This optimization takes into account both the anatomy of the
virtual human, as well as the current environment and the intended destination.

bodo A dodA

e
S

A A e e e e e e e e
PrincipaI;Component 2

P P P e e o
P P e e e s e e

AR ot
[el adaitadent ool o
ol ol ol ol sl adladl dhadh ol o

Principal Component 1

Figure 6.8: Visualization of the posture space generated from stair climbing data. The
dashed blue line shows the area of high probability. According to the probability density
function learned from the data set, postures inside this area are likely to be anatomically
feasible.

114

6.2. Imitation from Motion Capture Data

Furthermore, we analyzed the PLDPMs generated for the stair climbing data sets,
Figure 6.8 shows the corresponding posture space. In addition to the postures, we also
plotted the border of the high-probability area inside the posture space. According
to the probability density function learned from the data set, all postures inside this
area are likely to be anatomically plausible. In contrast to the walking example, stair
climbing does not correspond to a circular trajectory in posture space. Instead, more
complex trajectories must be specified to generate an accurate stair climbing animation.
The shape of the trajectory strongly depends on the dimensions of the staircase elements.
During optimization we must, therefore, ensure that the synthesized animation perfectly
matches the height and depth of the elements. Otherwise, the legs and feet of the virtual
human would penetrate the staircase.

6.2.3. Motion Synthesis

The metric of imitation of both the ‘stair climbing” and the ‘walking’ behavior is inspired
by dancing instructions, i.e. the way dance steps are documented. Written dancing
instructions often include a diagram visualizing the involved moves as a sequence of
footprints. Such diagrams convey information about timing, location and side of the
dancing step. Figure 6.9 (left) illustrates how this concept can be applied to our domain.
A set of footprints for the left and right foot is specified relative to the depicted staircase.
The footprints can be seen as constraints that must be met in order to generate a
successfull stair climbing animation. Contact between the virtual human’s feet and the
ground must be ensured at each of the specified footprint locations. The footprints show
the alternation of left and right foot that is typical for locomotion. Note also, that these
footprints are specified relative to the shape of the ground. As a result, regardless of how
the size of the staircase or the characteristics of individual stairs changes, the footprint
will be correctly placed on top. The same principle, of course, also applies to walking
gaits or other locomotion tasks.

Given these footprint constraints, how can we synthesize an animation? As docu-
mented by the principle of posture-point duality (see Section 4.3), the synthesis of a new
animation involves the specification of a trajectory in the low-dimensional posture space.
This trajectory is based on a set of control points, each corresponding to a posture ful-
filling one of the footprint constraints. In other words, for each constraint, we need to
specify a corresponding point in posture space. The trajectory connecting all of these
points then represents the target animation. But how to find for each of the constraints
a corresponding low-dimensional point, which meets the requirements?

We will use a similar approach as in the ‘button pressing’ example in Section 4.4. For
each constraint, we search the posture in the posture space, which minimizes the distance
between the sole of a foot and the respective footprint position [see Figure 6.9 (middle)].
Additionally, the difference between the orientation of the foot and the footprint can
also be added to the fitness function. The goal of optimization is, hence, to find a set
of points in the posture space that minimizes the deviation in position (and possibly

115

6. Learning to Imitate and Adapt Full-Body Motions

Swing

@~ N
_® - ‘(!)
Next Footstep Next Footstep

Foot
Position

-

Figure 6.9: Calculation of the fitness for locomotion behaviors. Left: Desired footprint
positions are defined based on the structure of the terrain. Middle: The distance of the
foot to the specified footprint is minimized. Right: To simulate a more realisitic leg
motion, intermediate footprints can be specified.

orientation) between the leg of the virtual human and the footprints. The number of
control points for the low-dimensional trajectory is equal to the total number of stairs
in the staircase.

However, in order to improve the visual quality of the synthesized animation, we can
also specify additional constraints and consequently control points than the number of
stairs. For example, we can add a constraint for the position of the foot during the
swing phase of the motion, as can be seen in Figure 6.9 (right). By specifying such
intermediate positions through which the foot has to pass, we can control the transition
of the feet from one step to the other in more detail. This can be used to enhance the
dynamic character of the resulting animation. In addition, such intermediate positions
can be used to avoid penetrations, which would normally occur, if a foot is moved on a
straight line from one step to the other.

To evaluate the suitability of the fitness function described, we conducted a series of
experiments. In these experiments, we synthesized stair climbing and walking anima-
tions using different virtual humans. We then analyzed the results both in quantitative
(foot deviation) and qualitative terms (animation quality). Table 6.2 shows the results
of the quantitative analysis for the ‘stair climbing’ behavior. The experiment was con-
ducted with PLDPMs constructed using different dimensionality reduction techniques,
and with varying dimensionality of the posture space. For each combination we measured
the distance between the desired position of the foot (the footprint location) and the
synthesized position of the foot. The results in Table 6.2 correspond to the mean values
of these distances (in meter). We can see that with a posture space of four dimensions
the discrepancy is already in the range of millimeters for most of the DR techniques.
Again, the best results are achieved with PCA, MDS and NLM with deviations of one
to two millimeters.

116

6.2. Imitation from Motion Capture Data

Dim. PCA/m LLE/m CCA/m CDA/m MDS/m ISOMAP/m NLM/m

2 0.37 0.055 0.052 0.023 0.039 0.033 0.046

3 0.19 0.022 0.022 0.0065 0.0012 0.0097 0.0088
4 0.0012 0.0104 0.012 0.0020 0.0019 0.01 0.0026
> 0.0018 0.0122 0.0037 0.0033 0.018 0.001 0.0010
6 0.0038 0.0009 0.0004 0.0008 0.0029 0.019 0.0016

Table 6.2: Per-step optimization error in [meter| for the ‘stair climbing’ behavior.

Figure 6.10: A synthesized stair climbing animation. The movements are adapted to
the different heights of the stair.

Judging from these results, we can conclude that four dimensions are sufficient for
generating walking and stair climbing animations that closely follow a specified sequence
of footprints. A discrepancy of one to two millimeters is generally not perceivable by
a human user. Additionally, we analyzed how well the approach can adapt to extreme
variations of the environment. We modeled a virtual staircase with stairs that vary
considerably in height and depth. The staircase consisted of stairs with a height of
15 em or 30 cm, and a depth of 20 cm, 30 cm, or 40 cm. In order to produce viable
animations, our synthesis algorithm must correctly adapt the gait of the virtual human
to the dimensions of the stairs. Figure 6.10 shows pictures from a synthesized stair
climbing animation. We can see that the posture of the virtual human adapts to the
height and depth of the current stair. In particular at the second stair (third picture
in the upper row), we can see that the virtual human makes a larger step in order to
successfully place the foot on top of the higher stair. In this situation the virtual human
lifts the leg up in a more vertical motion. On the smaller and deeper steps, however,
the virtual human moves the leg less upwards and more forwards. More generally, the

117

6. Learning to Imitate and Adapt Full-Body Motions

figure shows that our imitation learning algorithm is well suited for synthesizing new
animations which are well adapted to the current environmental context.

Finally, we also evaluated the visual quality of the walking gaits produced by our
algorithm. Realistic human walking gaits show a specific alternation in swinging the
legs and arms. Each arm moves forward in synchrony with the corresponding leg on the
opposite side. From a biomechanical point of view, it increases the power efficiency of the
walk. From a visual point of view, the swinging of the arms increases the naturalness
of a walking gait. However, in our approach we do not explicitly model this type of
dependency between different body parts during walking. Instead, this task is left to
the PLDPM construction algorithm, which extracts this information from the training
data. So although the fitness function does not address the relationship between the
arms and the legs, we still expect correct oppositions of arms and legs in the synthesized
animations. Figure 6.11 shows a sequence of pictures from such a synthesized walking
animation.

Figure 6.11: A walking gait synthesized by our imitation learning approach. Although
the animation is generated through optimization it appears highly natural. In contrast to
traditional motion capture, we can adapt the animation to any terrain or desired footprint
location.

As for the stair climbing example, the discrepancy between the desired leg position
and the generated leg position in the synthesized walking animations is within a few
millimeters and therefore not perceivable for the human eye. Asindicated by the postures
shown in Figure 6.11, the movement appears natural and is clearly recognizable as a
walking gait. The arms also swing in synchrony with the opposite legs without this being
explicitly specified in the fitness function. This leaves us with a method for adaptively
synthesizing new walking gaits with a realistic appearance. The footprint locations can
be modified according to the underlying terrain or the intended speed of locomotion.
The synthesis algorithm ensures that a walking gait is produced which passes through
these footprints. At the same time, new models can be trained in order to synthesize
walking gaits with a different style.

118

6.3. Programming Robots by Demonstration

6.3. Programming Robots by Demonstration

Moving from virtual humans to other types of synthetic humanoids, we will subsequently
show how small humanoid robots can be trained using a variation of the proposed
imitation learning approach. More specifically, we will present a new programming
by demonstration method for bootstrapping robotic motor skills through kinesthetic
interactions.

Figure 6.12: A human teaches a small humanoid robot how to stand up.

In this method, a human teacher instructs a robot by manually moving the robot’s
joints and body to postures that approximate the intended movement. Figure 6.12 de-
picts such a situation, where a human teacher showing a small humanoid robot how to
stand up. After instruction, an automatic optimization phase takes place during which
the robot learns a motor skill that still resembles but also compensates for likely imperfec-
tions of the demonstrated movement. This learning phase makes use of a physics-based
virtual environment, where a large amount of movement variations can be tried out very
quickly without the need for human intervention. Henceforth this new imitation learning
approach will be called kinesthetic bootstrapping.

6.3.1. Kinesthetic Bootstrapping

When learning a new physical skill, children are often supported by their parents. This
allows to transmit knowledge on how to solve the task at hand and, thus, overcome
learning barriers. In these situations, kinesthetic interactions serve as a communication
channel between the parent and the learning child. The bodily experience resulting from
these interactions helps to reduce the amount of time needed for acquiring the skill. Still,
the child has to go through an unassisted learning phase in order to fully master the skill.
Kinesthetic bootstrapping applies the same principle to the programming of humanoid
robots. A human conveys a demonstration of the task at hand through kinesthetic
interactions. The bodily experience allows the robot to draw important information on
the task at hand. This information is used to “bootstrap” the robot’s knowledge, which
is then used in a learning phase to reproduce the skill without any assistance. Figure
6.13 shows an overview of the learning approach used in kinesthetic bootstrapping.

119

6. Learning to Imitate and Adapt Full-Body Motions

Demonstration Posture Model Optimization Transfer to Robot

Figure 6.13: Overview of the kinesthetic bootstrapping approach. After kinesthetic
interaction, a posture model is created. A simulator is used to optimize the demonstrated
skill. The result is then applied on the physical robot.

First, the teacher moves the joints of the robot in order to convey a demonstration of
the intended motion or behavior. This is done continuously without relying on keyframes
or another kind of discretization. During the demonstration, the motor configurations
of the robot are recorded with a frequency of 20 Hz in our case. The robot used in
this study is a Bioloid robot with 18 servo-motors (i.e. 18 DOF). In each step, the
state of each of the servo-motors is recorded, resulting in an 18-dimensional posture
vector q. Once the user finishes the demonstration, all posture vectors are collected
in the set Q in order to compute a low-dimensional posture model of the skill. Next,
using the extracted posture model, different variations of the skill are evaluated. This
is done in a physics-based virtual reality simulation of the robot. The simulator allows
us to optimize the motion without harming the robot hardware and without relying
on human assistance. In particular, when the demonstrated motion is very dynamic,
such as a standing up motion, it is important for the robot to learn how to account for
the external (stabilizing) forces previously applied by the human teacher. We can also
see in the figure that kinesthetic bootstrapping extends our typical three-step approach
to imitation learning by a fourth step, namely a step for transferring the behavior to
the robot. Of course, it is not sufficient to synthesize and replay the robot motion in
simulation only. Once the optimization phase is finished, the learned motion must be
transferred to the physical robot and replayed outside of simulation.

The simulator used for kinesthetic bootstrapping is based on the Open Dynamics
Engine (ODE) and contains a precise model of the Bioloid humanoid robot. For cali-
brating the model, each motor is automatically moved by the calibration software and
the time needed to reach a given configuration by the real and simulated robot is mea-
sured. The difference between the two time values, i.e. the discrepancy between the
real and simulated world, is used to adapt the values of the low-level PID controller in
simulation, so as to better fit the movements of the real robot. An important feature of
this simulator is an abstraction layer for the control of the robot. This layer allows us to
control the real or simulated robot or both using the same interface. Thus, the user can

120

6.3. Programming Robots by Demonstration

always decide whether to apply the current program in reality or simulation. During
the learning phase, the simulator is used for reproduction of different variations of the
originally demonstrated motion. In a trial-and-error fashion each variation is executed
by the virtual robot, evaluated and the result is used for further optimization. In the
remainder of this section, we will explain each phase of the learning process in more
detail.

6.3.2. Learning

The kinesthetically recorded demonstration can be regarded as a template from which
important information about the skill in mind is inferred. Following our typical imitation
learning approach, we can therefore learn a PLDPM from dataset Q. The resulting low-
dimensional space of postures can have arbitrary dimensions L, with L < 18. Without
loss of generality, in the following explanation, we will use a two-dimensional posture
space (L = 2).

Posture Space

o — PCA
A — LLE

06 - o —— CCA

o —— CDA

‘ * —— MDS
05+ 1
|somap

* —— NLM

Number of Dimensions

Figure 6.14: Left: A representation of the low-dimensional space corresponding to the
posture model for grasping with both hands. Right: The projection error resulting from
applying different dimensionality reduction techniques to the recorded robot postures.

In Figure 6.14 (left) we see an example of a learned posture space for the Bioloid
robot. The model was computed based on demonstrations of two-handed grabbing
or grasping. Figure 6.14 (right) depicts the reprojection error generated by applying
different dimensionality reduction techniques to the data set of postures. We found that
for most skills, even with a simple PCA, 95% of the original information can be retained
using only four principal components. As in our previous examples, full-body motions
for the robot can be synthesized by simply specifying a trajectory in the posture space.

121

6. Learning to Imitate and Adapt Full-Body Motions

Each point along the trajectory reflects a posture of the robot at a particular time step
of the motion.

After learning a PLDPM, an evolutionary algorithm is used to optimize the demon-
strated skill. As a starting point for optimization, we use the low-dimensional trajectory
of the demonstration. For this, the set Q is projected into the posture space, yielding
a new set O of points specifying a L-dimensional trajectory. Next, Q is approximated
using n control points S = {s(1), .., s(n)} specifying a spline curve. The spline can be
regarded as a highly compressed representation of the demonstrated motion. Instead of
using all points of the original trajectory Q, only a limited number n of control points
is used for optimization.

More precisely, the control points S are used for initializing individuals of an evolution
strategy. A set of slightly perturbed variants of S are created in the initial population
of the ES. Each individual is then processed, and the corresponding motion executed by
the simulated robot. This is done by reprojecting each point along the encoded trajec-
tory back to the original space of joint values. Using a user-provided fitness function,
each individual is then evaluated and assigned a fitness value. Once all fitness values
are determined, the best individuals are selected, mated and mutated according to the
typical rules of a ES (see Section 4.4.3). Finally, when the learning process is finished,
the newly learned skill is applied on the real physical robot.

When performing dynamic motions, such as a standing up behavior, timing plays
an important role. Therefore, we add a special time parameter for each of the control
points into the chromosome. The time parameter indicates at which timestep each
posture should be realized. Each individual in the ES, thus, consists of a set of values

{s(1),t(1),..,8(n),t(n)}.

6.3.3. Experiment and Results

To evaluate the proposed approach, we conducted a set of experiment in which a human
teacher had to teach a small humanoid robot a set of skills using kinesthetic bootstrap-
ping. Among others, the robot learned to stand up by itself, walk, and perform a
headstand. In all experiments, PCA was used as a dimensionality reduction technique.
The number of dimensions L was set to 4. In contrast to our previous examples, op-
timization was performed cast as a maximization (instead of minimization) problem.
That is, the higher the fitness values the better.

The teacher was given about 15 minutes time to kinesthetically demonstrate the re-
spective skill. In the upper row of Figure 6.15 we see the result of directly replaying the
demonstrated skill. Because of the missing support of the teacher, the robot failed to
stand up by itself. In order to successfully stand up, the robot must learn to compen-
sate for these external forces using his own motors. For this, we ran the optimization
as described in Section 6.3.2. The number of control points n in a trajectory was 25.
For the ‘standing up’ skill, the fitness values were determined based on the sum of the
z-values (=height) of the robot’s head position. That is, the higher the robot rose up,

122

6.3. Programming Robots by Demonstration

- \ 2L ~— i - » —

Figure 6.15: Upper row: Direct replay of a demonstrated standing up skill by the small
humanoid robot. The robot fails to stand up, because of the missing support forces of
the human teacher. Middle and bottom row: Results of applying the evolved standing
up behavior in simulation and on the real robot. The robot learned to move the hip
backwards to an extreme position, so as to pull up the torso without falling forwards.

the higher was its fitness. The trial was aborted, if the robot’s head was below a given
threshold, i.e. the robot fell down during the simulation. The middle and bottom row of
Figure 6.15 show the result of the optimized skill in simulation, and after application on
the real robot. As can be seen, the robot learned to stand up by modifying the original
motion. In particular, the hip motion was changed such that the robot can lift its torso
without losing balance (second picture from right). By moving the hip backwards to an
extreme position, the center of mass of the robot remains between the legs. The robot,
then, can rapidly pull up his hands without falling over. As can be seen in the figure,
the execution in both the simulator and on the real robot leads to approximately the
same motion. In both cases, the result is an elegant solution to the problem of standing
up.

For the walking skill, the fitness value of each individual was determined, using the
distance traveled from the starting position without falling down. The robot received a
high fitness if it successfully travelled a long distance. Note, that this is a more abstract
form of objective function than the one used for locomotion in virtual humans. In the
case of the virtual humans, we explicitly specified the positions where the feet of the

123

6. Learning to Imitate and Adapt Full-Body Motions

Low-Dimensional Motion Trajectories Evolution of Walking Skill
038 T T 40 T T T T T T T
O —— Demonstration

06 F A — Optlmlzaj
o~ 04
2
5 02t
o
g
8 oor
o]
2 02t
o
=
& 04l

-06

08 : : : 00

-05 0.0 05 0 10 20 30 40 5 60 70 8 90 100
Principal Component 1 Generations

Figure 6.16: Left: The trajectories of the walking skill in the low-dimensional space of
postures. Right: The evolution of the fitness value during the learning of the skill. The
fitness was determined using the distance traveled by the robot.

virtual humans should be, as well as the timing in which this should occur. In contrast to
that, in this example we do not provide the evolutionary algorithm with this information.
The only information on which optimization is based, is the distance travelled during
the execution of a particular individual of the evolutionary algorithm. The number n of
control points was set to 12. In Figure 6.16 (left) we see the low-dimensional trajectories
resulting from the control points of the walking skill before and after optimization. The
trajectories show the values of the control points in the first and second principal compo-
nent. The lower-order components, in this case the first and second component, contain
the ‘most important’ aspects of the data. Thus, by visualizing the first two components,
we can see most important changes to the robot motion. We can see in the figure that
some control points of the trajectory were only slightly modified, while in other parts
strong modifications were made. The resulting optimized trajectory resembles a skewed
version of the original trajectory. Figure 6.16 (right) shows the evolution of the fitness
values during optimization. In the first generation the fitness value is near zero because
most of the synthesized walking gaits resulted in the robot falling down. However, as
optimization progressed, the fitness gradually improved.

With each generation of the ES, the robot managed to travel larger and larger dis-
tances. However, after the ES finished, we found that the best individual in the simu-
lation did not lead to a stable walk in the physical system (real robot). This unveils a
common pitfall of using a simulator: even the best simulation is only an approximation
of the real world. Fortunately, ES allows for a simple solution to this problem. By
testing the best individuals of earlier generations, we can search for solutions that are
transferable to the real world. Figure 6.17 shows an evolved stable walking pattern. It
corresponds to the fittest individual from generation 50. In later generations, the ES ex-

124

6.3. Programming Robots by Demonstration

Figure 6.17: The result of applying an evolved walking behavior in simulation and on
the real robot. Learning this skill involved a kinesthetic demonstration of only 5 minutes,
in which the legs were moved by the human, and the specification of the fitness function.

ploited the characteristics of the simulator too much and, thus, generated an individual
that was not applicable to the real environment.

