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Abstract 

The present work describes investigations on the anisotropic strength behavior of rocks in 

the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and 

sandstone) were studied in the Lab.  

A total of more than 550 indirect tensile strength tests were conducted, with emphasis was 

placed on the investigation of the influence of the spatial position of anisotropic weakness 

plane to the direction of the load on the fracture strength and fracture or fracture mode. In 

parallel, analytical solutions were evaluated for stress distribution and developed 3D 

numerical models to study the stress distribution and the fracture mode at the transversely 

isotropic disc.  

There were new findings on the fracture mode of crack propagation, the influence of the 

disc thickness, the influence of the applying loading angle and angle of the loading-

foliation for transversely isotropic material. 

Zusammenfassung 

Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen 

beim Spaltzugversuch („Brasilianischer Test“). Laborativ wurden drei transversalisotrope 

Gesteine (Granit, Schiefer und Sandstein) untersucht.  

Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt 

auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur 

Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den 

Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur 

Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die 

Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu 

untersuchen.  

Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der 

Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - 

Anisotropieebene für transversalisotropes Material gewonnen. 
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I. Introduction 

 

The Brazilian tensile strength test is a well-known indirect method of determining the 

tensile strength of rocks and other brittle materials using a circular plane disc under 

diametral compression. The Brazilian tensile strength test or the so-called splitting tensile 

test is widely applied in rock engineering because specimens are easy to prepare, the test is 

easy to conduct and uniaxial compression test machines are quite common. 

The Brazilian test was developed in 1943 [1] and has found application mainly in 

investigations of homogeneous rocks; only a few studies covering tensile strength of 

anisotropic rocks. Theories relating to evaluation of the test results are still limited because 

full-field expressions of the stress-strain components and the anisotropic failure 

mechanisms have yet to be investigated in detail. 

Based on these reasons, this work aims at assessing the influence of strength anisotropy on 

the measured peak strength in the Brazilian test. The test was carried out on a large number 

of four different types of rock samples ranging from isotropic to anisotropic. It was done 

parallel to “numerical laboratory tests” so as to evaluate both the characteristics and the 

influencing factors. 

Importance and application of tensile strength 

Besides compressive or shear strength, the tensile strength is a key parameter for 

determining the load bearing capacity of rocks, their deformation, damage and fracturing,  

crushing, etc. and is used in to analyze the stability and serviceability of rock structures. 

Tensile strength plays an important, often the most important role, because rocks are much 

weaker in tension than in compression. 



22        Introduction 

(a) Tension cutoff     (b) Tension region 

Figure I-1: ‘Tensile strength” as illustrated by the Mohr-Coulomb failure criterion (a) Mohr-

Coulomb failure criterion with a tension cut-off T0 and cohesion iS ; (b) Comparison of empirical 

failure envelope and Mohr-Coulomb criterion with tension cut-off. (after Goodman  [2]). 

Tensile strength is frequently used as input parameter in many applications in civil 

engineering, mining and petroleum engineering. 

Anisotropic rocks 

Intact rock and rock mass are characterized by different degrees of heterogeneity and 

anisotropy depending on whether the rock is of igneous, sedimentary or metamorphic 

origin. The degree of anisotropy (aelotropy) of a particular rock type is shown by such 

defined by the presence of fabric elements such as bedding, stratification, layering, 

foliation, fissuring, or jointing. Evaluating the anisotropic properties helps predict the 

behavior of rock materials in the analysis, design and construction phases and improves on 

the quality and safety of these processes [3, 4]. Therefore, methods of determining the 

strength and deformation of anisotropic rocks in the laboratory and in situ have increasingly 

gained attention in recent years. However, rock anisotropy and its implications are still 

poorly understood in both theory and practice. 

Objective of this work 

Tensile strength of anisotropic rocks largely depends on the anisotropic character of the 

rock and especially on the orientation of the planes of rock anisotropy relative to the 

loading direction. The objective here is to combine experimental, analytical and numerical 

methods in order to determine the indirect tensile strength of intact rocks with anisotropic 
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properties varying from isotropic to transversely isotropic. Special attention is to be paid to 

both physical and geometrical numerical simulations using different constitutive laws and 

model parameters. The numerical simulation results are to be compared with results of lab 

tests and then analyzed in detail.  Finally, recommendations for the practical application of 

the Brazil test and the correct interpretation of the test results are to be given.  

Scope of work  

This research encompasses the conventional Brazilian test used to determine indirect tensile 

strength by diametral compressive loading of a disc between two-plates of a compressive 

test machine, as proposed by the International Society of Rock Mechanics [5]. The validity 

of diametral compression tests for indirect measurement of tensile strength is investigated 

theoretically and experimentally. Well-designed tests are conducted on sandstone, gneiss 

and slate and the experimental results compared with theoretical predictions. The research 

focuses on investigating the influences of anisotropy on the test results. Numerical analyses 

are also done in order to investigate the effects of the boundary conditions, loading angle 

and sample size. Anisotropic elastic-plastic constitutive laws are used to investigate the 

failure process in detail and to estimate the tensile strength of the rock.  

Research procedure 

A combination of experimental tests and numerical simulation was undertaken so as to 

achieve the abovementioned research goals. In the light of this, two main aspects have been 

distinguished in the methodology of this thesis:  

1. Well-designed laboratory experiments which carefully test all the bedding-plane 

orientations and loading directions of both isotropic and anisotropic specimen. 

2. Numerical simulation of such underlying mechanical processes as damage, 

fracturing, failure and plastifications taking into account, different orientations of 

the weakness planes in relation to the loading direction. 
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Significance of the work 

Firstly, characterizing anisotropic rocks is to be completely and systematically investigated 

in both laboratory experiments and numerical simulations of the Brazilian tensile strength 

test. 

Secondly, the planes of weakness are to be explicitly simulated by laminated planes 

(smeared-crack model) which enable distinction, both in tension and in compression, 

between failure inside the rock matrix and along the planes of weakness. It will be the first 

time that the failure behavior of such an anisotropic rock was comprehensively investigated 

in 3-dimensional during the Brazilian test. 

Layout 

The thesis is structured into mainly three sections. The first section, Chapters 1 and 2, 

contain the theoretical background and a comparison between the elastic theory and the 

analytical and numerical solutions as a means of evaluating the Brazilian test. The second 

section, Chapter 3, documents the Brazilian tests as carried out on sandstones, gneisses and 

slates. The last section, Chapters 4 - 5, focuses on detailed numerical simulations and 

comparisons with results from lab tests. This is the most important section of this thesis 

because it presents: 

(I.) Several proposals explaining observations of the experimental results and 

(II.) Conclusions and recommendations on how to perform and evaluate the 

Brazilian tests on anisotropic materials. 
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Figure I-2: Thesis structure. 

The work presented in this thesis is subdivided into the following chapters Figure I-2: 

Chapter 1 highlights the theoretical background of the research. It presents literature 

review of the tensile strength test (State-of-the-Art) and defines the background and main 

aspects of this work, specially focusing on the conventional Brazilian test on anisotropic 

rocks. This chapter also defines terms and notations used throughout the work. 

Chapter 2 deals with the analytical and semi-analytical 2- and 3-dimensional mathematical 

formulations of the elastic stress distribution inside the disc under diametral compressive 

strip loading. 

Chapter 3 describes the lab experiments and discusses the results obtained. Laboratory 

tests for determining strength and deformation parameters can be divided into dynamic and 

static methods. The ultrasonic pulse test, uniaxial and triaxial compression tests, and a 

series of Brazilian tensile tests provide information on geomechanical properties which are 

used later as input parameters for numerical analyses. A total of 555 Brazilian tests were 

conducted on four different types of rocks: sandstone, slate and gneiss. The choice of these 

four rock types should help highlight the whole spectrum of isotropic to anisotropic 

characteristics of these materials. 
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Chapter 4 contains numerical simulations of isotropic rocks; to be exact, of the Postaer 

Sandstone from Pirna in Saxony, Germany. Also highlighted here are factors such as size 

effect, loading area, etc and material properties like Young’s modulus and Poisson’s ratio 

which affect the results.  

Chapter 5 focuses on the numerical simulation of anisotropic rocks, in this case, the 

Freiberger and Leubsdorfer Gneisses from Saxony and the Mayen Mosel-Slate from 

Rheinland-Pfalz, all in Germany. Numerical 3D-models using FLAC3D - Fast Lagrangian 

Analysis of Continua in 3 Dimensions [6] were used to investigate the stress-strain field and 

failure pattern under consideration of different orientation planes of weakness in relation to 

loading direction. The numerical analyses reveal failure modes of the disc and the 

differences in strength between the lab test procedure and the simulation results when 

taking into account the anisotropy associated with foliation and orientation of the weakness 

planes. 

Chapter 6 reflects evaluation of the splitting tensile strength of anisotropic rocks, makes 

recommendations on experimental test procedures and gives back final conclusions arrived 

from the study and briefly explains further research possibilities. 

 



 

 

 

Chapter 1 

1 State of the art 

1.1 Review of the Brazilian tensile strength test 

1.1.1 General overview 

The Brazilian tensile strength test, also called the ‘splitting tensile test’ or ‘indirect tensile 

test’, is a plane disc test used to determine tensile strength, especially of quasi-brittle 

materials such as concrete or rocks whose compressive strength are much higher than their 

tensile strength. The easy sample preparation and simple test procedure have made the 

Brazilian test a highly useful and popular experimental method. Under uniform distributed 

loading along two symmetric peripheral arcs, a sample fails either in tensile or tensile-shear 

mode [3, 7-9]. A nearly bi-axial (compressive in vertical and tensile in horizontal) stress 

state develops along the diametral line through the center of the sample. Theoretically, the 

tensile failure occurs along the loaded diameter, splitting the disc (or cylinder) into two 

halves [8]. 

 
      (a) Experimental set-up             (b) Splitting in a sandstone specimen  

Figure 1-1: The Brazilian test as proposed by ISRM [5]. 

Today, the Brazilian tensile strength test is a major standardized test method internationally 

recommended by ASTM D3967-08 [10], BS EN12390-6 [11], Recommendation Nr.10 of 
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the German Society of Geotechnical Engineering (DGGT) [12] and the ISRM-

recommendations in particular [5]. Brazilian test procedures and specimen preparations as 

specified by ASTM, DGGT and ISRM show a few but differences. ISRM and DGGT 

suggest a special test apparatus hold the specimen whereas ASTM recommends placing 

cardboard or plywood between the plates and the specimen to reduce stress concentrations 

where forces are applied as at the boundary areas. The advantage of the ISRM and DGGT 

recommendations is that the loading angle (2) develops automatically. 

Determining tensile strength by the direct tension test ranks amongst the most difficult test 

methods. Several technical difficulties originate from fragmentation whilst gripping and 

then applying the load parallel to the axis of the specimen so as to avoid development of 

bending or torsion moments caused by misalignment [13, 14]. These difficulties lead to 

replacement of the direct tension test by simpler ones; example the diametral compression 

test on discs and rings, the three- or four-point bedding test, the hydraulic tension and the 

diametral compression tests on cylinders or cubes. Obviously, the stress state during these 

tests is far from the one theoretically characterized as uniaxial, hence the results obtained 

often subject to serious criticisms. Besides, many such brittle materials as rocks have non-

linear stress-strain characteristics in reality, their inherent defect structures having 

dimensions not much smaller than certain dimensions of the test specimens. Thus, there are 

serious discrepancies between theoretical and actual behavior [7]. 

The Brazilian test also has grave disadvantages, nonetheless. The expansion of the contact 

loading area completely depends on the deformation (stiffness) of the specimen. It is 

therefore important to specify or measure the form of the loading area. In addition, 

frictional effects at the point of contact between the loading plates and the sample have to 

be taken into account in laboratory tests. 
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       (a) simple tension   (b) compression and tension 

Figure 1-2: Basic physical models characterizing the mechanical behavior of materials: (a) direct 

tensile strength test with dogbone-shaped specimen and (b) the conventional Brazilian test [15]. 

In spite of all this, the Brazilian tensile strength test remains a simplified and widely used 

method of testing rocks and other brittle materials. And as the name implies, especially in 

determining tensile strength of anisotropic materials, though recent developments have 

enabled determinations of fracture toughness and elastic modulus as well [3]. In principle, 

the stress field, which induces tensile failure when the disc is compressed diametrally, can 

be fully determined, provided the material is linear elastic, homogeneous and isotropic up 

to the point of failure.  

1.1.2 Development of the Brazilian tensile strength test 

The Brazilian test was first introduced by Professor Carneiro, a Brazilian, who invented the 

splitting tensile test for measuring the tensile strength of concrete in 1943 [1]. He observed 

that concrete fractures develop almost in a vertical plane connecting the line of contact 

between the cylindrical specimen and the compression plates. This observation brought up 

the idea of developing a test that could be performed on cylinders. Using simple formulas 

based on the elasticity theory, Carneiro developed a procedure to deduce the tensile 

strength based on measured peak load at failure. At about the same time, Akazawa also 

presented a similar method [16]. The Brazilian test has been researched by many scientists 

from all over the world ever since then. 
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In 1978, the International Society of Rock Mechanics (ISRM) suggested the method be 

used for determining indirect tensile strength [5]. The justification here being that 

experimentally, most rocks in biaxial stress fields fail in tension if one principal stress is 

tensile and the other finite principal stress compressive, with a magnitude not exceeding a 

threefold of the tensile principal stress. This suggestion is still useful today and finds 

application in laboratories all around the world. It can be said thus, that the ISRM-

suggestion has had a significant impact on the development of the Brazilian tensile test.  

Before the proposal of the ISRM 

Long before the ISRM-suggestion, the Brazilian disc test had been investigated by many 

scientists [6, 17-30] and various points of criticism discussed in relation to the data 

obtained therewith and those from direct tension tests. Berenbaum and Brodie [17] assessed 

this test and indicated its superiority in the light of its simplicity and usefulness as in 

material property determinations like anisotropic tensile strength. Hondros [18] proposed 

an analytical solution of the problem for a thin disc, assuming that the material is 

homogeneous, isotropic and linear elastic and the load distribution is along two symmetric 

finite arcs at the periphery of the specimen. He derived the complete stress field by using 

the series expansion technique and compared his solutions with experimental data on 

cement mortars and concrete. Fairhurst [19] analyzed the failure of specimen based on a 

Griffith-type fracture criterion. He indicated that when materials have low compression to 

tension ratios, the initial failure might occur away from the center of the disc for small 

angles in loading contact areas. Fairhurst concluded that the tensile strength of a rock with a 

compressive to tensile strength ratio of 8 would be underestimated by 30% especially for a 

plate contact width of 152 . Hobbs [20] proposed using specimens with a small hole at 

the centre as a modification of the Brazilian disc test so as to mitigate some of the 

drawbacks of the conventional test. His results are also presented in a study on the 

relationship between tensile strength and lamination orientation and that between uniaxial 

compressive strength and tensile strength for laminated and massive rocks. Hooper [21] 

examined the influence of the tensile stresses in the contact region and the frictional effects 

at the interface. Hooper’s results showed that Hondros’ two-dimensional analysis predicts 

the presence of exclusively compressive stresses at the contact area and that fracture always 

initiates at the contact surface and not within the disc as suggested by conventional theory. 
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This phenomenon is caused by the three-dimensional stress state in the contact region and 

by the frictional effects at the interface. 

After the ISRM proposal 

Since the ISRM proposal, the Brazilian disc test has undergone intensive research by many 

authors [3, 13, 15, 22-35]: Wijk (1978); Nova et al. (1990); Guo et al. (1993); Andreev 

(1995); Chen et al (1998); and recently [8, 9, 36-51] as Sarris et al. (2005); Ma and Hung 

(2008); Lanaro et al. (2008); Ma et al. (2008); Kwaśniewski (2009); Markides et al. (2010); 

Tang et al. (2010), to name a few. In order to take the effect of other factors such as the 

influence of the loading device or the anisotropy of rocks or rock-like materials into 

account, many suggestions relating to the experimental procedure and the shape of the 

specimens, as well as new analytical or numerical solutions for the stress-strain field have 

been proposed [3, 33, 43, 46, 50-53]. Especially noteworthy are, the more recent studies by 

Amadei (1996); Hakala et al. (2007); Ke et al. (2008); Shahnazari et al. (2010); Tavallali et 

al. (2010); Markides et al. (2010) are notable. Most recent studies were conducted with the 

aid of the Finite Element Method (FEM), the Boundary Element Method (BEM) and the 

Discrete Element Method (DEM) [36, 38, 45, 47, 54]. These methods have given a better 

understanding of the test by explicitly illustrating the stress- and strain field at any point 

inside the specimen. 

1.1.3 The Brazilian tensile strength test on anisotropic rocks 

Anisotropy is a typical characteristic of intact foliated metamorphic rocks (slates, gneisses, 

phyllites, schists) and intact laminated, stratified or bedded sedimentary rocks (shales, 

sandstones, siltstones, limestones, coal, etc.) [55, 56]. The anisotropy results from complex 

physical and chemical processes associated with transportation, deposition, compaction, 

cementation, etc. In these rocks, the fabric can be expressed in different ways. It is worthy 

to note that rocks which have undergone several formation processes, may present more 

than one direction of planar anisotropy such as foliation and bedding planes in slates. These 

rocks tend to split into planes as a result of the parallel orientation of microscopic grains of 

mica, chlorite or other platy minerals [3]. The majority of the discs tests confirm that failure 

along the loaded diameter largely depends on the microstructure.  
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Rock anisotropy plays an important role in civil, mining and petroleum engineering, 

especially in terms of the following aspects [57]: 

 Long- and short-term stability of underground structures (tunnels, caverns, shafts 

and other openings); 

 Determination of excavation methods (drill-and-blast or TBM and raise-boring); 

 Design of rock support systems; 

 Prediction of rock bursts; 

 Thermo-hydro-mechanical behavior of the rock; 

 Design of grout methodology; 

 Fluid flow and contaminant transport; 

 Fracturing and fracture propagation. 

Stress state and failure envelop including tensile strength are necessary as input values for 

the above mentioned engineering tasks. However, determination of the tensile strength of 

anisotropic rock is still untrod territory; particularly, when the load directions and bedding-

planes are inclined to each other, the stress- and strain field can not be obtained by 

analytical solutions and the influence of anisotropy on the tensile strength remains an 

unsolved problem. In fact, combining experimental, analytical and numerical methods in 

order to analyse the results of the Brazilian test for intact foliated metamorphic and intact 

laminated, stratified or bedded sedimentary rocks has yet to be undertaken. 

1.1.4 Summary 

The Brazilian test is widely used in engineering to indirectly obtain the tensile strength of 

rocks and rock-like materials, thanks to its practicality in the way of specimen preparation 

and simple test procedure. The Brazilian test has been constantly updated by new theories 

and experimental techniques for many years now, both in relation to its dependence on the 

foliation angle, loading methods and in combination of analytical and numerical solutions 

for continuous and discontinuous, homogenous and inhomogeneous, isotropic and 

anisotropic, elastic and plastic media. Nevertheless, many questions still remain to be 

answered especially in its evaluation of strongly anisotropic rocks. 
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1.2 Analytical aspects 

The splitting tensile test is based on the fact that tensile stresses developed when a circular 

solid disc is compressed between two diametrally opposed forces. The maximum tensile 

stress develops perpendicular to the loading direction and is proportional to the applied 

load. Results of the test largely rely on the important hypothesis that fracture is initiated by 

tensile stresses. Because failure occurs along the diametral plane of the applied load, it is 

commonly assumed that the nominal tensile stress causes the disc to fail.  

Simulation results obtained by FLAC3D for homogeneous material also confirm that 

plastifications occur at areas near the applied load and at the center of the disc. The 

intensified tensile stresses towards the applied load are greater at the center than at any 

other point. Therefore, failure is initiated at the center of the disc. Simulations done by 

other authors yielded similar results [36, 58]. 

Besides, the strength values obtained in diametral compression tests are often much lower 

than those obtained in other uniaxial, three- and four-point bending and direct tensile tests. 

The reasons for these differences could be [59]:  

 The formula used for calculating the tensile strength relative to the load is based 

on the assumption that the material behavior follows Hooke's law. However, 

many quasi-brittle materials do not exactly follow Hooke's law. 

 Quasi-brittle materials obey the maximum tensile strain criterion rather than the 

maximum tensile strength criterion. 

In addition, the initial crack is not always observed at the center of the disc as implied by 

theoretical solutions. Some authors [21, 60] believe that failure is initiated under the load 

points or somewhere near the center. Because of this, disagreements on the true mechanism 

of failure have ensued. The results of numerical simulations obtained by FLAC3D for gneiss 

and slate under different orientations of the planes of weakness to the loading direction 

indicate the important role of anisotropy in strength determinations and failure patterns. 

Similar conclusions have also been drawn by other authors like Chen [39], Yu [61] and 

Markides [62], etc.. 
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1.2.1 Hypotheses for the conventional Brazilian test 

The determination of tensile strength for brittle materials assumes that the material is 

homogeneous, isotropic and linearly elastic. The first theoretical solution was obtained in 

1881 by Hertz. An enhancement, accounting for the uniform distribution of the load over 

strips of finite width, was made by Hondros in 1959 [18]. 

