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Abstract

The present work describes investigations on the anisotropic strength behavior of rocks in
the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and

sandstone) were studied in the Lab.

A total of more than 550 indirect tensile strength tests were conducted, with emphasis was
placed on the investigation of the influence of the spatial position of anisotropic weakness
plane to the direction of the load on the fracture strength and fracture or fracture mode. In
parallel, analytical solutions were evaluated for stress distribution and developed 3D
numerical models to study the stress distribution and the fracture mode at the transversely

isotropic disc.

There were new findings on the fracture mode of crack propagation, the influence of the
disc thickness, the influence of the applying loading angle and angle of the loading-

foliation for transversely isotropic material.

Zusammenfassung

Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen
beim Spaltzugversuch (,,Brasilianischer Test*). Laborativ wurden drei transversalisotrope

Gesteine (Granit, Schiefer und Sandstein) untersucht.

Insgesamt wurden mehr als 550 Spaltzugversuche durchgefiihrt, wobei der Schwerpunkt
auf die Untersuchung des Einflusses der rdumlichen Lage der Anisotropieebene zur
Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den
Bruchmodus gelegt wurde. Parallel dazu wurden analytische Ldsungen zur
Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die
Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu

untersuchen.

Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der
Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag -

Anisotropieebene fiir transversalisotropes Material gewonnen.
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Introduction

The Brazilian tensile strength test is a well-known indirect method of determining the
tensile strength of rocks and other brittle materials using a circular plane disc under
diametral compression. The Brazilian tensile strength test or the so-called splitting tensile
test is widely applied in rock engineering because specimens are easy to prepare, the test is

easy to conduct and uniaxial compression test machines are quite common.

The Brazilian test was developed in 1943 [1] and has found application mainly in
investigations of homogeneous rocks; only a few studies covering tensile strength of
anisotropic rocks. Theories relating to evaluation of the test results are still limited because
full-field expressions of the stress-strain components and the anisotropic failure

mechanisms have yet to be investigated in detail.

Based on these reasons, this work aims at assessing the influence of strength anisotropy on
the measured peak strength in the Brazilian test. The test was carried out on a large number
of four different types of rock samples ranging from isotropic to anisotropic. It was done
parallel to “numerical laboratory tests” so as to evaluate both the characteristics and the

influencing factors.
Importance and application of tensile strength

Besides compressive or shear strength, the tensile strength is a key parameter for
determining the load bearing capacity of rocks, their deformation, damage and fracturing,
crushing, etc. and is used in to analyze the stability and serviceability of rock structures.
Tensile strength plays an important, often the most important role, because rocks are much

weaker in tension than in compression.
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Figure I-1: ‘Tensile strength” as illustrated by the Mohr-Coulomb failure criterion (a) Mohr-

Coulomb failure criterion with a tension cut-off Ty and cohesion S, ; (b) Comparison of empirical

failure envelope and Mohr-Coulomb criterion with tension cut-off. (after Goodman [2]).

Tensile strength is frequently used as input parameter in many applications in civil

engineering, mining and petroleum engineering.
Anisotropic rocks

Intact rock and rock mass are characterized by different degrees of heterogeneity and
anisotropy depending on whether the rock is of igneous, sedimentary or metamorphic
origin. The degree of anisotropy (aelotropy) of a particular rock type is shown by such
defined by the presence of fabric elements such as bedding, stratification, layering,
foliation, fissuring, or jointing. Evaluating the anisotropic properties helps predict the
behavior of rock materials in the analysis, design and construction phases and improves on
the quality and safety of these processes [3, 4]. Therefore, methods of determining the
strength and deformation of anisotropic rocks in the laboratory and in situ have increasingly
gained attention in recent years. However, rock anisotropy and its implications are still

poorly understood in both theory and practice.

Objective of this work

Tensile strength of anisotropic rocks largely depends on the anisotropic character of the
rock and especially on the orientation of the planes of rock anisotropy relative to the
loading direction. The objective here is to combine experimental, analytical and numerical

methods in order to determine the indirect tensile strength of intact rocks with anisotropic
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properties varying from isotropic to transversely isotropic. Special attention is to be paid to
both physical and geometrical numerical simulations using different constitutive laws and
model parameters. The numerical simulation results are to be compared with results of lab
tests and then analyzed in detail. Finally, recommendations for the practical application of

the Brazil test and the correct interpretation of the test results are to be given.