The ‘headstand’ behavior is a particularly difficult skill for a robot to perform. Indeed,
even for humans this skill can be difficult to execute, as it requires the right amount of
force, balance and timing. To successfully perform a headstand, the robot first needs to
move its arms in a triangular shape in front of its torso. Next, the pelvis must be moved
in direction of the head and the legs need to be straightened. Finally, the legs must be
lifted up and the weight needs to be correctly balanced, i.e. the robot should not fall
sideways. The whole sequence has to be performed dynamically in order to generate
enough force and keep balance. The headstand is optimally executed if the robot can
stretch out the whole body while keeping balance on the head and the support built up
by the arms.

The upper row of Figure 6.18 depicts the result of directly replaying a demonstrated
headstand behavior. The robot cannot perform this skill successfully and slips on the
surface of the table. The main reason for this problem, is that the robot prematurely
lifts up the legs. Without the supporting forces of the human demonstrator, the robot’s
legs fall back onto the surface of the table where they generate friction. In turn, this
friction results in the torso being moved forwards, instead of the legs being lifted up.
To overcome this problem, the robot must adapt the demonstrated motion to its own
dynamics and build up sufficient momentum and balance. As in the previous examples,
this was done in optimization. As a fitness function, we used the sum of the z-values of
the robot’s left and right foot. The more the robot succeeded in pulling the legs and feet
upwards, the better was his fitness. As can be seen in the bottom row of Figure 6.18,

125

6. Learning to Imitate and Adapt Full-Body Motions

Figure 6.18: Top: A recorded headstand movement is replayed without any optimization.
The robot fails to successfully perform the motion. Bottom: After optimization the robot
successfully realizes a headstand.

after optimization the robot succeeds in performing a headstand even though the fitness
function does not give any precise information about how the motion must be modified.

6.4. Programming Robots by Physical Interaction

Robot technology has progressed greatly from large, unsafe manufacturing machines to
highly sophisticated androids with human-like appearances. As this technology continues
to improve, the application domains of robots continue to expand, moving deeper into
the realm of everyday life. Thus far, the most common type of robot, i.e. the industrial
robot, has primarily inhabited dedicated working environments in factories. For a human,
entering such a workspace can result in severe injuries. Recent robotic developments,
however, are increasingly targeted at domestic environments and assistive tasks, in which
human-robot interaction is indispensable. Several requirements must be met for humans
and robots to share a common living environment. First, all physical contact between
the interacting partners must be safe; the human must never be harmed. Next, the robot
must be able to adapt its motions to the environment and to the actions of the human
partner. Ideally, the robot should also learn from previous interaction experiences and
modify its behavior according to feedback provided by the human partner.

In the following, we will investigate a physical human robot interaction scenario with
a tight coupling between the human instructor and the learning robot. A test subject is
asked to physically assist a state-of-the-art robot in a standing up task. Both the human
and the robot are required to adapt their behaviors in order to cooperatively complete
the task.

126

6.4. Programming Robots by Physical Interaction

The primary technical difficulties of this approach are as follows:
e Guaranteeing safety at all times.

e Ensuring that the robot reacts appropriately to the force applied by the human
instructor.

e Improving the behavior of the robot using a machine learning algorithm in a phys-
ical human robot interaction.

In order to ensure safety, the robot is equipped with pneumatically actuated flexible-
joints. This allows the robot joints to have high flexibility in response to externally
applied forces. Furthermore, the robot can safely apply a force to the human instructor
in order to provide efficient physical assistance. This interchange of force is considered
as one of the most important aspects in close physical human robot interaction.

In order to improve the behavior of the robot, we will employ imitation learning as
already used in earlier scenarios. In contrast to our previous examples, however, the
fitness function will be replaced by a human evaluation. After each trial, the human
interaction partner judges whether the interaction was successful or failed. This judg-
ment is used to perform optimization and update the behavior of the robot. As learning
progresses, the robot’s PLDPM implicitly includes the actions of the human counter-
part. In this framework, refining the motion of the robot in physical interaction requires
the motion of the human to be improved because the two motions influence each other.
Therefore, the human counterpart is part of the learning system and its overall dynam-
ics. The most significant difference between physical interaction learning and the earlier
introduced kinesthetic bootstrapping, is that the human counterpart is included in the
system. This can generate complex physical human-robot interactions and provides high
adaptability.

6.4.1. Physical Interaction Learning Approach

The goal of interaction learning is to improve the cooperation of humans and robots
while they are working to achieve a common goal. Figure 6.19 shows an overview of
the learning scheme used here. This scheme can be regarded as a variation of our three-
step imitation learning approach which is executed in a loop. After an initial physical
interaction between a human and a robot, the human is given the chance to evaluate
the behavior of the robot. More precisely, the human can judge whether the interaction
was successful or not. The feedback can be provided in various ways, such as through
touch or through a simple graphical user interface. Once the evaluation information
is collected by the robot system, it is stored in a database in memory. The memory
collects information about recent successful interactions and manages the data for the
subsequent learning step. This allows us to optimize the set of training examples used
for learning in order to improve learning quality.

127

6. Learning to Imitate and Adapt Full-Body Motions

Memory
PLDPM / \
Q Critique

A

4
\\g‘

Physical Interaction

Figure 6.19: Overview of the physical interaction learning approach. After physical
interaction, the human judges whether the interaction was successful. This information is
stored in memory and used for later learning a PLDPM.

Figure 6.19 shows the human-in-the-loop learning system considered in this section.
The behavior of the human influences the behavior of the robot, and, simultaneously, the
behavior of the robot influences the behavior of the human. Furthermore, the behavior
of the robot changes as learning progresses, which in turn influences the behavior of the
human especially with respect to the physical support. This system demonstrates one
of the applications of tightly coupled physical interaction.

After several interactions, the learning system queries the memory for a new set of
training data. The data is then used to learn a corresponding PLDPM. In contrast to our
earlier examples, however, a PLDPM containing three Gaussian mixture models—one
for each phase of the robot’s stand-up task—is learned.

Once the state vectors are projected onto a low-dimensional posture space, the result-
ing points into sets are grouped according to the action performed in that state. Thus,
we obtain for each possible action a set of states in which the corresponding action is
to be triggered. For each action, a Gaussian Mixture Model (GMM) is learned which
encodes a probability density function of the learned state vectors. By computing the
likelihood of a given low-dimensional state vector q in a GMM of action A, we can
estimate how likely it is that the robot should perform action A when in posture q.
The learned mixture models are then used during the next physical interaction trial to
determine the actions of the robot. Here, each new posture is projected into the low-
dimensional posture space. Then, the likelihood of the projected point for each GMM is
computed. Following a maximum-likelihood rationale, the action corresponding to the
GMM with the highest likelihood is then executed by the robot.

With each iteration of the learning loop, the robot adapts its model more and more
toward successful interactions. The result is a smoother and easier cooperative behavior
between the human and the robot.

128

6.4. Programming Robots by Physical Interaction

Behavior System of cB?

Switching Mechanism

ii p*0 (i=1,2, « + +,n) <—‘

Desired Posture Current Posture

¢ {25, a0} , z e {a, 20,1}
Control System of CB

.
Ty

!

.y
+ o—>] Joint 1 o
e |

gl

* + dl + " T
ot bt} - o
1 e

Figure 6.20: Left: Control architecture of the CB? robot. The desired posture is encoded
as a vector &* of angular values. Using a PD-controller, drive torques are generated in
order to attain the desired posture. The switching mechanism changes between a set of
different desired postures in order to achieve complex robot motions. Right: Flexible-joint
humanoid robot used in the experiments in this section.

6.4.2. The CB? Robot

We used in the present study the so-called ‘Child-robot with Biomimetic Body’ or
CB2[MYNT07]. The robot features the following characteristics:

Height: 130 cm, mass: approximately 33 kg.

Degrees of freedom: 56.

All joints, apart from the joints used to move the eyes and eyelids, are driven by
pneumatic actuators.

All joints, apart from the joints used to move the fingers, are equipped with po-
tentiometers.

The joints have low mechanical impedance due to the compressibility of air. The
joints can also be rendered completely passive if the system discontinues air compression
during robot motion. This helps the robot to perform passive motions during physical
interaction and helps to ensure the safety of the human partner. This contrasts with
most other robots, in which the joints are driven by electric motors with decelerators.

The flexible actuators enable the joints to produce seemingly smooth motions, even
when the input signal changes drastically. This feature of the CB? robot is used to
realize complex motions using the simple control architecture [IMI08] depicted in Figure

129

6. Learning to Imitate and Adapt Full-Body Motions

6.20. More specifically, full body motions of the robot are realized by switching between
a set of successive desired postures. Furthermore, the flexible actuators enable motions
generated by this simple control architecture to be changed adaptively in response to
an applied force from the human partner. Each posture is described by a posture vector
q, with each entry of the vector denoting the angular value of a particular joint. A low-
level controller is implemented by PD-control of angular values. Each time the desired
posture is switched drastically, large drive torques are generated, resulting in an active
force being applied to the human caregiver. As the posture of the robot approaches
the desired posture, the passive motion gradually becomes the dominant motion of the
robot because the amount of error in the angular control gradually decreases.

switching 1 switching 2

When the legs are
bent more than in
posture 2

When the hands are
pulled up by the human

posture 1 posture 2 posture 3

Figure 6.21: Top: A series of snaphshots showing the human-robot interaction during
the standing up task. Below: The three desired postures used in the standing up task of
the experiment. The learning task is to determine the ideal switching conditions between
the desired postures.

Figure 6.21 shows how the standing up task investigated in our work is realized using
the proposed control architecture. The behavior is realized by switching between three
desired postures. At first glance, the specifications of the robot motion appear to be
extremely simple. However, the switching times are highly dependent on the human
interaction. More specifically, the switching times depend on the anatomy and skills
of the human. This means that the robot has to adapt the switching times to the
characteristics of its partner during the period of interaction.

6.4.3. Learning Method

For the standing up task the goal of learning is to determine the ideal timing for the
switching actions ¢* € Q* C Q between different desired postures. Here, ¢* is a desired
posture, Q* is a set of desired postures prepared for control, and Q is a space that
is constructed from all joint angles. The learning process constructs three different

130

6.4. Programming Robots by Physical Interaction

Gaussian mixture models: one for the case in which no switching occurs, one for the
first switching action, and one for the second switching action.

At each time step of the interaction between the human and the robot, the realized
posture and the current desired posture of the robot are recorded. One such posture q
is a 52-dimensional vector that encodes the current angular value of each joint. After
the interaction is complete, the postures are stored in a database in the memory. The
database holds the information for the last ten interactions. Although there are several
possible ways to integrate new data into the database, the general policy used here is
“new data overwrites old data, and successful interactions overwrite failed interactions”.

After ten interactions, the training data is used for learning. The goal of the learning
process is to construct a model that indicates when the robot should switch actions by
changing the current desired posture. This rule is described by a mapping from the
current posture of the robot to the desired posture that the robot should use. This is
realized using GMMs. Therefore, the objective model of the learning is a probabilistic
model that indicates the likelihood of desired postures in the current state.

When learning a PLDPM, we first apply dimensionality reduction to all recorded
postures to construct a posture space P. Next, we compute a GMM for each of the
three switching classes. For this, we divide the projected data points into distinct sets.
If no switching occurred, then the corresponding point is assigned to the first data
set. Otherwise, the point is assigned to one of the other two sets corresponding to the
switching phase. For each set of projected points, we learn a probability density function
by a weighted sum of K Gaussian distributions. After learning, we end up with three
GMDMs coding three probability density functions in P, namely, ®;, ®,, and ®3. Each
probability density function can be used to determine the probability of a point in low-
dimensional posture space with respect to a particular switching action. For example,
computing ®o(q) for a given projected robot posture g, returns the likelihood of the
robot having to switch from the second to the third desired posture when the robot is
in state q.

When the next experimental run is started, the robot can use the newly learned model
to determine its current state and the desired posture. The current joint values are
projected onto the learned low-dimensional posture space. The result is a L-dimensional
point. The desired posture for the next time step g’ _,, can be computed in a maximum-
likelihood fashion as follows:

q... =q (1) € Q with i=argmax ®;(q) (6.1)
1€{1,..,3}

In each step of the control loop, the robot calculates g}, and passes the angular val-
ues to a low-level controller. The controller then computes the joint torques needed to
achieve this posture. After the interaction is complete, the human evaluation information
is collected and used to update the database. The learning loop is then repeated. Figure
6.22 shows an example of such a set of interactions projected onto a low-dimensional

131

6. Learning to Imitate and Adapt Full-Body Motions

15

Desiréd Posture 1I (] I
Desired Posture 2 e
1k Desired Posture 3 ° i
(]
(]
~ 05 b
€
[}
S Yoy
o e
O ’h:: Ce,®
Tg_ -05u.o.ooﬁ.o- oo o B
— []
=] 00 o o ¢
£ \‘“'
& 4|]
-15 b
-2 1 1 1 1 1
-1 0.5 0 0.5 1 1.5 2

Principal Component 1

Figure 6.22: Interaction data for the standing up task projected into a low-dimensional
posture space. Each point corresponds to a specific posture of the robot.

space. Each point in the plot represents one posture of the CB? robot during an inter-
action. The points are colored according to the desired posture that is active during the
particular time step.

6.4.4. Experiment and Results

In order to investigate tightly coupled adaptation and the learning of a corresponding
PLDPM as explained above, we performed a physical human-robot interaction (PHRI)
experiment using the interaction for the standing up task introduced earlier. In par-
ticular, we considered the following question: “Does the learning algorithm lead to a
symmetric learning process, in which both human and robot adapt their behaviors?”
Furthermore, we were interested in the contribution of the learning algorithm to the
improvement in the interaction. This required a careful design of the experiment, which
allows us to distinguish between learning-based adaptation and adaptation due to human
habituation to the robot.

The experiment was split into three independent parts. Throughout the experiment,
five subjects were asked to repeatedly assist the robot in standing up. In the first part,
after every ten trials, the accumulated data in the database was used for learning a
new model, according to the learning scheme described in Section 6.4.3. In total, 30
interactions with two intermediate learning steps were thus performed. In the second
part of the experiment, learning by the robot was disabled and fixed time steps were
used for switching between the postures. In this baseline scenario, the only type of
adaptation possible was the adaptation of the human to the robot. In the third and
final part, learning was once again enabled. This experimental design ensures that we

132

6.4. Programming Robots by Physical Interaction

Figure 6.23: Sequential photographs of the first (top) and last (bottom) interactions
of the test subjects with the robot. The white curve depicts the change in position of
the robot’s hips. The center photograph of each sequence shows how the robot learns to
maintain firm contact between its feet and the ground for both subjects.

generate baseline data that allows us to compare the results of the interactions with
and without learning. In addition, by performing the baseline experiment between the
learning experiments, we ensure that the user is already familiar with the robot. Thus,
we rule out any distortion of the baseline result due to unfamiliarity.

In a preliminary experiment, we empirically confirmed that the 52-dimensional posture
vector of the robot can be expressed by two principal components in order to apply pro-
posed learning system to the standing up task. Therefore, we use dimensional reduction
to reduce the posture vector to a two-dimensional vector.

Figure 6.23 shows sequential photographs of the interactions of two test subjects.
The upper row of pictures shows an initial interaction, whereas the lower row of pictures
shows an interaction after learning. The white dashed line indicates the height of the
hips in each snapshot. In the figures we can observe a smoother transition of the hip
height after the learning interaction, as compared to that before the learning interaction.
In particular, the center photographs reveal strong contact between the feet and the
ground and an increased hip height after learning, in contrast to the poor contact with
the ungainly leg posture before learning. Since the degree to which the human helped the
robot in the task and the evaluation of the robot performance are somewhat subjective,
in our evaluation we focus only on whether the robot motion is refined to the degree
that inefficient and jerky motions are avoided.

Figure 6.24 shows the interaction trajectories for a user before and after learning.
Each trajectory was computed by projecting the robot postures into the low-dimensional
posture space. Before learning, the trajectories contain loops and are partially linear.
These linear pieces of the trajectories are due to jerky movements and large changes
in the robot postures. In particular, for the first user, the variance in the trajectory
decreases after learning. The trajectories become more similar and take on a V-shaped

133

6. Learning to Imitate and Adapt Full-Body Motions

Before Training After Training
T T T T T T T T T T T T T T

20 F . 20+ -
S 15 S 15
o o
5 5
8 10} 41 & 1ot .
g g
o o
< 051 1 w O05f -
o Q. N
S S
S 00f 4 £ 00Ff g
o X

05 | . 05 -

-1.0 30 10 05 00 05 10 15 20 25 30

15 15 T T . T T .
~ lOF 1 & 10F .
& 05} {1 & o5} .
c c
3 3
g 00 q g 00 B
3 3
= 05 1 g 05F .
2 2
2 10t 1 2 10t g
o o

15+ - 15+ .

20 20 L . . L L L

10 -05 00 05 10 15 20 25 -0 05 00 05 10 15 20 25
Principal component 1 Principal component 1

Figure 6.24: Projected interactions in the low-dimensional posture space. The upper
two plots show the interaction trajectories for the first subject before and after learning.
The bottom plots show the interaction trajectories for the second subject. In both cases
the trajectories become smoother after learning, and sudden jumps and knots are reduced.
Furthermore, the trajectories become V-shaped, clearly indicating smooth transition be-
tween the three desired postures.

form. This can be explained by the fact that the interaction consists of three desired
postures. Therefore, in successful trials, the interaction leads the robot from a starting
posture to an intermediate posture and then to a final posture, as shown in Figure 6.21.

In a low-dimensional space, the result is a V-shaped or triangular-shaped trajectory.
This allows us to qualitatively evaluate the efficiency and naturalness of the interaction
by analyzing the smoothness and shape of the low-dimensional trajectories. For example,
in the case of the second subject, the trajectories before learning contain large loops at
the point (1.7, —1.5)7, which is the low-dimensional coordinate of the second desired
posture. This phenomenon can easily be explained by taking the previous analysis into
account. In the initial trials, the robot has poor contact with the floor and the legs are
often not symmetrically arranged when reaching the second desired posture. As a result,
lifting the robot becomes more difficult for the human, and involves slight modifications

134

6.4. Programming Robots by Physical Interaction

Subject 1 Subject 2

2.5 T T T T 2.0 T T T T

— Init — Init

£ ool — After Learning 1 £ — After Learning 1
S —— After Learning 2 S 15r —— After Learning 2
(<) [«
D 15 1 o©
o o
o 10 _ o
5 5
7)) 7))
£ 05f {1 g

0.0 . ' -

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 8 90 100

Time Time

Figure 6.25: Evolution of the posture change norm during one learning experiment. The
solid, dotted, and dashed lines show the evolution of the value before the robot started
learning, after the first intermediate learning step, and after the second intermediate
learning step, respectively.

of the robot posture in order to make the feet more stable. This interrupts the flow of
the standing up task and increases the interaction burden for the human caregiver.

In order to confirm the above findings we quantified the robot motion using the posture
change norm. The posture change norm a of the robot motion was calculated using the
Euclidean distance between the data points of ¢ and ¢ — 1 in the set O defined using
each joint angle as a base:

agy =l q(t) —q(t —1) [l2, q(t),q(t—1) € Q. (6.2)

Computing the posture change norm at each time step of the interaction results in the
time series depicted in Figure 6.25. The solid line shows the posture change norm during
the initial interaction phase. We can see a sudden peak indicating a large change in the
robot posture and, consequently, a non-smooth motion. This is not desirable, because
large changes in the robot posture result from strong forces acting on the robot. The
other lines show the evolution of the norm after each learning step. With each learning
step, the number of peaks in the time series is reduced. In other words, the fluctuations
in the posture change norm decrease leading to a smoother and more efficient motion.

A statistical analysis of the data further underlines our hypothesis. We computed the
mean value and the standard deviation of the sum of the posture change norm during
the interactions. Figure 6.26 shows the evolution of these values with each learning step.
For all subjects, we see that the mean and standard deviation of the posture change
norm decreased as the experiment progresses. In the baseline experiment, only one
subject was able to significantly improve the interactions, where statistical significance
is computed using a t-test. None of the other subjects were able to improve their
interactions. In the first experiment using the proposed learning system is used, three

135

6. Learning to Imitate and Adapt Full-Body Motions

Summation of
posture change norms

20

o

Baseline experiment

O 0325

i

Subject No.