 

(a) Brazilian test, showing 

notations used 

 (b) Stresses along the cross sectional line YY’ for a 

Brazilian test with strip load angle 12
11tan  

Figure 1-3: Stress distribution inside a thin disc under uniform radial pressure applied over a small 

arc of the circumference at each end of the diameter (after Hondros [18]).  

In Figure 1-3, the compression (p) induces tensile stresses  y  which are nearly constant 

over a large part in the inner area of the sample. The tensile strength is calculated based on 

the assumptions that failure occurs at the point of maximum tensile stress (i.e. at the center) 

and that the radial compressive stress  ry  has no influence on the failure [19].  

From these observations, the Brazilian tensile test assumes the following: 

 Rocks in biaxial stress states fail in tension when their uniaxial tensile strength 

is exceeded by the tensile principal stress. 

 The compressive principal stress has a magnitude, which does not exceed a 

threefold of the tensile principal stress and does not therefore, produce shear 

failure. 
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 The failure is governed by the Griffith criterion or the maximum tensile stress 

criterion when the initial point of crack is at the center of the disc. This means 

that, this criterion is valid only as long as the compressive strength of the rock is 

greater by far than its tensile strength [63]. 

Under these assumptions, the fundamental mathematical problem in emulating a real 

experiment is, achieving linear elasticity for a solid disc. The exact center of the disc is the 

only point where the conditions for tensile failure are met. The principal stresses there are:  
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and  yry  3         (1.4) 

Following Fairhurst [19], the error introduced by using the approximate expression y , 

with an arc contact 152 , is 2%.  

In reality, Eq. (1.1) is a function of ,p  and t . According to the ISRM proposal [5], the 

contact length between the disc and the loading jaws is considered a finite arc rather than a 

single point. It is also assumed that the contact between the disc and the loading jaws can 

be simulated by uniform radial compressive pressure acting on two arcs of the perimeter of 

the disc, symmetric to its center. The only stress acting on the contact area is radial 

compressive. Any frictional forces created at the disc–jaw interface can be ignored. And, 

the problem can also be considered as a state of plane stress.  
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Figure 1-4: Loading jaws in a Brazilian test equipment (after ISRM [5]). 

1.2.2 Failure criteria 

Rock materials are usually weaker in tension and comparatively stronger in compression, 

so cracking or failure often occurs essentially in tension. The foregoing relationships give 

the stress distribution along the lines where cracks are known to initiate and propagate. 

However, in order to decide where failure begins in a real material, it is necessary to 

introduce a failure criterion, i.e. a characteristic relationship between the principal stresses 

at failure.  

Mohr-Coulomb failure criterion 

The Mohr-Coulomb failure criterion is the simplest and best-known criterion for failure of 

rocks. As shown in Figure I-1:(a, b), the Mohr envelope touches all the Mohr circles which 

represent critical combinations of principal stresses. The ultimate equilibrium in terms of 

normal and shear stresses on the failure plane is represented by the envelope tangent to the 

Mohr circle. 

 tan ip S        (1.5) 

Eq. (1.5) can be interpreted as follows. Failure occurs when the actual shear stress p , 

diminished by the frictional resistance associated with the normal stress on the failure plane 
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is equal to shear strength iS . On the plane of failure, the minimum principal stress 3  can 

be tensile as long as 1  remains compressive. Other theories of failure (e.g., the Griffith 

theory) describe the tensile failure region in more detail. The Mohr-Coulomb criterion is 

derived by extrapolating the Mohr-Coulomb line into the tensile region up to the point 

where 3  becomes equal to the uniaxial tensile strength 0T . The minor principal stress 

can never be less than 0T  [2]. 

In Figure I-1:(a, b), a “tension cutoff” superimposed on the Mohr-Coulomb criterion is 

taken as a constraint for the failure criterion. The actual envelope of critical Mohr’s circles 

with one negative principal stress lies beneath the Mohr-Coulomb criterion (Figure I-1:(b)). 

Consequently, it is necessary to reduce the tensile strength 0T  and the shear strength 

intercept iS  when applying this simplified failure criterion to any practical situation. 

Griffith failure criterion 

Although the Mohr-Coulomb criterion is easy to handle practically, the Griffith theory 

delivers a more precise criterion of failure for any rock when the envelopes are fitted to 

Mohr's circles. The Griffith theory of failure predicts a parabola in the tensile stress region. 

This theory assumes the presence of randomly oriented fissures which create local stress 

concentrations and new cracks. However, the Griffith theory does not hold physically 

regions where both principal stresses are compressive. Jaeger and Cook (1976) and Hoek 

(1968) demonstrated that the failure envelopes for most rocks lie between a straight line 

and a parabola. 

It is generally accepted that the Griffith failure criterion is the most satisfactory explanation 

for the fracture of brittle materials. According to this criterion, failure occurs when: 

03 313   whereT      (1.6) 

and:     038 3131
2

31   ifT     (1.7) 

Where 1  is the major principal stress, 3  the minor principal stress, and T  the uniaxial 

tensile strength of the material (tension positive) and the intermediate principal stress 2  is 

assumed as having no influence on failure. It is usually assumed that failure occurs in 

accordance with conditions in Eq. (1.6), thus initiating at the center of the disc. Fairhurst 
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generalized the Griffith criterion to account for the variations in n, the uniaxial 

compression/tension strength ratio. The rate may vary considerably from the theoretical 

value n=8 implying that in practice, the conditions for failure may not conform to the 

simplified Griffith criterion [7]. 

Hoek-Brown failure criterion 

The criterion starts from the properties of intact rocks and then introduces factors that 

reduce these properties based on the joint characteristics in a rock mass. 

Applying the Mohr-Coulomb failure criterion, the rock mass strength is defined by the 

cohesive strength c’ and the friction angle’, the relationship between the major and minor 

principal stresses linear. Meanwhile, this relationship is non-linear in the Hoek-Brown 

criterion [64]. Moreover, determining c’ and ’for disturbed in-situ rock masses is difficult. 

The generalized Hoek-Brown criterion is expressed as [65] 
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s and a are constants of the rock mass given by the following relationship: 
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D is a factor which depends on the degree of disturbance to which the rock mass has been 

subjected by blast damage and stress relaxation. It varies from 0 for disturbed in situ rock 

masses to 1 for very disturbed rock masses. And, GSI is the value of the Geological 

Strength Index of the rock mass. 

The empirical uniaxial compressive strength is obtained by assuming 0'
3  in Eq.(1.8): 
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a
cic s.           (1.12) 

The empirical tensile strength is obtained by assuming t  '
3

'
1  in Eq.(1.8): 
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1.2.3 Crack initiation and propagation 

One of the assumptions of the conventional evaluation of the Brazilian test is that the crack 

should initiate at the disc center during loading and then propagate along the loading 

diameter [5, 12]. In fact, the crack initiates in regions other than the center of the disc, for 

example somewhere near the load arc or especially along weak planes in transverse 

anisotropic rock specimens (Figure 1-5). 

 

Figure 1-5: Some typical fracture patterns in the slates at orientation angle ( ) 450 and foliation-

loading angles ( ) 00 and 150 (for My.Sc.45.0 & My.Sc.45.15, respectively). 

As indicated in Figure 1-5, the fractures do not always go through the center and separate 

the disc in two halves, as the simple theory predicts. Details of fracture patterns are given in 

Chapter 3 and Appendices 3.1, 3.2, 3.3 and 3.4. 

Fairhurst [19] first discussed the validity of the Brazilian test. Based on results obtained 

from tests with different loading angles (2) he suggested that failure might occur away 

from the center of the test disc for small angles in the loading contact area. Intensive local 

stress concentrations inside the sample may exceed such a level that cracks initiates and 

propagation of relatively small cracks starts. With larger loading angles, e.g. 152 , the 



40        Chapter 1.  State of the art 

deduced tensile strength becomes more representative of the whole specimen rather than 

the strength of one single point in it.  

The intact continuum is assumed to be flawless. In this model, failure can be initiated either 

when the tension or shear failure criterion is reached. It is known meanwhile that in 

anisotropic rocks, material heterogeneity generates local stress concentrations at micropores 

of flaws causing tensile or shear crack development when the critical stress intensity is 

reached locally. Fracture toughness of rocks, one of the basic material parameters in 

fracture mechanics, is defined as the resistance to crack propagation. In other words, 

fracture toughness can also be defined as the critical value of the stress intensity factor 

(SIF) when a crack propagates. There are three stress intensity factors which correspond to 

three basic fracture modes - opening, sliding and tearing. Most of the previous studies on 

rock fracture mechanics have mainly focused on the opening mode fracture (mode-I) until 

now. Investigations into sliding and mixed-mode fractures are limited in literature [28, 46]. 

In general, fracture toughness is greatly influenced by the microstructural properties of 

anisotropic rocks. Mode-I fracture toughness is highest when measured orthogonal to a 

bedding plane (i.e. weakness plane) and is lowest for cracks propagating along the bedding 

plane.  

Rock materials are characterized by grain, pore and crack structures, so that they can only 

be considered as homogeneous in large volumes compared to the dimensions of these 

structural elements. Probability, size etc. of structural defects becomes more critical with   

increasing sample volume. Thus, although the most critical stress conditions may exist at a 

certain point in the specimen, the most critical defect might occur at some other point and 

therefore, the failure may initiate at any point inside the sample, where a critical 

combination of stress and structure defects occur.  

With the rapid development in simulation programs in recent years, it has become much 

easier to observe the initiation and propagation of cracks through analysis of digital images 

obtained from small sections [4, 66]. These modeling programs take the direct 

measurements of crack length, orientation, grain size etc. into account and can provide the 

complete stress-strain field on a small scale. Apart from which, those programs enable 

researchers to handle the representative assessment of microstructural properties and failure 

mechanisms in a much more efficient way. 
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1.2.4 Summary 

Due to the simplicity of its experimental set-up and theoretical analysis, the Brazilian test 

has become an important method of determining the tensile strength of rocks. 

However, the analytical stress-strain solutions deduced for circular discs (plane stress) and 

cylinders (plane strain) highly depend on boundary and initial conditions, which are largely 

ignored by theoretical analyses. In fact, the theoretical closed-form solutions do not 

consider pre-existing or newly initiated flaws or other inhomogeneities. Besides, cracks 

affect the stress distribution inside the samples to such an extent that it violates the 

hypothesis of material continuity and homogeneity. 

Anisotropic rocks have been widely investigated in rock mechanics but relevant 

information on their complete tensile fracture behavior is significantly limited. Rock failure 

in tension results from the propagation of one or more cracks and can thus be investigated 

using the theory of fracture mechanics. 

The best way to judge any of the aforementioned indirect tension test methods is to 

compare their results with those from the direct tension tests. 

1.3 Numerical considerations 

In recent years, the enormous development in numerical analyses codes has offered new 

insights into simulating the Brazilian test. These new techniques have been successfully 

applied in solving different problems involving the determination of the full stress-strain 

field, the consideration of the microstructural composition and the fracture propagation in 

rocks. Most of the research and development in terms of numerical simulations for the 

Brazilian test has focused on understanding various problems of homogeneous and 

heterogeneous geomaterials under 2-dimensional conditions. However, mechanical 

problems in geomaterials are generally 3-dimensional [4, 14, 58, 62, 63, 66]. So far, the 

extension of the numerical investigations towards 3D so as to cover the behavior of 

heterogeneous geomaterials is quite rare. Relevant details on the self-designed 3-

dimensional numerical models will be presented in the section below and in Chapter 5. 

The numerical simulation of the Brazilian test has several advantages, some of which are: 

 Conducting parameter or sensitivity studies 
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 Investigation of the influence of boundary, geometrical and initial conditions on 

test results. 

 Studying stress distribution induced by the initiated cracks inside the model.  

 Analyzing failure mechanisms assuming elasto-plastic or damage / fracture 

mechanical behavior of materials. 

 Investigation of anisotropic behavior of materials. 

1.3.1 Numerical methods 

Most of the recent numerical studies have been carried out with the aid of the following 

methods: Finite Element (FEM), the Boundary Element (BEM) and the Discrete Element 

(DEM) [56], [67]. Numerical simulations of the Brazilian test have concentrated on the 

determination of the stress-strain distribution, the crack initiation, propagation and 

coalescence. 

BEM is suitable for modeling problem of rapidly changing stresses and stress singularities. 

It finds application in the case of elastic problems and has been used to simulate crack 

propagation during loading by such researches as Malan et al. [68]; Chen at el. [33]; Wang 

et al. [69]; Pan et al. [70]; Van de Steen et al. [71] and Lanaro et al. [40]. In Malan’s studies 

[68], fracture growth using the small strain dislocation theory was controlled by evaluating 

the stress field at a set of potential growth sites. These sites comprise “seed” points either at 

arbitrary positions in the medium or at the junctions between existing elements or at the tips 

of growing fracture segments. The first application of 2-dimensional BEM to anisotropic 

half-plane problems were done by Pan [70]. For half-plane problems using the Kelvin-type 

Green's functions, 2-dimensional BEM has provided very accurate results using relative 

coarse discretizations. Numerical applications of the 2-dimensional BEM in rock 

mechanics, for example, clearly showed that the degree of rock anisotropy and the 

orientation of the anisotropy can have a great impact on the stress distributions. 

1.3.2 Summary 

In recent years, the rapid development of computing power, interactive computer graphics 

and topological data structure, has led to computer simulation becoming a more and more 

attractive alternative of investigating the complete of stress-strain field and fracturing. The 



1.4  Conclusion        43 

numerical constitutive models are more and more compatible with intrinsic properties of 

materials and so are the testing simulations to the experimental tests.  

The Brazilian test should considers more and more, the numerical calculation of the stress 

components at each point of the disc, especially in the critical domains, i.e. at the center of 

the disc and the crack tip; the numerical determination of any stress concentration at the 

crack tips and the determination of the orientation angle, at which the rock is considered an 

anisotropic medium. 

1.4 Conclusion 

The Brazilian test has been evaluated and confirmed as a simple way of measuring the 

tensile strength of brittle materials. Tensile strength of rocks is among the most important 

parameters influencing rock deformation and crushing. Recent developments with respect 

to Brazilian tests include fracture mechanical approaches, determination of elastic modulus, 

etc, ranging from isotropic to anisotropic material behavior. Many specific lab test 

arrangements have been developed with results that are almost impossible to interpret 

analytically.  

To deduce the tensile strength from Brazilian tests, one must know the principal tensile 

stress, especially at the disc center of the rock, however cracks initiate in most though not 

all cases. Indeed, for uniform distributed load, it has been shown that under certain 

circumstances the failure is due to shear and compressive stresses at the loading points. 

Also, failure may initiate not at the center, but at the point where a critical combination of 

stress and fabric structures occur.  

Numerical simulations provide a powerful instrument for investigating the complete stress-

strain field and simulating the failure pattern even for anisotropic and inhomogeneous 

materials. 

An efficient method based on a combination of analytical, experimental and numerical 

solutions for the analysis of the Brazilian tests of anisotropic rocks is the aim and objective 

of this thesis. 
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Chapter 2 

2 Diametral compression in a solid disc – 

Compilation of analytical and semi-analytical 

solutions 

2.1 Introduction 

This chapter deals with the analytical and semi-analytical solutions of the stress distribution 

in a solid disc under diametral compressive loading. Different solutions for 2- and 3-

dimensional considerations of isotropic materials are presented. Remarks which extend the 

solutions to anisotropic materials are also made. This Chapter also concentrates on the 

comparison and interpretation of existing solutions. 

2.2 Diametral compressive stress distribution in an isotropic elastic disc 

The starting point in studying diametral compression of a solid disc is the determination of 

the stress field, assuming that the material is homogeneous, isotropic, and linearly elastic. 

The theoretical solutions assume isotropism, homogeneity, linear elasticity and half-space. 

Since Hertz’ initial proposal in 1883 this solution has been expanded on by many 

researches like Frocht (1948) [72]; Timoshenko (1951) [73]; Sokolnikoff (1956) [74]; 

Muskhelishvili (1975) [75]; Timoshenko and Goodier (1982) [76]; Poulos (1991) [77];  

Martin (2005) [78] and others. 

The problem of a disc in diametral compression as used in experimental stress analysis in 

the Brazilian test has had many contributions made to it for several decades now.  

Currently, theoretical solutions for solid discs under opposing point loads or load 
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distribution over a small arc of the disc’s circumference have been developed for 2-D and 

3-D. 

2.2.1 Elastic theory of line load 

The theoretical solution was first proposed in 1883 by H. R. Hertz. This bothered many 

mathematicians for a long time. One of the theoretical contributions put forward by 

Timoshenko [73] considers a constant line force acting at the surface of an isotropic, 

homogeneous, linearly elastic half-space (Figure 2-1). 

 

Figure 2-1: Uniform line load acting at the surface of a half space (after Timoshenko, [73]). The 

solution to this problem was found by Bousssinesq based on a three-dimensional solution put 

forward  by Flamant in 1892 [79]. 

The stress in an elastic half-space shows a radial distribution. Any element C at a distance r 

from the point where the load is applied is subject to a simple compression in the radial 

direction. 

  
r

P
r




 cos2
        (2.1) 

The stress analysis of a circular disc subjected to concentrated forces has been discussed 

further by Frocht (1948) [72]; Timoshenko (1951) [73]; Sokolnikoff (1956) [74]; 

Muskhelishvili (1975) [75]; Poulos (1991) [77] and others.  

Analytical solutions for a pair of diametrally opposite, symmetric and compressive line 

loads applied to a disc of isotropic rock material have been provided by Muskhelishvili 
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(1975) [75]; Timoshenko and Goodier (1982) [76] and Martin (2005) [78]  so that the stress 

distribution inside the disc is known. 

 

Indirect tensile test Flamant solution (1)    Flamant solution (2)  radial tension solution (3) 

Figure 2-2: Disc under diametral compression – superposition solution (after Martin [78]). 

2.2.2 2D analytical solutions 

Based on the theory of elasticity for isotropic medium, Timoshenko and Goodier [76] 

provided comprehensive solutions for the stress distribution induced by line loads on a disc. 

To compare these theoretical results with actual material behavior photoelasticity was used 

to illustrate the stress field experimentally [80]. The obtained isochromatic fringe patterns 

were compared with theoretical solutions. As Figure 2-3 documents only neglectable 

deviations were found [78]. 

 

       Theoretical contours        Photoelastic contour 

Figure 2-3: Maximum shear stress contours obtained by analytical solution and the corresponding 

photoelastic isochromatic fringe patterns for a disc under diametral compression. (after Martin [78]) 

The mode of load application has an important influence of the induced stress pattern. 

Figure 2-4 illustrates and compares near-field photoelastic fringe patterns for a rectangular 

plate under four different loading conditions. 
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        point loading        uniform loading         flat punch loading      cylinder contact loading 

Figure 2-4: Isochromatic photoelastic fringe patterns for several contact loadings along a half 

plane. (after Martin [78]). 

The effect of a finite loading area on the stress distribution is important and was 

investigated experimentally. The Saint-Venant’s principle applied to circular discs 

subjected to diametral loading was examined by comparing the stress field obtained by 

concentrated compression with those from distributed compression over a small angle. The 

methods of photoelasticity and Moiré interferometry were used (Figure 2-5).  

 

Figure 2-5: Experimental results of Moiré interferometry and photoelasticity (after Timoshenko 

[76]). 
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2.2.2.1 Plane disc under diametral compressive line load 

This problem was fully resolved by Timoshenko [73] as illustrated in Figure 2-1. Based on 

the radial solution, the stress distribution can easily be converted into a Cartesian 

coordinate system as illustrated in Figure 2-6. 

 

Figure 2-6: A plane disc subjected to line load 

The Cartesian stress components at any point M on a horizontal plane mn at a distance c 

from the surface of the half-space (Figure 2-1) can be calculated from the compression (P) 

in the radial direction: 
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On the other hand, the equilibrium equation for two-dimensional solutions is given in polar 

coordinates: 
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Figure 2-2 is an illustration of an alternative method which utilizes the superposition 

principle of three particular stress fields.  This method combines the two Flamant solutions 

and that of the uniformly loaded disc and these yields the final stress field for an XY-

coordinate system:  
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where  22
2,1 yRxr  .  

On the Y-axis in particular, (where X=0), the stresses are: 
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Thus, along the loaded diameter at X=0, the body experiences a uniform tensile stress 

of DPx  /2 . This formula serves as a basis for calculating the tensile strength in the 

Brazilian test. 

To record the strain, Jianhong et al. [81] used two strain gauges fixed at the center of a 

Brazilian disc both measuring parallel and perpendicular to the line load direction. In 

addition, a force sensor was used to record the applied force. The stress–strain curve was 

then determined. The tensile elastic modulus Et and strength were derived from a linear 

elastic, isotropic finite-element analysis and the regression fitting test data. The analytic 

solution for a pair of diametrally opposed, symmetrical and compressive loads on an 

isotropic Brazilian disc could thus be written as: 
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Eq. (2.6) deduced by  Jianhong et al. [81] is identical with the solution given by Martin 

[78]. 