Scope of work

This research encompasses the conventional Brazilian test used to determine indirect tensile
strength by diametral compressive loading of a disc between two-plates of a compressive
test machine, as proposed by the International Society of Rock Mechanics [5]. The validity
of diametral compression tests for indirect measurement of tensile strength is investigated
theoretically and experimentally. Well-designed tests are conducted on sandstone, gneiss
and slate and the experimental results compared with theoretical predictions. The research
focuses on investigating the influences of anisotropy on the test results. Numerical analyses
are also done in order to investigate the effects of the boundary conditions, loading angle
and sample size. Anisotropic elastic-plastic constitutive laws are used to investigate the

failure process in detail and to estimate the tensile strength of the rock.

Research procedure

A combination of experimental tests and numerical simulation was undertaken so as to
achieve the abovementioned research goals. In the light of this, two main aspects have been
distinguished in the methodology of this thesis:
1. Well-designed laboratory experiments which carefully test all the bedding-plane
orientations and loading directions of both isotropic and anisotropic specimen.
2. Numerical simulation of such underlying mechanical processes as damage,
fracturing, failure and plastifications taking into account, different orientations of

the weakness planes in relation to the loading direction.
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Significance of the work

Firstly, characterizing anisotropic rocks is to be completely and systematically investigated
in both laboratory experiments and numerical simulations of the Brazilian tensile strength

test.

Secondly, the planes of weakness are to be explicitly simulated by laminated planes
(smeared-crack model) which enable distinction, both in tension and in compression,
between failure inside the rock matrix and along the planes of weakness. It will be the first
time that the failure behavior of such an anisotropic rock was comprehensively investigated

in 3-dimensional during the Brazilian test.

Layout

The thesis is structured into mainly three sections. The first section, Chapters 1 and 2,
contain the theoretical background and a comparison between the elastic theory and the
analytical and numerical solutions as a means of evaluating the Brazilian test. The second
section, Chapter 3, documents the Brazilian tests as carried out on sandstones, gneisses and
slates. The last section, Chapters 4 - 5, focuses on detailed numerical simulations and
comparisons with results from lab tests. This is the most important section of this thesis
because it presents:

(I)  Several proposals explaining observations of the experimental results and

(I.)  Conclusions and recommendations on how to perform and evaluate the

Brazilian tests on anisotropic materials.
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Figure I-2: Thesis structure.

The work presented in this thesis is subdivided into the following chapters Figure 1-2:

Chapter 1 highlights the theoretical background of the research. It presents literature
review of the tensile strength test (State-of-the-Art) and defines the background and main
aspects of this work, specially focusing on the conventional Brazilian test on anisotropic

rocks. This chapter also defines terms and notations used throughout the work.

Chapter 2 deals with the analytical and semi-analytical 2- and 3-dimensional mathematical
formulations of the elastic stress distribution inside the disc under diametral compressive

strip loading.

Chapter 3 describes the lab experiments and discusses the results obtained. Laboratory
tests for determining strength and deformation parameters can be divided into dynamic and
static methods. The ultrasonic pulse test, uniaxial and triaxial compression tests, and a
series of Brazilian tensile tests provide information on geomechanical properties which are
used later as input parameters for numerical analyses. A total of 555 Brazilian tests were
conducted on four different types of rocks: sandstone, slate and gneiss. The choice of these
four rock types should help highlight the whole spectrum of isotropic to anisotropic

characteristics of these materials.
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Chapter 4 contains numerical simulations of isotropic rocks; to be exact, of the Postaer
Sandstone from Pirna in Saxony, Germany. Also highlighted here are factors such as size
effect, loading area, etc and material properties like Young’s modulus and Poisson’s ratio

which affect the results.

Chapter 5 focuses on the numerical simulation of anisotropic rocks, in this case, the
Freiberger and Leubsdorfer Gneisses from Saxony and the Mayen Mosel-Slate from
Rheinland-Pfalz, all in Germany. Numerical 3D-models using FLAC’ - Fast Lagrangian
Analysis of Continua in 3 Dimensions [6] were used to investigate the stress-strain field and
failure pattern under consideration of different orientation planes of weakness in relation to
loading direction. The numerical analyses reveal failure modes of the disc and the
differences in strength between the lab test procedure and the simulation results when
taking into account the anisotropy associated with foliation and orientation of the weakness

planes.