20

20

I

2nd learning experiment

Summation of
posture change norms

=)

1

1st learning experiment

2.32e-4

0.0873

5.19-4 1.18e-4
4.96e-4

Subject No.

T
0.0049
0.022

o

Summation of
posture change norms

1.36e5
0,033 8.27e-8

0.0073 0.0028
15+ o 0021 ‘
5 ' | I
4

Subject No.

T
3.05e-7

4.63e-4
5

Figure 6.26: Mean and standard deviation of the summation of the posture change norm
of test subjects in the baseline experiment (left), the first learning experiment (middle),

and the final training experiment (right).

The blue, green, and red bars indicate the

mean and standard deviation values during each of the intermediate learning steps (after
every 10 trials). In the case of the baseline experiment, only subject 2 shows a significant

improvement after all trials.

In the first learning experiment, subjects 2, 4, and 5 show

significant improvements. In the final experiment, the interaction with the robot improved
for all subjects. With each learning trial, the indicated values decrease, and the movement
of the robot becomes smoother and more synchronized with that of the subject.

136

6.4. Programming Robots by Physical Interaction

Baseline experiment

|

3
Subject No.

1st learning experiment

Maximum posture change norm
Maximum posture change norm

3
Subject No.

Figure 6.27: Change in the maximum posture change norm in each phase during the
baseline experiment and the first learning experiment. No significant difference in the
maximum posture change norm is observed in the baseline experiment. On the other hand,
there are large changes in the maximum posture change norm in the learning experiment.
For all subjects, the values decrease drastically after learning.

subjects show significant improvement. Finally, in the second learning experiment, all
of the subjects showed significant improvement in their interactions. This indicates
that while a human can adapt to a robot and thus improve their interactions (as in the
baseline experiment), this adaptation can be significantly improved by enabling the robot
with learning capabilities (first and second learning experiments). We also analyzed the
maximum values of the posture change norm during the interaction. Figure 6.27 shows
the change in the value of the maximum posture change norm during each learning phase
of the baseline experiment and the first learning experiment. No significant difference
in the maximum posture change norm is observed in the baseline experiment. On the
other hand, in the learning experiment, large changes in the maximum posture change
norm occur. For all subjects, these values drastically decrease after learning.

6.4.5. Discussion

Our experiments lead us to the following observations: First, when learning and adap-
tation is only possible on the side of the human caregiver, generally, little or no im-
provement is measured. However, even in this asymmetric learning situation, at least
one subject was able to adapt to the robot so as to significantly improve the interaction
quality. This shows the human ability to adapt quickly to new situations and motor
tasks. Second, the interaction quality significantly improved in the first learning ex-
periment, and the improvement was even more remarkable after the second learning
experiment. These results support our working hypothesis that the proposed learning

137

6. Learning to Imitate and Adapt Full-Body Motions

system significantly improves PHRI. Another interesting observation is that the human
adaptation to the robot occurred both in the short and in the long term. At the begin-
ning of the experiment, the users were intimidated by the robot and the experimental
setup. During the course of the experiment, however, the test subjects became more
and more comfortable with the situation and the robot dynamics. As a result, the test
subjects found it easier to interact with the robot. This suggests that while learning
algorithms are needed for improving the PHRI, they can be rendered more efficient if
familiarization of the human with the robot is also taken into account. A special famil-
iarization phase, in which the human caregiver becomes accustomed to the robot before
any cooperative tasks, might be one approach. Another method by which to familiarize
the human with the robot might be a well designed interaction protocol that involves
tasks that are intended only to familiarize the human with the robot. An interesting
feature of the proposed procedure is the ability to monitor the progress of learning as tra-
jectories in a low-dimensional space. The results of the present study indicate that the
trajectories converge toward a V-shaped pattern for the standing up task. Furthermore,
the trajectories after learning appear to show particular points or bottlenecks through
which they pass. This is reminiscent of the research by Kuniyoshi and colleagues on the
‘knack’ of motions (for a recent publication on the topic see [OSOKO09]). They showed
that dynamic motions for a particular task often have a bottleneck in the state space.
This bottleneck is the result of the interaction of the human body and the environment.
Kuniyoshi and his colleagues referred to this property as knack, and showed that the
knack can be exploited in order to efficiently control a humanoid robot. In the proposed
PHRI scenario, the dynamics of the robot strongly depends on the dynamics of the hu-
man caregiver. A knack appears in PHRI because of the strong coupling between the
human and the robot and the resulting joint dynamics. In other words, the human can
be regarded as a changing environment that constrains the robot dynamics. Note that,
although only the posture of the robot was used to create the trajectories, we can still
discern a knack that is based on joint dynamics. However, it can be argued that posture
information is not sufficient to draw final conclusions about the joint dynamics.

To address this question, we also applied our learning method to a different cooperative
PHRI task, namely that of assisted walking as can be seen in Figure 6.28. In this scenario
the human caregiver must assist the robot while the latter is trying to walk. Our early
results show that slow assisted walking can successfully be realized using the proposed
physical interaction learning technique. However, the robot often failed to keep up when
the human demonstrator increased or reduced the speed of his walking gaits. This is due
to the reactive nature of estimating the joint dynamics from the postures only. To keep
up with a human interaction partner in this scenario, the robot must be more predictive
in his estimation of the joint dynamics. One possible approach to overcome this problem,
is to include sensor information into the probabilistic low-dimensional posture models.
That is, the state of the robot would be based on the current joint angles as well as the
information gathered from the sensors under the skin. In this case switching between
one posture and another would also be influenced by the amount of pressure exerted by

138

6.5. Other Approaches

Figure 6.28: A human caregiver assists the robot in his attempt to perform several walk-
ing steps. The movements of the robot are adapted by the physical interaction learning
method presented in this chapter.

the human caregiver on the robot’s body, e.g. the arms during assisted walking. An
interesting aspect in this regard, is the question of whether the sensor information can
simply be concatenated with the joint values to form the new training vectors, or if we
have to add a special treatment for this type of data. Further studies are underway in
order to obtain a conclusive answer to these questions.

6.5. Other Approaches

In computer animation spacetime optimization [WKS88| has been proposed for the adap-
tation of full-body motions to new environmental conditions (see Chapter 2). Spacetime
optimization can effectively be used for synthesizing walking animations from footprint
constraints. However, in contrast to the approach presented in this chapter, spacetime
optimization does not include methods for incorporating naturalness of postures and
movements into the synthesis process. As a result, it can not be guaranteed that a
generated animation is realistic and visually appealing. Additionally, this approach is
limited to simple kinematic constraints and cannot be used for more complex adapta-
tion processes. A different technique for adapting a recorded motion capture animation
was presented in [ZH02]. The proposed technique uses a combination of motion capture
driven animations with dynamics simulations and inverse kinematics. Motion capture
ensures that the generated animations retain their subtle details of human motion. Sim-
ulations of dynamics, on the other hand, ensure that a virtual human is influenced by
forces coming from the environment (passive reactions). Finally, inverse kinematics is
used to ensure that a particular position can be reached by the virtual human. The
approach is especially well-suited for reaching or boxing tasks, however, not suited for
more complex tasks, such as the adaptation of a recorded walking motion to a new
synthetic humanoid (as described in Section 6.3).

139

6. Learning to Imitate and Adapt Full-Body Motions

Several researchers have also applied dimensionality reduction techniques, and in par-
ticular PCA; to the problem of motion synthesis and adaptation. An early application
of PCA to animations was presented in [AMO00]. Here, PCA is mainly used to compress
a given animation and represent it at different levels of detail. In [GBT04], a PCA-based
walking engine was proposed. The engine is able to produce walking gaits at different
speeds and for virtual humans with different heights. However, the engine does not
include methods for generating walking gaits from footprint constraints. A similar ap-
proach was used in [CGGRO7] to synthesize walking gaits for a small humanoid robot.
Both works target walking skills only and do not address the general question of how
to imitate and adapt arbitrary motor skills. Another application of dimensionality re-
duction techniques for the imitation of motions was presented in [JMO03]. A recorded
movement is automatically segmented into distinct behaviors. These behaviors consti-
tute a ‘vocabulary’ from which new animations are later generated by concatenation.
In contrast to our work, however, the approach by Jenkins and colleagues is limited
to gestures and non-goal directed motions. This restriction significantly constrains the
application domains of the approach.

6.6. Conclusion

In this chapter we to investigated whether our imitation learning approach scales up
to full-body motions and whether it can meet the requirements of different domains,
e.g. computer animation or robotics. To this end, we first investigated how locomotion
skills can be taught to virtual humans. Using motion capture data, a PLDPM was
learned for walking and stair climbing. The results showed that our approach is scalable
for full-body motions. It successfully synthesizes animations that meet the constraints
posed by the anatomy of the virtual human and the demands of the environment. In
the second part of the chapter, we focused on robotic agents, physical environments and
kinesthetic training data. Instead of motion capture, we let the user move the joints of
a robot and collect the resulting sensory data. Even with such a considerable change of
setup, we were still able to use exactly the same three-step approach as in our earlier ex-
periments. Finally, in the last part of this chapter, we presented a physical human-robot
interaction scenario in which successful task completion can only be achieved through
coordinated actions between the robot and a human involving physical contact. In con-
trast to previous research in this field, the robot used in this thesis is in close physical
contact with the human partner and plays an active role during the cooperative task.
The CB? robot, through its flexible-joint design and soft silicone skin, is particularly
well suited for such tasks. Because of these features, physical interactions become more
‘natural’ and lifelike. In an experiment inspired by the parenting behavior in humans,
we were able to show that the proposed learning method results in measurable improve-
ments of the interaction. At the same time, we note that the human’s familiarity with
the robot has an impact on the interaction.

140

6.6. Conclusion

An interesting conclusion of this chapter, is that fitness functions can be specified at
different levels of granularity or abstraction. They can even be replaced by human judge-
ment, as in the case of the physical interaction learning. When synthesizing locomotion
skills for virtual humans, we included each step into the calculation of the fitness. At one
hand this guarantees high control over the resulting animation, on the other hand, how-
ever, it increases the specification burden for the user. The location of each step must
be determined prior to the start of the optimization process. In contrast to that, when
optimizing the walking skill for the small humanoid robot, we only used the travelled
distance as a fitness function. That is, we only cared about the result of the behavior
not the means by which to achieve it. In traditional evolutionary optimization the usage
of such abstract fitness function can have severe implications on the synthesized results.
Instead of human-like walking, the evolutionary process might result in a limping, hop-
ping or even quadruped crawling gait. Our approach overcomes this problem by using
a behavior-specific posture space as learned by the PLDPM, e.g. the posture space does
not contain poses for quadruped walking. Additionally, the evolutionary algorithm is
not started from a random population as traditionally done. Instead, the demonstrated
example motion is taken as a template, from which the individuals of the first popula-
tion are created through small perturbations, i.e. mutation. The evolution of walking
skills has attracted considerable attention in robotics, and in particular in the RoboCup
community [KAK*97]. In fact, some teams in the RoboCup competition, for instance
the team of the Humboldt University [HHBO7], use the same robot platform as used in
Section 6.3 of this thesis. Our results are therefore directly applicable to this domain.

Our imitation learning approach works on the level of postures and joint angles and
does not explicitly specify how these joint angles are realized. In absence of physics (such
as the case of our virtual human example) the solution to this problem is trivial: we can
overwrite the current joint angles with any desired values. However, as we have seen in
the case of our simulated and real robots, this can not be done in environments with
physical properties. In these environments we used simple PID controllers to compute
forces for realizing the desired joint configurations. The use of PID controllers was mainly
employed for explanatory purposes. More accurate and sophisticated techniques can be
used for this purpose. For example, in our work in [BIT*07] we have proposed a neural
network based learning framework that is specifically designed to realize high accuracy,
low-level robot control. The framework was specifically tailored to the demands of
modern android robots.

One difficulty that we encountered in this chapter is often referred to as the ‘reality-gap’
in evolutionary robotics. As stated in [ZRV04]: “No matter how accurate a simulator
is, there is always substantial difference between simulation and reality, the so-called
reality-gap”. Hence, there is no guarantee that a behavior optimized in simulation will
also work in reality. Our solution to this problem is to try out the fittest individual from
different generations. Thereafter, we use the controller which produce the most stable
motion of the real robot. While this does not solve the problem completely, it proved
to be a practical, and in most cases successfull approach in our experiments. Generally,

141

6. Learning to Imitate and Adapt Full-Body Motions

there is no final solution to the reality-gap problem. However, in the literature there are
some interesting approaches that try to overcome the gap. For example in [LBZMO6,
both the robot and the simulator were evolved. For the evolving simulator, the fitness
function evaluates the difference between simulated and recorded observations of the
robot.

In summary, this chapter showed that the proposed imitation learning approach scales
up to the imitation of full-body motions. Using this approach, we can generate highly
dynamic motions such as walking, standing-up, or even the performance of a headstand.
What is missing so far, however, is the ability to combine several behaviors in order
to produce long sequences of actions. In the next chapter, we will address this issue
and present an example application domain in which the imitation of complex action
sequences is beneficial.

142

7. Learning to Imitate Complex Action
Sequences

So far, the techniques presented in this thesis have only addressed the imitation of single
motor tasks. To extend our approach to the imitation at the level of action sequences,
we will subsequently introduce the action capture method [JAHWO06; JAHV10]. Action
capture was developed within the ‘Virtual Workers’ research project funded by the
German research foundation (DFG). The method tracks and recognizes the interactions
of a human user in a virtual environment and stores the result in an abstract, multi-layer
representation. Later, this representation can be used to reproduce the user’s actions by
virtual characters.

Different aspects of the action capture method have been investigated within this
project. For instance, pattern recognition algorithms have been used to segment and
understand the user’s actions. Furthermore, the project investigated representation
formalisms which allow for a compact documentation of the actions observed. These
aspects have been extensively treated in [HBAJOS] and [VAHJ09]. This chapter focuses
on the animation synthesis problem within action capture. More specifically, we will
contribute a behavior-based animation framework which allows us to synthesize anima-
tions for complex action sequences. At the core of this framework is a set of behaviors
which are learned using the PLDPM construction algorithm and the imitation learning
approach described in Chapter 4.

While an exhaustive description of the action capture method is beyond the scope
of this thesis, we will in the following provide a brief overview of the method and its
components. Then, we will present a set of behaviors which can be combined to generate
animations for long action sequences. The behaviors cover a wide range of manipulation
skills. Finally, we show several example scenarios in which these behaviors are used to
imitate long sequences of actions.

7.1. Action Capture

7.1.1. Motivation

Action capture is a VR-based method for the imitation of recorded action sequences by
virtual characters. It was proposed and further enhanced by B. Jung and colleagues
[JAHWO06; JAHV10]. Similar to motion capture, the user’s movements are recorded by

143

7. Learning to Imitate Complex Action Sequences

means of position trackers and data-gloves. In contrast to motion capture, however, not
only the user’s movements are tracked but also his or her interactions with scene objects.
The name is motivated by the work of neuroscientist M. Arbib who stated that actions
are always associated with a goal, a hypothesis he formulated as: action = movement -+
goal [Arb02].

A motivating application domain for action capture is known as virtual prototyping.
Virtual prototyping is a modern approach to engineering, wherein a technical product
is first simulated, optimized and evaluated within virtual reality, before a physical pro-
totype is built. By working within a virtual environment, many variations and designs
of the prototype can be efficiently evaluated. The analysis of the interaction between a
user and a technical product is therefore an important goal. For example, in automotive
engineering, the interior of a virtual car prototype is typically evaluated with respect to
ergonomics.

One approach for performing such an analysis is the application of immersive virtual
reality, in which a VR user performs various operation procedures on the prototype.
To test the prototype’s design, the user may interactively simulate the handling of the
steering wheel, gear shift, radio controls, and other instruments. The advantage of
this approach, is that the analysis can already be carried out in an early phase of the
product’s design. In addition, interaction with a virtual prototype is highly natural and
realistic, and involves the same movements as for a physical prototype. Hence, important
conclusions can be drawn on the basis of these experiments without the need to build a
real prototype.

However, the approach bears two main disadvantages. First, the user must repeat
the operation procedure whenever the design of the car’s interior changes. Especially in
the early design phase, when the design of the car is repeatedly modified, this can be a
time consuming process. A second disadvantage is rooted in the evaluation setup which
relies on the subjective experience of a single or a few VR users only. As a result of the
limited group of test users, crucial insights may be missed in the analysis of a prototype.

One approach to overcome these problems is to use virtual humans for ergonomic anal-
yses. As already seen in the earlier sections, virtual humans can come in many sizes and
body proportions and allow for an arbitrarily large number of test persons. Repeating
the operation procedures with a large set of virtual humans allows the engineer to draw
more informed conclusions on the ergonomics of the current car prototype. This reduces
the risk of omitting crucial aspects. However, difficulties arise in the animation process
of the virtual humans. When animating complex, articulated 3D models via desktop
GUIs, important details of human movements are easily missed and as consequence the
resulting ergonomic analyses may be less meaningful.

The idea of action capture is to combine the advantages of the two approaches: First,
a VR user simulates the operation of a virtual prototype using immersive VR technology,
such as 6 DOF tracking devices and data gloves, then, imitation learning techniques are
applied on the interaction protocols of the VR user’s performance. This produces a
compact description of the performed action sequences. In turn, the extracted actions

144

7.1. Action Capture

can be replayed using a variety of virtual humans. Imitation learning ensures that
synthesized animations adapt to changes in the design of the prototype or the anatomy
of the virtual human. Therefore, once an operation procedure is recorded and the
corresponding action representation is learned, there is no need for the VR user to repeat
the procedure anymore. Action capture can be seen as an extension of conventional
motion capture wherein both the actors movements as well as his interactions with the
objects of a virtual environment are stored.

7.1.2. Overview of the Method

In a typical action capture session the user sees a virtual prototype through a VR display,
such as a Power-Wall or a CAVE. The user can manipulate the virtual prototype in a
natural way by touching, grasping or changing its position. The user’s movements are
recorded through a set of VR input devices, including tracking devices for hand and arm
movements. The configuration of a user’s hand is mapped onto a virtual representation
of the hand using data gloves or optical fingertracking systems. The data recorded by
the tracking hardware is collected in a continuous fashion. All input devices together
produce an extensive stream of heterogeneous data. This raw data is persistently stored
in an interaction database for later analysis and processing. It includes among other
things the trajectory of the human’s arm, hand posture data and timing information.
The database collects all data recorded in an action capture session.

VR User Virtual Human

Figure 7.1: Left: A VR user interacts with the virtual prototype of a car. Right: The
user’s actions are repeated by a virtual human.

This database is a central datastore and allows for later analysis of specific recording
sessions as well as analyses on a larger scale, e.g. all recording sessions during the last
week. However, in order to produce more meaningful descriptions of an observed action
sequence, the recorded raw data must be transformed into a more abstract representation.
Therefore, after acquisition of low-level tracking data, user movements and interactions

145

7. Learning to Imitate Complex Action Sequences

are abstracted to higher-level action representations. To this end, segmentation and
pattern recognition algorithms are employed, resulting in a compact description of the
primitive actions and scene objects involved in the demonstrated task. In the playback
phase, these action sequences are reproduced by virtual characters using a repertoire
of behaviors. These behaviors can be learned from the recorded motion data using the
PLDPM construction algorithm.

Figure 7.1 illustrates the process of action capture in an example setting in which the
ergonomics of a virtual car prototype is evaluated by a VR user. The interactions of the
user with scene objects such as handles, buttons or the steering wheel are tracked, recog-
nized and later stored within a multi-layered representation. The action representation
can then be used to synthesize and visualize the demonstrated interactions using virtual
humans. In contrast to earlier uses of virtual humans in virtual prototyping, recorded
actions can still be synthesized if the design of the car or the anatomy of the virtual
human is changed, i.e. there is no need for manual modification of the virtual human’s
movements. This gives the VR user a wide range of possibilities for performing large
numbers of ergonomic analyses in a short period of time. For example, he can replay the
performed actions using different virtual humans in order to draw important conclusions
about the positioning of handles. Figure 7.2, for instance, shows a set of virtual humans
that reproduce the aforementioned actions in a car prototype. Because of the different
sizes of their limbs, the virtual humans need to take on different postures to manipulate
the gearshift. Using action capture, a car designer can therefore try different positions
of the gearshift before making an informed decision.