To highlight the differences in the above given solutions, the stress distribution along the 

loading plane at X=0 was calculated under the same boundary condition (i.e., the same 

radius, thickness and load, in concrete as: D=50 mm; t=25 mm and P=25 kN.). 
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Figure 2-7: Distribution of stress components relative to Eqs. (2.2), (2.5) & (2.6) 

From Figure 2-7, it is obvious that the stress at the load entry points is infinite. In all three 

solutions the distribution of tensile stress t is constant along the plane X=0. The predicted 

vertical compressive stress obtained from the Timoshenko-solution deviates from that of 

Martin and Jainhong, which both demonstrate identical values. 
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2.2.2.2 Plane disc under diametrally compressively distributed load 

An analytical solution for a disc with partially distributed compression was developed by 

Hondros [18]. This solution is valid for both plane stress (discs) and plane strain 

(cylinders). Since then, many other investigators such as Fairhurst (1964) [19]; Hobbs 

(1964) [20]; Jaeger (1967) [82]; Colback (1967) [83]; Hudson et al. (1972) [60]; Wijk 

(1978) [35]; Guo et al. (1983) [28] ; Andreev (1991) [25]; Hung et al. (2003) [37]; Wang et 

al. (2004) [41]; Ma et al. (2008) [8]; Ma and Hung (2008) [8]; Markides, et al. (2010) [9] 

have carefully reviewed and expanded on these solutions. 

 

Figure 2-8: Configuration of a plane disc subjected to compressive load distributed along a curved 

line 

Hondros' solution for an elastic homogeneous linear isotropic material gives the following 

stress fields: 

 (a) Stresses along the vertical diameter (OY) 
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 (b) Stresses along the horizontal (OX) 
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Hondros’ solution (Eqs. (2.7) & (2.8)), valid for a very thin plane disc subjected to a 

uniformly distributed pressure applied radially over a short strip at the circumference 

predicts intensive local stress concentrations near the applied load. In practice though, due 

to the deformation of the specimen and plates, the actual loads are always only distributed 

over a finite portion of the disc. 

Focusing on the stresses near the load entry arc, Sarris et al. [36] expanded on the Hondros’ 

solution: 
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Instead of using series expansion, Ma and Hung [8] successfully expanded on Hondros’ 

formula and obtained an analytical solution with explicit expressions. For the special case 

where 0  the problem can be reduced to a disc subjected to concentrated forces acting 

along the diameter in which the stress solutions are simplified as follows: 
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To compare the different solutions, the stress distribution was calculated under the same 

boundary condition using radius, thickness, load and loading angle 2. Precisely put, the 
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conditions are D = 50mm; t = 25mm; Poisson’s ratio 25.0 ; applied load P = 25kN; and 

loading angle 0202  . 
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Figure 2-9: Stress component distribution in 2D theoretical solutions  

Figure 2-9 shows a comparison of the stress distributions along the axes X=0 obtained from 

the different solutions mentioned above. The solution of Sarris et al. has improved on the 

stress prediction near the load entry. However, the stresses at the center of the disc are more 

or less equal to Hondros’s values.  

In general, Hondros’s solution can be considered as the basic means of determining the 

tensile strength. This approach of taking the applied load into account is much closer to 

reality than the original method which only considered the concentrated line loads. 

However, the approximate expressions derived for the stress components often provide 

only insufficient in-depth error analysis. It is also difficult to realize the required uniform 

and radially oriented load distributed over a pair of arcs in real experiments. Consequently, 

there are always differences between the actual stress state and the predictions obtained by 

the analytical or semi-analytical solutions. 
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2.2.3 3D disc under line and diametral compressive distributed loads 

From the theory of elasticity, it is well known that some solutions [73, 78, 84, 85] for 

stress, strain or displacement fields are very sensitive to Poisson’s ratio . In other words, 

the tensile stress produced by the Brazilian test has to be taken as a function of the 

Poisson’s ratio for the material and consequently, another advanced calculation scheme for 

the determination of the tensile strength has to be used.  

2.2.3.1 3-dimensional solution for a cylindrical disc under line load 

Mindlin [86] expanded on the solution proposed by Boussinesq in 1885 for a force applied 

on the boundary of a semi-infinite body and found the corresponding 3-dimensional 

solution. Subsequently, the solution for two concentrated forces P acting on the plane of a 

cylinder was worked out by Timoshenko [73]. The expressions for the stress components at 

any point on the equatorial plane are given in the cylinder co-ordinate system: 
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In relation to Boussinesq’s problem, Martin [78] has shown that the stress distribution 

within the specimen under 3-dimensional conditions is a function of Poisson’s ratio: 














zR

R

R

zr

R

P
r

)21(3

2 3

2

2




  













zR

R

R

z

R

P
22

)21(


  

5

3

2

3

R

Pz
z 

           (2.12) 

5

2

2

..3

R

zrP
rz 

   

 



56        Chapter 2.  Diametral compression in a solid disc – Compilation of analytical… 

2.2.4 3D solution under diametral compressive distributed load 

Wijk [35] suggested a 3D ‘correction’ of the 2D analytical solution for the Brazil test. 

Under certain conditions, the elastic solution of a 2-dimensional problem may be used to 

construct a solution for the corresponding 3-dimensional problem. For a thin disc, the 3D 

solution is converted into a 2D solution. 

Based on the assumption that the material is homogeneous and the behavior linear elastic 

with a Young's modulus E and Poisson's number m, the three-dimensional equation for the 

middle plane is given as: 
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To show the 3D-effect and the influence of the different parameters on the solution more 

clearly, a special case of Eq. (2.13) with a vanishing loading angle of 2 is deduced; 
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Figure 2-10: Stress component distribution along the middle plane of a disc with a thickness-to-

diameter ratio L/D = ½ after Wijk, Eq. (2.14) 
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2.2.4.1 Effect of finite disc thickness and loading angle after Wijk’s solution 

Based on the Wijk’s three-dimensional formula (Eq. (2.13)), the effect of finite thickness 

and Poisson’s ratio on the stress distribution can be demonstrated as follows. 
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Figure 2-11: Effect of Poisson’s ratio and the above plane on distribution of the horizontal stress 

component in accordance with Wijk’s solution, where  252 ; L/D = ½. 

It can be observed in Figure 2-11 that the stress distribution is independent of the Poisson’s 

ratio along the middle plane of the disc, i.e. for Z = 0. In contrast, the stress distributions at 

Z ≠ 0 show pronounced differences depending on Poisson’s ratios and the planes under 

observations. The higher the Poisson’s ratio and the further away from the center plane, the 

more pronounced the stress peaks close to the load entry area. 
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Figure 2-12: Effect of finite thickness of the sample on distribution of the horizontal stress 

component in accordance with Wijk’s solution, where  252 . 
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Figure 2-12, the stress distribution here indicates distinct differences in the effect of 

thickness. The thinner the disc and the smaller the Poisson’s ratio, the more the stress 

distributions converge with a corresponding reduction in concentrated stress in the load 

entry area. 
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Figure 2-13: Effect of loading angle and Poisson’s ratio on distribution of the horizontal stress 

component along the middle plane after Wijk’s solution, where L/D = ½. 

According to Wijk’s solution, the horizontal stress component is rather inhomogeneous 

except for very small loading angles, where extreme values only occur immediately at the 

load entry point. For larger loading angles, two local stress peaks can be predicted 

depending on the loading angle - one in the immediate region of the load entry area, i.e. at 

1/ Rr  (local compression) and another in the region around 0.18.0/ Rr  (local 

tension). From the stress distribution diagram, Wijk’s solution predicts the largest tensile 

stresses not at the center of the disc but closer to the boundary. This solution also predicts 

extremely large values.   

Wijk’s 3D solution has some drawbacks [63]. The stress predictions for planes away from 

the center are particularly questionable. They are not backed up by experimental data or 

numerical simulation results. 
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2.3 Stress and strain in an isotropic solid disc 

Based on the theory of elasticity, the strain can be normally obtained by applying Hooke’s 

law for plane strain conditions in polar coordinates  ,r . 
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The strain-displacement relationship for small strains is given by: 
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The strains given by Timoshenko [73] for a line force (Figure 2-1) where ur and u  are the 

components of displacements in the radial and tangential directions, respectively are:  
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Integrating Eq. (2.17) provides the displacement u. Substituting ur and u in Eq. (2.15) 

gives 
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where A, B and C are constants of integration determined by the conditions of constraint. 

The expressions for the radial and tangential displacements deduced from the integrated 

equations ur and u are: 
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Based on the results of Cauwellaert et al. [29], Wang [41] developed an approximate 

displacement solution for the flat-end region of the specimen exposed by uniformly 

distributed load along the load arc (Figure 1-3): 
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Recently, Ma and Hung [8] explored the normal strains and displacements along the 

X  2/   and Y  0  axis for partially distributed compressions where the shear strain 

along these two lines is zero. 

For 0 , normal strains yr    and x  , the solutions can therefore be reduced as 

follows: 
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where  Rr /  

For 0 , the displacements can be obtained as follows: 
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For 2/  , displacements are obtained as follows: 
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2.4 Stress and strain in anisotropic rocks 

Anisotropy is a typical characteristic of intact foliated metamorphic rocks and laminated, 

stratified or bedded sedimentary rocks. The deformability and strength of anisotropic media 

are different from those of isotropic media. As discussed in detail above, the indirect tensile 

strength is deduced by means of equations derived from the theory of isotropic elasticity 

and does not consider the anisotropic character of rocks. Consequently, the deduced tensile 

strength may be not correct. 

In relation to stress and strain in anisotropic rocks, Amadei [3, 87] culled together an 

excellent review from the many available lab and field techniques. Lekhnitskii [84] used 

the complex stress function method to express the relationship between stress and strain in 

a thin disc of anisotropic material under diametral loading. Amadei and Jonsson [88] and 

Chen et al. [89] have applied theoretical solutions to tensile strength measurements in 

anisotropic rocks in the lab. The mechanical properties of intact anisotropic rocks are 

usually determined by using test samples with different loading angles relative to the 

apparent planes of anisotropy. The effect of anisotropy on the indirect determination of 

tensile strength of rocks using the Brazilian test was investigated by Berenbaum and Brodie 

[17] on coal, Hobbs [20] on siltstone, sandstone and mudstone, McLamore and Gray [90] 

on shale, and Barla [91] on gneiss and schist. 

Stress and strain in anisotropic rocks are commonly analyzed using the theory of elasticity 

under assumption of Hooke’s law. The general equation for the constitutive relations of 

homogeneous  anisotropic elastic media in a Cartesian (XYZ) coordinate system can be 

written as follows [87]: 

     xyzxyz A          (2.25) 

where  xyz  and  xyz  are  16  column matrices representing the strain and stress tensors 

in the (XYZ) coordinate system, respectively, and  A  is a  66  matrix for the elastic 

constants whose components are )61,(, jia ji . In general, matrix  A  has 21 distinct 

elastic constants; this number reducing when symmetry occurs in the inherent structure of 

the anisotropic medium. Precisely put, the number reduces to 13 if the medium possesses a 
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plane of elastic symmetry perpendicular to one of three axes X, Y or Z, 9 if the medium is 

orthotropic, 5 if transversely isotropic (i.e. isotropic within a plane perpendicular to one of 

the three coordinate axes) and 2 if isotropic [3, 87, 92]. 

For transversely isotropic rocks with planar fabric, e.g. assuming the plane of symmetry is 

Y-Z, Hooke’s law can be defined for a local coordinate system (X’Y’Z’) [92]: 

     '''   D         (2.26) 
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(a) line load with components Xn and Yn 

(after Chen et al. [33]) 

 (b) distributed pressure over an angle of 2  

(after Amadei, et al. [93]) 

Figure 2-14: Configuration of a transverse anisotropic disc under diametral compressive loading 

with global Cartesian coordinate (XYZ) and local coordinate (X’Y’Z’). 

Lekhnitskii [84], Claesson and Bohloli [94], Amadei [3, 90], Chen et al. [55], Lemmon [31] 

and Exadaktylos et al. [95] have attempted to account for the influence of anisotropy on the 

distribution of stress. Lekhnitskii [84] developed a complex stress function equation to 

express the relationship between stress and strain within a disc of anisotropic material 

under diametral loading. Applying this theory, Chen et al. [55] especially focused on 

finding a solution for a linear elastic, homogeneous and transversely isotropic thin disc. 

According to Figure 2-14(a), the load components Xn, Yn are the surface forces measured 

per unit area in the x and y directions. The surface forces are assumed to act along the 

boundary area of the disc. The equilibrium and compatibility equations, the constitutive 

relationships and the boundary conditions are all expressed in terms of average values of 

stress, strain and displacement relative to the thickness of the disc. Therefore, the mean 
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stress, strain and displacement components should all satisfy the same equations that 

govern the classical plane strain formulation in the (XY) plane [84]. Hooke’s law expressed 

in  Eq. (2.26) for the (XY) plane can be written as follows [33]: 
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where )61,(, jia ji  are compliance components calculated in the (XY) coordinate 

system. These components are a function of the angle   and the elastic constants in the 

(X’Y’Z’) coordinate system. The constants are Young's moduli (E, E'), Poisson’s ratios 

( , ' ) and shear modulus (G') in a normal direction and in the plane of transverse 

isotropy, respectively. The shear modulus G in the plane of transverse isotropy is equal to 

)1(2/ E . 
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Letting F be a stress function such that: 
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And substituting Eqs. (2.28) & (2.29) into Eq. (2.27), the following differential equation is 

obtained: 
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Inserting the root, )41( ii , into the general solution equation above yields the 

characteristic equation: 
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Substituting Eq. (2.28) into Eq. (2.30), the first derivatives of F with respect to x and y can 

be expressed, according to Lekhnitskii [84], as: 
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where   2,1kzkk  are analytical functions of the complex variables yxz kk   and 

Re defines the real part of the complex expression in the brackets (2.32). Combining Eqs. 

(2.30) & (2.32) can yield a general expression for the stress components: 
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where   2,1' kzkk  are the first derivatives of  kk z  with respect to kz . General 

expressions for the functions  kk z  and relation  sincos/ kk Rz   (Figure 2-14) 

were proposed by Lekhnitskii [84]. The stress components yx  , and xy (Eq. (2.33)) can 

then be computed for any point (x, y) inside the disc. 

Using a polar coordinate system, as shown in Figure 2-14(a), this stress distribution can be 

approximated by the following Fourier series for the angle : 

 





1

1
0 sincos

N

n
nnr nBnAA        (2.34) 

with    
 

0,sin
2

cos
112

,/20 






 
 n

n

n Bn
n

n

p
ApA 


    (2.35) 



2.5  Conclusion        65 

There is no shear stress applied along the contour of the disc. The surface tractions Xn, Yn 

depend only on p and can then be expressed as Fourier’s series for  ncos  and  nsin  

with n varying between 1 and N. 

If the geometry presented in Figure 2-14(b) is considered, with a disc subjected to 

distributed pressure applied over a small angular width of 2 , the rock assumed to be 

orthotropic with one of its three planes of anisotropy parallel to the disc (XY) plane and the 

X’- and Y’-axes inclined at an angle   with respect to the X- and Y-axes, Amadei [3] has 

proposed the following stress concentration factors for stress components at the center of 

the disc: 
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The stress concentration factors qxx , qyy and qxy have complex expressions, which depend 

on the coordinates (x, y) at the point of interest, the loading angle ( 2 ), and the 

compliance components )61,(, jia ji  as well as the strike angle ( ). 

For a Brazilian test on isotropic media and small values of the loading angle  1522   

[3], stress concentration factors at the center of the disc can be approximated by qxx= -2, 

qyy= 6 and qxy = 0. The Eq. (2.27) can then be written as follows: 
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Despite the often pronounced anisotropic characteristics of rocks, the evaluation of the 

indirect tensile strength test is still based on the isotropic elasticity theory. However, as 

documented in detail in the Chapters above, this can be quite misleading. 

2.5 Conclusion 

The distribution of stress and strain in a disc under diametral compression has been 

investigated by many researchers with the help of analytical solutions. A majority of the 

studies focusing on theoretical solutions have only been for isotropic rocks, solutions for 

anisotropic rocks being much more difficult to obtain. Exact analytical solutions for 
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anisotropic rocks are not available so that either numerical analysis or semi-analytical 

solutions have to be used. 

The following conclusions can be drawn from the analytical solutions: 

 If a finite disc thickness is assumed, the magnitude of the stresses inside the disc can 

be said to be strongly influenced by the loading angle (2) and the plane under 

consideration. 

 Brazilian test on isotropic discs with a low thickness to diameter ratio almost 

produce maximum tensile stresses at the center of the disc. 

 There are local stress concentration phenomena in the region near the loading points 

which can lead to shear or mixed-mode failure if the loading angle is very low. 

When the loading angle increases, the stress concentration phenomena reduce [19] 

and the induced tensile stress dominates in the failure of the material. 

 Analytical solutions indicate that under certain circumstances tensile stress may be 

produced not at the center but more closely to the boundary of the disc, depending 

on the Poisson’s ratio, thickness and loading angle. 

The analytical solutions discussed above show up several still unsolved problems regarding 

the stress distribution: 

 The analytical solutions only do consider plane-stress situations. 

 Only the 3D semi-analytical solution after Wijk’s does explain the effect of 

Poisson’s ratio and finite thickness, predicting though, extreme stress values for 

planes away from the center. These values are not however supported by numerical 

analysis or results of lab tests. 

 The analytical solutions do not consider the effect of friction between the loading 

jaws and the disc. 

 They do not consider inhomogeneities inside the disc. 

 And they do not consider anisotropy.   
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The discussions in the Chapter above show that the interpretation of the Brazilian tensile 

strength test is much more complicated than usually thought and needs further 

investigations in order to tackle the still unsolved problems, especially with respect to 

anisotropy in rocks. 

The tensile strength in relation to anisotropy can be investigated by numerical simulation, 

which could provide the full stress-strain field and the failure mechanisms, as well as by 

systematic lab tests. 

Both were undertaken within the framework of this work and will be explained in the 

succeeding Chapters. 
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Chapter 3 

3 Laboratory tests 

3.1 Introduction 

Very few systematic studies on the influence of anisotropy (bedded, laminated or schistose 

rocks) on tensile strength have been conducted so far [20, 59, 101]. Also, results from 

experimental studies using the Brazilian test with specimens in various orientations of the 

loading axis to the planes of weakness are rather limited. All this makes it difficult to give a 

sound interpretation of the measured data in terms of tensile strength values. 

In this Chapter results of lab tests are presented on three different rock types with different 

degrees of anisotropy: sandstone, gneiss and slate, which stand for both bedded 

sedimentary tendentious isotropic and foliated, highly anisotropic rocks. In total, 555 

Brazilian tests were carried out in order to determine the tensile strength in directions 

relative to the planes of schistosity, ranging from 0° to 90° (in incremental steps of 15°).  

 
Figure 3-1: Experimental arrangement for testing rock anisotropy relative to Orientation )(  and 

Foliation-Loading )(  angles(1)(2) using the Brazilian test. Combining    and    in 15° 

increments creates a  77  matrix of angles. 

                                                 
(1) Orientation angle () is an angle between the foliation planes and the test specimen axis. 
(2) Foliation-Loading angle () is an angle between the foliation plane and loading direction. 
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Selection of materials for the lab tests 

In petrology, rocks are classified into three principal groups according to their geological 

origin: igneous rocks, sedimentary rocks and metamorphic rocks. Anisotropy is a 

pronounced characteristic of intact foliated metamorphic rocks such as slates, gneisses, 

phyllites or schists.  

In metamorphic rocks, foliation is often expressed as alternate layers of differing mineral 

compositions as in gneiss or slate. It is worthy to note that rocks which have undergone 

several processes of formation may present more than one direction of planar anisotropy as 

in foliation and bedding planes in slates [3]. These directions may not necessarily be 

parallel to each other. In addition, linear features such as lineations can be superimposed on 

the planar features. Due to their distinct anisotropy, metamorphic rocks were selected for 

this study. The following four types of rocks were chosen specifically for this study: 

Freiberger Gneiss from Halsbrücke near Freiberg in Saxony (FG.Gs), Leubsdorfer Gneiss 

from the Flöha-Valley in Saxony (Le.Gs) and Mosel Slate from Mayen-Koblenz in 

Rheinland-Pfalz (My.Sc). Anisotropy is also characteristic of laminated, stratified or 

bedded sedimentary rocks such as shales, sandstones, siltstones, limestones or coal. In these 

rocks, the anisotropy results from complex physical and chemical processes associated with 

transportation, deposition, compaction, cementation, etc. However, the Postaer Sandstone 

from Pirna in Saxony (FG.Ss) with a medium-grained size varying from 0.01 to 1.0 mm and 

occasionally containing some larger mineral spots, reaching 2.0 and 3.0 mm, is an almost 

isotropic rock and was therefore chosen as a reference material for homogeneous isotropic 

rocks. 

3.2 Laboratory test program 

Laboratory tests were carried out to determine both deformation and strength parameters. 

Although the whole test program comprises uniaxial and triaxial compressive tests and 

ultrasonic wave speed measurements, its main focus is on the Brazilian tests. The 

arrangements for the Brazilian tests are described by a  77  matrix, which contains 7 

values for the orientation angle   and another 7 for the foliation-loading angle , each 

ranging from 0° to 90° at 15° intervals. The other lab tests were done only either parallel or 
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perpendicular to the plane of anisotropy. Table 3-1 gives an overview of the lab tests 

conducted, all at the Rock Mechanics Laboratories in the Geotechnical Institute of the 

Technical University Bergakademie in Freiberg. Figure 3-2 documents the sample 

nomenclature used.  