Chapter 6 reflects evaluation of the splitting tensile strength of anisotropic rocks, makes
recommendations on experimental test procedures and gives back final conclusions arrived

from the study and briefly explains further research possibilities.



Chapter 1

State of the art

1.1 Review of the Brazilian tensile strength test

1.1.1 General overview

The Brazilian tensile strength test, also called the ‘splitting tensile test” or ‘indirect tensile
test’, is a plane disc test used to determine tensile strength, especially of quasi-brittle
materials such as concrete or rocks whose compressive strength are much higher than their
tensile strength. The easy sample preparation and simple test procedure have made the
Brazilian test a highly useful and popular experimental method. Under uniform distributed
loading along two symmetric peripheral arcs, a sample fails either in tensile or tensile-shear
mode [3, 7-9]. A nearly bi-axial (compressive in vertical and tensile in horizontal) stress
state develops along the diametral line through the center of the sample. Theoretically, the
tensile failure occurs along the loaded diameter, splitting the disc (or cylinder) into two

halves [8].

(a) Experimental set-up (b) Splitting in a sandstone specimen

Figure 1-1: The Brazilian test as proposed by ISRM [5].

Today, the Brazilian tensile strength test is a major standardized test method internationally

recommended by ASTM D3967-08 [10], BS EN12390-6 [11], Recommendation Nr.10 of
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the German Society of Geotechnical Engineering (DGGT) [12] and the ISRM-
recommendations in particular [5]. Brazilian test procedures and specimen preparations as
specified by ASTM, DGGT and ISRM show a few but differences. ISRM and DGGT
suggest a special test apparatus hold the specimen whereas ASTM recommends placing
cardboard or plywood between the plates and the specimen to reduce stress concentrations
where forces are applied as at the boundary areas. The advantage of the ISRM and DGGT

recommendations is that the loading angle (2a) develops automatically.

Determining tensile strength by the direct tension test ranks amongst the most difficult test
methods. Several technical difficulties originate from fragmentation whilst gripping and
then applying the load parallel to the axis of the specimen so as to avoid development of
bending or torsion moments caused by misalignment [13, 14]. These difficulties lead to
replacement of the direct tension test by simpler ones; example the diametral compression
test on discs and rings, the three- or four-point bedding test, the hydraulic tension and the
diametral compression tests on cylinders or cubes. Obviously, the stress state during these
tests is far from the one theoretically characterized as uniaxial, hence the results obtained
often subject to serious criticisms. Besides, many such brittle materials as rocks have non-
linear stress-strain characteristics in reality, their inherent defect structures having
dimensions not much smaller than certain dimensions of the test specimens. Thus, there are

serious discrepancies between theoretical and actual behavior [7].

The Brazilian test also has grave disadvantages, nonetheless. The expansion of the contact
loading area completely depends on the deformation (stiffness) of the specimen. It is
therefore important to specify or measure the form of the loading area. In addition,
frictional effects at the point of contact between the loading plates and the sample have to

be taken into account in laboratory tests.
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(a) simple tension (b) compression and tension

Figure 1-2: Basic physical models characterizing the mechanical behavior of materials: (a) direct

tensile strength test with dogbone-shaped specimen and (b) the conventional Brazilian test [15].

In spite of all this, the Brazilian tensile strength test remains a simplified and widely used
method of testing rocks and other brittle materials. And as the name implies, especially in
determining tensile strength of anisotropic materials, though recent developments have
enabled determinations of fracture toughness and elastic modulus as well [3]. In principle,
the stress field, which induces tensile failure when the disc is compressed diametrally, can
be fully determined, provided the material is linear elastic, homogeneous and isotropic up

to the point of failure.