Figure 7.2: Virtual humans of different gender and with different anatomical properties
replay an action previously recorded from a VR user. The animation is synthesized using
adaptive behaviors.

146

7.1. Action Capture

According to [JAHWO06], the setting for action capture consists of the following three
components:

e Virtual environment: which supports its interactive manipulation by a human user.
[.e. the virtual environment contains interactive objects which e.g. can be picked
up and displaced, buttons that can be pushed, knobs for turning etc. Whenever
the user manipulates a scene object, the virtual environment can detect this ma-
nipulation and generate a corresponding event.

e Human demonstrator (teacher): who performs an action or a sequence of actions
in the virtual environment. The human teacher’s actions are tracked using typical
VR input devices such as position trackers and data gloves.

e Synthetic humanoid (learner): who observes the teacher’s actions and learns to
repeat them. The synthetic humanoid is equipped with a repertoire of basic behav-
iors, e.g. for pushing a button or grasping an object. These basic behaviors may
be further parametrized, e.g. with a target position, a target object, or a hand
shape to be assumed during a manipulation action.

Given these requirements, the process of action capture involves three steps (see Fig-
ure 7.3). In the first step, the teacher’s movements and interactions with scene objects
are tracked, segmented, and classified as action primitives (basic interactions). The goal
of this process is to extract the structure of the observed action sequence and recognize
the performed actions as well as their specific parameters. This involves, among other
things, identifying of the name of the manipulated object, recognizing the grasp type
with which the object was grasped, analyzing the spatial relationship between the user’s
hand and the object, as well as recording the exact timing of the manipulation process.

The outcome of the observation step is an intermediate representation of the user’s
actions called interaction events. Interaction events hold a wide range of extracted data
ranging from raw tracking data (like motion capture) to more abstract information such
as the used grasp type. The extraction of interaction events is an important step in
the action capture process. Segmentation transforms the continuous stream of data
into an ordered, discrete sequence of events. By analyzing the events one-by-one, we can
recreate the steps needed to reproduce the user’s manipulations while taking into account
not only the movements but also their effect on the environment. However, especially
for long interaction event sequences this type of representation becomes lengthy and,
therefore, too difficult to analyze and understand. Brevity and abstraction are vital
for easy analysis, modification and authoring of action sequences. Therefore, in the
second step, observed action primitives are combined and stored using a high-level action
representation.

The action representation of an observed manipulation process is derived by process-
ing the generated interaction events. Sequences of interaction events are mapped onto
corresponding actions using pattern recognition and pattern matching algorithms. For

147

7. Learning to Imitate Complex Action Sequences

example, if the user reaches out for an object and turns it, a Turn action will be is-
sued. In addition to the type of action, parameters such as the object’s name will be
stored. Actions such as e.g. Turn, Pick or Push are represented in a human-readable,
textual representation (see [VAHJ09] for a detailed account of the action representation
language). Therefore, they can be manually postprocessed by a human editor. Even
though the main goal of this approach is to store recorded manipulations during action
capture, this representation can be used to rapidly prototype animations by manually
creating action description files.

Representation

OO0 Actions

Observation / (REEn Reproduction \<c7tion Reproduction
Recognition
0Jda Interaction Events \@ Behaviors
- Grasp Classification
Segmentation Motion Generation
Base Interaction
Recognition
:[> oV, Raw Motion Data \"7 Motor Primitives

Vv Vo v

Data and Knowledge Bases

Grasp In teBrZSc?ion Interaction Annotated PLDPM
Taxonomy Database Scene Models

Taxonomy

Figure 7.3: Components and system architecture for action capture.

In the reproduction step, the actions are mapped to goal-directed behaviors of the
virtual character. Behaviors are responsible for motion generation and the calculation
of contact conditions between the virtual character’s hand and scene objects. Finally,
the execution of the motor commands generated by the behaviors is then realized by
motor primitives which interface to the specific character animation system in use.

To reproduce the actions performed by the user, the virtual human needs to have a
sufficiently large repertoire of behaviors. We have shown in earlier chapters, how behav-
iors for pushing, grasping and walking can easily be learned using imitation learning and
the PLDPM construction algorithm. Indeed, the information needed to learn a PLDPM
is already stored in the database. For example, a PLDPM for a specific grasp type can
easily be learned by querying the information about the recorded hand shapes (angular

148

7.1. Action Capture

values) and the grasp types to which each hand shape belongs. Using this informa-
tion, the PLDPM construction algorithm can be used to learn models for different grasp
types or for different users. The modularity of this approach allows for an incremental
expansion of the virtual human’s motor capabilities.

7.1.3. Example: Brewing an Espresso

To better understand the animation synthesis process of action capture, let us consider
the following (hand-crafted) illustrative example: brewing a cup of espresso using the
virtual prototype of an espresso machine.

Figure 7.4: A sequence of three actions for brewing an espresso: () Attachment of a
porta filer to the espresso machine and turning it into place. 2 Pressing a button for
pouring in the coffee.) Taking out the cup from the machine. Notice, that both hands
are used in the process.

Figure 7.4 schematically illustrates the sequence of actions that need to be performed
by a virtual human in order to solve the task. First, a portafilter must be attached to
the machine by turning the handle. Then, a button must be pressed to fill the cup with
coffee. Finally, the cup must be grasped and picked up. Note, that procedure involves
the usage of both hands. The portafilter is attached with the left hand, while the button
is pressed with the right hand.

To generate motions realizing the above procedure, the animation synthesis process
takes a description of the involved behaviors as input. More precisely, it takes an XMIL-
representation of the behaviors, simply called movement plan. Such a plan can be
either the result of an action capture session, or can be hand-crafted by the user. The
synthesis process takes such a plan as input and generates an animation which reproduces
the documented manipulations. To this end, it computes the actual joint angles and
animation parameters taking into account the current state of the environment and the
virtual human.

149

7. Learning to Imitate Complex Action Sequences

<?xml version="1.0" 7>
<movement—plans>
<default—parameters>
<param name="version ">3</param>
<param name="boneNamingType">hanim</param>
</default—parameters>
<plan>
<name>Brew a cup of espresso</name>
<behavior>
<type>Turn</type>
<param name="start—time">0</param>
<param name="end—time">2</param>
<param name="side">left</param>
<param name="object ">handle</param>
<param name="turn—origin">—-0.1 0.0 0</param>
<param name="turn—axis"'>0 0 1</param>
<param name="turn—angle ">20</param>
<param name="follow —ik—method">IkArmHeuristic</param>
</behavior>
<behavior>
<type>Push</type>
<param name="start—time">3</param>
<param name="end—time">5</param>
<param name="side">right</param>
<param name="object ">button_right</param>
<param name="grasp—type">extension</param>
<param name="grasp—end—shape">—1 0 0</param>
<param name="follow —ik—method">IkArmHeuristic</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">5</param>
<param name="end—time">7</param>
<param name="side">left</param>
<param name="object ">espresso_cup</param>
<param name="grasp—type">Schlesinger::tip</param>
<param name="grasp—object—interaction ">attach</param>
<param name="follow—trajectory —file">trajectories/Trajectory 1 global_ right. trj</param>
<param name="follow —ik—method">IkArmHeuristic</param>
</behavior>
</plan>
</movement—plans>

Listing 7.1: A movement plan consisting of the behaviors needed for brewing a cup of
espresso.

Listing 7.1 shows a simple movement plan for the espresso machine example. The plan
consists only of three behaviors: one for turning the handle, one for pushing the button
and one for picking the cup. Each behavior is parametrized by its start time, end time,
the hand side, the manipulated object, the grasp type, as well as additional parameters.
These parameters can also be changed by hand. For example, the user might change the
plan so that a different button is pressed.

Given such a plan, the animation synthesis process starts and ends the specified be-
haviors according to the indicated timing. Once a behavior is activated, it calculates
the joint angles needed to realize the corresponding animation. This is done based on
the current state of the environment. Hence, even if the target object is displaced as a
result of a behavior activated earlier, the currently active behavior can take this into ac-
count and adapt the virtual human’s motions accordingly. The adaptive nature of these
behaviors ensures that even in dynamic scenarios faithful animations are synthesized.

150

7.2. Behavior Repertoire

d

Head Direction

Y

—

?{ |
i »
.

Figure 7.5: The calculation of angle § and axis a needed to turn the head to face the
target object.

7.2. Behavior Repertoire

In the following we will describe a set of behaviors which are currently implemented in
the Virtual Human Framework. At the core of most of these behaviors lies a PLDPM
learned using the techniques presented in Chapter 4. Note that the selection is non-
exhaustive and that other behaviors can easily be added to the framework.

7.2.1. Look-At Behavior

Before performing any grasping or manipulation tasks, it is often necessary to first direct
the gaze towards the target object, i.e. the object becomes the focus of attention. Techni-
cally, a virtual human does not need to display such a behavior as all information about
graphical objects is already known in data structures representing the scene. Yet, gaze
behavior significantly increases the naturalness and believability of a virtual character.

In our framework, we implemented a behavior called Look-At, which can be used
to fixate an arbitrary object. The virtual humans used in the framework have static
eyes which can not be turned to either side. Therefore, the gaze behavior is entirely
realized through head movements. The Look-At behavior takes the position of the object
and calculates the rotation needed to turn the head towards this position. Figure 7.5
illustrates the calculation process.

151

7. Learning to Imitate Complex Action Sequences

A rotation can be specified using an axis of rotation and a rotation angle (see Chap-
ter 3). In our specific case, the axis of rotation @ and the rotation angle ¢ can be
calculated as follows:

t-d
d = arccos (W) (7.1)
a = txd (7.2)

where t is the vector pointing from the center of the head towards the target object
and d is the vector pointing in the current direction of the head. Axis and angle form
a so-called axis-angle representation of the rotation. The head can be turned to the
desired orientation by applying this rotation. For a smooth animation, the Look-At per-
forms several interpolation steps between the current direction of the head and the new,
calculated direction. In order to achieve higher realism, the interpolation is performed
in a slightly nonlinear way using sigmoid functions.

7.2.2. Follow Trajectory Behavior

Trajectories play an important role in the animation of virtual humans and characters.
In action capture, for example, the VR user’s wrist positions are recorded as trajecto-
ries. During animation synthesis, the trajectories can be used to reproduce the humans
motions. For this, an inverse kinematics algorithm is applied, such that the wrist of the
virtual human moves along the same trajectory in space. This functionality is realized
by the FollowTrajectory behavior. The behavior takes an arbitrary trajectory in the
virtual space as input. Using an inverse kinematics algorithm, it then changes the pos-
ture of the virtual human such that the wrist is relocated to the currently active point
on the trajectory. Typically, the animation is started at the first point specified and
then iterates through all points, until the final point on the trajectory is reached.

In order to ensure reactivity as well as realism, the FollowTrajectory behavior also
addresses the two challenges of imitation, namely the problem of adaptation and vari-
ation. More specifically, the behavior combines an algorithm for retargeting a given
trajectory to a new start- and end-position, together with an algorithm for synthesiz-
ing new trajectories. The retargeting algorithm is essential for realizing goal-directed
movements, such as reaching, pointing or manipulations of an object. The synthesis
algorithm is vital for introducing slight variations to the trajectories. This ensures that
trajectories always look a little bit different, even if the same manipulation is repeatedly
performed. As a result, the movements of the virtual human appear more lifelike.

The basic idea of the retargeting and synthesis algorithms is the use of a dynamic
coordinate system spanned between the hand of the virtual human and the position of
the target. The idea is based on behavioral and neurophysiolgical findings which suggest
that humans make use of different coordinate systems (CS) for planning and executing

152

7.2. Behavior Repertoire

goal-directed behaviors, such as reaching for an object [HS98]. Although the nature of
such CS transformations is not yet fully understood, there is empirical support for the
critical role of eye-centered, shoulder-centered and hand-centered CS. These are used for
transforming a sensory stimulus into motor commands (visuomotor transformations).
For retargeting, we use a hand-centered CS which is oriented towards the target object.
The basis of this CS is denoted by B(h,o,up), where h is the hand position at the
beginning of the animation, o is the target (object) position, and up is an up-vector

(typically (0,0, 1)T).

|
B(h,o,up) = |x y =z| with (7.3)
-
= o—h (7.4)
_ Yyxup (7.5)
|y x up|
T Xy
z = 7.6
[z Xy (8)

To do so we compute for each trajectory a matrix which transforms the trajec-
tory into a local space. The origin of this space is centered at the hand position, while
the target position is located at (0,1,0)7 on the y-axis.

Tgto local
J

Ttotocal _ {B(wm),wén),up) . ﬂ {é _“1(0)] (7.7)
THoglobal _ {é h] [B(h ',g’,um ﬂ (7.8)

In Figure 7.6 we see the effect of transforming all trajectories into a hand-object CS.
The variance, which is due to different goal positions of the reach motion, was removed
and the projected trajectories have higher similarity. The new space can be regarded as
an end-position invariant space of trajectories.

Next, a statistical model of the trajectories is learned. This is done using Gaussian
mixture regression (GMR) [CGBO07]. The learned GMR model can be queried for a new
trajectory having a similar shape to the training trajectories. For a better understanding
of the process see Figure 7.7.

The figure shows an example of applying the trajectory synthesis algorithm to hand-
written data. In an experiment, a human subject was asked to write the word house
several times (a). Using the GMM algorithm, several Gaussians were fitted to the data.
The algorithm used 49 Gaussians to optimally enclose the input data (c). Then, using
GMR we can sample an arbitrary number of variants of the handwritten word (d).

153

7. Learning to Imitate Complex Action Sequences

u B

" .m(bn) e (C)m Lo (d) !

Figure 7.6: (a) Trajectories in global-space recorded from a human test-subject. (b)
Trajectories in local-space after coordinate system transformation. (¢) A GMM is learned
by fitting a set of Gaussians. (d) A GMR is learned and new trajectory is synthesized (red).
(e) The synthesized trajectory is retargeted based on the new start- and end-position.

Figure 7.7: Example for the synthesis of handwritten text from examples: (a) Several
examples of the word “house” written by a test-subject. (b) A GMM with 6 Gaussians
learned from the data. (¢) A GMM with 49 Gaussians learned from the data. (d) Several
new variations of the word ‘house’ synthesized by using the proposed approach. The
variability follows the learned model.

Once a new trajectory is synthesized, we can retarget it to a new start- and end-
position h ’ and o’ by computing T* 9 and multiplying the resulting matrix with all
trajectory points. The complete sequence of steps can be found in Algorithm 5. This
algorithm can be used to synthesize a large number of slightly different trajectories,
which at the same time share a common structure. The changes in the trajectory avoid
repetitiveness and, hence, increase the naturalness of the animation. In addition, the
user can specify arbitrary start and ending positions for the trajectories to adapt to a
changed environment.

7.2.3. Pick Behavior

The first step to most manipulation tasks is to reach for an object and grasp it. In the
Virtual Human Framework the animation of such a movement is realized by the Pick
behavior which synthesizes animations for picking objects of arbitrary shape and with
arbitrary positions and orientations. The user only needs to specify the name of the

154

7.2. Behavior Repertoire

Algorithm 5 Synthesizes a random trajectory from given examples and retargets the
result to a new start and end-position. A trajectory 7 is a set of points {x(0),..,x(NV)}

1

2

@«

10:
11:

12:

13:
14:
15:
16:

17:

18:

: for allT € Trajectories do

for allxz(i) € T do
[wgl)] - Ttolocal [w§Z):|

end for
end for
{Synthesize new trajectory.}
compute GMM
compute new trajectory 7., using GMR
{ Ensure trajectory passes through start and end-position.}

if |x(0)| > e or |&(N) — (0/1/0)| > € then
for all (i) € T,e do

CB(Z) to local ZB(Z)

0] i [
end for

end if

{Retarget.}

for all (i) € Ty do
CB(Z) to global w(l)
0] [

end for

object to be grasped, as well as the desired grasp type. Of course, if desired, the user
can also exert more control on the parameters of the behavior. For example, he can

ex

plicitly specify the direction of approach of the hand during the grasping motion.
To realize the grasping strategy the Pick behavior uses a combination of the PLDPM-

based grasp synthesis algorithm from Chapter 5 and the FollowTrajectory behavior
from Section 7.2.2. The synthesis of a new grasping animation consits of two steps, as
can be seen in Figure 7.8:

1. Grasp synthesis - A stable and natural-looking grasp is generated. Both the
intrinsic parameters of the hand (shape), as well as the extrinsic parameters (wrist
position, wrist orientation) are optimized. The PLDPMs used for optimization are
learned from the data stored in the interaction database.

2. Trajectory retargeting - A trajectory recorded during the VR user’s interaction
is retargeted to the new start and goal position of the animation. The start position
corresponds to the current wrist location of the virtual human. The goal position
is the optimized wrist position from step 1.

155

7. Learning to Imitate Complex Action Sequences

Figure 7.8: Left: The starting point of the algorithm. The goal is to grasp the object
by moving along a recorded trajectory. Right: (D) First a suitable grasp is found using
optimization. (2) Then, the new position of the wrist is used to retarget the trajectory.

By performing these two steps, the Pick behavior allows the virtual human to realisti-
cally grasp arbitrary 3D objects in its surroundings. The optimization process guarantees
that the synthesized grasp fits the target object. The retargeting process further ensures
that the arm movements of the virtual human match the actual situation. The Pick
behavior also allows the user to specify a preshape hand configuration. The preshape is
a hand posture, that is adopted as the wrist moves towards the object. Typically, the
preshape corresponds to an open hand posture, that allows the hand to be closed at the
time of grasping. Figure 7.9 shows an animation generated by the Pick behavior.

& 3
"l

P
A
{1y A

A
4

Figure 7.9: A grasping animation generated by the Pick behavior. The virtual human
grasps a bottle standing on the table.

156

7.2. Behavior Repertoire

Figure 7.10: Visualization of a Place behavior. The virtual human moves the grasped
bottle to a specified goal position.

7.2.4. Place Behavior

The Place behavior is used to move an object, after grasping to a new position. Hence,
Place is generally invoked after a Pick behavior. The combination of both behaviors
can be used to generate animations in which the virtual human picks up a target object
and places it at a given position.

The Place behavior is based on the functionality provided by the FollowTrajectory
behavior. The animation is synthesized by retargeting a recorded trajectory which is
transformed in a way that it starts at the current position of the hand and finishes at the
desired goal position. Figure 7.10 shows an example of this behavior which can be seen
as a continuation of the example shown in Figure 7.9. After Pick finishes, the virtual
human has a firm grasp on the bottle. The Place behavior enables the virtual human to
move the bottle towards the goal position in the middle of the square spot. Throughout
the animation, the behavior also ensures that the object stays attached to the hand.

7.2.5. Relax Behavior

The Relax behavior enables the virtual human to take on a relaxed body posture. This
is useful for chaining several behaviors together. For example, after performing a Place
behavior, it can be useful to first relax the body posture of the virtual human before
continuing with other tasks. As with the LookAt behavior, this improves the visual
quality of the animation as well as the believability of the virtual human. The Relax
behavior generally is also used at the beginning and ending of a behavior sequence. This
guarantees that the virtual human always starts and ends the animation with the same
relaxed posture. Figure 7.11 shows an example of the Relax behavior.

157

7. Learning to Imitate Complex Action Sequences

Relax

Figure 7.11: Visualization of a Relax behavior.

The virtual human starts from its current posture, which typically is the result of be-
haviors applied prior to the execution of the Relax behavior. Relax then smoothly
interpolates between the current posture and an ideal relaxation posture, in which the
head of the virtual human is oriented to the front. The ideal position of the hands is
computed by calculating for the left and right hand a position left of the left hip and
right of the right hip, respectively. Given these resting positions, the joint configuration
of the shoulder, elbow and wrist can be calculated using an inverse kinematics algorithm.
The joint configuration of the fingers is derived by using a PLDPM for the cylindrical
grasp (see Schlesinger taxonomy in Section 5.2.1).

Once the final configuration of head, arms, and hands is calculated, a spherical linear
interpolation is used to smoothly interpolate from the current posture of the virtual
human to the calculated relaxation posture.

7.2.6. Push Behavior

A common type of interactions in virtual prototyping scenarios is the pushing of control
actuators, buttons or objects. For example, in the earlier introduced espresso machine
setting, a button is pushed to start the brewing process of the machine. In the Virtual
Human Framework, such interactions are realized through the Push behavior. The
behavior can simply be parameterized with the target object, as well as the direction,
and the stretch of the pushing movement. Figure 7.12 shows an example animation

158

7.2. Behavior Repertoire

Figure 7.12: Visualization of a Push behavior. The virtual human pushes a button.

resulting from a Push behavior: the virtual human lifts its hand and arm and then
pushes the button on the virtual espresso machine.