Sample material 

Gneiss Slate Type of test 

     

Total 

number of 

samples 

Ultrasonic analysis  3  3 6 

Uniaxial compression test 3 3 3 3 12 

Triaxial compression test (conventional) 1 1 1 1 4 

Triaxial compression test (multi-stage)  3  3 6 

Brazilian tensile strength test                                                                  555 

Table 3-1: Laboratory test program ( : loading direction parallel to plane of anisotropy,  : 

loading direction perpendicular to plane of anisotropy). 

 

Figure 3-2: Specimen nomenclature 

3.3 Sample preparation 

At the beginning of the sample preparations, cylindrical cores with a diameter of 50 mm 

were drilled out of larger rock blocks. It was especially ensured that the axis of the 

cylindrical cores have a predefined direction to the bedding planes:   = 0°, 15°, 30°, 45°, 

60°, 75° and 90°. The cores were then cut into test specimens of suitable length, the end 
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faces ground and polished. After the specimen’s dimensions had been measured and found 

to meet standards, they were stored in dry air at room temperature. 

The experimental arrangement for the Brazilian tests is illustrated in Figure 3-1. The 

foliation planes were found to be the true planes of weakness, characterized by very small 

cohesive and tensile strength. The sample preparations and tests strictly followed the 

stipulations of the International Society for Rock Mechanics [5]. The specimens were all 

disc-shaped with a diameter D = 50 mm and a thickness t = 25 mm. A sum total of 555 

Brazilian tensile tests were carried out: Postaer Sandstone (FG.Ss) with a total of 97 

specimens, Freiberger Gneiss (FG.Gs) - 126, Leubsdorfer Gneiss (Le.Gs) - 160 and Mayen 

Mosel-Slate (My.Sc) - 172. 

Further tests were carried out to determine additional geophysical and geomechanical 

properties. Ultrasonic measurements were used to determine effective porosity, elastic 

wave velocity, density and dynamic elastic constants while uniaxial and triaxial 

compression tests were used to obtain Young’s modulus, Poisson’s ratio, friction angle and 

cohesion. The Brazilian tests were carried out in accordance with the ISRM- and DGGT-

recommendations for cylindrical samples with diameter D = 50 mm and height to diameter 

ratio h/D = 0.5. 

3.4 Ultrasonic measurements 

Sample 
 

My.Sc.3a.
90.1/3 

My.Sc.3a.
90.2/3 

My.Sc.3a.
90.3/3 

Le.Gs.3a.
90.1/3 

Le.Gs.3a.
90.2/3 

Le.Gs.3a.
90.3/3 

Length (cm) 10.09 10.16 10.15 9.99 10.15 10.15 

Diameter (cm) 5.01 5.01 5.01 5.01 5.01 5.01 

Density (kg/m3) 2774 2774 2774 2716 2716 2716 

Dynamic Poisson’s ratio 
(-) 

0.40 0.36 0.40 0.20 0.41 0.39 

Dynamic Young’s 
modulus (GPa) 

21.36 20.02 18.79 50.15 22.15 19.20 

Dynamic shear modulus 
(GPa) 

7.63 7.37 6.69 20.83 7.88 6.92 

Pulse-wave (Hz) 13428 12970 12512 21362 13733 12817 

Table 3-2: Le.Gs and My.Sc sample data and ultrasonic measurements results. 
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3.5 Uniaxial and triaxial compression tests 

To determine the constitutive model parameters of the rock structure components, uniaxial 

and triaxial tests were carried out on cylindrical test specimens with diameter D = 50 mm 

and a height to diameter ratio h/D = 2.0.  

To determine the anisotropic properties, tests were done in which the planes of anisotropy 

were either parallel or perpendicularly oriented to the loading direction. 

3.5.1 Uniaxial compression test 

The peak strength D  was obtained during the uniaxial compression tests and the Young’s 

modulus determined at 50% peak load E50 (Table 3-3) from deformation measurements.  

Sample D (MPa) 50E (GPa) 

Le.Gs.1a.0.1/3 171.41 16.60 

Le.Gs.1a.0.2/3 177.19 14.67 

Le.Gs.1a.0.3/3 180.19 13.61 
Average 176.26 14.96 

Le.Gs.1a.90.1/3 173.84 12.43 

Le.Gs.1a.90.2/3 179.32 14.43 

Le.Gs.1a.90.3/3 190.67 14.36 
Average 181.28 13.74 

My.Sc.1a.0.1/3 79.58 11.78 

My.Sc.1a.0.2/3 122.62 16.46 

My.Sc.1a.0.3/3 148.70 18.48 
Average 116.97 15.57 

Le.Gs.1a.90.1/3 203.97 12.95 

Le.Gs.1a.90.2/3 218.63 12.74 

Le.Gs.1a.90.3/3 225.93 12.21 
Average 216.18 12.63   

Table 3-3: Results of unconfined compression 

tests on Le.Gs and My.Sc 

Figure 3-3: Typical failure patterns in 

Le.Gs.1a.2/3 under unconfined compression test 
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3.5.2 Triaxial compression tests 

The triaxial tests were carried out either in single- (Table 3-4), or multi-stages (Figure 3-4 

and Table 3-5) 

1 (MPa) 
3 (MPa) 

Le.Gs.0.1/2 My.Sc.0.1/2 
4.9 225.1 - 

 = 90° 

6.51 - 163.47 

3 (MPa) Le.Gs.90.1/2 My.Sc.90.1/2 
2.39 194.03 -  = 0° 

3 - 233.12 

Table 3-4: Results of single-stage triaxial compression tests on Le.Gs and My.Sc 

From the triaxial tests, peak and residual strength values were obtained. The multi-stage 

triaxial test has the advantage of obtaining several peak and residual strength values from a 

single specimen under different confining pressures.  

0

50

100

150

200

250

300

0 0.0025 0.005 0.0075

Axial strain (mm/mm)

D
ev

ia
to

ri
c 

st
re

ss
 (

N
/m

m
²)

0

50

100

150

200

250

300

-0.015 -0.01 -0.005 0

Lateral strain (mm/mm)

0

50

100

150

200

250

300

-0.015 -0.01 -0.005 0 0.005

Volume strain (mm/mm)

5 MPa

10 MPa

15 MPa

20 MPa

25 MPa

 

Figure 3-4: Results of multi-stage tests on Le.Gs.3a.90.3/3 samples. 

1  (MPa) 3  

(MPa) 
My.Sc.3a. 

90.1/3 
My.Sc.3a. 

90.2/3 
My.Sc.3a. 

90.3/3 
Le.Sc.3a. 

90.1/3 
Le.Sc.3a. 

90.2/3 
Le.Sc.3a. 

90.3/3 
5 253 241 253 151 98 215 

10 278 219 149 160 246 235 
15 284 206 207 174 268 252 
20 261 233 140 189 287 268 

= 90° 

25 273 276 321 202 297 284 

Table 3-5: Results of multi-stage triaxial compression tests on Le.Gs and My.Sc 
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The failure envelopes for the Mohr-Coulomb- and Hoek-Brown-failure criteria deduced 

from the multi-stage triaxial compression tests are presented in Figure 3-5 & 3-6. 

 
Figure 3-5: Results of multi-stage triaxial compression tests on Le.Gs.3a.90 samples 

 
Figure 3-6: Results of multi-stage triaxial compression tests on My.Sc.3a.90 
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3.6 Brazilian tensile strength tests 

3.6.1 Test apparatus 

The rock mechanics test system MTS 20/M (Figure 3-7) was employed for the indirect 

tensile tests. MTS 20/M is a computer servo-controlled machine with a maximum load 

capacity of ±100 kN and an accuracy of 0.01%. The TestWorks-4-System-Software was 

used to conduct computer controlled tests. Tests on stress or strain control in tension or in 

compression could be performed. The load is measured by the load cell, the displacement 

by a linear variable differential transformer (LVDT) and the strain by an extensometer with 

an accuracy of up to 0.0002%. The discs with an unchanged loading rate of 200 N/sec, 

were loaded up to failure. 

ISRM [5] suggests that the load be applied via two steel loading jaws in contact with a disc-

shaped specimen, the radius of the jaws 1.5 times the specimen radius and that the disc 

loading jaw contact be a finite arc rather than a single point. 

   

Figure 3-7: Loading jaws of rock mechanics test system MTS 20/M (3). 

 

                                                 
(3) The pictures were taken in the Rock Mechanics Laboratories, Geotechnical Institute, TU Bergakademie 

Freiberg. 
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3.6.2 Laboratory test results 

3.6.2.1 Postaer Sandstone (FG.Ss): (97 tests) 

Tensile strength of the FG.Ss samples (MPa) 

Sample =0° =15° =30° =45° =60° =75° =90°

3.232 3.486 3.819 - 3.563 3.720 3.025 

3.338 3.621 4.030 2.750 3.580 3.830 3.204 

3.387 3.720 4.242 3.074 3.871 4.065 3.536 

3.741 4.181 4.269 3.595 3.910 4.107 3.578 

FG.Ss.0.0-90 

3.952 4.208 4.289 3.842 4.482 4.487 3.610 

3.154 - 3.100 - 3.085 - 1.769 

3.448 - 3.255 - 3.554 - 3.849 FG.Ss.15.0-90 

3.749 - 3.941 - 3.557 - 4.126 

3.031 - 2.907 - 3.251 - 2.945 

3.519 - 3.333 - 3.425 - 3.461 FG.Ss.30.0-90 

3.589 - 3.397 - 3.488 - 3.693 

3.161 - 2.908 - 3.583 - 3.117 

3.487 - 3.341 - 3.591 - 3.169 FG.Ss.45.0-90 

3.765 - 4.048 - 3.621 - 3.377 

2.774 - 2.738 - 2.674 - 2.852 

3.199 - 3.546 - 3.208 - 3.400 FG.Ss.60.0-90 

3.787 - 3.768 - - - 3.416 

3.085 - 3.084 - 2.137 - 3.141 

3.251 - 3.197 - 3.178 - 3.245 FG.Ss.75.0-90 

3.689 - 3.678 - 3.693 - 3.747 
FG.Ss.90 3.820 - 3.820 - 3.820 - 3.820 

Table 3-6: Results of Brazilian tensile strength test on FG.Ss 

Average tensile strength of the FG.Ss samples (MPa) 

         

 3.489 3.450 3.379 3.471 3.253 3.850 3.820 
 3.759  - - -   -  -  - 
 4.136 3.521 3.365 3.694 3.142 3.437 3.820 
 3.396  - -  -   -  -  - 
 3.781 3.399 3.388 3.599 2.941 3.003 3.820 
 4.065  -  -  -  -  -  - 
 3.391 3.987 3.577 3.247 3.408 3.193 3.820 

Table 3-7: Average results of Brazilian tensile strength test on FG.Ss 
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Figure 3-8: Average tensile strength results of FG.Ss samples as functions of foliation-loading 

direction    and orientation angle     
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Figure 3-9: Tensile strength results of FG.Ss samples as functions of foliation-loading direction 
   and orientation angle    with minimum and maximum values; green: Min-Max-Ranges. 
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Figure 3-10: Typical fracture patterns in FG.Ss specimens (see also Appendix 3.1) 
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Figure 3-11: Tensile strength results of FG.Ss samples as functions of foliation-loading direction 

   and orientation angle    with regression surface deduced from multiple regression analysis 

and determined by coefficient of multiple determination. 
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3.6.2.2 Postaer Sandstone (FG.Gs): (126 tests) 

Tensile strength of the FG.Gs samples (MPa) 

Sample       
5.556 5.413 6.804 7.734 7.666 5.441 13.735 
5.939 5.973 7.230 8.236 7.908 10.416 15.038 
6.566 6.019 7.768 8.343 8.259 10.757 16.463 

FG.Gs.0.0-90 

6.764 7.070 8.479 8.839 9.434 11.623 16.751 
6.106 - 5.682 8.290 8.441 - 16.540 

10.020 - 7.192 9.104 8.572 - 16.687 
11.403 - 8.530 9.944 8.680 - 16.842 

FG.Gs.15.0-90 

- - 8.760 10.183 10.394 - 18.550 
7.112 - 4.196 7.568 9.702 - 11.234 
8.195 - 5.233 7.605 11.341 - 13.625 
8.650 - 5.852 9.558 11.444 - 14.027 

FG.Gs.30.0-90 

9.061 - 13.627 11.638 12.502 - 14.948 
11.270 - 12.476 12.062 12.062 - 14.239 
13.730 - 15.008 13.366 13.006 - 14.843 
14.403 - - 16.271 14.117 - 15.373 

FG.Gs.45.0-90 

14.730 - - - 15.061 - 16.448 
16.328 - 8.074 15.739 13.278 - 14.283 
16.558 - 10.046 15.818 13.785 - 14.613 
16.563 - 15.027 17.057 15.050 - 14.923 

FG.Gs.60.0-90 

17.631 - 15.086 - 15.289 - 15.357 
12.574 - 15.402 13.466 14.960 - 12.661 
13.733 - 16.537 14.518 15.734 - 14.835 
14.235 - 16.593 16.277 16.979 - 15.172 

FG.Gs.75.0-90 

17.114 - 17.662 16.533 18.193 - 16.446 
FG.Gs.90 18.994 19.836 20.605     

Table 3-8: Results of Brazilian tensile strength tests on FG.Gs 

Average tensile strength of the FG.Gs samples (MPa)  

        
 6.206 9.176 8.635 14.288 16.483 13.514 19.812 
 5.802  -  -  -  -  - 19.812 
 7.768 8.161 5.094 13.742 12.058 16.548 19.812 
 8.288 9.743 8.244 13.9 16.205 15.199 19.812 
 7.944 8.564 11.762 13.561 14.35 16.466 19.812 
 10.416  - -  -  -   - 19.812 
 16.751 16.69 14.2 14.818 14.794 15.484 19.812 

Table 3-9: Average results of Brazilian tensile strength test on FG.Gs 
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Figure 3-12: Average tensile strength results of FG.Gs samples as functions of foliation-loading 

direction    and orientation angle    
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Figure 3-13: Tensile strength results of FG.Gs samples as functions of foliation-loading direction 
   and orientation angle    with minimum and maximum values; green: Min-Max-Ranges. 
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Figure 3-14: Typical fracture patterns of FG.Gs specimen (see also Appendix 3.2) 
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Figure 3-15: Tensile strength results of FG.Gs samples as functions of foliation-loading direction 

   and orientation angle    with regression surface deduced from multiple regression analysis 

and determined by coefficient of multiple determination. 
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3.6.2.3 Leubsdorfer Gneiss (Le.Gs): (160 tests) 

Tensile strength of the Le.Gs samples (MPa) 

Sample       
7.686 7.845 8.827 11.500 12.835 14.312 12.830 
8.608 8.864 9.306 11.807 13.048 16.167 18.745 
9.035 9.219 10.145 12.674 14.221 16.615 19.323 

Le.Gs.0.0-90 

9.345 10.025 10.761  -  14.450 17.425 19.739 
7.992 6.269 8.637 12.835 9.870 13.878 16.186 
8.453 9.289 9.452 13.021 13.703 16.352 16.611 
8.578 9.338 10.337 13.211 14.170 16.450 16.766 

Le.Gs.15.0-90 

10.357 10.356 11.609  - 14.298 17.103 19.972 
11.706 11.501 10.311  - 15.263 7.992 16.271 
12.799 12.089 13.781 12.835 16.672 8.453 17.096 
13.452 12.811 13.900 13.021 18.110 8.578 17.102 

Le.Gs.30.0-90 

14.207 14.065 14.998 13.211 18.205 10.357 17.266 
13.918 14.850 14.871 17.212 15.244 16.256 15.907 
16.232 16.745 15.539 17.219 15.433 16.681 17.129 
16.494 17.010 16.899 17.322 17.295 17.675 17.136 

Le.Gs.45.0-90 

20.693 17.095 17.414  - 17.537 18.299 18.266 
11.667 4.060 14.673  - 16.419 15.892 18.421 
16.921 9.478 16.917 17.251 17.850 17.472 18.567 
18.599 16.886 16.986 20.754 19.634 17.916 18.798 

Le.Gs.60.0-90 

19.580 19.117 18.138 21.239 20.595 18.299 20.155 
20.393 22.191 14.623 21.522 12.951 15.559 15.951 
22.503 22.206 17.155 23.665 19.491 21.581 16.384 Le.Gs.75.0-90 

23.421 24.585 22.533 23.746 22.086 22.370 18.968 
Le.Gs.90 16.750 18.328 22.530 24.653       

Table 3-10: Results of Brazilian tensile strength test on Le.Gs 

Average tensile strength of the Le.Gs samples (MPa) 

         
 8.669 8.845 13.041 16.834 16.692 22.106 20.565 
 8.988 8.813 12.617 16.425 12.385 22.994 20.565 
 9.760 10.009 13.247 16.181 16.678 18.104 20.565 
 11.994 13.023 13.023 17.251 19.748 22.978 20.565 
 13.638 13.010 17.062 16.377 18.625 18.176 20.565 
 16.130 15.946 8.845 17.228 17.395 19.837 20.565 
 17.659 17.384 16.934 17.110 18.986 17.101 20.565 

Table 3-11: Average results of Brazilian tensile strength test on Le.Gs 
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(a) Polar diagram (b) Linear diagram 

Figure 3-16: Average tensile strength results of Le.Gs samples as functions of foliation-loading 

direction    and orientation angle    
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Figure 3-17: Tensile strength results of Le.Gs samples as functions of foliation-loading direction 
   and orientation angle    with minimum and maximum values; green: Min-Max-Ranges. 
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Figure 3-18: Typical fracture patterns of Le.Gs specimen (see also Appendix 3.3) 
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Figure 3-19: Tensile strength results of Le.Gs samples as functions of loading direction    and 

orientation angle    with regression surface deduced from multiple regression analysis and 

determined by coefficient of multiple determination. 
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3.6.2.4 Mayen Mosel-Slate (My.Sc): (172 tests) 

Tensile strength of the My.Sc samples (MPa) 

Sample       
2.385 2.595 2.375 3.390 3.389 8.106 14.878 
3.143 3.225 3.670 5.631 3.670 8.925 15.013 
5.353 4.581 4.579 5.972 3.846 9.419 15.312 

My.Sc.0.0-90 

5.985 4.782 4.975 6.582 7.811 10.189 17.022 
5.170 3.002 3.368  - 7.210 6.226 7.878 
5.254 4.281 3.731 5.334 7.449 7.091 8.583 
6.318 5.562 4.562 6.005 7.953 9.647 11.084 

My.Sc.15.0-90 

6.940 5.817 6.287 6.130 8.363 10.204 11.739 
6.443 6.930 6.284  - 5.028 4.800 7.928 
6.481 7.069 6.523 7.492 7.545 5.822 10.627 
8.726 8.212 8.103 8.528 7.909 7.854 11.302 

My.Sc.30.0-90 

9.397 8.426 8.297 8.729 8.151 9.487 12.395 
9.892 8.298 8.049  - 8.244 7.518 9.913 

11.013 8.639 8.158 6.330 8.518 9.301 10.003 
11.092 8.763 8.623 8.471 8.733 9.846 12.023 

My.Sc.45.0-90 

11.338 12.446 10.585 10.058 9.043 10.150 12.036 
13.287 12.088 11.571  - 5.465 10.470 8.100 
13.313 12.145 11.692 9.104 8.965 10.950 10.184 
14.807 14.469 13.897 11.676 11.407 11.394 12.176 

My.Sc.60.0-90 

18.367 18.240 17.007 12.316 11.549 11.531 12.226 
13.091 17.499 17.677  - 12.389 17.499 13.301 
20.469 21.217 22.679 18.509 12.506 21.217 15.147 
21.781 21.900 23.977 18.895 13.119 21.900 19.916 

My.Sc.75.0-90 

23.348 23.026 24.166 19.600 19.730 23.026 22.114 
My.Sc.90 18.164 18.759 19.454 19.869 21.195 22.124 23.446 

Table 3-12: Results of Brazilian tensile strength test on My.Sc 

Average tensile strength of all My.Sc specimens (MPa) 

        
 4.216 5.921 7.762 10.834 14.943 19.672 21.721 
 3.796 4.666 7.659 9.537 14.236 20.911 21.721 
 3.900 4.487 7.302 8.854 13.542 22.125 21.721 
 5.394 5.823 8.250 8.286 11.032 19.001 21.721 
 4.679 7.744 7.158 8.634 9.347 14.436 21.721 
 9.160 8.292 6.991 9.204 11.086 20.911 21.721 
 15.556 9.821 10.563 10.994 10.671 17.619 21.721 

Table 3-13: Average results of Brazilian tensile strength test on My.Sc 
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Figure 3-20: Average tensile strength results of My.Sc samples as functions of foliation-loading 

direction    and orientation angle    
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Figure 3-21: Tensile strength results of My.Sc samples as functions of foliation-loading direction 
   and orientation angle    with minimum and maximum values; green: Min-Max-Ranges. 
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Figure 3-22: Typical fracture patterns of My.Sc specimen (see also Appendix 3.4) 
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Figure 3-23: Tensile strength results of My.Sc samples as functions of foliation-loading direction 

   and orientation angle    with regression surface deduced from multiple regression analysis 

and determined by coefficient of multiple determination. 
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3.6.3 Interpretation of the test results 

3.6.3.1 Interpretation of tensile strength values 

Variant Statistics 

Rock FG.Ss FG.Gs Le.Gs My.Sc 

Count 97 126 160 172 

Median 3.546 12.833 16.244 9.408 

Standard Deviation 0.458 3.961 4.231 5.692 

Variance 0.210 15.693 17.905 32.401 

Standard Error 0.046 0.353 0.335 0.434 

Coefficient of variation 13 % 31 % 26 % 61 % 

Table 3-14: Total tensile strength variant statistic values of the rock materials   

The FG.Ss material has revealed relatively low standard deviations and consequently low 

coefficients of variations (below 13% according to Table 3-14). The fracture pattern of all 

FG.Ss samples was more or less identical and is characterized by a central tensile crack 

independent on the sample orientation (see Appendix 3.1). Therefore, this Sandstone can be 

considered as quasi-isotropic and orientation of sample in relation to loading jaws is 

practically unimportant.  