1.1.2 Development of the Brazilian tensile strength test

The Brazilian test was first introduced by Professor Carneiro, a Brazilian, who invented the
splitting tensile test for measuring the tensile strength of concrete in 1943 [1]. He observed
that concrete fractures develop almost in a vertical plane connecting the line of contact
between the cylindrical specimen and the compression plates. This observation brought up
the idea of developing a test that could be performed on cylinders. Using simple formulas
based on the elasticity theory, Carneiro developed a procedure to deduce the tensile
strength based on measured peak load at failure. At about the same time, Akazawa also
presented a similar method [16]. The Brazilian test has been researched by many scientists

from all over the world ever since then.
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In 1978, the International Society of Rock Mechanics (ISRM) suggested the method be
used for determining indirect tensile strength [5]. The justification here being that
experimentally, most rocks in biaxial stress fields fail in tension if one principal stress is
tensile and the other finite principal stress compressive, with a magnitude not exceeding a
threefold of the tensile principal stress. This suggestion is still useful today and finds
application in laboratories all around the world. It can be said thus, that the ISRM-

suggestion has had a significant impact on the development of the Brazilian tensile test.
Before the proposal of the ISRM

Long before the ISRM-suggestion, the Brazilian disc test had been investigated by many
scientists [6, 17-30] and various points of criticism discussed in relation to the data
obtained therewith and those from direct tension tests. Berenbaum and Brodie [17] assessed
this test and indicated its superiority in the light of its simplicity and usefulness as in
material property determinations like anisotropic tensile strength. Hondros [18] proposed
an analytical solution of the problem for a thin disc, assuming that the material is
homogeneous, isotropic and linear elastic and the load distribution is along two symmetric
finite arcs at the periphery of the specimen. He derived the complete stress field by using
the series expansion technique and compared his solutions with experimental data on
cement mortars and concrete. Fairhurst [19] analyzed the failure of specimen based on a
Griffith-type fracture criterion. He indicated that when materials have low compression to
tension ratios, the initial failure might occur away from the center of the disc for small
angles in loading contact areas. Fairhurst concluded that the tensile strength of a rock with a
compressive to tensile strength ratio of 8 would be underestimated by 30% especially for a
plate contact width of 2« ~ 15°. Hobbs [20] proposed using specimens with a small hole at
the centre as a modification of the Brazilian disc test so as to mitigate some of the
drawbacks of the conventional test. His results are also presented in a study on the
relationship between tensile strength and lamination orientation and that between uniaxial
compressive strength and tensile strength for laminated and massive rocks. Hooper [21]
examined the influence of the tensile stresses in the contact region and the frictional effects
at the interface. Hooper’s results showed that Hondros’ two-dimensional analysis predicts
the presence of exclusively compressive stresses at the contact area and that fracture always

initiates at the contact surface and not within the disc as suggested by conventional theory.
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This phenomenon is caused by the three-dimensional stress state in the contact region and

by the frictional effects at the interface.
After the ISRM proposal

Since the ISRM proposal, the Brazilian disc test has undergone intensive research by many
authors [3, 13, 15, 22-35]: Wijk (1978); Nova et al. (1990); Guo et al. (1993); Andreev
(1995); Chen et al (1998); and recently [8, 9, 36-51] as Sarris et al. (2005); Ma and Hung
(2008); Lanaro et al. (2008); Ma et al. (2008); Kwasniewski (2009); Markides et al. (2010);
Tang et al. (2010), to name a few. In order to take the effect of other factors such as the
influence of the loading device or the anisotropy of rocks or rock-like materials into
account, many suggestions relating to the experimental procedure and the shape of the
specimens, as well as new analytical or numerical solutions for the stress-strain field have
been proposed [3, 33, 43, 46, 50-53]. Especially noteworthy are, the more recent studies by
Amadei (1996); Hakala et al. (2007); Ke et al. (2008); Shahnazari et al. (2010); Tavallali et
al. (2010); Markides et al. (2010) are notable. Most recent studies were conducted with the
aid of the Finite Element Method (FEM), the Boundary Element Method (BEM) and the
Discrete Element Method (DEM) [36, 38, 45, 47, 54]. These methods have given a better
understanding of the test by explicitly illustrating the stress- and strain field at any point

inside the specimen.