The synthesis of this animation requires information about the position of the wrist,
as well as the shape of the hand during the pushing interaction. The position of the
hand can simply be generated by adding a vector in the opposite direction of the pushing
movement to the position of the object. On the other hand, the shape of the hand is
generated using a PLDPM trained for ‘pressing/pushing a button’. A detailed account
of how such a model can be trained and used was already given in the example section
of Chapter 4. Given this information, the animation can be generated by interpolating
from the current posture of the virtual human to the target posture. The Virtual Human
Framework also ensures that the position of the target object is changed in response to
the movements performed.

7.2.7. Turn Behavior

Another important ability of virtual humans in prototyping scenarios is the ability to
turn objects. Such an ability is needed, for instance, in order to turn a rotary knob of a
technical device or in order to manipulate a door handle. This kind of interaction with
objects is mimicked by the Turn behavior in the Virtual Human Framework. It takes the
target object to be manipulated, as well as the axis of rotation and the rotation angle as
input parameters. The behavior first generates a grasp to firmly hold the object. This is
achieved by using the grasp synthesis algorithm of Chapter 5. Once the object is grasped,

159

7. Learning to Imitate Complex Action Sequences

Figure 7.13: Visualization of a Turn behavior. The virtual human rotates a grasped
book.

the wrist of the virtual human is turned around the axis of rotation specified using the
rotation angle supplied by the user. Figure 7.13 shows an example of the virtual human
turning a book. The Turn behavior can also be parametrized with different grasp types
from the Schlesinger taxonomy. For example, a small rotary knob can be turned using
a tip grasp.

7.3. Evaluation and Results

In the following we will present a set of examplary animations that are generated from
abstract descriptions of actions as explained in Section 7.1. These animations show
virtual humans performing manipulations in a virtual kitchen and a virtual car prototype.
To execute the manipulations the virtual humans use the behavior repertoire introduced
in Section 7.2. The behaviors are used both in sequence and in parallel.

7.3.1. Virtual Espresso Machine Example

The following example is an extended version of the espresso machine example used in
the earlier sections. To test, whether our approach can be used to synthesize complex
animations with long sequences of actions, we included actions at the beginning and the
end of the espresso machine example. Hence, in the extended version of the example
the virtual human must first switch on the espresso machine by pressing the power
button. Afterwards, it has to pick a cup located on top of the espresso machine and
place it correctly under the coffee outlet. Then, the same actions as in the original
example need to be performed: a handle must be turned, the button has to be pressed
for pouring the coffee, and the cup must be picked up. To increase the complexity and
at the same time the naturalness of the example, we specified that the turning of the
handle and the pressing of the button are executed in parallel. Figure 7.14 shows the

160

7.3. Evaluation and Results

Figure 7.14: Brewing of a cup of espresso: the virtual humans first need to press the
power-button, then pick up the cup located on top of the espresso machine and place it
under the handle. Then they turn the handle and press the button for pouring of the
coffee. Finally, they pick up the cup. Although both animations are synthesized from the
same plan, there is a visible difference in the joint angles during execution resulting from
the adaptation to the anatomy of the virtual humans.

161

7. Learning to Imitate Complex Action Sequences

result of replaying this action specification using the Virtual Human Framework. The
movement plans which generated the animations can be found in Appendix B.1.

We observe that the introduced method successfully synthesizes animations for two
different virtual humans. In spite of the significant difference in size and body propor-
tions, the Virtual Human Framework synthesized meaningful and realistic animations.
This is reflected by the correct grasps and manipulations performed. For example, when
the cup is picked up from the top of the espresso machine, we can see that there is
substantial difference in pose between the virtual humans.

In the figure we can also see that parallel manipulations with both hands (turning the
handle and pressing the button with the other hand) are successfully generated. Another
interesting aspect is the naturalness of the generated grasps. This aspect becomes evident
if we analyze the final part of each animation (lifting the cup to the mouth). We can see,
that the grasp synthesized for picking up the cup is a natural-looking precision grasp.
Only the thumb and the index finger are bent, all other fingers are extended. This is a
realistic hand shape for this task, as it closely matches the way how many people grasp
the handle of a cup for drinking. Finally, we observe in Figure 7.14 that the LookAt
behavior plays an important role in increasing the believability of the virtual human. By
turning attention to the current target of manipulation, the virtual human evokes the
impression of an intelligent ‘living’ being.

7.3.2. Virtual Kitchen Environment Example

This example takes place in a virtual kitchen environment. The goal of the virtual human
is to perform a set of manipulations typical for cooking scenarios, e.g. the displacement
of a frying pan.

More specifically, the virtual human must first lift the lid of a cooking pot and bend
forward to look inside. Then, the virtual human has to grasp a frying pan with the left
hand and turn it, until it is accessible to the right hand. After that, it must release the
left hand in order to lift the frying pan using the right hand. Finally, the virtual human
must move the frying pan away from the stove to place it on the cutting board. The full
specification of the chain of behaviors in XML is represented in Appendix B.2.

As obvious from the textual description, this sequence of actions is very dynamic and
involves several manipulation steps. A particularly challenging aspect is that the frying
pan is first manipulated by the left hand until the right hand takes over the manipulation.
Without adaptive behaviors the second picking action would try to grasp the frying pan
based on its original position and orientation, which is bound to fail. Figure 7.15 shows
stills from two synthesized animations generated with different virtual humans.

Both virtual humans successfully carry out the task described. The transition of the
manipulations between the left and right hand is also correctly realized. Furthermore,
the grasps synthesized for picking the lid of the pot and the frying pan correctly match
the task. This example also shows that the introduced behaviors allow for a large
range of complex manipulation procedures when chained together. At the same time,

162

7.3. Evaluation and Results

Figure 7.15: Two sequences from synthesized animations in a virtual kitchen environ-
ment. The virtual human first lifts the lid of the pot and the turns the frypan until it is
accessible to the right hand. Finally, the virtual human moves the frypan to the cutting
board. Both animations are synthesized from the same movement plan.

163

7. Learning to Imitate Complex Action Sequences

the introduced imitation learning approach using the PLDPM construction algorithm
allows us to easily add new motor skills to the behavior repertoire if needed.

7.3.3. Virtual Car Prototype Example

Our final example shows the complete flow of the action capture from the observation to
reproduction process. In contrast to the earlier illustrative examples, the movement plan
file is not authored, but is derived from a user’s interaction in VR. For this, a human
demonstrator was asked to perform a set of manipulations on a virtual car prototype.
Sitting in front of a Power-Wall the demonstrator is equipped with tracking hardware,
including a dataglove and markers. Each of the movements and interactions of the
demonstrator with the environment is tracked, recognized and abstracted into actions.

Figure 7.16: Recording session for action capture: the human demonstrator wears a
dataglove and tracking markers and performs a set of manipulations in a virtual cockpit
of a car. First he grasps the gearshift, then the steering wheel and, finally, the radio
button.

Figure 7.16 depicts the situation during the recording session. The user first grasps
the gearshift, then the steering wheel and finally the radio button. Each of these inter-
actions triggers one or possibly more interaction events. The interaction events are then
automatically translated into actions. For animation these actions are assigned to behav-
iors, which can be replayed using the Virtual Human Framework. The above recording
session yielded a chain of three Pick behaviors for grasping the gearshift, steering wheel
and the radio button, as well as three LookAt behaviors for turning the attention to the
respective objects. The full specification of the chain of behaviors in XML is represented
in Appendix B.3.

After extracting the behaviors, the Virtual Human Framework is used to synthesize
animations for different virtual humans. In Figure 7.17 we see the stills from three ani-
mations generated with different virtual humans. Replaying the recorded manipulations
using different virtual humans results in various ergonomic insights about the virtual
car used for this example. In particular, it shows that the radio button is not easily
accessible for various virtual humans. In order to reach for the radio button the virtual

164

7.3. Evaluation and Results

humans have to lean forward. In reality this results in unsafe or dangerous situations. If
a driver needs to lean forward to change the volume of the radio, he will be temporarily
distracted from driving. Additionally, leaning forward reduces the field of view of the
driver.

Figure 7.17: Replay of a recorded action capture session using different virtual humans,
which first grasp the gearshift, then the steering wheel and finally the radio button. Some
virtual humans have to lean forward to reach the buttons, which can result in unsafe
driving situations.

These insights are very helpful for car designers. They can change the car design to
improve the security and ergonomy. In our particular example, for instance, a possible
solution is to place additional buttons on the steering wheel or to relocate the radio.
As a result, the driver can change the volume or the channel without having to lean
forwards.

165

7. Learning to Imitate Complex Action Sequences

7.4. Conclusion

In this chapter we introduced action capture, a new method for learning complex action
sequences by imitation. It records and analyzes manipulations performed by a human
user in VR. The method generates a multi-layer representation of the recorded actions
through a process of abstraction. At the highest level of the abstraction hierarchy is
a compact, human-readable representation in an XML-based language. This represen-
tation can be used to document, analyze or alter the recorded actions with minimum
effort.

We first gave a brief overview of the components of action capture. Then, the chap-
ter mainly focused on the reproduction side of this technique: the question of how to
generate new animations from abstract action descriptions. We have shown how ac-
tions can be segmented into smaller pieces until they can be replayed based on chains
of behaviors. Behaviors are also learned based on the PLDPM construction algorithm
discussed in Chapter 4. We discussed a set of behaviors that is derived by this method,
in particular behaviors for grasping and manipulation of objects.

In combination with PLDPMs, action capture provides a methodology for imitating
both the structure of an action sequence (the correct order and timing of the executed
action), as well as details of the particular demonstration (e.g. hand shape or trajectory).
Action capture is a VR-based extension of motion capture that takes advantage of inter-
active virtual environments. Whereas traditional motion capture just aims at replaying
the body movements of an actor, action capture further aims at replicating the actor’s
interactions with the objects of a virtual environment. Valid animations of interactions
with scene objects are generated, even if the situation changes. Adaptive behaviors
ensure that the synthesized animations match the current environmental context.

The examples in this chapter show how action capture can be used to replay recorded
operation procedures using different virtual humans. This is particularly helpful for
ergonomic analyzes in virtual prototyping settings. Replaying a recorded operation
procedure using virtual humans with different anatomical properties can help to draw
conclusions about the design of a technical product. A proof-of-concept was presented
in which action capture was used to synthesize manipulations in a virtual car prototype.

166

8. Conclusion

In this chapter, we first summarize the objectives and results of this thesis in Section
8.1, and then move on to describe our contributions in more detail in Section 8.2. Sub-
sequently in Section 8.3 we present possible future directions and extensions of the
presented approach.

8.1. Summary

The aim of this thesis was to propose a new approach for teaching dynamic motor skills
to synthetic humanoids, e.g. game characters, avatars or robots. The approach should
allow users to easily expand a synthetic humanoid’s repertoire of skills. During the
conceptualization and implementation of the presented approach, emphasis was put on
the following requirements:

e the easy and intuitive specification of new motions
e the ability to adapt and generalize motions to new environments and situations

e the applicability of the approach to different types of synthetic humanoids

To meet the above requirements, we proposed a new type of statistical models named
probabilistic low-dimensional posture model which is well suited for modeling human pos-
tures and motions. The PLDPM construction algorithm exploits the fact that natural
motion can often be described as a combination of a small number of components. These
components can efficiently be extracted using dimensionality reduction and density es-
timation techniques, resulting in compact behavior-specific models.

To show how PLDPMs can be used to learn different types of motions from recorded
example data, we introduced a three-step imitation learning approach. In contrast to
most earlier methods for imitation learning, our approach is not limited to a specific
synthetic agent or a particular type of motion. Indeed, we have shown in this thesis that
our approach can be successfully used to learn motor skills for virtual humans, small
android robots (in simulation and in reality), as well as a state-of-the-art android.

Throughout this thesis we have applied our method to learn a wide range of different
motor skills, including behaviors such as grasping and manipulation of objects, standing
up, walking, stair climbing, performing a headstand. In contrast to mere motion cap-
ture, the above behaviors are adaptive, meaning that they take the current context into

167

8. Conclusion

consideration when synthesizing a new motion. This adaptation is realized by searching
within a low-dimensional posture space for motion parameters which meet the require-
ments of the current situation. An optimization algorithm automatically determines the
ideal motion parameters, based on a metric of imitation (fitness function) provided by
the user. The low-dimensionality of the posture space extracted via a PLDPM renders
optimization much more efficient. Further, querying the density function of a PLDPM
provides the optimization algorithm with an estimation of the anatomical plausibility of
a given posture.

In turn, the optimization process uses the above information to ensure that synthesized
motions are faithfully generalized to new situations and environments. As a result, our
synthetic humanoids realistically adapt their motions to their surroundings. For example,
when imitating a learned walking gait, they adapt their steps to variable terrain or
user-specified footprint locations. Optimization was also used to resolve more complex
adaptation problems, such as the adjustment of grasps to previously unseen objects, or
the adaptation of recorded robot motion to a human interaction partner.

We also applied the presented imitation learning approach to solve important problems
in the field of robotics. More specifically, we presented new methods for teaching motor
skills to robots by means of intuitive, physical interaction. In this regard, we also
addressed the problem of physical human-robot interaction and necessary conditions
that need to be met for safe and meaningful interaction and cooperation between humans
and robotic systems. To this end we presented physical interaction learning, an efficient
PLDPM-based learning method for human-in-the-loop learning scenarios. The method
was demonstrated using two physical human-robot interaction scenarios. To the best
of our knowldege, these experiments are world-wide among the first experiments that
feature a learning android robot during close-contact interaction with a human caregiver.

8.2. Contributions

The main contributions of this thesis are summarized as follows:

e The Probabilistic Low-Dimensional Posture Model is a compact statistical
model of human motion that can be learned from provided example data. The
model holds information about the dependecies between different body parts as
well as the likelihood of a given posture. Using PLDPMs, a new posture can be
specified in terms of a low-dimensional (typically two or three dimensional) vector.
Similarly, motions can be specified in terms of low-dimensional trajectories. The
synthesis of new postures and motions can, therefore, be cast as an optimization
problem in which an optimal point or a curve is searched in the low-dimensional
space. We presented a construction algorithm for PLDPM and showed that differ-
ent dimensionality reduction techniques can be used for this purpose. More specif-
ically, we identified seven dimensionality reduction techniques, ranging from classi-
cal linear methods to advanced nonlinear methods, and showed that in particular

168

8.2. Contributions

principal component analysis, multidimensional scaling and Sammon’s nonlinear
mapping are well-suited for extracting compact representations of human motion.
Further, building on PLDPMs we have presented a general imitation learning ap-
proach which is applicable to different implementations of synthetic humanoids.
The approach can be used to learn dynamic motor skills which are always adapted
to the current situation by means of optimization. In our experiments we have
shown that the approach can be successfully used to learn motor skills at different
scales, including finger, hand and full-body motions.

A Data-Driven Grasp Synthesis Algorithm that, given a geometric descrip-
tion of a target object, generates a hand shape that results in a natural-looking
and stable grasp. The algorithm uses PLDPMs trained on example motion capture
data which was recorded from human subjects. Grasp synthesis is then realized
by searching the extracted grasp space for a hand shape that optimizes a given
grasp quality metrics. The grasp spaces encoded by the PLDPM can be searched
efficiently, while being large enough to contain a variety of plausible grasps. In our
experiments, 85% of the grasps generated by the grasp synthesis algorithm were
acceptable or better. Further, the mean running time of the algorithm was about
three seconds. In contrast to many other grasp synthesis algorithms, as found in
robotics literature, our algorithm does not require any pre-processing step in which
the object is decomposed or in any other way analyzed.

Kinesthetic Bootstrapping is a new method for programming robots by demon-
stration. Here, “programming” simply consists of manually moving the robot’s
joints so as to demonstrate the skill in mind. Throughout the demonstration, the
states of the robot’s joints are continuously recorded and later used to learn a
corresponding PLDPM. The demonstrated skill is then replayed and further op-
timized within a physics-driven virtual environment. After optimization in the
virtual environment the optimized skill is transferred back to the robot and re-
played in reality. Kinesthetic bootstrapping allows for an easy and intuitive way
of programming robots based on natural touch interactions. Hence, the approach
is accessible to non-experts and does not require prior knowledge on robotics. We
have demonstrated the efficiency of the method by learning highly dynamic skills,
such as walking, standing up, or performing a headstand, using a small humanoid
robot.

Physical Interaction Learning improves the cooperation of humans and robots
while they are working to achieve a common goal. The human interaction partner
can give feedback about the success of the interaction to the robot. The robot
then collects information about recent successful interactions and learns a new
PLDPM-based control policy. The learned control policy then drives his motions
in the next interaction step. Physical interaction learning targets new application
domains in which robots and humans have to work together to achieve a task.

169

8. Conclusion

Interaction and cooperation between humans and robots becomes an increasingly
important and, at the same time, challenging aspect of robot development. In
an experiment inspired by parenting behavior in humans, we were able to show
that the proposed learning method results in measurable improvements of the
interaction. Quantitative evaluations based on the posture change norm confirm
the significance of these improvements.

e A Framework for the Imitation of Action Sequences was presented which
builds upon the action capture [JAHV10] technique. The framework allows us
to synthesize long sequences of actions from textual descriptions. These textual
descriptions can be either hand-crafted or recorded from human interactions in an
immersive virtual environment. The actions are mapped onto behaviors learned
using PLDPMs and the presented imitation learning approach. Once an action
sequence is specified, it can be replayed using a large number of different virtual
humans.

8.3. Future Directions

8.3.1. Application to Robotics

In order to gather information about the environment, modern robots often use a range
of different sensor technologies. This can include acceleration sensors, cameras, or tactile
sensors. Especially interesting for our purposes are tactile sensors as they can provide us
with important information about physical interactions between a human and a robot.
For example, in the physical interaction learning scenario presented in this thesis, touch
sensors could give us information about the amount of force exerted by the human on
the robot’s skin as well as the location of the touch interaction. In turn, this information
could be used to replace the human critique used so far in our method. As a result, we
would have a more finegrained criterion on which to base the optimization process. In
contrast to the binary critique employed so far, touch sensors provide us with continuous
measurements for guiding the learning process. Indeed, the CB? robot used in this
thesis is already equiped with malleable tactile sensors which cover the whole body. In
our experiments, however, we found that the signals generated by these sensors are not
reliable. This is due to the seamless skin of the robot. With every movement of the robot
the skin is also deformed, causing tactile sensations without any touch interaction taking
place. Therfore, to overcome this problem we need methods for discriminating between
tactile sensations caused by the interaction with the external environment and tactile
sensations originating from the robot’s own movements. Interesting early approaches for
discriminating self from others have been presented in [MYN*07].

Thus far, the low-level control system used to actuate our robots consisted of simple
proportional-derivative (PD) controllers. Given the desired joint configuration of the

170

8.3. Future Directions

robot, PD controllers computed the needed torques and forces using a feedback mech-
anism. For a good performance, parameter tuning of the proportional and derivative
terms of these controllers is needed. However, when dealing with complex robotic sys-
tems it is often not efficient to specify constant values for these parmeters. In order
to achieve high precision control the parameters need to be changed over time instead.
To avoid these problems, more intelligent and adaptive low-level control systems can
be used. In our work in [BITT07] we proposed an intelligent control system based on
neural networks which automatically learns ideal parameters for achieving high-precision
control of the robot.

8.3.2. Application to Computer Animation

The proposed imitation learning approach has wide application perspectives in the game
and movie industry. To this day, these domains mainly employ keyframe and motion
capture techniques for specifying new motions of virtual humans, i.e. techniques that do
not support the adaptation to new situations. In contrast to that, our approach is well
suited for this kind of task. The methods and algorithms presented in this thesis can
be easily integrated into modern computer animation software, such as 3D Studio Max,
Motion Builder, or Maya. The presented grasp synthesis algorithm, for instance, can
help the animator to easily fit a character’s handshape to a modeled 3D object. The
techniques in Chapter 7 can also be used in these software tools to specify animations
by means of a compact action description instead of time-consuming keyframes.