   FG.Ss FG.Gs Le.Gs My.Sc 

 1.00000 -0.05336 -0.27708 0.69157 0.60162 0.79195 

 -0.05336 1.00000 -0.02948 0.28078 0.28568 0.04580 

FG.Ss -0.27708 -0.02948 1.00000 -0.09302 0.01118 0.01959 

FG.Gs 0.69157 0.28078 -0.09302 1.00000 0.73853 0.75364 

Le.Gs 0.60162 0.28568 0.01118 0.73853 1.00000 0.66316 

My.Sc 0.79195 0.04580 0.01959 0.75364 0.66316 1.00000 

Table 3-15: Tensile strength correlation coefficients of the rock materials 

The correlation results given in Table 3-15 indicates that influence of the orientation angle 

 is stronger than the loading direction  on the tensile strength in all Gneisses and Slate, 

especially the correlation coefficient is 0.69157 and 0.28078 for FG.Gs Gneiss, 0.60162 

and 0.28568 for Le.Gs Gneiss, 0.79195 and 0.04580 for My.Sc Slate with respect to  and 

. 
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The Student’s t-distribution was used to determine the mean value and standard deviation 

for each group of specimen with either the same orientation angles or foliation-loading 

angle (Table 3-16 & 3-17). 

Statistics of tensile strength values as a function of orientation angle ( 

Rock FG.Ss FG.Gs Le.Gs My.Sc 

Orient. 
Angle 

N -
sample Mean 

Std. 
Dev. 

Coef. 
Var. 

N - 
sample

Mean
Std. 
Dev.

Coef. 
Var.

N - 
sample

Mean
Std. 
Dev.

Coef. 
Var.

N - 
sample Mean 

Std. 
Dev.

Coef. 
Var.

 34 3.72 0.31 8 % 28 9.03 3.72 41 % 27 12.41 3.55 29 % 27 6.67 4.33 65 %

 12 3.59 0.27 8 % 19 10.47 3.53 34 % 27 12.43 3.40 27 % 27 6.68 1.99 30 %

 12 3.43 0.10 3 % 20 9.59 3.50 36 % 27 13.54 2.81 21 % 27 7.96 1.23 15 %

 12 3.50 0.19 5 % 17 14.06 0.50 4 % 27 16.77 0.44 3 % 27 9.48 1.06 11 %

 11 3.19 0.20 6 % 19 14.78 1.77 12 % 27 17.22 2.43 14 % 27 12.12 2.10 17 %

 12 3.37 0.37 11 % 20 15.44 1.23 8 % 21 20.19 2.50 12 % 27 19.24 2.58 13 %

 4 3.82 - - 3 19.81 - - 4 20.57 - - 10 21.72 - - 

Table 3-16: Statistics of tensile strength values as a function of orientation angle )(  

Statistics of tensile strength values as a function of orientation angle ( 

Rock FG.Ss FG.Gs Le.Gs My.Sc 

Orient. 
angle 

N -
sample Mean 

Std. 
Dev. 

Coef. 
Var. 

N - 
sample

Mean
Std. 
Dev.

Coef. 
Var.

N - 
sample

Mean
Std. 
Dev.

Coef. 
Var.

N - 
sample Mean 

Std. 
Dev.

Coef. 
Var.

 34 3.53 0.22 6 % 28 12.59 4.81 38 % 27 15.25 5.31 35 % 27 12.15 6.82 56 %

 12 3.79 0.04 1 % 19 12.81 9.91 77 % 27 14.68 5.52 38 % 27 11.79 7.36 62 %

 12 3.59 0.33 9 % 20 11.88 5.24 44 % 27 14.93 4.09 27 % 27 11.7 7.67 66 %

 12 3.61 0.30 8 % 17 13.06 4.43 34 % 27 16.94 4.33 26 % 27 11.36 6.47 57 %

 11 3.42 0.35 10 % 19 13.21 4.22 32 % 27 16.78 2.71 16 % 27 10.53 5.76 55 %

 12 3.94 0.17 4 % 20 15.11 6.64 44 % 21 16.56 3.83 23 % 27 12.48 6.16 49 %

 4 3.52 0.30 9 % 3 16.08 1.91 12 % 4 17.96 1.34 7 % 10 13.85 4.55 33 %

Table 3-17: Statistics of tensile strength values as a function of foliation-loading angle )(  
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Based on the data given in Table 3-16 & 3-17 box plots and Gaussian distribution plots 

were drawn up (Figure 3-24 to Figure 3-31).     
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Figure 3-24: Box and Gaussian distribution plots of FG.Ss samples as a function of orientation 

angle   
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 (a) box-plot of tensile strength values (b) Gaussian distribution of tensile strength  

Figure 3-25: Box and Gaussian distribution plots of FG.Ss samples as a function of foliation-

loading angles  
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Figure 3-26: Box and Gaussian distribution plots of FG.Gs samples as a function of orientation 

angle   
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Figure 3-27: Box and Gaussian distribution plots of FG.Gs samples as a function of foliation-

loading angles  
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Figure 3-28: Box and Gaussian distribution plots of Le.Gs samples as a function of orientation 

angle   
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 (a) box-plot of tensile strength values (b) Gaussian distribution of tensile strength 

Figure 3-29: Box and Gaussian distribution plots of Le.Gs samples as a function of foliation-

loading angles  
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Figure 3-30: Box and Gaussian distribution plots of My.Sc samples as a function of orientation 

angle   
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 (a) box-plot of tensile strength values (b) Gaussian distribution of tensile strength 

Figure 3-31: Box and Gaussian distribution plots of My.Sc samples as a function of foliation-

loading angles  

Compared to the Sandstone, the Gneiss and Slate materials showed much higher 

coefficients of variations with values of up to 77%. This indicates that the orientation of the 

sample in relation to the loading direction is very sensitive for the measured peak strength. 

As the fracture patterns reveal (see Appendices 3.2, 3.3 and 3.4), the crack development 

follows, to a large degree, the weak anisotropy planes (bedding planes, schistosity planes). 
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Hence, a material characterized by a high degree of anisotropy will have the orientation of 

the sample influencing the fracture pattern (fracture type, fracture orientation) in relation to 

the loading direction and consequently the measured peak load. 

3.6.3.2 Interpretation of fracture pattern 

The digital pictures shown in Figure 3-10, 3-14, 3-18 & 3-22; and Appendices 3.1, 3.2, 3.3, 

& 3.4 document observations of the failure pattern after the peak strength had been reached 

during the Brazilian tests. Typical of the FG.Ss Sandstone is a distinct pattern of fracture 

which splits the sample into two. Sometimes, wedges are formed immediately under the 

loading jaws. In the FG.Gs and Le.Gs Gneisses in contrast, and especially in the My.Sc 

Slate, the fracture pattern is strongly influenced by the orientation of the weak planes 

(anisotropy). In many cases, the fracture pattern is characterized by sub-parallel crack along 

the existing weak planes (like in step faults or staircase-shaped fractures). 

A high-speed camera was used to try to capture the crack development. However, the 

fracture process was so fast, that even a camera with a speed of 10.000 pictures/minute 

could not catch it. It was thus impossible to find out where the crack first appeared and how 

it developed with time. 

3.6.3.3 Compilation of material data set 

The data in Table 3-18 were compiled based on the whole set of mechanical rock properties 

determined above, relevant literature material on similar rock types and lab tests carried out 

in previous projects.  
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Set of material parameters (4)(5)(6) 
Mechanical rock parameter 

Gneiss Slate 
Young’s modulus E (GPa) 45.0 – 54.7 35.0 – 47.0 

Poisson’s ratio   (-) 0.3 – 0.4 0.3 – 0.45 
Cohesion matrix Cm (MPa) 17.9 – 31.5 10.3 – 32.0 
Cohesion joint Cj (MPa) 5.0 – 19.0 5.0 – 13.2 

Friction matrix  m (°) 27.6 – 54.8 43.7 – 49.0 

Friction joint  j (°) 35.7 – 43.2 22.6 – 44.4 
Cohesion residual matrix Cres-m (MPa) 1.0 – 13.7 4.84 – 13.7 
Cohesion residual joint Cres-j (MPa) 1.0 – 10.0 4.84 – 9.3 

Friction residual matrix  res-m (°) 20.0 – 32.4 21.2 – 31.0 

Friction residual joint  res-j (°) 22.0 – 35.0 21.0 – 34.5 

Table 3-18: Summary of material parameters from lab and reference results [2, 102, 103]. 

3.7 Conclusion 

The laboratory tests have shown that the degree of anisotropy has a strong influence on the 

measured peak strength obtained in the Brazilian test. Whereas the orientation of the 

sample in relation to the loading direction is unimportant for nearly isotropic materials, 

strongly anisotropic materials, like Gneiss and Slate reveal a strong dependence of the peak 

strength on the sample orientation relative to the loading direction. Also, isotropic materials 

show distinct tensile cracks along the centerline in contrast to the latter, where the fracture 

pattern is more complicated and composed of cracks along the weak planes and the matrix.  

Several different laboratory tests were done in order to enable the determination of a set of 

material parameters for a ubiquitous joint model, this comprising strength data for the 

matrix and the weak planes as well as for the orientation of the latter. 

 

                                                 
(4) Walter, K. and Konietzky, H. Bericht der Standsicherheitsberechnungen/Dimensionierung für das 
Dachschieferbergwerk Katzenberg. 2009, Technische Universität Bergakademie Freiberg.  
(5) Hoek, E., ed. Practical rock engineering. 2000, Rocscience  
(6) Goodman, R. E., ed. Rock Mechanics. 1989, John Wiley & Sons  



 

 

 

Chapter 4 

4 Numerical simulation of isotropic materials - 

Comparison with analytical solutions  

 

4.1 Introduction 

For homogeneous and isotropic elastic materials, a handful of comprehensive analytical or 

semi-analytical solutions exist (see Chapters 1 & 2). Some of them deal in depth with the 

influence of Poisson’s ratio, the thickness of the specimen and the loading arc under which 

the loading jaws act. 

Some of these solutions are used here for comparison with the numerical 3-dimensional 

simulations. In the forefront of this comparison was the investigation of the different 

numerical meshes. The numerical simulation results were then compared with the lab 

results of the Postaer Sandstone.   

 

4.2 Numerical simulation of isotropic materials 

4.2.1 FLAC3D simulation program 

FLAC3D - Fast Lagrangian Analysis of Continua - is a 3-D explicit finite-difference code 

for engineering mechanical simulations [6]. The explicit, Lagrangian calculation scheme 

and the mixed-discretization zoning technique used in FLAC3D ensure that plastic collapse 

and flow are modeled very accurately. 
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4.2.2 Simulation procedure  

A comprehensive parameter study was done using the analytical solutions of Hondros [18] 

and Wijk [35] as well as the 3-dimensional numerical model developed by them.  

Brazilian tests were carried out with different thickness-to-diameter ratios, different 

material parameters and different loading angles (2) but identical initial and boundary 

conditions. The sample diameter and elastic modulus were also fixed and the same uniform 

loading, i.e., 1000 N/mm disc thickness, applied. The following aspects were investigated:  

 Mesh structure: three different mesh types - radial, orthogonal and tetrahedral 

grids - were investigated (Figure 4-1). In the middle section, where the load acts and 

most of the fracturing takes place, the mesh structure was refined. 

 Thickness-to-diameter ratio (L/D): in order to investigate the slenderness, 

Brazilian test samples with a thickness-to-diameter ratio equal to ¼, ½, and 1
1  and 

a disc diameter of D=50 mm were designed and investigated. 

 Site of section under investigation: the stress state inside the specimen was 

investigated along the edge-, quarter- and middle-section. 

 Influence of Poisson’s ratio: the influence of three different Poisson’s ratios ( = 

0.15, 0.25 and 0.35) on the state of the stress was investigated at constant Young’s 

modulus. 

 Loading angle )2(  : different loading angles (2 = 1°, 5°, 10°, 15°, 20° and 25°) 

were selected to calculate the internal stress in the sample. 

4.2.3 Numerical model setup 

Three models with very different mesh techniques were designed using FLAC3D (Figure 

4-1). All three meshes have a fine mesh pattern on the surface where the load was applied. 
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(a) radial model 

(with 21021 gridpoints) 

(b) orthogonal model 

(with 54621 gridpoints) 

(c) tetrahedral model 

(with 76692 gridpoints) 

Figure 4-1: 3D models showing mesh structure (thickness-to-diameter ratio L/D = ½) 

4.2.4 Influence of mesh type 

As is well known, the meshing influences the results of numerical simulations. Figure 4-2 

shows the stress distribution of the horizontal stress component along the vertical center 

line for different loading angles but otherwise identical conditions.  
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(a) radial model            (b) orthogonal model  (c) tetrahedral model 

Figure 4-2: Influence of mesh type on x along the center with  = 0.25 and thickness-to-diameter 
ratio L/D = ½ 

The radial mesh (see Figure 4-1a & 4-2a) is relatively coarse and not optimized in terms of 

mesh refinement and areas of high stress gradients. Also the zones are not adjusted to the 
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stress profiles of interest, e.g. the vertical center line. Therefore, the obtained stress profiles, 

as shown in Figure 4-2a, show a rather wave-like or step-wise curve progression.  

 The orthogonal mesh (see Figure 4-1b & 4-2b) is generated only by brick elements so that 

the outer boundary is somewhat jagged. A mesh refinement done on the central part of the 

model resulted in a good stress profile, except around the boundary areas where the jagged 

surface yielded slightly wrong results. 

The tetrahedral mesh (see Figure 4-1c & 4-2c) has the highest resolution and most 

appropriate mesh structure for the underlying problem. All the elements inside of the 

specimen are orthogonal, tetrahedral elements used only at the boundary. A mesh 

refinement at the center of the model was also carried out here, the element boundaries 

parallel and perpendicular to the Cartesian axes. Compared to the radial and orthogonal 

mesh, the tetrahedral mesh revealed the best performance and was therefore used in all the 

subsequent studies. Further results on the tetrahedral model are presented in Appendices 4.1 

& 4.2. 

4.2.5 Influence of specimen thickness 

Up until now, nearly all analytical, numerical and lab test results have not considered the 

effect of thickness. In fact the test specimens are either thin discs or cylinders. ASTM [10] 

stipulates that the diameter of the specimen be at least 10 times larger than the largest 

mineral grain constituent and that the thickness-to-diameter ratio (L/D) lie between 0.2 and 

0.75. According to ISRM [5] and DGGT [12] the thickness should be approximately equal 

to the radius.  

The influence of specimen thickness on the tensile stress and the strength, was investigated 

on the tetrahedral model using different loading angles (2) and thickness-to-diameter 

ratios. The results were normalized, with the tensile strength calculated using the analytical 

solutions given in Eq. (1.2) at a constant load of P = 10 kN (see Table 4-1). 
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Table 4-1: Normalized tensile stress values at the center of the disc as function of thickness-to-

diameter ratio and loading angles (2) with µ=0.25. 
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Figure 4-3: Deviation of tensile stress as function of thickness to diameter ratio and load angle (2) 

in the tetrahedral model. 

The influence of thickness-to-diameter ratio on the tensile stress is shown in Table 4-1 and 

Figure 4-3 with the tensile stress values normalized and the deviations between maximum 

and minimum tensile stresses compared. The results make some differences as in the 

following cases: 

 For L/D = ¼, the tensile stresses obtained for the different sections are nearly 

identical, the amplitude max/min (Table 4-1) ranging from 1.028 to 1.054. 

 L/D = ¼ L/D = ½ L/D = 1
1

 


Edge 

section 

Quar. 

section 

Middle 

section 

  Dev. 

 (max/ 
    min) 

Edge 

section

Quar. 

section

Middle 

section

  Dev. 

 (max/ 
    min) 

Edge 

section

Quar. 

section 

Middle 

section 

  Dev. 

 (max/ 
    min) 

1° 1.000 0.995 0.973 1.028 1.000 0.920 0.895 1.117 1.000 0.867 0.873 1.153

5° 5.650 5.611 5.499 1.027 5.650 5.196 5.051 1.119 5.653 4.890 4.924 1.156

10° 10.623 10.499 10.340 1.027 10.628 9.758 9.471 1.122 10.645 9.169 9.229 1.161

15° 16.236 15.970 15.796 1.028 16.270 14.893 14.429 1.128 16.339 13.970 14.052 1.170

20° 21.826 21.392 21.200 1.030 21.898 20.000 19.279 1.136 22.200 18.638 18.650 1.191

25° 24.788 24.255 25.566 1.054 24.975 22.717 21.941 1.138 25.180 21.267 21.395 1.184



102        Chapter 4.  Numerical simulation for isotropic materials - Comparison … 

However, in Figure 4-3, this difference increases steeply with a large loading angle 

(2> 20°). 

 For L/D = ½, an indication that the tensile stresses at the edge of the section 

increase can already clearly be seen. The amplitude max/min (Table 4-1) ranges 

from 1.117 to 1.138. 

 For L/D = 1
1 , the increase in tensile stress at the edges is even more pronounced. 

The amplitude max/min (Table 4-1) ranges from 1.153 to 1.191, a nearly 20% 

increase compared to the stress at the center. 

 Figure 4-3 shows the significance of the influence of thickness of a specimen. The 

increase in the L/D ratio tends to raise the difference 12.5% in tensile strength on 

the plane section located within the sample. 

Although a very small thickness is advantageous from a theoretical point of view, in order 

to avoid eccentric loading, misalignment and buckling, it is suggested that the upper limit 

of L/D be less than 1
1  and the lower limit not smaller than about ¼. Such considerations are 

governed more by reasons of practicability and expediency like material availability, 

uniform loading across the thickness of the specimen and size and capacity of the test 

machine.  

4.2.6 Influence of Poisson’s ratio 

Based on the assumption of the rock materials being linearly elastic and homogeneous, the 

influence of Poisson’s ratio was investigated. The analytical 2D solution after Hondros [18] 

was used parallel to adequate numerical simulations. A Young’s modulus of 8.5 GPa was 

chosen with reference to the lab results of the numerical calculations.  

 



4.2  Numerical simulation of isotropic materials        103 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

numeric

analytic


x





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-25
-20
-15
-10
-5
0
5

10
15
20
25

numeric

analytic


x





r 
(m

m
)

edge section quarter section middle section
     































-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic


y





r 
(m

m
)

 
Figure 4-4: Influence of Poisson’s ratio µ on x and y along middle, quarter and edge sections in 

the tetrahedral model with a thickness-to-diameter ratio L/D = ¼ (3D numerical and 2D analytical 

solutions). 
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Figure 4-5: Influence of Poisson’s ratio µ on x and y along middle, quarter and edge sections in 

the tetrahedral model with a thickness-to-diameter ratio L/D = ½ (3D numerical and 2D analytical 

solutions). 
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Figure 4-6: Influence of Poisson’s ratio µ on x and y along middle, quarter and edge sections in 

the tetrahedral model with a thickness-to-diameter ratio L/D = 1/1 (3D numerical and 2D analytical 

solutions). 
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Figure 4-4, 4-5 & 4-6 illustrate that, firstly, when Poisson’s ratio decreases, the influence of 

Poisson’s ratio and loading angle on the stress components also increases. Secondly, the 

analytical and numerical solutions show qualitatively the same behavior and that the 

quantitative differences between analytical and numerical solutions are quite small. 