1.1.3 The Brazilian tensile strength test on anisotropic rocks

Anisotropy is a typical characteristic of intact foliated metamorphic rocks (slates, gneisses,
phyllites, schists) and intact laminated, stratified or bedded sedimentary rocks (shales,
sandstones, siltstones, limestones, coal, etc.) [55, 56]. The anisotropy results from complex
physical and chemical processes associated with transportation, deposition, compaction,
cementation, etc. In these rocks, the fabric can be expressed in different ways. It is worthy
to note that rocks which have undergone several formation processes, may present more
than one direction of planar anisotropy such as foliation and bedding planes in slates. These
rocks tend to split into planes as a result of the parallel orientation of microscopic grains of
mica, chlorite or other platy minerals [3]. The majority of the discs tests confirm that failure

along the loaded diameter largely depends on the microstructure.
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Rock anisotropy plays an important role in civil, mining and petroleum engineering,

especially in terms of the following aspects [57]:

» Long- and short-term stability of underground structures (tunnels, caverns, shafts
and other openings);

Determination of excavation methods (drill-and-blast or TBM and raise-boring);
Design of rock support systems;

Prediction of rock bursts;

Thermo-hydro-mechanical behavior of the rock;

Design of grout methodology;

Fluid flow and contaminant transport;

YV V. V V V V V

Fracturing and fracture propagation.

Stress state and failure envelop including tensile strength are necessary as input values for
the above mentioned engineering tasks. However, determination of the tensile strength of
anisotropic rock is still untrod territory; particularly, when the load directions and bedding-
planes are inclined to each other, the stress- and strain field can not be obtained by
analytical solutions and the influence of anisotropy on the tensile strength remains an
unsolved problem. In fact, combining experimental, analytical and numerical methods in
order to analyse the results of the Brazilian test for intact foliated metamorphic and intact

laminated, stratified or bedded sedimentary rocks has yet to be undertaken.

1.1.4 Summary

The Brazilian test is widely used in engineering to indirectly obtain the tensile strength of
rocks and rock-like materials, thanks to its practicality in the way of specimen preparation
and simple test procedure. The Brazilian test has been constantly updated by new theories
and experimental techniques for many years now, both in relation to its dependence on the
foliation angle, loading methods and in combination of analytical and numerical solutions
for continuous and discontinuous, homogenous and inhomogeneous, isotropic and
anisotropic, elastic and plastic media. Nevertheless, many questions still remain to be

answered especially in its evaluation of strongly anisotropic rocks.
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1.2 Analytical aspects

The splitting tensile test is based on the fact that tensile stresses developed when a circular
solid disc is compressed between two diametrally opposed forces. The maximum tensile
stress develops perpendicular to the loading direction and is proportional to the applied
load. Results of the test largely rely on the important hypothesis that fracture is initiated by
tensile stresses. Because failure occurs along the diametral plane of the applied load, it is

commonly assumed that the nominal tensile stress causes the disc to fail.

Simulation results obtained by FLAC’® for homogeneous material also confirm that
plastifications occur at areas near the applied load and at the center of the disc. The
intensified tensile stresses towards the applied load are greater at the center than at any
other point. Therefore, failure is initiated at the center of the disc. Simulations done by

other authors yielded similar results [36, 58].

Besides, the strength values obtained in diametral compression tests are often much lower
than those obtained in other uniaxial, three- and four-point bending and direct tensile tests.

The reasons for these differences could be [59]:

» The formula used for calculating the tensile strength relative to the load is based
on the assumption that the material behavior follows Hooke's law. However,
many quasi-brittle materials do not exactly follow Hooke's law.

» Quasi-brittle materials obey the maximum tensile strain criterion rather than the

maximum tensile strength criterion.

In addition, the initial crack is not always observed at the center of the disc as implied by
theoretical solutions. Some authors [21, 60] believe that failure is initiated under the load
points or somewhere near the center. Because of this, disagreements on the true mechanism
of failure have ensued. The results of numerical simulations obtained by FLAC?" for gneiss
and slate under different orientations of the planes of weakness to the loading direction
indicate the important role of anisotropy in strength determinations and failure patterns.
Similar conclusions have also been drawn by other authors like Chen [39], Yu [61] and

Markides [62], etc..
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1.2.1 Hypotheses for the conventional Brazilian test

The determination of tensile strength for brittle materials assumes that the material is
homogeneous, isotropic and linearly elastic. The first theoretical solution was obtained in
1881 by Hertz. An enhancement, accounting for the uniform distribution of the load over

strips of finite width, was made by Hondros in 1959 [18].

Y o = tan (1/12)

16 -14-12-1.0-0.8-06-04-02 Y' 0.2 0.4

Compression Tension
(a) Brazilian test, showing (b) Stresses along the cross sectional line YY’ for a
notations used Brazilian test with strip load angle o = tan™' &

Figure 1-3: Stress distribution inside a thin disc under uniform radial pressure applied over a small

arc of the circumference at each end of the diameter (after Hondros [18]).