While a potential application in the movie industry is straight-forward, there are
important aspects that need to be addressed before successful application in the gaming
industry. Specifically, the synthesis process must be made more efficient, in order to
meet the strong real-time requirements of games. Typically modern games assign the
largest part of the available processing power to rendering and graphics calculations.
Other parts of the game code, such as Al or sound calculations have less processing
power assigned. Therefore, algorithms that deal with non-graphical aspects of the game
need to be highly efficient and computationally cheap.

For example, while the presented grasp synthesis algorithm is significantly faster than
comparable methods presented in the literature (e.g. [LFP07]), it is still too slow for
game applications. The detailed analysis of this and the other motion synthesis ex-
amples showed that the main computational bottleneck is the calculation of distances
between objects. The synthesis times can be drastically reduced if the computation
times for distances can be reduced. One way to do this is to employ more sophisti-
cated proximity query algorithms. An even more promising approach is to perform the
distance calculation on the graphics hardware. For instance in [SOMO04], Sud and col-
leagues proposed a fast algorithm for distance field computation on graphics hardware.
According to the authors, the running time of proximity computations was improved by
an order of magnitude in comparison to earlier state-of-the-art techniques. It is there-
fore reasonable to assume that the replacement of our distance calculation code by the

171

8. Conclusion

algorithm of Sud et al. can lead to a significant performance improvement of the motion
synthesis process. Similarly, the evolutionary algorithm underlying the synthesis process
can also be executed on the graphics hardware for faster computation times.

Another interesting field of future work is the integration of path-planning techniques.
So far, our retargeting method can adapt trajectories to new start- and end-positions.
However, there might also be an obstacle blocking the way between the two positions.
To realistically react to such a situation, a virtual human needs to modify the shape of
the trajectory such that the obstacle is avoided. Several path-planning techniques have
been proposed in the literature which could be adopted for this purpose (see for example
[Lat91] for a classical textbook on the topic, or [VBAT09] for a modern path-planning
approach).

8.4. Concluding Remarks

This thesis addressed the question of how to teach dynamic motor skills to synthetic
humanoids. A general approach based on imitation learning was presented and evaluated
on a number of synthetic humanoids, as well as a number of different motor skills.
Our approach allows for intuitive and natural specification of motor skills without the
need for expert knowledge. Using this approach we showed that various important
problems in robotics and computer animation can be tackled, including the synthesis
of natural grasping, the synthesis of locomotion behavior or the physical interaction
between humans and robots. The application domains for the techniques presented in
this thesis are therefore manifold.

172

A. Virtual Objects

Figure A.1 shows all objects that have been used for the grasp synthesis experiment in
Chapter 5. Each 3D object is modelled after a real, physical object which was used for
recording the training data.

| B ™
>m g —=

» 90 °

%=..-——
Lo m

>4

Figure A.1: Virtual objects used for grasp synthesis experiments (from left to right):
bottle, coffe jug, table, screwdriver, mouse, CD, matchbox, key, taperoller, bag, rubber,
tennisball, Stanford bunny, toy, nail, pencil, hammer, joystick, case, suitcase, card.

173

A. Virtual Objects

174

B. Example Behavior Plans

B.1. Virtual Espresso Machine Example

<?xml version="1.0" 7>
<movement—plans>
<default—parameters>

<param name=

version ">3</param>

<param name="boneNamingType">hanim</param>
</default—parameters>

<plan>
<name>Pouring Coffee</name>
<behavior>
<type>Relax</type>
<param nam start —time">0</param>
<param name="end—time">1</param>

<param

name="relax —overswing">0.05</param>

</behavior>
<behavior>
<type>LookAt</type>

<param name="start—time">1</param>
<param name="end—time">1.7</param>
<param name="side ">none</param>
<param name="lookat—object ">button_ coffee_middle</param>
<param name="lookat—distribution ">1</param>
</behavior>
<behavior>
<type>Push</type>
<param name="start—time">1</param>
<param name="end—time">1.8</param>
<param nam side">left</param>
<param name="object ">button_coffee__middle</param>
<param nam grasp—type">extension</param>
<param nam grasp—end—shape">0 0 0</param>
<param name="follow —ik—method">IkArmHeuristic</param>
<param name="push—move—direction">—1 0 0</param>
<param name="push—move—distance ">0.01</param>
<param name="push—distribution ">0.8</param>
<param name="push—optimize ">near</param>

</behavior>
<behavior>

<type>Push</type>

<param name="start—time">1.8</param>

<param nam end—time">2</param>

<param name="side">left</param>

<param nam object ">button_coffee__middle</param>
<param nam grasp—type">extension</param>

<param nam grasp—end—shape">0 0 0</param>
<param nam follow—ik—method">IkArmHeuristic</param>
<param name="push—move—direction">—1 0 0</param>
<param nam push—move—distance ">—0.01</param>
<param name="push—distribution ">0</param>

<param name="push—optimize ">near</param>

</behavior>
<behavior>
<type>Relax</type>

<param
<param
<param
<param
<param
<param

name="start —time">2</param>
name="end—time">3</param>
name="relax —overswing">0.05</param>
name="relax —head ">0</param>

nam relax —arm—right ">0</param>
name="relax —hand—right ">0</param>

</behavior>
<behavior>
<type>LookAt</type>

<param

name="start —time">1.8</param>

175

B. Example Behavior Plans

<param name="end—time">4.5</param>
<param name="side ">none</param>
<param name="lookat—object ">espresso_cup</param>
<param name="lookat—distribution">0.25</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">1.8</param>
<param name="end—time">3.25</param>
<param name="side">right</param>
<param name="object ">espresso_cup</param>
<param name="grasp—type">Schlesinger::spherical</param>
<param name="grasp—object—interaction ">attach</param>
<param name="follow—trajectory —file">trajectories/Trajectory_1_global_right. trj</param>
<param name="follow —ik—method">IkArmHeuristic</param>

<param

name="pick—results —file ">results/demoKitchenPlan0O5einfach —1.xml</param>

</behavior>
<behavior>
<type>Place</type>

<param name="start—time">3.25</param>
<param name="end—time">4.5</param>
<param name="side">right</param>
<param name="object ">espresso_cup</param>
<param name="follow—trajectory —points ">
0 0.0 0.0 0.2
2 0.0 0.0 0.25
3 0.25 0.0 0.25
5 0.2 0.0 0.0
7 0.0 0.0 0.0
</param>
<param name="follow —use—bowing">1</param>
<param name="follow —ik—method">IkArmHeuristic</param>
<param name="wrist—use—global —rot ">1</param>
<param name="place—obj—pos">0.66 0.52 1.05</param>
<param name="place—obj—rot">0 0 0 1</param>

</behavior>
<behavior>

<type>Grasp</type>

<param name="start—time">4.5</param>

<param name="end—time">5</param>

<param name="side">right</param>

<param name="object ">espresso_cup</param>

<param name="grasp—type">Schlesinger::spherical</param>

<param
<param
<param

name="grasp—pre—shape'">-0 0 0</param>
name="grasp—end—shape">—1 0 0</param>
name="grasp—object —interaction ">detach</param>

</behavior>
<behavior>
<type>Relax</type>

<param
<param
<param
<param
<param
<param

name="start —time">5</param>
name="end—time">6</param>
name="relax —overswing">0.05</param>
name="relax —head ">0</param>
name="relax —arm—left ">0</param>
name="relax —hand—1left ">0</param>

</behavior>
<behavior>
<type>LookAt</type>

<param
<param
<param
<param
<param

name="start —time">4.5</param>
name="end—time">5.5</param>

name="side ">none</param>

name="lookat —object ">control_left</param>

name="lookat —distribution ">1</param>

</behavior>
<behavior>
<type>Bowing</type>

<param
<param

name="start —time">4.5</param>
name="end—time">6</param>

<param name="side ">none</param>
<param name="bowing—bone">vtl 10 —1 0 0</param>
<param name="bowing—bone">vt6 10 —1 0 0</param>
<param name="bowing—bone">vt10 10 —1 0 0</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">4.5</param>
<param name="end—time">6</param>
<param name="side">left</param>
<param name="object">control_ left</param>
<param name="grasp—type">Schlesinger::cylindrical</param>

<param
<param
<param
<param

name="grasp—object —interaction ">detach</param>

name="follow—trajectory —file ">trajectories /Trajectory__1_global_ right. trj</param>
name="follow —ik —method">IkArmHeuristic</param>

name="pick—results —file ">results/demoKitchenPlan0O5einfach —2.xml</param>

</behavior>

176

B.1. Virtual Espresso Machine Example

<behavior>

<type>Turn</type>

<param name="start—time">6</param>

<param name="end—time">6.5</param>

<param name="side">left</param>

<param name="object">control_left</param>

<param name="turn—origin">—0.1 0.0 0</param>

<param name="turn—axis"'>0 0 1</param>

<param name="turn—angle ">20</param>

<param name="follow —ik—method">IkArmHeuristic</param>
</behavior>

<behavior>
<type>Bowing</type>

<param name="start—time">9.25</param>
<param name="end—time">10.5</param>
<param name="side ">none</param>
<param name="bowing—bone">vtl 0 1 0 0</param>
<param name="bowing—bone">vt6 0 1 0 0</param>
<param name="bowing—bone">vt10 0 1 0 0</param>
</behavior>
<behavior>
<type>LookAt</type>
<param name="start—time">5.5</param>
<param name="end—time">6</param>
<param name="side ">none</param>
<param name="lookat—object ">button_coffee white_ right</param>
<param name="lookat—distribution ">1</param>
</behavior>
<behavior>
<type>Push</type>
<param name="start—time">6</param>
<param name="end—time">7</param>
<param name="side">right</param>
<param name="object ">button_coffee__white_right</param>
<param name="grasp—type">extension</param>
<param name="grasp—end—shape">—1 0 0</param>
<param name="follow —ik—method">IkArmHeuristic</param>
<param name="push—move—direction">—1 0 0</param>
<param name="push—move—distance ">0.0025</param>
<param name="push—distribution ">0.75</param>
<param name="push—optimize ">near</param>
</behavior>
<behavior>
<type>LookAt</type>
<param name="start—time">7</param>
<param name="end—time">11.4</param>
<param name="side ">none</param>
<param name="lookat—object ">espresso_cup</param>
<param name="lookat—distribution">0.075</param>

</behavior>
<behavior>

<type>Push</type>

<param name="start—time">8.75</param>

<param name="end—time">9</param>

<param name="side ">right</param>

<param name="object ">button_ coffee white_ right</param>
<param name="grasp—type">extension</param>

<param name="grasp—end—shape">—1 0 0</param>

<param name="follow —ik—method">IkArmHeuristic</param>
<param name="push—move—direction">—1 0 0</param>
<param name="push—move—distance ">—0.0025</param>
<param name="push—distribution ">0</param>

<param name="push—optimize ">near</param>

</behavior>
<behavior>
<type>Relax</type>

<param name="start—time">9</param>
<param name="end—time">10</param>
<param name="relax —overswing">0.05</param>
<param name="relax —head ">0</param>
<param name="relax —arm—left ">0</param>
<param name="relax —hand—left ">0</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">9.25</param>
<param name="end—time">10.5</param>
<param name="side">left</param>
<param name="object ">espresso_cup</param>
<param name="grasp—type">Schlesinger::tip</param>
<param name="grasp—object—interaction ">attach</param>
<param name="follow—trajectory —file">trajectories/Trajectory_ 1_global_right.trj</param>
<param name="follow —ik—method">IkArmHeuristic</param>
<param name="pick—results—file ">results/demoKitchenPlan0O5einfach —3.xml</param>

</behavior>

177

B. Example Behavior Plans

<behavior>
<type>Place</type>
<param name="start —time">10.5</param>
<param name="end—time">11.75</param>
<param name="side">left</param>
<param name="object ">espresso_cup</param>
<param name="follow—trajectory —points ">

0 0.05 0.2 —0.35

1 0.05 0.05 —0.35

2 0.0 0.05 0.0

3 0.0 0.0 0.0
</param>

<param name="follow —use—bowing">0</param>
<param name="follow —ik—method">IkArmHeuristic</param>
<param name="wrist—use—global —rot ">1</param>
<param name="place—obj—pos">0.88 0.51 1.62</param>
<param name="place—obj—rot">45 0 1 0</param>
</behavior>
<behavior>
<type>LookAt</type>
<param name="start—time">12.75</param>
<param name="end—time">14</param>
<param name="side ">none</param>
<param name="lookat—object ">espresso__cup</param>
<param name="lookat—distribution">0.5</param>
</behavior>
<behavior>
<type>Place</type>
<param name="start —time">12.75</param>
<param name="end—time">13.75</param>
<param name="side">left</param>
<param name="object ">espresso_cup</param>
<param name="follow—trajectory —points ">
0 0.0 0.0 0.0
1 1.0 1.0 1.0
2 2.0 2.0 2.0
</param>
<param name="follow —use—bowing">0</param>
<param name="follow —ik—method">IkArmHeuristic</param>
<param name="wrist —use—global —rot ">1</param>
<param name="place—obj—pos">0.669981 0.232822 1.34276</param>
<param name="place—obj—rot">0 0 1 0</param>
</behavior>
<behavior>
<type>Grasp</type>
<param name="start —time">13.75</param>
<param name="end—time">14</param>
<param name="side">left</param>
<param name="object ">espresso_cup</param>
<param name="grasp—type">Schlesinger::cylindrical</param>
<param name="grasp—pre—shape">0 0 0</param>
<param name="grasp—end—shape">—1 0 0</param>
<param name="grasp—object—interaction ">detach</param>
</behavior>
<behavior>
<type>Relax</type>
<param name="start—time">14</param>
<param name="end—time">15</param>
<param name="relax —overswing">0.05</param>
</behavior>
</plan>
</movement—plans>

Listing B.1: An XML representation of the chain of behaviors needed for brewing a cup
of espresso.

178

B.2. Virtual Kitchen Environment Example

B.2. Virtual Kitchen Environment Example

<?xml version="1.0" 7>
<movement—plans>
<default—parameters>
<param name="version ">3</param>
<param name="boneNamingType">hanim</param>
</default—parameters>
<plan>
<name>Cooking with Frying Pan</name>
<behavior>
<type>Relax</type>
<param name="start—time">0</param>
<param name="end—time">1</param>
<param name="relax —overswing">0.05</param>
</behavior>
<behavior>
<type>LookAt</type>
<param name="start—time">2.0</param>
<param name="end—time">5.5</param>
<param name="lookat—object ">pot</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">2</param>
<param name="end—time">3</param>
<param name="side">right</param>
<param name="object ">top</param>
<param name="grasp—type">Schlesinger::spherical</param>
<param name="grasp—object—interaction ">attach</param>
<param name="follow—trajectory —file">trajectories/Trajectory_ 1_global_right.trj</param>
<param name="follow —ik—method">IkArmSimple</param>
<param name="pick—results—file ">results/demoKitchenPlan herd —1.xml</param>
</behavior>
<behavior>
<type>Bowing</type>
<param name="start—time">3</param>
<param name="end—time">4</param>
<param name="side">left</param>
<param name="bowing—bone">vtl 5 0 0 1</param>
<param name="bowing—bone">vt6 5 0 0 1</param>
<param name="bowing—bone">vt10 10 0 0 1</param>
</behavior>
<behavior>
<type>Place</type>
<param name="start—time">3</param>
<param name="end—time">4</param>
<param name="side">right</param>
<param name="object ">top</param>
<param name="follow—trajectory —points">
0.0 0.0 0.0 0.0
1.0 0.0 0.0 1.0
</param>
<param name="follow —use—bowing">0</param>
<param name="follow —ik—method">IkArmSimple</param>
<param name="wrist —use—global —rot ">1</param>
<param nam place—obj—pos">1.70 2.75 1.31</param>
<param name="place—obj—rot">20 0 1 0</param>
</behavior>
<behavior>
<type>Bowing</type>
<param name="start—time">5</param>
<param name="end—time">6</param>
<param name="side">left</param>
<param name="bowing—bone">vtl 0 0 0 1</param>
<param name="bowing—bone">vt6 0 0 0 1</param>
<param name="bowing—bone">vt10 0 0 0 1</param>
</behavior>
<behavior>
<type>Place</type>
<param name="start—time">5</param>
<param name="end—time">6</param>
<param name="side ">right</param>
<param name="object ">top</param>
<param name="follow—trajectory —points">
0.0 0.0 0.0 0.0
1.0 0.0 0.0 1.0
</param>
<param name="follow —use—bowing">0</param>
<param name="follow —ik—method">IkArmSimple</param>

179

B. Example Behavior Plans

<param name="wrist—use—global —rot ">1</param>
<param name="place—obj—pos">1.6115 2.75 1.005</param>
<param name="place—obj—rot">0 0 1 0</param>
</behavior>
<behavior>
<type>LookAt</type>
<param name="start—time">5.5</param>
<param name="end—time">11</param>
<param name="lookat—object ">pan</param>
</behavior>
<behavior>
<type>Relax</type>
<param name="start—time">6</param>
<param name="end—time">7</param>
<param name="relax —overswing">0.05</param>
<param name="relax —arm—left ">0</param>
<param name="relax —hand—left ">0</param>
<param name="relax —head ">0</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">6</param>
<param name="end—time">7</param>
<param name="side">left</param>
<param name="object ">pan</param>
<param name="grasp—type">Schlesinger::cylindrical</param>
<param name="grasp—object—interaction ">attach</param>
<param name="follow—trajectory —file">trajectories/Trajectory 1 global_ right.trj</param>
<param name="follow —ik—method">IkArmSimple</param>
<param name="pick—results—file">results/demoKitchenPlan_herd —2.xml</param>
</behavior>
<behavior>
<type>Turn</type>
<param name="start—time">7</param>
<param name="end—time">8</param>
<param name="side">left</param>
<param name="object ">pan</param>
<param name="turn—origin">0.0 0.0 0.0</param>
<param name="turn—axis"'>0.001 0.001 1.0</param>
<param name="turn—angle ">50</param>
<param name="follow —ik—method">IkArmSimple</param>
</behavior>
<behavior>
<type>Bowing</type>
<param name="start—time">8</param>
<param name="end—time">9</param>
<param name="side ">none</param>
<param name="bowing—bone">vtl 15 1 0 0</param>
<param name="bowing—bone">vt6 15 1 0 0</param>
<param name="bowing—bone">vt10 15 1 0 0</param>
</behavior>
<behavior>
<type>Relax</type>
<param name="start —time">8</param>
<param name="end—time">9</param>
<param name="relax —overswing">0.05</param>
<param name="relax —arm—right ">0</param>
<param name="relax —hand—right ">0</param>
<param name="relax —head ">0</param>
</behavior>
<behavior>
<type>Pick</type>
<param name="start—time">8</param>
<param name="end—time">9</param>
<param name="side">right</param>
<param name="object ">pan</param>
<param name="grasp—type">Schlesinger::cylindrical</param>
<param name="grasp—object—interaction ">attach</param>
<param name="follow—trajectory —file">trajectories/Trajectory_1_global_right. trj</param>
<param name="follow —ik—method">IkArmSimple</param>
<param name="wrist—use—global —rot ">1</param>
<param name="pick—results—file ">results/demoKitchenPlan herd —3.xml</param>
</behavior>
<behavior>
<type>Bowing</type>
<param name="start—time">9</param>
<param name="end—time">10</param>
<param name="side ">none</param>
<param name="bowing—bone">vtl 0 1 0 0</param>
<param name="bowing—bone">vt6 0 1 0 0</param>
<param name="bowing—bone">vt10 0 1 0 0</param>
</behavior>
<behavior>
<type>Place</type>
<param name="start—time">9</param>

180

B.2. Virtual Kitchen Environment Example

<param
<param
<param
<param

name="end—time">10</param>
name="side ">right</param>

name="object ">pan</param>
name="follow —trajectory —points ">

0.0 0.0 0.0 0.0

1.0 0.0 0.1 0.3

2.0 1.0 0.1 0.3

3.0 1.0 0.0 0.0
</param>
<param name="follow —use—bowing">0</param>
<param name="follow —ik—method">IkArmSimple</param>
<param name="wrist—use—global —rot ">1</param>
<param name="place—obj—pos">2.1 2.4 0.93</param>
<param name="place—obj—rot">40 0 0 1</param>

</behavior>

<behavior>
<type>Relax</type>

<param
<param
<param

name="start —time">11</param>
name="end—time">12</param>

name="relax —overswing">0.05</param>

</behavior>

</plan>

</movement—plans>

Listing B.2: An XML representation of the chain of behaviors needed for performing
some cooking manipulations.