4.2.7 Influence of loading angle (2) 

A more detailed analysis of the influence of loading angle on the tensile stress was done 

using the tetrahedral model (Figure 4-7, 4-8 & 4-9). The results indicate that the loading 

angle )2(  can play a significant role in the Brazilian test because the peak tensile stress 

does not develop any further at the center under certain conditions but more at the 

periphery of the disc. This can happen in combinations of very large loading angles and 

small Poisson’s ratios as documented by the Figure 4-7, 4-8 & 4-9. 
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Figure 4-7: Influence of the loading angle (2) on x and y in the tetrahedral model with a 

thickness-to-diameter ratio L/D = ¼ (3D numerical and 2D analytical solutions) 
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Figure 4-8: Influence of the loading angle (2) on x and y in the tetrahedral model with a 

thickness-to-diameter ratio L/D = ½ (3D numerical and 2D analytical solutions) 
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Figure 4-9: Influence of the loading angle (2) on x and y in the tetrahedral model with a 

thickness-to-diameter ratio L/D = 1
1  (numerical 3D and analytical 2D solutions) 
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4.2.8 Comparison of 3D analytical and numerical results 

Wijk’s formula [35] is the only 3-dimensional quasi-analytical solution available today for 

the Brazilian test. As Figure 4-10 reveals, the analytical solution is in close agreement with 

the numerical solutions and consequently, also with the 2-dimensional analytical solutions 

for a broad range of loading angles and Poisson’s ratios in relation to the middle section. 

For small loading angles and moving away from the middle section towards the sample 

edge, the analytical solutions give very questionable (even wrong) results. 
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Figure 4-10: Tensile stress in the tetrahedral model with a thickness-to-diameter ratio L/D = ½ (3D 

numerical and analytical solutions) 
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4.2.9 Influence of stress concentration at the loading jaws 

Stress concentrations at the loading jaws are a problem in Brazilian tests [96]. The classical 

analytical solutions ignore this effect though. In fact, the specimen can be destroyed in the 

initial stages of stress concentration under the loading areas instead of at its center where 

the tensile stress is nearly uniform (see also Figure 4-4 to Figure 4-10. This can then make 

it impossible to evaluate the Brazilian test in the classical way. 

4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 

The numerical simulations are based on the laboratory results of the Postaer Sandstone 

(FG.Ss), which is taken as a homogeneous material (see Chapter 3). Assuming that the 

specimen is a continuous, isotropic and homogeneous elastic body, the stress distribution at 

failure is determined from the model at the stage where the simulated load is close to the 

failure load measured in the laboratory (Table 4-2). The specimen models an elastic 

isotropic solid with the following characteristics: E = 8.5 GPa;  = 0.25. 

Parameter Measured 

Values 

Simulation 

Values 
Explanations 

Force (N) 7181 7111 

Tensile strength (MPa) 3.535 (1) 3.0 – 3.6 (2) 

Axial strain (mm/mm) 1.72E-4 1.70E-4 

Length of loading arc (mm) 11(3) 13 

Loading angle 2 (°) 27°(3) 32° 

(1) average lab results  as in Eq. 

(1.2) 
(2) distribution from center to edge 
(3) approximate values 

 

Table 4-2: Laboratory and numerical simulation results of the Brazilian test on FG.Ss 
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               (a) x (MPa) in plane XZ       (b) y (MPa) in plane XZ 

Figure 4-11: Numerical simulation of tensile (a) and compressive (b) stress distributions in a 

specimen with a thickness-to-diameter ratio L/D = ½ along the edge section. 

 

               (a) x  (MPa) in 3-D     (b) y (MPa) in 3-D 

Figure 4-12: Numerical simulation of tensile (a) and compressive (b) stress distributions in a 

specimen with a thickness-to-diameter ratio L/D = ½. 

The numerical simulation results are in close agreement with those of the lab tests. Figure 

4-11 & 4-12 show the tensile and compressive stresses x  and y  immediately before the 

point of failure is reached. At the center of the disc, the tensile stress reaches x = 3.0 MPa, 

which is somewhat (about 15%) lower than the average lab result of 3.535 MPa. At the 

edge however, the tensile stress x  reaches 3.6 MPa, which is slightly higher than the 
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average lab value of 3.535 MPa.  The classical analytical 2D solutions assume that the 

fracture starts at the center, where the highest tensile stress is expected. The numerical 

model in contrast predicts the highest tensile stresses at the edges. Thereby the initiation of 

the fracture process in the end sections of the disc. 

The stress component y  is always compressive and shows a significant concentration 

under the loading jaws. This can lead, as quite often observed during the lab tests, to shear 

failure and inclined fracture close to the loading area.  

In general, Figure 4-12 documents that a quite complex 3-dimentional stress state is 

produced inside the disc under diametral compressive loading even for a homogeneous 

isotropic elastic material. 

 

4.4 Conclusion 

 The stress distribution near the center of a disc under diametral loading is quite the 

same in both 2D and 3D analytical solutions and 3D numerical simulations. 

 The tensile stresses in the edge sections of the disc can be slightly smaller or even 

higher than those at the center depending on the parameters (loading angle, 

Poisson’s ratio and L/D). 

 The loading angle 2 10° is in accordance with the ISRM [5] recommendations; 

Fairhurst’s [19] suggestion, 2 = 15° and Hondros [18] use of 2 = 10° are for 

endless specimens. 

 The lower and upper limits for the length-to-thickness ratios should be in the range 

¼  L/D  1
1 ; 

 The specimen can be initially fractured by the stress concentration at the loading 

jaws. This means that fracture initiation can be triggered in this region instead of the 

center of the disc as usually assumed. 

 The formula usually used for calculating the tensile strength is derived from a 2D 

analytical elastic solution. It ignores however, the effect of the loading angle )2(  , 
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the thickness-to-diameter ratio (L/D), the Poisson’s ratio )(  and the stress 

concentrations at the loading jaws and may hence disagrees with experimental 

results. 

 The developed and tested 3-dimensional numerical model for the stress and failure 

analyses of the Brazilian test seems to be suitable not only for isotropic, but more 

generally also for anisotropic and inhomogeneous materials. 
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Chapter 5 

 

5 Numerical simulation of anisotropic materials 

- Comparison with laboratory tests  

5.1 Introduction 

The mechanical behavior of anisotropic rocks under compression and/or tension is 

directional [3, 92]. This characteristic is a product of well-defined fabric elements which 

may form in the rock as bedding, stratification, layering or foliation. This chapter focuses 

on the modeling of Le.Gs Gneiss and My.Sc Slate as transversely isotropic materials.  

In Chapter 3, laboratory tests carried out on Le.Gs Gneiss and My.Sc Slate are documented 

with deducing the mechanical rock parameters. This chapter also presents the results of 

corresponding numerical simulations for those rocks. The results, obtained from both 

procedures were compared and then used for interpretations. 

A constitutive law which explicitly considers weakness planes in transverse isotropic rocks 

is the so-called bilinear strain-hardening/softening ubiquitous-joint FLAC3D model. The 

plane of weakness can be created in any desired direction. To enable a direct comparison 

with the lab results, seven discrete bedding-plane orientations () and loading directions (β) 

each were chosen to cover the full spectrum of potential constellations for the simulations. 

5.2 General procedure for simulating the Brazilian test using FLAC3D  

FLAC3D [97] is a powerful and globally applied 3-dimensional numerical simulation 

method especially developed to solve rock- and soil mechanical problems. The code is 

based on the explicit Finite-Difference method and enables simulation of highly non-linear 

problems. Figure 5-1 illustrates the simulation procedure used here. 
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Figure 5-1: Solution procedure simulating Brazilian tests on anisotropic materials (after Itasca [97]) 
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5.2.1 Conceptual model 

The conceptual model is based on the experiences gained from the simulation of isotropic 

materials as described in detail in Chapter 4. A high resolution tetrahedral mesh, inclusive a 

frictional interface, was selected for all the tests and the loading jaw simulations so that the 

frictional contact between the loading jaws and the disc could be taken into account in the 

load entry area (Figure 5-2). 

 

Figure 5-2: General model for simulating the Brazilian test: disc and upper and lower loading jaws 

A tetrahedral mesh with 81.549 gridpoints and 73.584 zones (see also Chapter 4) and a 

higher mesh resolution in the center region duplicated the lab tests in a standard model. The 

extreme mesh resolution was necessary in order to duly illustrate the locally large stress 

gradients and complicated failure patterns. 

5.2.2 Boundary Conditions 

During the Brazilian test simulations, load was applied by two loading jaws. The force 

between the loading jaws and the disc was transmitted via an interface. The load was 

generated by applying a constant but reversed velocity to the two loading jaws. In addition, 

no displacements were allowed along the perpendicular to loading direction X-Y-plane:  

fix  x y  range x -0.0576 -0.0574 y -0.0251 -0.0249 
fix   x y  range x  0.0576  0.0574 y  0.0251  0.0249 
apply zvel @_nvel  range z  0.0575  0.0585 
apply zvel @_nvel1 range z -0.0575 -0.0585 

The codes apply for all model boundary gridpoints falling between 0.0575 ≤ z ≤ 0.0585 for 

the top jaw and -0.0575 ≤ z ≤ -0.0585 for the bottom jaw. 
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The interface elements used incorporate automatic contact detectors so that deformation of 

the disc due to increase in the loading contact area with increasing load can be considered.   

5.2.3 Numerical model set-up 

The numerical model set-up mainly considers the orientation of the weakness planes in 

relation to the loading direction, this requiring the definition of a corresponding reference 

coordinate system. The orientation of the weakness plane here is given by a unit normal 

vector in the global x-, y-, z- coordinate system. A local system of reference axes is defined 

by the x’-axis pointing downward in the direction of dip, the y’-axis in the plane and z’ 

pointing in the direction of the unit normal (n). All the orientation () and foliation-loading 

() angles have to be transformed into dip (dip) and dip direction (dd) in FLAC3D. 

 The d-s-n-axes form a right-angled co-ordinate system in which: 

 

Figure 5-3: Local axes defined by the dip (d) strike (s) and normal (n) in FLAC3D [97]. 

 

(a) dip plane = 150° dd = -10° (b) dip plane = 130° dd = -15° (c) dip plane = 105° dd = -15° 

Figure 5-4: An arbitrary orientation of a plane of weakness inside the numerical model. 
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5.3 Constitutive model 

5.3.1 Choice of constitutive model 

FLAC3D provides a library of build-in constitutive models. Each model is developed to 

represent a specific type of constitutive behavior commonly associated with specific 

geologic materials. 

The most suitable model for simulating Brazilian tests on anisotropic rocks is the so-called 

bilinear strain-softening ubiquitous-joint model. This model enables simulation of both the 

softening and hardening of rock matrix materials and the weak planes using preset 

variations of the ubiquitous-joint model properties (cohesion, friction, dilation, tensile 

strength) as functions of accumulated plastic shear and tensile strain. 

For the loading jaws, isotropic linear elastic constitutive laws were applied because the 

loading level was far below the failure state or plasticity threshold and linearity could be 

assumed.   

5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 

The bilinear strain-hardening/softening ubiquitous-joint model [98] is a generalization of 

the ubiquitous-joint model which is an anisotropic plastic model that  contains weak planes 

of specific orientation embedded in a Mohr-Coulomb solid. In the bilinear model, the 

failure envelopes for the matrix and joint planes are a combination of two Mohr-Coulomb 

criteria with a tension cut-off that can be hardened or softened according to laid down laws. 

A non-associated flow rule is used for the shear-plastic flow and an associated flow rule for 

the tensile-plastic flow. 

The softening behavior of the matrix and the joint are specified relative to four independent 

hardening parameters (two for the matrix and two for the joint) which measure the amount 

of plastic shear and tensile strain. In this numerical model, a general failure is first detected 

for the step with relevant plastic corrections made, the new stresses analyzed for failure on 

the weak plane and then accordingly updated. In this numerical model, general failure is 

determined first for the step and relevant plastic corrections made and then the new stresses 

analyzed for failure on the weak plane and accordingly updated. The hardening parameters 
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are increased where plastic flow had taken place and the cohesion, friction, dilation and 

tensile strength parameters adjusted for the matrix and the joint using tables. 

Failure Criterion for the Matrix 

The matrix failure criterion used in this model is sketched in the principal stress plane (σ1, 

σ3) in Figure 5-5. (Compressive stresses are negative and by convention, σ1 ≤σ2 ≤ σ3.) 

 

Figure 5-5: FLAC3D bilinear matrix failure criterion [98] 

The failure envelope is defined by two Mohr-Coulomb failure criteria 02 sf  and 01 sf  

for segments A – B and B – C and a tension failure criterion 0tf  for segment C – D. 

The shear failure criterion has the general formula 0sf . The criterion is characterized by 

a cohesion, 2c , and a friction angle, 2 , for segment A − B, and by a cohesion, 1c , and a 

friction angle, 1 , for segment B − C. The tensile failure criterion is specified by means of 

the tensile strength, t (positive value), thus: 

 NcNf s 231        (5.1) 

ttf   3         (5.2) 

where 
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)sin(1

)sin(1




 


N        (5.3) 

The tensile cap acts on segment B − C of the shear envelope and, for a material with non-

zero frictional angle 1 , the maximum value of the tensile strength is given by 

1

1
max tan

 ct          (5.4) 

Failure Criterion for the Weak Plane 

The stresses, corrected for plastic flow in the matrix, are resolved into components parallel 

and perpendicular to the weak plane and then tested for ubiquitous-joint failure. The failure 

criterion is expressed in relation to the magnitude of the tangential traction component, 

2
'3'2

2
'3'1   , and the normal traction component, '3'3 , on the weak plane. 

 

Figure 5-6: FLAC3D bilinear joint failure criterion [98] 

This failure criterion is presented in Figure 5-6 and corresponds to two Mohr-Coulomb 

failure criteria: 02 sf  for segment A – B, and 01 sf  for segments B – C; and a tension 

failure criterion 0tf  for segment C – D. Each shear criterion has the general 

form 0sf , and is characterized by a cohesion and a friction angle jc , j  equal to 2jc , 2j  

along segment A − B, and 1jc , 1j  along segment B − C. The tensile criterion is specified by 

means of the tensile strength, t
j (positive value), thus: 
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jj
s cf   tan'3'3       (5.5) 

t
j

tf   '3'3         (5.6) 

For a weak plane with non-zero frictional angle 1j , the maximum value of the tensile 

strength is given by 

1

1

max tan j

jt
j

c


         (5.7) 

 

5.4 Parameter calibration 

Parameter calibration involves adjusting the simulation parameters in such a way as to 

match the simulation results with those obtained in the laboratory. Lab results with 

statistical variability were used as input parameters. 

5.4.1 Material parameters used 

The material parameters in FLAC3D are generally categorized into elastic deformation 

(Young’s modulus and Poisson’s ratio) and strength (cohesion, friction angle and tensile 

strength) properties. The laboratory test program for gneiss and slate paid particular 

attention to the foliation in the rocks. In fact, loading was applied parallel and perpendicular 

to the planes of weakness (joint planes) in order to determine the strength parameters of the 

rock matrix and the planes of weakness. The material parameters described in Chapter 3 

were derived from the lab tests conducted by the author with additional values from 

literature. 
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Figure 5-7: Material parameter calibrating procedure 

Based on the calibration procedure in Figure 5-7, the following final input parameters were 

used for the bilinear strain-hardening/softening ubiquitous-joint model (Table 5-1): 
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Model Parameters Le.Gs Gneiss Parameters My.Sc Slate Parameters 

global _emod       = 
global _ny        = 
Global _tens_matrix     = 
Global _tens_joint      = 
global _coh_matrix      = 
global _coh_joint       = 
global _fric_matrix     = 
global _fric_joint      = 
global _tens_matrix_re  = 
global _tens_joint_re   = 
global _coh_matrix_re   = 
global _coh_joint_re    = 
global _fric_matrix_re  = 
global _fric_joint_re   = 

55.0e9 
0.33 
23.0e6 
9.5e6  
38.0e6 
18.0e6 
46.0 
43.0 
1.0e6 
0.5e6 
5.0e6  
2.0e6 
33.0 
30.0 

45.0e9 
0.33 
21.7e6 
6.5e6 
32.0e6 
12.5e6 
51.0 
41.0 
1.0e6 
0.5e6 
2.5e6 
1.5e6 
33.0 
30.0 

Table 5-1: Material parameters (SI units) used in the numerical simulations 

5.4.2 Contact between disc and loading jaws 

As already described in Chapter 4, the loading angle (2) plays an important role in the 

Brazilian tensile strength tests. During the test, the load is applied by means of loading jaws 

and transferred via an interface to the rock disc. This interface creates the link between the 

sub-grids in the calculations. The contact plane represents a physical discontinuity between 

two different materials (rock and steel). 

FLAC3D uses triangular elements for the interface each of which is defined by three nodes 

(interface nodes). Each interface node has a representative area associated with it such that 

the total area of the entire interface is divided into active interface nodes. Generally, 

interface elements are attached to a zone surface. Each quadrilateral zone face is defined by 

two triangular interface elements so that interface nodes are automatically created at every 

interface element vertex. When another grid surface comes into contact with an interface 

element, the contact is detected at the interface node and is characterized by normal and 

shear stiffnesses as well as sliding properties (friction). 

The fundamental relationship at the contact is defined by the interface node and a zone 

surface, also known as the target face. The normal direction of the interface force is 

determined by the orientation of the target face. This means, for instance, that the 

compressive stresses on the target face are also diametrally compressive on the disc. 
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The material properties are related to the steel, rock parts and the interface via the following 

codes: 

model elas range group jaw_top jaw_bottom 
prop bulk 1.6e11 shear 7.7e10 range group jaw_top jaw_bottom 
global _kn = (_bulk + 1.3333 * _shear) * 12.5 
interface 1 face range z 0.0375,0.05  & 
  cylinder end1 (0,-0.0125,0.025) end2 (0,0.0125,0.025) radius 0.0251 & 
  cylinder end1 (0,-0.0125,0.025) end2 (0,0.0125,0.025) radius 0.0249 not 
interface 2 face range z 0.0125,0  & 
  cylinder end1 (0,-0.0125,0.025) end2 (0,0.0125,0.025) radius 0.0251 & 
  cylinder end1 (0,-0.0125,0.025) end2 (0,0.0125,0.025) radius 0.0249 not 
interface 1 prop kn=@_kn ks=@_kn fric 15 
interface 2 prop kn=@_kn ks=@_kn fric 15 

 

 

Figure 5-8: Interface reaction beneath loading jaws during the Brazilian test. Colored areas indicate 

potential and real contacts between disc and loading jaws. 

Shear and normal stiffness have to be taken as the minimum prerequisite. A good thumb of 

the rule as found in FLAC3D manuals is, that kn and ks be set at tenfold the equivalent 

stiffness of the stiffest neighboring zone. The apparent stiffness of a zone in the normal 

direction expressed in stress per unit distance, is: 












min

3
4 )(

max
z

GK
      (5.8) 

where: K & G  are the bulk and shear moduli, respectively;  

minz  is the smallest width of an adjoining zone in the normal direction. 
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The interface parameters used in the simulations are given in Section 5.4.2. Contact area, 

loading angle and contact force components were determined by the author’s developed so-

called Fish-functions based on the internal program language. 

5.4.3 Post-failure deformation properties 

The post-failure behavior was inserted in the simulation. Initiating material hardening or 

softening is a gradual process once plastic yield begins. At failure, deformation becomes 

more and more inelastic as a result of micro-cracking. This leads to degradation in strength 

of these materials and the initiation of shear bands or tensile cracks. 

The bilinear strain-hardening/softening ubiquitous-joint model is based on the FLAC3D 

Mohr-Coulomb model with non-associated shear and associated tension flow rules. If peak 

strength values (cohesion, friction, dilation and tensile strength) are reached for the matrix 

and/or the joints, they will be automatically modified according to infinite linear laws 

demarcated as input functions. Cohesion, friction and dilation are then defined as infinite-

linear functions of the accumulated plastic shear strain.  An infinite-linear softening law is 

used for the tensile strength, this being a function of the accumulated plastic tensile strain. 

For example, the user-defined hardening/softening parameters for My.Sc Slate are: 

 

table 101 0,@_tens_matrix 1e-4,0.1 2e-4,0.75 1e-3,0.95 
5e-3,@_tens_matrix_re 

table 102  0,@_tens_joint 1e-4,0.1 2e-4,0.75 1e-3,0.95 
5e-3,@_tens_joint_re 

table 103  0,@_fric_matrix 1e-3,0.1 2e-3,0.75 4e-3,0.95 
5e-3,@_fric_matrix_re 

table 104  0,@_fric_joint 1e-3,0.1 2e-3,0.75 4e-3,0.95 
5e-3,@_fric_joint_re 

table 105  0,@_coh_matrix 1e-3,0.1 2e-3,0.75 4e-3,0.95 
5e-3,@_coh_matrix_re 

table 106  0,@_coh_joint 1e-3,0.1 2e-3,0.75 4e-3,0.95 
5e-3,@_coh_joint_re 

 

Figure 5-9 & 5-10 document the softening functions used for the two anisotropic materials 

investigated in this thesis. 
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Figure 5-9: User-defined softening functions analyzed with respect to tensile stress, friction and 

cohesion for Le.Gs Gneiss. 

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0 5.0
    strain (x 1e3)

T
en

si
le

 s
tr

es
s 

(M
Pa

) .

joint tension matrix tension

20

25

30

35

40

45

50

55

0 1 2 3 4 5
strain (x 1e3)

Fr
ic

ti
on

 (
°)

 .

joint friction matrix friction

0

5
10

15

20

25
30

35

0 1 2 3 4 5
strain (x 1e3)

C
oh

es
io

n 
(M

Pa
) 

.

joint cohesion matrix cohension
 

Figure 5-10: User-defined softening functions analyzed with respect to tensile stress, friction and 

cohesion for My.Sc Slate. 