In Figure 1-3, the compression (p) induces tensile stresses (agy) which are nearly constant

over a large part in the inner area of the sample. The tensile strength is calculated based on
the assumptions that failure occurs at the point of maximum tensile stress (i.e. at the center)

and that the radial compressive stress (O'W) has no influence on the failure [19].

From these observations, the Brazilian tensile test assumes the following:

» Rocks in biaxial stress states fail in tension when their uniaxial tensile strength
is exceeded by the tensile principal stress.

» The compressive principal stress has a magnitude, which does not exceed a
threefold of the tensile principal stress and does not therefore, produce shear

failure.
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» The failure is governed by the Griffith criterion or the maximum tensile stress
criterion when the initial point of crack is at the center of the disc. This means

that, this criterion is valid only as long as the compressive strength of the rock is

greater by far than its tensile strength [63].

Under these assumptions, the fundamental mathematical problem in emulating a real

experiment is, achieving linear elasticity for a solid disc. The exact center of the disc is the

only point where the conditions for tensile failure are met. The principal stresses there are:

aey:+27p(sin2a—a)§— (1.1)

When  is small (@ < D/10) and (r/ R) approaches zero, theng =pa

substituting this in Eq. (1.1) yields:

2P
O, =—— 1.2
6= o (1.2)
6P
o, =—— 1.3
’“‘ Dt (1.3)
and o, =-30, (1.4)

Following Fairhurst [19], the error introduced by using the approximate expression o, ,

with an arc contact 2a ~ 15°, is 2%.

In reality, Eq. (1.1) is a function of p,a and ¢. According to the ISRM proposal [5], the

contact length between the disc and the loading jaws is considered a finite arc rather than a

single point. It is also assumed that the contact between the disc and the loading jaws can

be simulated by uniform radial compressive pressure acting on two arcs of the perimeter of

the disc, symmetric to its center. The only stress acting on the contact area is radial

compressive. Any frictional forces created at the disc—jaw interface can be ignored. And,

the problem can also be considered as a state of plane stress.
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o, .

Figure 1-4: Loading jaws in a Brazilian test equipment (after ISRM [5]).

1.2.2 Failure criteria

Rock materials are usually weaker in tension and comparatively stronger in compression,
so cracking or failure often occurs essentially in tension. The foregoing relationships give
the stress distribution along the lines where cracks are known to initiate and propagate.
However, in order to decide where failure begins in a real material, it is necessary to
introduce a failure criterion, i.e. a characteristic relationship between the principal stresses

at failure.
Mohr-Coulomb failure criterion

The Mohr-Coulomb failure criterion is the simplest and best-known criterion for failure of
rocks. As shown in Figure I-1:(a, b), the Mohr envelope touches all the Mohr circles which
represent critical combinations of principal stresses. The ultimate equilibrium in terms of
normal and shear stresses on the failure plane is represented by the envelope tangent to the

Mohr circle.

7,=5 +otang (1.5)

Eq. (1.5) can be interpreted as follows. Failure occurs when the actual shear stress 7,

diminished by the frictional resistance associated with the normal stress on the failure plane
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is equal to shear strength.S;. On the plane of failure, the minimum principal stress o, can

be tensile as long as o, remains compressive. Other theories of failure (e.g., the Griffith

theory) describe the tensile failure region in more detail. The Mohr-Coulomb criterion is

derived by extrapolating the Mohr-Coulomb line into the tensile region up to the point

where o, becomes equal to the uniaxial tensile strength—7;. The minor principal stress

can never be less than—7, [2].

In Figure I-1:(a, b), a “tension cutoff” superimposed on the Mohr-Coulomb criterion is
taken as a constraint for the failure criterion. The actual envelope of critical Mohr’s circles

with one negative principal stress lies beneath the Mohr-Coulomb criterion (Figure I-1:(b)).

Consequently, it is necessary to reduce the tensile strength —7 and the shear strength

intercept S, when applying this simplified failure criterion to any practical situation.

Griffith failure criterion

Although the Mohr-Coulomb criterion is easy to handle practically, the Griffith theory
delivers a more precise criterion of failure for any rock when the envelopes are fitted to
Mohr's circles. The Griffith theory of failure predicts a parabola in the tensile stress region.
This theory assumes the presence of randomly oriented fissures which create local stress
concentrations and new cracks. However, the Griffith theory does not hold physically
regions where both principal stresses are compressive. Jaeger and Cook (1976) and Hoek
(1968) demonstrated that the failure envelopes for most rocks lie between a straight line

and a parabola.