181

B. Example Behavior Plans

B.3. Virtual Car Prototype Example

<?xml version="1.0" 7>
<movement—plans>
<default—parameters>
<param name="version ">3</param>
<param name="boneNamingType">hanim</param>
</default—parameters>

<plan>
<name>Cockpit Interactions</name>
<behavior>
<type>Relax</type>
<param name="start—time">0</param>

<param
<param

name="end—time">1</param>
name="relax —overswing">0.05</param>

</behavior>
<behavior>
<type>LookAt</type>

<param name="start—time">0.0</param>

<param name="end—time">5.0</param>

<param name="lookat—object ">gear_shift</param>
</behavior>
<behavior>

<type>Pick</type>

<param name="start —time">2</param>

<param name="end—time">5</param>

<param name="side">right</param>

<param name="object ">gear_ shift</param>

<param name="grasp—type">Schlesinger::spherical</param>

<param name="follow—trajectory —file">trajectories/Trajectory 1 global_ right. trj</param>

<param name="follow —ik—method">IkArmSimple</param>

</behavior>
<behavior>
<type>LookAt</type>

<param name="start—time">5</param>

<param name="end—time">8</param>

<param name="lookat—object ">steering_wheel</param>
</behavior>
<behavior>

<type>Pick</type>

<param name="start—time">5</param>

<param name="end—time">8</param>

<param name="side">right</param>

<param name="object ">steering_wheel</param>

<param name="grasp—type">Schlesinger::spherical</param>

<param name="follow—trajectory —file">trajectories/Trajectory 1 global_ right. trj</param>

<param name="follow —ik—method">IkArmSimple</param>

</behavior>
<behavior>
<type>LookAt</type>

<param name="start—time">8</param>

<param name="end—time">11</param>

<param name="lookat—object ">radio__button</param>
</behavior>
<behavior>

<type>Pick</type>

<param name="start—time">8</param>

<param name="end—time">11</param>

<param name="side">right</param>

<param name="object ">radio__button</param>

<param name="grasp—type">Schlesinger::spherical</param>

<param name="follow—trajectory —file">trajectories/Trajectory_1_global_right. trj</param>

<param name="follow —ik—method">IkArmSimple</param>

</behavior>

</plan>

</movement—plans>

Listing

B.3: An XML representation of the chain of behaviors for performing

manipulations in a virtual car prototype.

182

List

1.1.
1.2.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

4.7.
4.8.
4.9.
4.10.
4.11.

5.1.
5.2.
5.3.
0.4.
2.5.
2.6.
5.7.
5.8.

of Figures

Overview of the imitation learning approach
Overview of the main chapters of the thesis.

Explanation of coordinate systems and kinematic chains
Visualization of the dimensionality reduction process
Visualization of the principal component analysis.
Visualization of locally linear embedding
Visualization of the geodesic distance
The approximation of the graph-distance
Visualization of a Kohonen self-organizing map learning process
Calculation time of the eigendecomposition
Projections of the S-Curve with different DR techniques
Reconstructions of the S-curve from the projected points.

Visualization of adapation capabilities in synthetic humanoids
The three steps of our imitation learning approach
Visualization of low-dimensional posture spaces
The anatomy of the human finger
Calculation of the intrinsic dimensionality
Projection of the finger kinematics data using different dimensionality
reduction techniques. o
The first three principal components of recorded finger motions
Learning a Gaussian mixture model for the projected finger kinematics

Search behavior of different optimization techniques
Fitness landscapes for different dimensionality reduction techniques. . . .
Synthesized final postures of ‘button-pressing’ behavior

The general flow of a grasp synthesis algorithm
Visualization of the proposed grasp synthesis method
The grasp types of the Schlesinger taxonomy.
The anatomy of the human hand and the virtual hand model
Size and position of the sensors in the virtual hand model.
The grasp coordinate system
The three quality measures used for grasp evaluation
Visualization of the grasp optimization process

183

List of Figures

184

5.9.

5.10.
5.11.

5.12.
5.13.

5.14.

5.15.
5.16.

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.

6.7.

6.8.
6.9

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.

6.17.
6.18.
6.19.
6.20.
6.21.

6.22.

Visualization of low-polygon models and the area of interest 92
Projection error on grasping data for different DR techniques 94
Reprojection error of poses (in degree) introduced through the application

of dimensionality reduction and projection on three dimensions 95
Classification of synthesis results into good, acceptable and bad grasps. . 97
Percentage of good, acceptable and bad synthesized grasps depending on

the used rotation representation. 98
Results of automatic classification of synthesized grasps into good, accept-

able and bad grasps, based on the introduced classification scheme. . . . 100
A comparison between human hand shapes and synthesized grasps. . . . 103
Grasps from the Schlesinger grasp taxonomy synthesized using the intro-

duced optimization approacho o000 104
Imitation learning of a walking skill from motion capture data 107
Joint names according to the H-ANIM standard. 108
Virtual humans with varying anatomical properties. 109
Visualization of the first three principal components of walking gaits com-

puted by PCA. 110
Visualization of the posture space spanned between the first and the third

principal component. 111
A low-dimensional trajectory resulting from projecting recorded walking

motion into the posture space.o 112
Analysis of the distance of the feet of the virtual human 113
Visualization of the posture space generated from stair climbing data . . 114
Calculation of the fitness for locomotion behaviors 116
A synthesized stair climbing animation 117
A walking gait synthesized by our imitation learning approach 118
A human teaches a small humanoid robot how to stand up. 119
Overview of the kinesthetic bootstrapping approach 120
The posture space and projection error for a grasping robot 121

Snapshots from the direct replay and optimization of recorded robot motion123
The low-dimensional trajectories and the evolution of the fitness value for

walking 124
The result of applying an evolved walking behavior in simulation and on

the real robot 125
Snapshots of the headstand movement of the small humanoid robot . . . 126
Overview of the physical interaction learning approach 128
The CB? robot and its control architecture 129
A series of snaphshots showing the human-robot interaction during the

standing up tasko Lo 130
Interaction data for the standing up task projected into a low-dimensional

posture space L. e 132

List of Figures

6.23.

6.24.
6.25.
6.26.

6.27.
6.28.

7.1.

7.2.

7.3.
7.4.
7.5.

7.6.
7.7.
7.8.
7.9.

7.10.

7.11.
7.12.
7.13.

7.14.
7.15.
7.16.
7.17.

Al

Sequential photographs of the first and last interactions of two subjects

with therobot 133
Projected human-robot interactions in the low-dimensional posture space 134
Evolution of the posture change norm during one learning experiment . . 135
Mean and standard deviation of the summation of the posture change

norm of the test subjects Lo 136
Change in the maximum posture change norm during learning 137
A human caregiver assists the robot in his attempt to perform several

walking steps Lo 139
A VR user interacts with the virtual prototype of a car and are later

repeated by a virtual humano 145
Virtual humans of different gender and with different anatomical proper-

ties replay an action previously recorded from a VR user 146
Components and system architecture for action capture. 148
A sequence of three actions for brewing an espresso 149
The calculation of angle ¢ and axis a needed to turn the head to face the

target object. L 151
Explanation of the trajectory synthesis and retargeting process 154
Example for the synthesis of handwritten text from examples 154
Visualization of the grasping strategy used 156
A grasping animation generated by the Pick behavior. The virtual human

grasps a bottle standing on the table. 156
Visualization of a Place behavior. The virtual human moves the grasped

bottle to a specified goal position. 157
Visualization of a Relax behavior. 158
Visualization of a Push behavior. The virtual human pushes a button. . . 159
Visualization of a Turn behavior. The virtual human rotates a grasped

book. . . . 160
Virtual humans brewing of a cup of espresso 161
Two sequences from synthesized animations in a virtual kitchen environment 163
An example recording session for action capture 164

Replay of a recorded action capture session using different virtual humans 165

Virtual objects used for grasp synthesis experiments (from left to right):
bottle, coffe jug, table, screwdriver, mouse, CD, matchbox, key, taper-
oller, bag, rubber, tennisball, Stanford bunny, toy, nail, pencil, hammer,
joystick, case, suitcase, card.o 173

185

List of Figures

186

List of Tables

3.1. Classification of dimensionality reduction techniques into different cate-
gories based on their inherent characteristics. 39

4.1. The reprojection error introduced by using different dimensions of the

low-dimensional space and different DR techniques. 55
4.2. Averaged optimization error over 100 trials of the ‘button-pressing’ imita-

tion task for different optimization algorithms. 68
4.3. Optimization error on the ‘button-pressing’ task, when using different

dimensionality reduction techniques for learning of the PLDPM. 68
5.1. Categorization of sensors into primary, secondary and helper ssensors

based on the grasp type to be performed. 79
5.2. Initialization rules for the wrist position in the grasp coordinate system

depending on the generated grasp. 88

5.3. Calculation of the value x as a sum of weights for the individual com-
ponents. Because the number of sensors varies depending on the grasp
type, the resulting fitness values can have different value ranges. x scales
the results to the same range and is calculated based on the number of

sensors and components involved in the fitness computation. 96
5.4. Classification of the synthesized grasps into good, acceptable and bad

results. . . . L 99
6.1. Reprojection error in [degree| for reconstructed ‘walking’ postures. . . . 110
6.2. Per-step optimization error in [meter| for the ‘stair climbing’ behavior. . 117

187

List of Tables

188

List of Algorithms

1. Projection by linear interpolation: Given an point to @ to be projected,
the matrix of all training data X, and the matrix of image coordinates X,

the algorithm computes the projected point @. 32
2. Gradient descent optimization algorithm with starting point @, step size

7, and threshold 6 62
3. The generic evolutionary algorithm. 65

4. An algorithm for grasp optimization based on encapsulated evolution
strategies. It outputs the image coordinates of the grasp q, the wrist
orientation «, and the position of the hand p. 90

5. Synthesizes a random trajectory from given examples and retargets the
result to a new start and end-position. A trajectory 7 is a set of points
{x(0),..,x(N)} . . 155

189

List of Algorithms

190

Listings

7.1. A movement plan consisting of the behaviors needed for brewing a cup of

ESPIESSO. « v v e e e e e e e e e e e e e e 150
B.1. An XML representation of the chain of behaviors needed for brewing a

cup of espresso. 175
B.2. An XML representation of the chain of behaviors needed for performing

some cooking manipulations. 179
B.3. An XML representation of the chain of behaviors for performing manipu-

lations in a virtual car prototype.o 182

191

Listings

192

Bibliography

[AAGDO8] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann. Imitation learning of
dual-arm manipulation tasks in humanoid robots. International Journal of
Humanoid Robotics, 5(2):183-202, 2008.

[ABIO00] M. A. Arbib, A. Billard, M. Iacoboni, and E. Oztop. Synthetic brain imaging:
grasping, mirror neurons and imitation. Neural Networks, 13(8-9):975 — 997,
2000.

[AFM98] A. Alexandrov, A. Frolov, and J. Massion. Axial synergies during human
upper trunk bending. Ezp. Brain Res., 118(2), 1998.

[AMO0O] M. Alexa and W. Miiller. Representing animations by principal components.
Comput. Graph. Forum, 19(3), 2000.

[Arb02] M. A. Arbib. The mirror system, imitation, and the evolution of language. In
K. Dautenhahn and C. Nehaniv, editors, Imitation in Animals and Artefacts.
MIT Press, 2002.

[Arb08] M. A. Arbib. From grasp to language: Embodied concepts and the challenge
of abstraction. Journal of Physiology-Paris, 102(1-3):4 — 20, 2008. Links and
Interactions Between Language and Motor Systems in the Brain.

[ARTG10] Advanced Realtime Tracking GmbH. Homepage. www.ar-tracking.eu, last
visited on May 1st 2010., 2010.

[BCDS08] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot program-
ming by demonstration. In Handbook of Robotics, volume chapter 59. MIT
Press, 2008.

[BAST02] E. Bizzi, A. d’Avella, P. Saltiel, and MC. Tresch. Modular organization of
spinal motor systems. The Neuroscientist, 8(5), 2002.

[BHOO] M. Brand and A. Hertzmann. Style machines. In SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and interactive techniques,
pages 183-192, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-
lishing Co.

193

Bibliography

[BI05] C. W. Borst and A. P. Indugula. Realistic virtual grasping. In VR ‘05: Pro-
ceedings of the 2005 IEEE Conference on Virtual Reality, pages 91-98, 2005.

[Bilo0] A. Billard. Learning motor skills by imitation: a biologically inspired robotic
model. Cybernetics € Systems, 32(1-2):155-193, 2000.

[Bis87] R. Bisiani. Beam search. In Encyclopedia of Artificial Intelligence, pages 56-58.
Wiley & Sons, 1987.

[BITT07] H.Ben Amor, S. Ikemoto, T.Minato, B. Jung, and H. Ishiguro. A neural frame-
work for robot motor learning based on memory consolidation. In Bartlomiej
Beliczynski, Andrzej Dzielinski, Marcin Iwanowski, and Bernardete Ribeiro, ed-
itors, [CANNGA (2), volume 4432 of Lecture Notes in Computer Science, pages
641-648. Springer, 2007.

[BK96] P. Bakker and Y. Kuniyoshi. Robot see, robot do: An overview of robot im-
itation. In AISB96 Workshop: Learning in Robots and Animals, pages 3—11,
1996.

[BL09] E.I. Barakova and T. Lourens. Mirror neuron framework yields representations
for robot interaction. Neurocomput., 72(4-6):895-900, 2009.

[BT03] O. A. Bauchau and L. Trainelli. The vectorial parametrization of rotation.
Nonlinear Dynamics, 32(1), 2003.

[BTD10] T. Bockemuehl, N. F. Troje, and V. Duerr. Inter-joint coupling and joint angle
synergies of human catching movements. Human Movement Science, 29(1):73
- 93, 2010.

[BV09] S. Bitzer and S. Vijayakumar. Latent spaces for dynamic movement primi-
tives. In Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS Interna-
tional Conference on, Dec. 2009.

[BW95] A. Bruderlin and L. Williams. Motion signal processing. In SIGGRAPH °95:
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 97-104, New York, NY, USA, 1995. ACM.

[CD88] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach
to regression analysis by local fitting. Journal of the American Statistical As-
sociation, 83(403):596-610, 1988.

[CGBO7] S. Calinon, F. Guenter, and A. Billard. On learning, representing and gener-
alizing a task in a humanoid robot. IEEFE Transactions on Systems, Man and

Cybernetics, Part B. Special issue on robot learning by observation, demonstra-
tion and imitation, 37(2):286-298, 2007.

194

Bibliography

[CGGRO7] R. Chalodhorn, D. B. Grimes, K. Grochow, and R. P. N. Rao. Learning to
walk through imitation. In M. Veloso, editor, IJCAI pages 2084-2090, 2007.

[Cut89] M.R. Cutkosky. On Grasp Choice, Grasp Models and the Design of Hands for
Manufacturing Tasks. IEEE Trans. on Robotics and Automation, 5(3), 1989.

[Dar72] C. Darwin. On the Origin of Species by means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. John Murray, London,
1872.

[DB98] A. D’Avella and E. Bizzi. Low dimensionality of supraspinally induced force
fields. Proceedings of the National Academy of Sciences of the United Stated of
America, 95(13):7711-7714, 1998.

[DFF*92] G. Di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti. Un-
derstanding motor events: a neurophysiological study. Ezperimental Brain Re-
search, 91(1):176-180, 1992.

[DH97] P. Demartines and J. Herault. Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets. IEEE Trans.

Neural Netw., 8(1):148-154, 1997.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

[DLB96] B. Douville, L. Levison, and N. Badler. Task-level Object Grasping for Simu-
lated Agents. Presence, 5(4):416-430, 1996.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1-38, 1977.

[DSRI06] S. Degallier, C. Santos, L. Righetti, and A. Ijspeert. Movement generation
using dynamical systems: a humanoid robot performing a drumming task. In
Proceedings of the IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS06), 2006.

[dST04] V. de Silva and J.B. Tenenbaum. Sparse multidimensional scaling using land-
mark points. Technical report, Stanford University, USA, 2004.

[EMMTO04] A. Egges, T. Molet, and N. Magnenat-Thalmann. Personalised real-time
idle motion synthesis. In Pacific Conference on Computer Graphics and Appli-
cations, pages 121-130. IEEE Computer Society, 2004.

195

Bibliography

[ES03] G. ElKoura and K. Singh. Handrix: animating the human hand. In SCA
'03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 110-119, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[FL95] C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets. In Mchael
Carey and Donovan Schneider, editors, Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pages 163-174. ACM Press,
1995.

[FO71] K. Fukunaga and D.R. Olsen. An algorithm for finding intrinsic dimensionality
of data. IEEE Transactions on Computers, 20(2):176-183, 1971.

[Fom09] A. T. Fomenko. A Short Course in Differential Geometry and Topology. Cam-
bridge Scientific Pub., New York, 2009.

[FP03] A. C. Fang and N. S. Pollard. Efficient synthesis of physically valid human
motion. ACM Transactions on Graphics (SIGGRAPH 2003), 22(3):417-426,
July 2003.

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596-615, 1987.

[FvT01] P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable controllers
for physics-based character animation. In SIGGRAPH °01: Proceedings of the
28th annual conference on Computer graphics and interactive techniques, pages
251-260, New York, NY, USA, 2001. ACM.

[GALPO7] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof. Grasp planning via
decomposition trees. In ICRA, pages 4679-4684. IEEE, 2007.

[GBT04] P. Glardon, R. Boulic, and D. Thalmann. Pca-based walking engine using
motion capture data. In CGI °04: Proceedings of the Computer Graphics Inter-
national, pages 292-298, Washington, DC, USA, 2004. IEEE Computer Society.

[GC91] A. Griewank and G. F. Corliss, editors. Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application. STAM, Philadelphia, PA,
1991.

[GFFR96] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizolatti. Action recognition in the
premotor cortex. Brain, 119(2):593-609, 1996.

[GHBKO09] S. Geidenstam, K. Huebner, D. Banksell, and D. Kragic. Learning of grasping
strategies from box-based 3d object approximations. In Proceedings of Robotics:
Science and Systems, 20009.

196

Bibliography

[GL93] F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuris-
tic Techniques for Combinatorial Problems, Oxford, England, 1993. Blackwell
Scientific Publishing.

[Gle98] M. Gleicher. Retargetting motion to new characters. In SIGGRAPH "98: Pro-
ceedings of the 25th annual conference on Computer graphics and interactive
techniques, pages 33-42, New York, NY, USA, 1998. ACM.

[GMHPO04] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based
inverse kinematics. ACM Trans. Graph., 23(3):522-531, 2004.

[Gra98| F. Sebastian Grassia. Practical parameterization of rotations using the expo-
nential map. journal of graphics tools, 3(3):29-48, 1998.

[GUS99] H. Geyer, P. Ulbig, and S. Schulz. Use of evolutionary algorithms for the
calculation of group contribution parameters in order to predict thermodynamic
properties: Part 2: Encapsulated evolution strategies. Computers and Chemical
Engineering, 23(7):955 — 973, 1999.

[H-A10] H-ANIM. Humanoid animation working group. www.hanim.org, last visited
on May 1st 2010., 2010.

[HBAJOS] G. Heumer, H. Ben Amor, and B. Jung. Grasp recognition for uncalibrated
data gloves: A machine learning approach. Presence: Teleoperators & Virtual
Environments, 17(2):121-142, 2008.

[Her02] L. M. Herman. Vocal, social, and self-imitation by bottlenosed dolphins. In
K. Dautenhahn and C. L. Nehaniv, editors, Imitation in animals and artifacts,
pages 63-108. MIT Press, Cambridge, MA, USA, 2002.

[HGCBO08] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical system mod-
ulation for robot learning via kinesthetic demonstrations. IEEE Transactions
on Robotics, 24(6):1463-1467, 2008.

[HHBO7] D. Hein, M. Hild, and R. Berger. Evolution of biped walking using neural
oscillators and physical simulation. In RoboCup 2007: Proceedings of the Inter-
national Symposium, LNAI. Springer, 2007.

[HPPO5] E. Hsu, K. Pulli, and J. Popovi¢. Style translation for human motion. ACM
Trans. Graph., 24(3):1082-1089, 2005.

[HRE*08] C. Hecker, B. Raabe, R. W. Enslow, J. DeWeese, J. Maynard, and K. van
Prooijen. Real-time motion retargeting to highly varied user-created morpholo-
gies. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1-11, New
York, NY, USA, 2008. ACM.