Hardening and softening parameters were calibrated for each and every one of the analyses 

and the values generally back-calculated from the laboratory test results. 

5.4.4 Tension cut-off  

Tensile failure is characterized by pronounced softening within very small ranges of plastic 

tensile strain (Figure 5-9 & 5-10). 
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Figure 5-11: Brazilian lab test results of My.Sc.0.0.2/4 specimen (compare Figure 5-12) 

 

Figure 5-12: Numerical simulation results of My.Sc.0.0 specimen (compare Figure 5-11). Tensile 

stress (Pa) vs. calculation steps.  
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Figure 5-11 (b) & 5-12 show that the peak strength (tensile failure) reached in the lab is 

more or less identical with the result of the numerical simulation. After reaching the peak, a 

sudden drop is observed (brittle behavior in tension). The tensile stress values given in 

Figure 5-11 & 5-12 are based on Eq. 1.2 and therefore directly proportional to the load of 

the loading jaws. Figure 5-12 reveals that tensile failure starts to develop at the center line 

of the disc. This tensile failure determines the peak load and the subsequent softening. 

5.5 Numerical simulation results 

5.5.1 Introduction 

The investigation of the damage and failure pattern is of prime importance because the 

Brazilian test is an indirect test method. This means that the deduced strength (mainly 

tensile strength) is not measured directly but requires correct interpretation.  

Exemplarily, Figure 5-13 shows a series of Mohr’s circles together with the linear 

envelopes for the joint planes (the red dash lines) and matrix (the magenta dash lines) given 

by Eq. (5.2). The failure envelopes correspond to the Mohr-Coulomb failure criterion with 

a tension cut-off. 

 

Figure 5-13: Development of Mohr’s circles for the center zone under loading until peak strength 

of My.Sc.75.90 and failure envelopes for the joints and matrix plane. 
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Figure 5-13 exemplarily shows the development of the Mohr’s stress circle for the center 

element of the disc with loading. The circle development starts at (0, 0) and increases step 

by step, first moving decidedly towards the left and later back to the right and finally 

reaching the shear failure envelope. The stress state at the center of the disc never reaches 

the tension cutoff of the matrix. The failure mechanism at the center of the specimen is 

therefore shear failure. This is also evident in Figure 5-14. The shear failure (shear-n or 

u:shear-n) dominates the pattern of plasticity. A mixed-mode fracture pattern is observed as 

indicated by Figure 5-14. In contrast, the classical evaluation procedure suggests, that this 

sample (orientation of weak planes perpendicular to loading direction) would fail in matrix 

tension. 

 

Figure 5-14: Plasticity (failure) pattern at peak strength for Le.Gs.75.90 

This example shows that for anisotropic rocks, the failure pattern can be quite complex and 

a careful stress and fracture pattern analysis has to be undertaken to deduce the right 

strength values from the Brazilian test.  
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5.5.2 Stress distribution and failure state 

  

 

 

 (Continued) 
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 (Continued) 
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 (a) Plasticity state in the middle plane at peak 

strength and development of “tensile” stress at the 

center of the specimen relative to Eq. 1.2  

(b) Horizontal stress (MPa) contours at peak 

strength   

Figure 5-15: Plasticity state at peak strength in the middle plane and the development of “tensile” 

stress in the center element relative to Eq. 1.2; (a) and (b) horizontal stress component contours at 

peak strength for  Le.Gs Gneiss  (= 0° and = 0°  90°). 

The plastic zone state, the “tensile” stress calculated from the standard Eq. 1.2 for the 

center of the specimen and the horizontal stress component contours of a disc of 

Le.Gs.0.0/15/30/45/60/75/90 are presented in Figure 5-15. When  = 0°, plastic zones 

develop quickly and move towards the center of the sample. Tensile failure appears exactly 

along the weakness planes at the center of the disc. For  = 15°, the plastic zone 

development is first under the loading jaws and then suddenly re-orients quickly along the 

center line in the direction parallel to the weakness planes. Clearly, tensile failure at the 

center still dominates. For 30° < the plasticized area increases in width and shows 

a symmetric pattern with respect to the load direction. Shear plastification dominates and 

tensile failure appears within the plasticized area (several parallel tensile fractures) at the 

ubiquitous joints. As a result, strongly localized tensile failure at the center of the specimen 

is not observed any more but now along the joints and in the matrix. Where  = 90°, the 

plasticized area appears first at the rim of the disc along the weakness planes, then develops 

under the loading jaws and finally moves in a direction perpendicular to the weakness plane 

along the center line. The results show that tensile matrix failure dominates in this case. 
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In general, results of the simulations using various orientation () and foliation-loading 

angles () indicate that tensile strength depends very strongly on the orientation of the 

bedding or weakness planes and is relative to the loading direction. 

Brazilian tests were performed in order to assess the effect of changes in and angles on 

the strength and fracture pattern of Le.Gs Gneiss and My.Sc Slate. The results are shown in 

Appendices 5.1 and 5.2. 

5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes  

This section focuses on the state of stress in an isotropic elastic material as a function of the 

orientation of the planes () in relation to the loading direction (). The shear/tensile stress 

states directly relate to the location and type of failure in the joint planes or the matrix. 

Particularly after yielding has started, the stress-strain behavior is no longer elastic and 

stress redistributions occur.  

In a first step, the stress components for arbitrarily oriented planes are investigated. This 

procedure can indicate the conditions under which tensile or shear failure is to be expected. 

Assuming isotropic elastic behavior, stress tensor components obtained from the theoretical 

transformation equations [92] were compared with the simulation results in order to specify 

the different potential failure mechanisms with respect to  and  

The three dimensional stress transformation equations can be obtained when the primed 

coordinate system is derived from the unprimed system by rotating the angles of dip (dip) 

and dip direction (dd) as defined in Figure 5-16, linking the orientation angle () and 

foliation-loading angle (). 
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Figure 5-16: Relationship between fixed global coordinates (XYZ) and transverse plane 

orientations (X’Y’Z’);   3600 dip ;   900 dd  (after Wittke [92]). 

The transformation of the stress tensor    from the global co-ordinate system into the 

local x’-y’-z’ system is given by:    ' T  . For transversely isotropic materials, an 

equation is obtained for the required shear and normal stress component [92] by: 
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Parallel to the analytical solution, the stress state at the center of the numerical model was 

determined and then rotated into the same local co-ordinate system.  The results obtained 

from both methods with respect to  and  are compared in Figure 5-17 & 5-18 for the 

Le.Gs Gneiss and the My.Sc Slate respectively. To make the comparison easier, the tensile 

stress value for was normalized to one. 
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Figure 5-17: Comparison of normalized tensile stress with  for Le.Gs Gneiss. 
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Figure 5-18: Comparison of normalized tensile stress with  for My.Sc Slate. 

Figure 5-17 & 5-18 illustrate that there is only a small difference between theoretically 

calculated and numerically simulated stress states. In fact, this small difference only occurs 

when and  angles are small, i.e. when (,   30° for Gneiss and (,   15° for Slate. 

This means that the influences of the elastic parameters on the stress state are negligible in 

relation to the orientation of the local planes () and the loading directions (). 
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Meanwhile, a clear distinction between potential tensile and shear failure domains has been 

shown as a function of  and . Depending on the loading direction,   8°;   60°, both 

shear and tensile failure are possible. Below only tensile failure is possible and 

shear failure only when . In other words, shear failure should be considered as a 

potential failure mechanism over a large span of possible anisotropic plane orientations. 

One should keep in mind that the actual failure mechanism depends on several factors, on 

the strength ratios, for instance. 

5.5.4 Plasticity states  

Plastic zones display the state in which the stresses satisfy the yield criterion. The plasticity 

pattern across entire width of disc indicate which failure mechanism has developed. Two 

principal failure mechanism types can be distinguished: shear and tension failure. In the 

ubiquitous-joint model, shear failure along the joint planes is designated u:shear and tensile 

failure u:tension in the plasticity plots. The plots also indicate whether stresses within a 

zone are currently at the yield surface (i.e., the zone is in active failure now, -n), or the zone 

has failed earlier but the stresses currently fall below the yield surface (the zone failed in 

the past, -p). Plastic flow can occur at a certain point in time during the simulation but 

subsequent stress re-distributions may lead to partial unloading so that the yield criterion is 

no longer satisfied. This is indicated by shear-p or tension-p (on plots of the plasticity 

state). 

Figure 5-19 illustrates the different plasticity states in the Le.Gs.0.45 sample shortly after 

the peak strength had been reached. 
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      (a) Whole plasticized zones      (b) Joint_shear_now plastic zones 

 

(c) Joint_shear_past plastic zones    (d) Joint_tension_past plastic zones 

 

(e) Matrix_shear_past plastic zones   (f) Matrix_tension_past plastic zones 

Figure 5-19: Plasticity state in the Le.Gs.0.45 specimen. 
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FLAC3D is a continuum code and as such, crack propagation cannot be explicitly modeled. 

However, based on the development of stresses and the appearance and development of 

plastic states in each step of the numerical calculations, development of the plasticity 

pattern can be interpreted as a fracture propagation process.  

5.5.5 Damage and fracture process 

Figure 5-20 & 5-21 illustrate the process of damage development whereby different stages 

are considered in the numerical simulations; example: 

 First, tensile plastic zones appear at r/R = 0.72 in Le.Gs.0.0 and at r/R = 0.76 in 

Le.Gs.0.90 and then spread towards the center of the disc. 

 In the middle plane, tensile plastic zones do not only first appear at the center but also 

at r/R = 0.44 and 0.48 in Le.Gs.0.0 and Le.Gs.0.90, respectively. This means that the 

initial damage does not occur at the center of the disc but that triggered by the initial 

damage; secondary tensile plastic zones rapidly develop along the sample’s center 

line. 

 Tensile strength of joints (9.5 MPa) in Le.Gs.0.0 reaches its maximum along the 

center plane, leading to tensile failure. Figure 5-20 indicates that apparently not all 

elements really reached their ultimate strength. But this is misleading then the 

plastification indicates that at least one of the 10 sub-elements had reached the critical 

stress state. In such a case, the whole element is considered to be in the state of failure 

and softening begins, this being extremely strong for tensile failure and therefore 

leading to a sudden drop in stress. 

 As indicated by Figure 5-21, matrix tensile failure dominates in Le.Gs.0.90. The 

elements along the central plane therefore only reach peak values of about 23 MPa. 

 The damage in anisotropic materials during the Brazilian test is a very complicated 

process comprising tensile and shear fracturing. 



142        Chapter 5.  Numerical simulation of anisotropic materials - Comparison … 

 

   

(C
on

ti
nu

ed
) 

P
la

st
ic

 te
ns

il
e 

zo
ne

 

 

 

M
ax

. p
ri

nc
ip

al
 s

tr
es

s 
(P

a)
 

 

 

 



5.5  Numerical simulation results        143 

 

 

 

(C
on

ti
nu

ed
) 

V
ol

um
e 

st
ra

in
 in

cr
em

en
t (

-)
 

 

V
er

ti
ca

l s
tr

es
s 

co
m

po
ne

nt
 (

P
a)

 

  



144        Chapter 5.  Numerical simulation of anisotropic materials - Comparison … 

 

 

H
or

iz
on

ta
l s

tr
es

s 
co

m
po

ne
nt

 (
P

a)
 

 

T
en

si
le

 s
tr

es
s 

(P
a)

 a
t s

el
ec

te
d 

po
in

ts
 o

f 
ob

se
rv

at
io

n 
cl

os
e 

to
 th

e 
ce

nt
er

 o
f 

th
e 

di
sc

 

   
   

   
   

   
   

  (
a)

 c
al

cu
la

ti
ng

 a
t s

te
p 

12
54

3 
   

   
   

   
   

   
   

   
 (

b)
 c

al
cu

la
ti

ng
 a

t s
te

p 
14

00
9 

   
   

   
   

   
   

   
   

   
 (

c)
 c

al
cu

la
ti

ng
 a

t s
te

p 
14

21
0 

F
ig

u
re

 5
-2

0:
 D

am
ag

e 
de

ve
lo

pm
en

t i
n 

th
e 

L
e.

G
s.

0.
0 

sp
ec

im
en

 



5.5  Numerical simulation results        145 

 

  

(C
on

ti
nu

ed
) 

P
la

st
ic

 te
ns

il
e 

zo
ne

 

 

M
ax

. p
ri

nc
ip

al
 s

tr
es

s 
(P

a)
 

  



146        Chapter 5.  Numerical simulation of anisotropic materials - Comparison … 

 

  

(C
on

ti
nu

ed
) 

V
ol

um
e 

st
ra

in
 in

cr
em

en
t (

-)
 

 

V
er

ti
ca

l s
tr

es
s 

co
m

po
ne

nt
 (

P
a)

 

  



5.5  Numerical simulation results        147 

 

H
or

iz
on

ta
l s

tr
es

s 
co

m
po

ne
nt

 (
P

a)
 

 

T
en

si
le

 s
tr

es
s 

(P
a)

 a
t s

el
ec

te
d 

po
in

ts
 o

f 
ob

se
rv

at
io

n 
cl

os
e 

to
 th

e 
ce

nt
er

 o
f 

th
e 

di
sc

 

   
   

   
   

   
   

  (
a)

 c
al

cu
la

ti
ng

 a
t s

te
p 

20
99

3 
   

   
   

   
   

   
   

   
 (

b)
 c

al
cu

la
ti

ng
 a

t s
te

p 
29

26
7 

   
   

   
   

   
   

   
   

   
 (

c)
 c

al
cu

la
ti

ng
 a

t s
te

p 
29

50
5 

F
ig

u
re

 5
-2

1:
 D

am
ag

e 
de

ve
lo

pm
en

t i
n 

th
e 

L
e.

G
s.

0.
90

 s
pe

ci
m

en
 



148        Chapter 5.  Numerical simulation of anisotropic materials - Comparison … 

5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 

Figure 5-22 shows a comparison of typical fracture patterns observed in the Le.Gs Gneiss 

during the lab tests and revealed by the numerical simulations as well. Notice that photos 

for lab results show front side, but numerical simulations view behind. 

 

(a) Typical fracture pattern I ( = 0°): single fracture develops along the central line. 

 

(b) Typical fracture pattern II (15°    45°): a more diffuse inclined fracture network (fracture 

coalescence) develops within a wider area along the center of the disc.                             
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(c) Typical fracture pattern III (60°    75°): fracture development away from the center line of 

the disc begins at the rim. 

 

(d) Typical fracture pattern IV = 90°): initial fractures appear at the rim near the loading area 

followed by fracture across the center line of the disc. 

Figure 5-22: Typical fracture patterns observed in lab tests compared with numerical simulation 

results (see also Appendices). 

5.6 Tensile strength – Comparison of lab results and numerical 

simulations 

In this section, the numerical simulation results will be compared with the results from lab 

tests. Special attention will be paid to the stress component perpendicular to the disc axis at 

the center of the specimen (sxx_cen) since the classical evaluation is based on the 

assumption that the maximum tensile stress and the tensile cracking are respectively created 

and initiated there. Also of major interest is the calculated tensile strength from Eq. 1.2 

(theoretical sxx_cen). This is based on either the measured peak load observed during the 

lab tests or the peak load transferred through the interface from the loading jaws to the disc 

during the numerical simulations. 

Figure 5-23 to Figure 5-26 compare lab results and selected results obtained from the 

numerical simulations. 
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5.6.1 Tensile strength of Le.Gs Gneiss 

        

 7.25 8.23 12.44 16.38 18.18 17.98 21.07 

 8.90 8.98 12.55 15.66 18.38 17.93 21.07 

 11.09 11.44 13.57 15.04 15.07 18.16 21.07 

 12.87 13.73 15.60 16.35 14.66 16.21 21.07 

 13.46 15.11 13.96 16.28 14.84 15.56 21.07 

 15.04 14.78 12.80 15.73 14.79 15.54 21.07 

 17.77 17.60 17.66 17.29 14.71 15.48 21.07 

Table 5-2: Numerical tensile strength (numerical sxx_cen) results of Le.Gs Gneiss (MPa). 

        

 7.75 9.40 14.87 19.17 21.23 21.51 23.72 

 10.49 10.40 14.59 18.08 21.29 21.30 23.72 

 11.47 12.61 12.86 18.04 17.46 21.13 23.72 

 14.62 15.02 17.37 17.35 17.39 18.83 23.72 

 16.26 15.15 16.90 18.05 17.23 18.27 23.72 

 17.25 17.33 15.22 18.13 17.26 18.05 23.72 

 21.29 21.40 21.45 20.72 17.16 17.95 23.72 

Table 5-3: Theoretical tensile strength (theoretical sxx_cen) results of Le.Gs Gneiss (MPa). 

        

 6% 12% 16% 15% 14% 16% 11% 

 15% 14% 14% 13% 14% 16% 11% 

 3% 9% -5% 17% 14% 14% 11% 

 12% 9% 10% 6% 16% 14% 11% 

 17% 0% 17% 10% 14% 15% 11% 

 13% 15% 16% 13% 14% 14% 11% 

 17% 18% 18% 17% 14% 14% 11% 

Table 5-4: Differences between theoretical and numerical tensile strength of Le.Gs Gneiss. 
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Figure 5-23: Tensile strengths of Le.Gs Gneiss relative to the orientation angle () 
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Figure 5-24: Tensile strengths of Le.Gs Gneiss relative to the foliation-loading angle () 
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Tensile strength values obtained by different approaches with regard to different orientation 

() and foliation-loading () angles are displayed in Table 5-2 & 5-4 and Figure 5-23 & 5-

24 for the Le.Gs Gneiss. The comparison shows that the determined numerical values are 

close to experimental ones. Both methods reveal a significant influence of and . 

Assessment of numerically determined tensile strength relative to the orientation angle (): 

 At   15°, tensile strength values show a strong dependence on the foliation-

loading angle (). Tensile strength significantly increases with increasing -values, 

with the ratio of to at its maximum value 45.20

90

0 


 . 

 At 30°    45°, no clear tendency can be detected; the maximum tensile strength 

ratio equal to 42.10

90

30 


  for and 15.130

90

45 


  for  

 At 60°    75°, bisection becomes visible. The tensile strength is slightly higher 

at low -values (smaller than about 40°), the maximum ratio at equal 

to 81.00

90

60 


  and 86.00

90

75 


  at  

  = 90° is a special case. Tensile strength here does not depend on because the 

weakness planes always occur parallel to the loading direction. In this case, the 

maximum tensile strength value is 21.07 (MPa). 

Assessment of the numerically determined tensile strength relative to the foliation-loading 

angle (): 

 At   60°, a significant increase in tensile strength is observed with increasing 

orientation angle (). With increasing -values, this increase is decrescent, the ratio 

varying between 91.20

90

0 


  at  and 56.10

90

60 


  at . 

 Where   75°, the influence of  on the tensile strength is small. It would seem 

that up to about 45°, a near tensile strength constancy is valid followed by a 

small decrease and a final strong increase. The maximum tensile strength ratio is 

then equal to 65.130

90

75 


  and 43.160

90

90 


  at and, respectively. 
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Based on the gradients in Figure 5-23 & 5-24, it becomes clear that the influence of  is 

larger than that of  in the Le.Gs Gneiss, especially when both and  are small. 

Analysis of failure state (see also Appendix 5.1) 

 At  < 30° and  = 0° pure tensile failure occurs exactly along the weakness plane 

across the disc center. Failure is completely governed by the tensile failure joint. 

 At  = 15° and 90°, plastic zones develop first under the loading jaws and then 

quickly spread towards the center line. Mixed tensile-shear failure appears along the 

center line of the disc but tensile failure dominates. Tensile failure also dominates 

only in the joints at  = 15° and in the matrix at all  = 90°. At 15°   the 

plasticized area becomes wider and more complicated in detail though a symmetric 

pattern is still observed with respect to the loading direction. Shear plastification 

dominates and tensile failure appears to be ubiquitous within the plasticized area 

(several parallel tensile fractures). Failure is along the joints and also in the matrix. 

 At  = 30°, mixed tensile-shear failure appears to be ubiquitously within the 

plasticized area at all except where  = 30°, = 30°, pure shear failure occurring 

along the joints in this case. 

 Where  > 30°, the plasticized area, though becoming wider relative to the loading 

direction, shows a symmetric pattern. Mixed shear-tensile failure appears 

ubiquitously within the plasticized area except at  = 45°, = 30°, where shear 

failure dominates in the joint plane. 



5.6  Tensile strength – Comparison of lab results and numerical simulations        155 

5.6.2 Tensile strength of My.Sc Slate 

        

 4.14 5.07 6.12 11.98 14.42 17.24 19.15 

 4.33 5.15 6.23 11.00 14.26 17.13 19.15 

 6.33 6.22 7.49 9.54 13.44 17.00 19.15 

 8.16 6.17 9.36 9.77 13.18 17.70 19.15 

 9.40 8.15 10.47 10.94 12.07 17.88 19.15 

 10.00 8.71 11.11 11.41 10.82 17.80 19.15 

 15.20 12.84 12.74 12.45 10.77 18.05 19.15 

Table 5-5: Numerical tensile strength (numerical sxx_cen) results of My.Sc Slate (MPa). 