It is generally accepted that the Griffith failure criterion is the most satisfactory explanation

for the fracture of brittle materials. According to this criterion, failure occurs when:

o,=0, Wwhere o0,+30,20 (1.6)
2 .
and: (al —0'3) =8(7T(0'1 +0'3) if o0,+30,<0 (1.7)

Where o, is the major principal stress, o, the minor principal stress, and o, the uniaxial

tensile strength of the material (tension positive) and the intermediate principal stress o, is

assumed as having no influence on failure. It is usually assumed that failure occurs in

accordance with conditions in Eq. (1.6), thus initiating at the center of the disc. Fairhurst
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generalized the Griffith criterion to account for the wvariations in n, the uniaxial
compression/tension strength ratio. The rate may vary considerably from the theoretical
value n=8 implying that in practice, the conditions for failure may not conform to the

simplified Griffith criterion [7].
Hoek-Brown failure criterion

The criterion starts from the properties of intact rocks and then introduces factors that

reduce these properties based on the joint characteristics in a rock mass.

Applying the Mohr-Coulomb failure criterion, the rock mass strength is defined by the
cohesive strength ¢’ and the friction angle ¢, the relationship between the major and minor
principal stresses linear. Meanwhile, this relationship is non-linear in the Hoek-Brown

criterion [64]. Moreover, determining ¢’ and ¢’ for disturbed in-situ rock masses is difficult.

The generalized Hoek-Brown criterion is expressed as [65]

o

ci

' a
C lo
o, =03+0C{mb—3+sj (1.8)
where m, is a reduced value of material constant m, and is given by

GSI-100
m, =m, CXP(WJ (19)

s and a are constants of the rock mass given by the following relationship:

s = exp[%j (1.10)
-GSt 0
a:%+%[e 5 —e3 J (1.11)

D is a factor which depends on the degree of disturbance to which the rock mass has been
subjected by blast damage and stress relaxation. It varies from 0 for disturbed in situ rock
masses to 1 for very disturbed rock masses. And, GSI is the value of the Geological

Strength Index of the rock mass.

The empirical uniaxial compressive strength is obtained by assuming o, = 0 in Eq.(1.8):
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o,=0,.5" (1.12)

o, =—"2d (1.13)

1.2.3 Crack initiation and propagation

One of the assumptions of the conventional evaluation of the Brazilian test is that the crack
should initiate at the disc center during loading and then propagate along the loading
diameter [5, 12]. In fact, the crack initiates in regions other than the center of the disc, for
example somewhere near the load arc or especially along weak planes in transverse

anisotropic rock specimens (Figure 1-5).

Figure 1-5: Some typical fracture patterns in the slates at orientation angle (1) 45° and foliation-

loading angles ( £8) 0° and 15° (for My.Sc.45.0 & My.Sc.45.15, respectively).

As indicated in Figure 1-5, the fractures do not always go through the center and separate
the disc in two halves, as the simple theory predicts. Details of fracture patterns are given in

Chapter 3 and Appendices 3.1, 3.2, 3.3 and 3.4.

Fairhurst [19] first discussed the validity of the Brazilian test. Based on results obtained
from tests with different loading angles (2a) he suggested that failure might occur away
from the center of the test disc for small angles in the loading contact area. Intensive local
stress concentrations inside the sample may exceed such a level that cracks initiates and

propagation of relatively small cracks starts. With larger loading angles, e.g.2a = 15°, the
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deduced tensile strength becomes more representative of the whole specimen rather than

the strength of one single point in it.

The intact continuum is assumed to be flawless. In this model, failure can be initiated either
when the tension or shear failure criterion is reached. It is known meanwhile that in
anisotropic rocks, material heterogeneity generates local stress concentrations at micropores
of flaws causing tensile or shear crack development when the critical stress intensity is
reached locally. Fracture toughness of rocks, one of the basic material parameters in
fracture mechanics, is defined as the resistance to crack propagation. In other words,
fracture toughness can also be defined as the critical value of the stress intensity factor
(SIF) when a crack propagates. There are three stress intensity factors which correspond to
three basic fracture modes - opening, sliding and tearing. Most of the previous studies on
rock fracture mechanics have mainly focused on the opening mode fracture (mode-I) until
now. Investigations into sliding and mixed-mode fractures are limited in literature [28, 46].
In general, fracture toughness is greatly influenced by the microstructural properties of
anisotropic rocks. Mode-I fracture toughness is highest when measured orthogonal to a
bedding plane (i.e. weakness plane) and is lowest for cracks propagating along the bedding

plane.