197

Bibliography

[HS98] H. Heuer and J. Sangals. Task-dependent mixtures of coordinate systems in
visuomotor transformations. Fzperimental Brain Research, 119(2), 1998.

[HUWKO7] D. Holz, S. Ullrich, M. Wolter, and T. Kuhlen. Multi-contact grasp in-
teraction for virtual environments. In Proceedings 4. Workshop Virtuelle und
FErweiterte Realitdt der GI-Fachgruppe VR/AR, pages 101-112, 2007.

[HWBO95| J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating
human athletics. In SIGGRAPH "95: Proceedings of the 22nd annual conference

on Computer graphics and interactive techniques, pages 71-78, New York, NY,
USA, 1995. ACM.

[IAF06] L. Ikemoto, O. Arikan, and D. Forsyth. Knowing when to put your foot down.

In 13D °06: Proceedings of the 2006 symposium on Interactive 3D graphics and
games, pages 49-53, New York, NY, USA, 2006. ACM.

[IFoR10] International Federation of Robotics. IFR statistical department homepage.
www.worldrobotics.org, last visited on May 1st 2010., 2010.

[IH03] C. Igel and M. Hiisken. Empirical evaluation of the improved rprop learning
algorithms. Neurocomputing, 50:105-123, 2003.

[IMIOS] S. Ikemoto, T. Minato, and H. Ishiguro. Analysis of physical human-robot inter-
action for motor learning with physical help. Applied Bionics and Biomechanics
(Special issue on Humanoid Robots), 5:213-223, 2008.

[INS02] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for
learning motor primitives. In S. Becker, S. Thrun, and K. Obermayer, editors,
NIPS, pages 1523-1530. MIT Press, 2002.

[IT04] M. Ito and J. Tani. On-line imitative interaction with a humanoid robot using
a mirror neuron model. In ICRA, pages 1071-1076. IEEE, 2004.

[JAHV10] B. Jung, H. Ben Amor, G. Heumer, and A. Vitzthum. Action capture: A VR-
based method for computer animation. In Virtual Realities: Dagstuhl Seminar
2008. Springer Verlag, 2010.

[JAHWO06] B. Jung, H. Ben Amor, G. Heumer, and M. Weber. From motion capture to
action capture: A review of imitation learning techniques and their application
to VR-based character animation. In Proceedings VRST 2006 - Thirteenth

ACM Symposium on Virtual Reality Software and Technology, pages 145-154,
2006.

[JM03] O. C. Jenkins and M. J. Matari¢. Automated derivation of behavior vocabular-
ies for autonomous humanoid motion. In Autonomous Agents and Multiagent
Systems (AAMAS 2003), pages 225-232, Melbourne, Australia, Jul 2003.

198

Bibliography

[KAO8] M. Kass and J. Anderson. Animating oscillatory motion with overlap: wiggly
splines. ACM Transactions on Graphics, 27(3), 2008.

[KAK*97] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara.
Robocup: A challenge problem for ai. AI Magazine, 18(1):73-85, 1997.

[KGP02] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In SIGGRAPH 02:
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 473-482, New York, NY, USA, 2002. ACM.

[KGVS83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.

[K195] S. B. Kang and K. Ikeuchi. A robot system that observes and replicates grasp-
ing tasks. In ICCV ’95: Proceedings of the Fifth International Conference on
Computer Vision, page 1093, Washington, DC, USA, 1995. IEEE Computer
Society.

[KII94] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: extracting
reusable task knowledge from visual observation of human performance. IEEFE.
Trans. on Robotics and Automation, 10(6):799-822, 1994.

[KL00] J. Kuffner and J. Latombe. Interactive Manipulation Planning for Animated
Characters. In Proceedings of Pacific Graphics, 2000.

[KMI*80] N. Kamakura, M. Matsuo, H. Ishii, F. Mitsuboshi, and Y. Miura. Patterns
of static prehension in normal hands. The American journal of occupational
therapy, 34(7), 1980.

[KP06] P. G. Kry and D. K. Pai. Interaction capture and synthesis. ACM Trans.
Graph., 25(3):872-880, 2006.

[KR02] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted
metrics. In STOC "02: Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 741-750, New York, NY, USA, 2002. ACM.

[KSG02] L. Kovar, J. Schreiner, and M. Gleicher. Footskate cleanup for motion capture
editing. In SCA °02: Proceedings of the 2002 ACM SIGGRAPH/FEurographics
symposium on Computer animation, pages 97-104, New York, NY, USA, 2002.
ACM.

[KSHO1] T. Kohonen, M. R. Schroeder, and T. S. Huang. Self-Organizing Maps.
Springer-Verlag New York, Inc., 2001.

[KT99] M. Kallmann and D. Thalmann. Direct 3D Interaction with Smart Objects. In
Proceedings ACM VRST 99, London, 1999.

199

Bibliography

[KW78] J.B. Kruskal and M. Wish. Multidimensional Scaling. Sage Publications, Bev-
erly Hills CA, 1978.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell,
MA, USA, 1991.

[LBJKO09] M. Lau, Z. Bar-Joseph, and J. Kuffner. Modeling spatial and temporal vari-
ation in motion data. In SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009
papers, pages 1-10, New York, NY, USA, 2009. ACM.

[LBZMO06] H. Lipson, J. C. Bongard, V. Zykov, and E. Malone. Evolutionary robotics
for legged machines: From simulation to physical reality. In T. Arai, R. Pfeifer,
T. R. Balch, and H. Yokoi, editors, IAS, pages 11-18. IOS Press, 2006.

[LFP07] Y. Li, J. Fu, and N. Pollard. Data driven grasp synthesis using shape matching
and task-based pruning. IEEFE Transactions on Visualization and Computer
Graphics, 13, 2007.

[LH99] J. Lee and B. V. Hout. Analyse de données non linéaires par résaux de neu-
rones artificiels. mémoire d’ingénieur. Master’s thesis, Université de Louvain-
la-Neuve, Belgium, 1999.

[LHPO5] C. K. Liu, A. Hertzmann, and Z. Popovié¢. Learning physics-based motion
style with nonlinear inverse optimization. ACM Trans. Graph., 24(3):1071-
1081, 2005.

[LLDVO00] J. A. Lee, A. Lendasse, N. Donckers, and M. Verleysen. A robust non-linear
projection method. In ESANN 2000, 8th European Symposium on Artificial
Neural Networks, Bruges, Belgium, April 26-28, 2000, Proceedings, pages 13—
20, 2000.

[LP83] T. Lozano-Perez. Robot programming. In Proceedings of the IEEE, volume 71,
pages 821 — 841, 1983.

[LS99] J. Lee and S. Shin. A hierarchical approach to interactive motion editing for
human-like figures. In SIGGRAPH ’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, pages 39-48, New York,
NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[LVO7] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, New
York; London, 2007.

[LWS02] Y. Li, T. Wang, and H. Shum. Motion texture: a two-level statistical model for
character motion synthesis. In SIGGRAPH '02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 465-472,
New York, NY, USA, 2002. ACM.

200

Bibliography

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of 5th Berkeley Symposium on Mathematical
Statistics and Probability, pages 281-297, 1967.

[Mah95] S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, USA, 1995.

[Mat02] M. J. Mataric. Sensory-motor primitives as a basis for imitation: linking per-

ception to action and biology to robotics. In Imitation in animals and artifacts,
pages 391-422. MIT Press, Cambridge, MA, USA, 2002.

IMC03] A. T. Miller and H. I. Christensen. Constraint stabilization for time-stepping
approaches for rigid multibody dynamics with joints, contact and friction. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 2262-2268, 2003.

[Mel96] A. N. Meltzoff. The human infant as imitative generalist: A 20-year progress
report on infant imitation with implications for comparative psychology. In
Social Learning in Animals: The Roots of Culture, pages 347-370, 1996.

IMF96] A. Moon and M. Farsi. Grasp quality measures in the control of dextrous robot
hands. Physical Modelling as a Basis for Control (Digest No: 1996/042), IEE
Collogquium on, pages 6/1-6/4, 1996.

[IMI94] C. L. MacKenzie and T. Iberall. The Grasping Hand. Elsevier-North Holland,
1994.

IMIGB94] F. A. Mussa-Ivaldi, S F Giszter, and E Bizzi. Linear combinations of prim-
itives in vertebrate motor control. Proceedings of the National Academy of
Sciences, 91:7534-7538, 1994.

IMM77] A. N. Meltzoff and M. K. Moore. Imitation of facial and manual gestures by
human neonates. Science, 198(4312):74-78, 1977.

IMMO97] A. N. Meltzoff and M. K. Moore. Explaining facial imitation: A theoretical
model. Farly Development and Parenting, pages 179-192, 1997.

[IMMMIO7] D. Matsui, T. Minato, K. F. MacDorman, and H. Ishiguro. Generating
natural motion in an android by mapping human motion. In IEEFE/RSJ Intl.
Conf. on Intelligent Robots and Systems IROS 2007, pages 609-616, 2007.

IMYN*07] T. Minato, Y. Yoshikawa, T. Noda, S. Ikemoto, H. Ishiguro, and M. Asada.
Cb2: A child robot with biomimetic body for cognitive developmental robotics.
In Proceedings of the 2003 IEEE-RAS/RSJ International Conference on Hu-
manoid Robots. Humanoids "07, 2007.

201

Bibliography

[Nap56] J. Napier. The prehensile movements of the human hand. The Journal of Bone

and Joint Surgery, 38b(4):902-913, 1956.

[OSOK09] K. Ogata, D. Shiramatsu, Y. Ohmura, and Y. Kuniyoshi. Analyzing the

[0zt02)]

[Par07]

[PB02]

[PGI6]

[Pol94]

[PZ05]

[RB93]

knack of human piggyback motion based on simultaneous measurement of tac-
tile and movement data as a basis for humanoid control. In TROS’09: Proceed-
ings of the 2009 IEEE/RSJ international conference on Intelligent robots and
systems, pages 2531-2536, Piscataway, NJ, USA, 2009. IEEE Press.

E. Oztop. Modeling the mirror: grasp learning and action recognition. PhD
thesis, University of Southern California, Los Angeles, CA, USA, 2002. Adviser-
Arbib, Michael A.

R. Parent. Computer Animation, Second Edition: Algorithms and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

K. Pullen and C. Bregler. Motion capture assisted animation: texturing and
synthesis. ACM Trans. Graph., 21(3):501-508, 2002.

K. Perlin and A. Goldberg. Improv: a system for scripting interactive actors in
virtual worlds. In SIGGRAPH ’96: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pages 205-216, New York,
NY, USA, 1996. ACM.

N. S. Pollard. Parallel methods for synthesizing whole-hand grasps from general-
1zed prototypes. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1994.

N. S. Pollard and V. B. Zordan. Physically based grasping control from ex-
ample. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 311-318, New York, NY, USA, 2005.
ACM.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropaga-
tion learning: The RPROP algorithm. In Proceedings of the IEEE International
Conference on Neural Networks, pages 586-591. IEEE Press, 1993.

[RCBY8] C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimen-

sional motion interpolation. IEEE Comput. Graph. Appl., 18(5):32-40, 1998.

[RFFG96] G. Rizolatti, L. Fadiga, L. Fogassi, and V. Gallese. Premotor cortex and the

[RGI1]

202

recognition of motor actions. Cognitive Brain Research, 3(2):131-41, 1996.

H. Rijpkema and M. Girard. Computer animation of knowledge-based human
grasping. SIGGRAPH Comput. Graph., 25(4):339-348, 1991.

Bibliography

[RGBC96] C. Rose, B. Guenter, B. Bodenheimer, and M. F. Cohen. Efficient gener-
ation of motion transitions using spacetime constraints. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graphics and interac-
tive techniques, pages 147-154, New York, NY, USA, 1996. ACM.

[RMGO96] J. O. Ramsay, K. G. Munhall, V. L. Gracco, and D. J. Ostry. Functional data
analyses of lip motion. Journal of the Acoustical Society of America, 99:3718—
3727, 1996.

[R6t07] F. Rothling. Real Robot Hand Grasping using Simulation-Based Optimisation
of Portable Strategies. PhD thesis, Bielefeld University, Faculty of Technology,
Bielefeld, Germany, May 2007.

[RPE*05] L. Ren, A. Patrick, A. Efros, J. K. Hodgins, and J. M. Rehg. A data-driven ap-
proach to quantifying natural human motion. ACM Trans. Graph., 24(3):1090—
1097, 2005.

[RS00] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323-2326, 2000.

[RS06] J. Cornella R. Suarez, M. Roa. Grasp quality measures. Technical Report
[0C-DT-P-2006-10, Universitat Politecnica de Catalunya, 3 2006.

[SAD97] H. Sadeghi, P. Allard, and M. Duhaime. Functional gait asymmetry in able-
bodied subjects. Human Movement Science, 16(1):243-258, January 1997.

[Sam69] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans-
actions on Computers, 18(5):401-409, 1969.

[San00] T. D. Sanger. Human arm movements described by a low-dimensional super-
position of principal component. The Journal of Neuroscience, 20:1066-1072,
2000.

[SCCHO9] T. Shiratori, B. Coley, R. Cham, and J. K. Hodgins. Simulating balance
recovery responses to trips based on biomechanical principles. In SCA "09:
Proceedings of the 2009 ACM SIGGRAPH/FEurographics Symposium on Com-
puter Animation, pages 37-46, New York, NY, USA, 2009. ACM.

[SCF06] A. Shapiro, Y. Cao, and P. Faloutsos. Style components. In GI "06: Proceedings
of Graphics Interface 2006, pages 33-39, Toronto, Ont., Canada, Canada, 2006.
Canadian Information Processing Society.

[Sch19] G. Schlesinger. Der Mechanische Aufbau der Kiinstlichen Glieder. In M. Bor-
chardt et al., editors, Ersatzglieder und Arbeitshilfen fir Kriegsbeschadigte und
Unfallverletzte, pages 321-661. Springer-Verlag: Berlin, Germany, 1919.

203

Bibliography

[Sch99] S. Schaal. Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3(6):233-242, 1999.

[SF97] J. F. Soechting and M. Flanders. Flexibility and repeatability of finger move-
ments during typing: Analysis of multiple degrees of freedom. Journal of Com-
putational Neuroscience, 16(2-3):29-46, January 1997.

[SFS98] M. Santello, M. Flanders, and J. F. Soetching. Postural hand synergies for tool
use. The Journal of Neuroscience, 18(23):10105-10115, 1998.

[SHP04] A. Safonova, J. K. Hodgins, and N. S. Pollard. Synthesizing physically real-
istic human motion in low-dimensional, behavior-specific spaces. ACM Trans.
Graph., 23(3):514-521, 2004.

[SOMO04] A. Sud, M. A. Otaduy, and D. Manocha. Difi: Fast 3d distance field compu-
tation using graphics hardware. Comput. Graph. Forum, 23(3):557-566, 2004.

[ST94] R. M. Sanso and D. Thalmann. A Hand Control and Automatic Grasping
System for Synthetic Actors. Computer Graphics Forum, 13(3):167-177, 1994.

[TBS04] C. Thurau, C. Bauckhage, and G. Sagerer. Synthesizing movements for com-
puter game characters. In C. E. Rasmussen, H. H. Biilthoff, B. Scholkopf,
and M. A. Giese, editors, DAGM-Symposium, volume 3175 of Lecture Notes in
Computer Science, pages 179-186. Springer, 2004.

[TALOO0] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319 — 2323, 2000.

[Tho98] E. L. Thorndike. Animal intelligence: An experimental study of the associative
processes in animals. Psychological Review Monographs, 8, 1898.

[Tho63] W. H. Thorpe. Learning and instinct in Animals. Methuen, London, 2nd
edition edition, 1963.

[TIS04] J. Tani, M. Ito, and Y. Sugita. Self-organization of distributedly represented
multiple behavior schemata in a mirror system: reviews of robot experiments
using rnnpb. Newral Netw., 17(8-9):1273-1289, 2004.

[TJ81] F.Thomas and O. Johnston. The Illusion of Life: Disney Animation. Abbeville
Press, New York, 1981.

[TJDO7] J. Triesch, H. Jasso, and G. O. Dedk. Emergence of mirror neurons in a model
of gaze following. Adaptive Behavior - Animals, Animats, Software Agents,
Robots, Adaptive Systems, 15(2):149-165, 2007.

204

Bibliography

[TN03] K. Tatani and Y. Nakamura. Dimensionality reduction and reproduction with
hierarchical nlpca neural networks-extracting common space of multiple hu-
manoid motion patterns. In ICRA, pages 1927-1932. IEEE, 2003.

[TNNIOS8] J. Tani, R. Nishimoto, J. Namikawa, and M. Ito. Codevelopmental learning
between human and humanoid robot using a dynamic neural-network model.
IEEFE Transactions on Systems, Man, and Cybernetics, Part B, 38(1):43-509,
2008.

[TS55] C. L. Taylor and R. J. Schwarz. The Anatomy and Mechanics of the Human
Hand. Artificial Limbs, 2:22-35, 1955.

[TYST06] W. Takano, K. Yamane, T. Sugihara, K. Yamamoto, and Y. Nakamura. Prim-
itive communication based on motion recognition and generation with hierar-

chical mimesis model. In ICRA, pages 3602-3609. IEEE, 2006.

[UAT95] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for emotion-based
human figure animation. In SIGGRAPH ’95: Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, pages 91-96, New
York, NY, USA, 1995. ACM.

[UKS89] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajec-
tory in human multijoint arm movement. Biological Cybernetics, 61(2):89-101,
June 1989.

[VAHJ09] A. Vitzthum, H. Ben Amor, G. Heumer, and B. Jung. Action description
for animation of virtual characters. In 6. Workshop Virtuelle und Erweiterte
Realitit. GI-Fachgruppe VR/AR, 2009.

[VBA*T09] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann. Hu-
manoid motion planning for dual-arm manipulation and re-grasping tasks. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
'09), October 20009.

[(WB97| A. Witkin and D. Baraff. Physically based modelling: Principles and practice.
Course Notes of ACM Siggraph, 1997.

[WHAJO06] M. Weber, G. Heumer, H. Ben Amor, and B. Jung. An animation system
for imitation of object grasping in virtual reality. In Proceedings of Advances in
Artificial Reality and Tele- Existence, 16th International Conference on Artificial
Reality and Telexistence, ICAT, pages 65-76. Springer, 2006.

[WKS88] A.Witkin and M. Kass. Spacetime constraints. In SIGGRAPH ’88: Proceedings
of the 15th annual conference on Computer graphics and interactive techniques,
pages 159-168, New York, NY, USA, 1988. ACM.

205

Bibliography

[(WP95] A. Witkin and Z. Popovic. Motion warping. In SIGGRAPH '95: Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques,
pages 105-108, New York, NY, USA, 1995. ACM.

[WWO01] S. Womble and S. Wermter. A mirror neuron system for syntax acquisition. In
ICANN ’01: Proceedings of the International Conference on Artificial Neural
Networks, pages 12331238, London, UK, 2001. Springer-Verlag.

[XKZD09] Z. Xue, A. Kasper, J. M. Zoellner, and R. Dillman. An automatic grasp
planning system for service robots. In Proceedings of the 14th International
Conference on Advanced Robotics. IEEE, 20009.

[YLv07] K. Yin, K. Loken, and M. van de Panne. Simbicon: simple biped locomotion
control. In SIGGRAPH 07: ACM SIGGRAPH 2007 papers, page 105, New
York, NY, USA, 2007. ACM.

[Yur94] D. Yuret. From genetic algorithms to efficient optimization. Technical Report
AITR-1569, MIT AI Laboratory, 6, 1994.

[ZH02] V. B. Zordan and J. K. Hodgins. Motion capture-driven simulations that hit
and react. In SCA "02: Proceedings of the 2002 ACM SIGGRAPH /Eurographics
symposium on Computer animation, pages 89-96, New York, NY, USA, 2002.
ACM.

[ZRV04] J. C. Zagal, J. Ruiz-del-Solar, and P. Vallejos. Back-to-Reality: Crossing the
reality gap in evolutionary robotics. In AV 2004: Proceedings 5th IFAC Sym-
posium on Intelligent Autonomous Vehicles. Elsevier Science Publishers B.V.,
2004.

[ZSS96] T. R. Zentall, J. E. Sutton, and L. M. Sherburne. True imitative learning in
pigeons. Psychological Science, 7(6):343-346, 1996.

206