        

 4.69 5.77 6.93 14.50 17.02 20.42 19.92 

 4.98 5.89 7.24 13.50 15.54 20.47 19.92 

 7.19 7.30 8.54 11.58 14.59 20.45 19.92 

 9.33 7.12 11.33 11.32 14.47 19.21 19.92 

 11.32 9.48 11.83 11.72 13.55 19.36 19.92 

 11.60 9.54 13.17 13.00 12.67 19.49 19.92 

 17.90 15.51 15.07 14.74 12.74 19.54 19.92 

Table 5-6: Theoretical tensile strength (theoretical sxx_cen) results of My.Sc Slate (MPa). 

        

 12% 12% 12% 17% 15% 16% 4% 

 13% 13% 14% 19% 8% 16% 4% 

 12% 15% 12% 18% 8% 17% 4% 

 13% 13% 17% 14% 9% 8% 4% 

 17% 14% 11% 7% 11% 8% 4% 

 14% 9% 16% 12% 15% 9% 4% 

 15% 17% 15% 16% 15% 8% 4% 

Table 5-7: Differences in the theoretical and numerical tensile strength of My.Sc Slate. 
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Figure 5-25: Tensile strengths of My.Sc Slate relative to the orientation angle () 
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Figure 5-26: Tensile strengths of My.Sc Slate relative to the foliation-loading angle () 
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The results displayed in Table 5-5, 5-6 & 5-7 and Figure 5-25 & 5-26 are analogous to the 

section above and show the tensile strength of My.Sc Slate relative to different orientation 

() and foliation-loading () angles. Again, a satisfactory agreement is observed between 

lab and numerical simulation results. 

Assessment of the tensile strength with respect to the orientation angle (): 

 At  < 45°, tensile strength increases with increasing foliation-loading angle (). 

The maximum tensile strength ratio is 67.30

90

0 


 ; 53.20

90

15 


  and 

08.20

90

30 


  at and respectively 

 A  = 45°, a minimum is observed at  = 45° with slight symmetrically increasing 

values in both directions, towards  = 0° and  = 90°.   

 At  = 60°, tensile strength slightly decreases with increasing -values. The 

maximum tensile strength ratio is 75.00

90

60 


 . 

 At the values show no dependence on . 

  = 90° is a special case. Tensile strength does not depend on the foliation-loading 

angle because the weakness planes are inherently parallel to the loading direction. 

Here, the maximum tensile strength of about 20 MPa is reached. 

Assessment of the tensile strength with respect to the foliation-loading angle (): 

 At 0°   tensile strength strongly increases with increasing  The 

maximum tensile strength ratio is 63.40

90

0 


  at . 

 At 60  and the tensile strength is relatively low and constant at  

although it shows a remarkable increase at . 

 At  = 90°, a small decrease in tensile strength is observed up to about , 

followed by a sharp increase at  . 
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As observed in Figure 5-25 & 5-26 in the Slate, the influence of  is stronger than that of , 

especially where both and are small. 

Analysis of failure state (see also Appendix 5.2): 

 At  < 45°:  = 0° and in the special cases ( = 15°,  = 15°) and ( = 30°,  = 

90°) pure tensile failure appears exactly along the weakness planes at the center of 

the disc. For the remaining constellations, mixed shear-tensile failure is observed. In 

these cases, failure is governed by the joint plane except at  = 90° where matrix 

failure is observed and ( = 0°,  = 15°) as well as ( = 15°,  = 60°), failure here 

occurring along joints and the matrix. 

 At  = 45°: mixed mode failure is observed for all -values, whereby failure 

dominates along joints at  = 0°, 30°, 60° and 75° and inside the matrix at  = 15°, 

45° and 90°. 

 At  > 45°: the plasticized area becomes wider relative to the loading direction and 

has a symmetric pattern. Plastification is dominated by mixed shear-tensile failure. 

In general, the numerical results in Table 5-2 to Table 5-6 and the diagrams in Figure 5-23 

to Figure 5-26 clearly show that the tensile strength value is strongly dependent on both the 

orientation () and foliation-loading () angles relative to the weak foliation planes in 

anisotropic rocks. 

5.7 Summary and Review 

The finite difference code FLAC3D was successfully adopted to simulate the Brazilian test 

by using the bilinear strain-hardening/softening ubiquitous-joint model. The results 

obtained from the numerical simulations are in close agreement with the observations made 

in the experimental tests. The behavior of anisotropic rocks varies with foliation and 

loading directions as discovered in the evaluation of laboratory and simulating results. 

5.7.1 Potential failure state deduced from pure elastic considerations 

The pure elastic considerations have revealed that tensile failure are only possible in joints 

(weak planes) if   Within the range 8°    60°, tensile failure and shear failure 
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are possible depending on . At only tensile failure is possible, the actual failure 

type also depending on the ratio of the strength between matrix and joints. 

5.7.2 Tensile strength distribution 

In  order  to  assess  the  effect  of loading direction and weakness plane orientation on 

tensile strength of the Gneiss and the Slate, the results were normalized by exact numerical 

values at  = 0° and  = 0° (Figure 5-27 & 5-28). 
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Figure 5-27: Normalized tensile strength as functions of  and  of Le.Gs Gneiss 
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Figure 5-28: Normalized tensile strength as functions of  and  of My.Sc Slate 

The regression analyses allow a prediction of the tensile strength with respect to any 

arbitrary orientation and foliation-loading angle with just one single conducted test: 

Gneiss (Le.Gs, see also Figure 5-27) yields the following:  

   362.3667.3401.4297.149.1 32, eeeet        (5.10) 

Slate (My.Sc, see also Figure 5-28) yields the following: 

   337.8812.9509.1486.1343.858.1 432, eeeeet         (5.11) 

The coefficient of multiple determination is relatively low (0.86 for slate and 0.66 for 

gneiss) but it has to be taken into account that only one data set and constitutive law each 

was used for any constellation of and . As expected, the anisotropic strength is more 

pronounced in the slate whereas the qualitative relations are similar. 

5.7.3 Tensile strength – determining the anisotropy factor 

The strength anisotropy factor, normalized to 1 at  = 0 and  for Le.Gs and My.Sc is 

shown in Figure 5-29 & 5-30. The anisotropy ratio of the tensile strength can reach values 

of up to 2.75 and 4.50 for Gneiss and Slate, respectively. 
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Figure 5-29: Normalized tensile strength of Le.Gs Gneiss 
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Figure 5-30: Normalized tensile strength of My.Sc Slate 

Figure 5-30 indicates that the highest tensile strength anisotropy factor for My.Sc slate 

reaches 4.5. Also, at > 45°, the tensile strength seems to be nearly independent of . 
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5.7.4 Tensile strength – different procedures - different results 

To get a better idea of the Brazilian test limitations, it is necessary that the stress 

distribution within specimens be carefully considered. Actually, the tensile strength can be 

determined by several different procedures: direct tensile tests and different indirect tensile 

tests like 3- or 4-point bending tests or the Brazilian test. Although all these tests enable 

measurement of tensile strength, they do not necessarily give the same results because 

stress distributions or effective volumes are not the same in all of them [99].  

Comparison between direct and indirect tensile strength values of rocks show that these can 

largely differ. Several authors have come to the conclusion that testBrazilian
t

testDirect
t   , e.g. 

Jaeger [82] for Carrara marble, Hardy and Jayaraman [100] for Berea sandstone, Indiana 

limestone, Leuders limestone, Crab Orchard sandstone and Barre granite as well as 

Alehossein [101] for Australian granite. But Jaeger [82] also obtained the result 

testBrazilian
t

testDirect
t    for Gosford sandstone and testBrazilian

t
testDirect

t    for Bowral 

trachyte. According to Tang [4], the ratio of Brazilian tensile strength and direct tensile 

strength for isotropic materials varies from 1.005 (5%) to 1.214 (21%) depending on the 

relative load-bearing strip width (a) where (a/D) is from 0.04 to 0.16. It should be noted 

however that the aforementioned tests were carried out almost exclusively on isotropic 

rocks. According to Classon [94], the error in the approximate formulas of the principal 

tensile and compressive stresses at the center of a 2D disc for transversely anisotropic 

materials ranges from 0.1% to 10.8% depending on the anisotropy of stiffness 







 

'

'2

'

1

2

'

EG

EE
b


 and (E’/E). 

The classical model for the evaluation of the Brazilian test (isotropic materials under 2D 

conditions) assumes that tensile strength can be calculated at failure from the applied force. 

It assumes further that failure starts at the center of the loaded diameter. If that is the case, 

the specimens would break down into two half-discs and the tensile strength could now be 

determined by Eq. 1.2 with 
Dt

P
t 

 2
  . However, the numerical simulations have shown 

that the damage and fracture mode during the Brazilian test are not comparable to the one 

in a direct tension test. Also, the failure state is often not a pure tension mode.  
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The simulation results indicate that the tensile strength determined by the conventional 

theoretical formula (Eq. 1.2) is almost slightly higher than the maximum tensile stress 

observed at the center. The deviation here is equal to -5% to 18% for the Le.Gs Gneiss 

(Table 5-4) and 4% to 19% for the My.Sc Slate (Table 5-7), depended on the orientation of 

the anisotropic planes. This result indicates that the critical stress state (initial failure state) 

is not always located at the center of the disc. These results are similar to the difference in 

tensile strength of the Brazilian test and the direct tensile test. 



 

 

 

Chapter 6 

6 Conclusion and Recommendations 

 

The Brazilian test is a simple way of determining the tensile strength of brittle materials. 

Tensile strength of rocks counts amongst the most important geotechnical parameters 

influencing rock strength, deformability, damage, fracturing and crushing.  

Research results indicate that the material anisotropy has significant influence on the stress 

distribution, crack initiation, fracture pattern and peak load. In transverse anisotropy, the 

key parameter is the orientation of the cleavage, bedding or schistosity planes with respect 

to the direction of the applied load. The results obtained from the numerical simulations 

show a close agreement with the observations made during the experimental tests. The 

behavior of anisotropic rocks varies with the foliation and loading directions as observed in 

the laboratory and the simulations. 

The results of the present research can be summarized thus: 

 The laboratory tests show that the character anisotropy has a strong influence on the 

measured peak strength obtained in a Brazilian test. Whereas the relation sample 

orientation to loading direction is unimportant for nearly isotropic materials, 

strongly anisotropic materials like Gneiss and Slate reveal a strong dependence of 

the peak strength on this interrelation. 

 The formula usually used for calculating the tensile strength is derived from an 

analytical 2D elastic solution which ignores the effect of the loading angle )2(  , the 

thickness-to-diameter ratio (L/D) and the Poisson’s ratio )( . However, the local 

stress concentration phenomena and induced tensile stresses inside the disc greatly 

depend on the above-mentioned conditions. 
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 The stress distribution near the center of a disc under diametral loading is largely 

the same in isotropic materials, whether in 2D, 3D analytical solutions or 3D 

numerical simulations.  

 The tensile stresses in the edge sections (border region) of the disc can be slightly 

smaller or even higher, as the case may be, than those at the center depending on the 

loading angle, Poisson’s ratio and thickness-to-diameter ratio L/D. This has 

important influence on the location of the fracture initiation and the interpretation of 

the test results. 

 Small loading angles (2 < 20°) produce the maximum tensile stresses at the center 

of the disc. Larger loading angles (2 > 20°) produce this same effect closer to the 

rim of the disc. Very small loading angles (2 < 10°) may lead to damage at the 

load entry points. The recommended loading angle is therefore, 10°  2 20°. 

 The thin disc produces maximum tensile stresses at the center of the disc. With 

increasing thickness, e.g. for an L/D from ¼ to 1
1 , the tensile stress along the center 

plane becomes smaller and increases for planes towards the end of the cylinder, by 

about 12.5% for an L/D = ¼ sample as against one with an L/D = 1
1 , for example. 

Although from a theoretical point of view a very small thickness is advantageous, in 

order to avoid eccentric loading, misalignment and buckling, it is recommended that 

the lower and upper limits of the length to thickness ratio range between ¼  L/D  

1
1 . An L/D = ½ ratio is recommended here. 

 The tensile stress component is independent of the Poisson’s ratio along the middle 

plane of the disc. In contrast, the higher the Poisson’s ratio induced, the further the 

observation plane for stress distributions move away from the center of the disc, the 

more pronounced the stress peaks close to the load entry area. 

 Present analytical solutions only consider plane-stress situations. The 3-dimensional 

quasi-analytical solution after Wijk shows some agreement with numerical 

simulations for the center plane. Away from the center however, very questionable 

results were obtained. According to Wijk’s formulations, the horizontal stress 

component yields extreme values close to the load entry point so that the largest 

tensile stress is not found at the center of the disc but closer to the boundary. 
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 The FG.Ss Sandstone shows relatively low standard deviations and consequently, 

low coefficients of variation equal to 13% for the determined peak (tensile) 

strength. Gneisses and Slate on the other hand, document large tensile strength 

deviation values with coefficients of variation 31%, 26% and 61% for FG.Gs 

Gneiss, Le.Gs Gneiss and Le.Sc Slate respectively. Large coefficient of variation 

values indicates anisotropic behavior.  

 Lab results of FG.Ss Sandstone show a distinct fracture pattern which is 

characterized by the sample splitting into two halves. Sometimes, wedges are 

formed immediately under the loading jaws. The fracture pattern was more or less 

identical for all FG.Ss samples and is characterized by a central tensile crack 

independent of the sample orientation. In the FG.Gs and Le.Gs Gneisses in contrast, 

and especially in the My.Sc Slate, the fracture pattern is strongly influenced by the 

orientation of the weak planes. In many cases, the fracture pattern is characterized 

by sub-parallel cracks like in step faults or staircase-shaped fractures along the 

existing weak planes. 

   type 1: tensile failure        type 2: tensile-shear failure      type 3: shear failure  

Figure 6-1: Typical failure mechanisms in the Brazilian test 

 The specimen can be initially fractured by stress concentration at the loading jaws. 

That means that fracture initiation can be triggered off in this region instead of at 

the center of the disc as is usually assumed. 

 Exact analytical solutions for anisotropic rocks are not available so that either 

numerical analysis or semi-analytical solutions had to be used. 



168        Chapter 6.  Conclusion and Recommendations 

 The simulation results indicate that the tensile strength determined by the 

conventional theoretical formula is often slightly lower than the maximum tensile 

strength. The maximum deviation is equal to 18% in the Gneisses and 19% in the 

Slates, depending on the orientation of the anisotropy planes. This result indicates 

that the critical stress state (initial failure state) is not always located at the center of 

the disc if anisotropic strength is considered. 

 The anisotropic character and loading direction strongly influence failure 

mechanisms of the sample. Pure tensile failure along weakness planes occurs only 

at  15° for Gneiss and  30° for Slate as loading directions parallel to planes 

of weakness. In all other constellations, plastifications are characterized by mixed 

mode (shear-tensile) damage and final failure appears in a smear manner within the 

plasticized area. 

 The normalized tensile strength of transverse anisotropic rocks could reach quite 

high values of deviation from 2.65 to 5.24 in lab results and from 2.75 to 4.5 in 

simulation results for Gneiss and Slate respectively. 

 The regression analyses enable a prediction of the peak (tensile) strength with 

respect to any arbitrary orientation and foliation-loading angle from one single test: 

Le.Gs Gneiss yields the following:  

        362.3667.3401.4297.149.1 32, eeeet     

and My.Sc Slate yields: 

   337.8812.9509.1486.1343.858.1 432, eeeeet  

 

Recommendations for future research 

Although this research has made great progress in relation to the influence of anisotropy on 

tensile strength as determined by the Brazilian test, further efforts are necessary in order to 

enhance points like: 

 The development of inhomogeneous material models as in natural rocks (see Figure 

6-2). 
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Figure 6-2: Inhomogeneous continuum model of Gneiss with a random distribution of 

minerals: mica 10% (white), quartz 30% (grey) and feldspar 60% (black).  

 Extension of the lab tests and numerical simulations to encompass stiffness 

anisotropy in addition to determining the strength anisotropy. The following 

parameters have to be determined when examining transverse anisotropy: E, E’, , 

’, G, C, C’, , ’ and t, t’. 

 Incorporating additional measuring techniques, e.g. high-speed camera, 

seismoacoustic analyses, etc. to capture damage and fracture process as a function 

of time and location in more detail. 

 Using the discontinuum mechanics method to better understand the fracture process. 

 Investigation of the influence of stiffness and frictional behavior of the interface 

between rock disc and loading jaws. 
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Appendix 3.1 - Fracture patterns in FG.Ss samples  

FG.Ss.0.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Ss.15.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Ss.30.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Ss.45.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Ss.60.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Ss.75.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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Appendix 3.2 - Fracture patterns in FG.Gs samples 

FG.Gs.0.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Gs.15.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 

 

 

 



 Appendix 3.2 - Fracture patterns in FG.Gs samples        179 

FG.Gs.30.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Gs.45.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Gs.60.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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FG.Gs.75.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 

 

 
 

 

 

FG.Gs.90 (SPZ1) 
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Appendix 3.3 - Fracture patterns in Le.Gs samples 

Le.Gs.0.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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Le.Gs.15.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 

 

 

 

 



 Appendix 3.3 - Fracture patterns in Le.Gs samples        185 

Le.Gs.30.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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Le.Gs.45.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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Le.Gs.60.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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Le.Gs.75.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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Le.Gs.90 (SPZ1) 
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Appendix 3.4 - Fracture patterns in My.Sc samples 

My.Sc.0.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)

 

 

 

 

 



 Appendix 3.4 - Fracture patterns in My.Sc samples        191 

My.Sc.15.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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My.Sc.30.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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My.Sc.45.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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My.Sc.60.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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My.Sc.75.0-90 ( = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom) 
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My.Sc.90 (SPZ1) 
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Appendix 4.1 - Influence of loading angle  

4.1.1 Results of the radial model 

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

numeric

analytic





r 
(m

m
)

-1.2 -0.8 -0.4 0.0

-25
-20
-15
-10
-5
0
5

10
15
20
25

 

 

numeric

analytic





r 
(m

m
)

edge section quarter section middle section
  

























 

Figure A4.1-1: Influence of loading angle on x and y in the radial model with a thickness to 
diameter ratio L/D = ¼ 
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Figure A4.1-2: Influence of loading angle on x and y in the radial model with a thickness to 
diameter ratio L/D = ½ 
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Figure A4.1-3: Influence of loading angle on x and y in the radial model with a thickness to 
diameter ratio L/D = 1

1  
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4.1.2 Comparison of the results of the orthogonal model 
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Figure A4.1-4: Influence of loading angle on x and y in the orthogonal model with a thickness to 
diameter ratio L/D = ¼ 
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Figure A4.1-5: Influence of loading angle on x and y in the orthogonal model with a thickness to 
diameter ratio L/D = ½ 
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Figure A4.1-6: Influence of loading angle on x and y in the orthogonal model with a thickness to 
diameter ratio L/D = 1
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4.2.1 Results of the radial model 
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Figure A4.2-1: Influence of material on x and y in the radial model with a thickness to diameter 

ratio L/D = ¼ 
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Figure A4.2-2: Influence of material on x and y in the radial model with a thickness to diameter 
ratio L/D = ½ 
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Figure A4.2-3: Influence of material on x and y in the radial model with a thickness to diameter 
ratio L/D = 1

1  
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4.2.2 Comparison of the results of the orthogonal model 
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Figure A4.2-4: Influence of material on x and y in the orthogonal model with a thickness to 
diameter ratio L/D = ¼ 
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Figure A4.2-5: Influence of material on x and y in the orthogonal model with a thickness to 
diameter ratio L/D = ½ 
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Figure A4.2-6: Influence of material on x and y in the orthogonal model with a thickness to 
diameter ratio L/D = 1

1  



 Appendix 5.1 - Failure zone state in Le.Gs Gneiss        209 
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Figure A5.1-1: Failure zone state in Le.Gs Gneiss where  = 90° 
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Figure A5.1-2: Failure zone state in Le.Gs Gneiss where  = 0°  
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Figure A5.1-3: Failure zone state in Le.Gs Gneiss where  = 15°  
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Figure A5.1-4: Failure zone state in Le.Gs Gneiss where  = 30°  
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Figure A5.1-5: Failure zone state in Le.Gs Gneiss where  = 45°  
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Figure A5.1-6: Failure zone state in Le.Gs Gneiss where  = 60°  
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Figure A5.1-7: Failure zone state in Le.Gs Gneiss where  = 75°  
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Appendix 5.2: Failure zone state in My.Sc Slate 

 
Figure A5.2-1: Failure zone state in My.Sc slate where  = 90° 
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Figure A5.2-2: Failure zone state in My.Sc Slate where  = 0°  
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Figure A5.2-3: Failure zone state in My.Sc Slate where  = 15°  
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Figure A5.2-4: Failure zone state in My.Sc Slate where  = 30°  
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Figure A5.2-5: Failure zone state in My.Sc Slate where  = 45°  
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Figure A5.2-6: Failure zone state in My.Sc Slate where  = 60°  
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Figure A5.2-7: Failure zone state in My.Sc Slate where  = 75°  
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