Rock materials are characterized by grain, pore and crack structures, so that they can only
be considered as homogeneous in large volumes compared to the dimensions of these
structural elements. Probability, size etc. of structural defects becomes more critical with
increasing sample volume. Thus, although the most critical stress conditions may exist at a
certain point in the specimen, the most critical defect might occur at some other point and
therefore, the failure may initiate at any point inside the sample, where a critical

combination of stress and structure defects occur.

With the rapid development in simulation programs in recent years, it has become much
easier to observe the initiation and propagation of cracks through analysis of digital images
obtained from small sections [4, 66]. These modeling programs take the direct
measurements of crack length, orientation, grain size etc. into account and can provide the
complete stress-strain field on a small scale. Apart from which, those programs enable
researchers to handle the representative assessment of microstructural properties and failure

mechanisms in a much more efficient way.
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1.2.4 Summary

Due to the simplicity of its experimental set-up and theoretical analysis, the Brazilian test

has become an important method of determining the tensile strength of rocks.

However, the analytical stress-strain solutions deduced for circular discs (plane stress) and
cylinders (plane strain) highly depend on boundary and initial conditions, which are largely
ignored by theoretical analyses. In fact, the theoretical closed-form solutions do not
consider pre-existing or newly initiated flaws or other inhomogeneities. Besides, cracks
affect the stress distribution inside the samples to such an extent that it violates the

hypothesis of material continuity and homogeneity.

Anisotropic rocks have been widely investigated in rock mechanics but relevant
information on their complete tensile fracture behavior is significantly limited. Rock failure
in tension results from the propagation of one or more cracks and can thus be investigated

using the theory of fracture mechanics.

The best way to judge any of the aforementioned indirect tension test methods is to

compare their results with those from the direct tension tests.

1.3 Numerical considerations

In recent years, the enormous development in numerical analyses codes has offered new
insights into simulating the Brazilian test. These new techniques have been successfully
applied in solving different problems involving the determination of the full stress-strain
field, the consideration of the microstructural composition and the fracture propagation in
rocks. Most of the research and development in terms of numerical simulations for the
Brazilian test has focused on understanding various problems of homogeneous and
heterogeneous geomaterials under 2-dimensional conditions. However, mechanical
problems in geomaterials are generally 3-dimensional [4, 14, 58, 62, 63, 66]. So far, the
extension of the numerical investigations towards 3D so as to cover the behavior of
heterogeneous geomaterials is quite rare. Relevant details on the self-designed 3-

dimensional numerical models will be presented in the section below and in Chapter 5.
The numerical simulation of the Brazilian test has several advantages, some of which are:

» Conducting parameter or sensitivity studies
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» Investigation of the influence of boundary, geometrical and initial conditions on

test results.
» Studying stress distribution induced by the initiated cracks inside the model.

» Analyzing failure mechanisms assuming elasto-plastic or damage / fracture

mechanical behavior of materials.

» Investigation of anisotropic behavior of materials.

1.3.1 Numerical methods

Most of the recent numerical studies have been carried out with the aid of the following
methods: Finite Element (FEM), the Boundary Element (BEM) and the Discrete Element
(DEM) [56], [67]. Numerical simulations of the Brazilian test have concentrated on the
determination of the stress-strain distribution, the crack initiation, propagation and

coalescence.

BEM is suitable for modeling problem of rapidly changing stresses and stress singularities.
It finds application in the case of elastic problems and has been used to simulate crack
propagation during loading by such researches as Malan et al. [68]; Chen at el. [33]; Wang
et al. [69]; Pan et al. [70]; Van de Steen et al. [71] and Lanaro et al. [40]. In Malan’s studies
[68], fracture growth using the small strain dislocation theory was controlled by evaluating
the stress field at a set of potential growth sites. These sites comprise “seed” points either at
arbitrary positions in the medium or at the junctions between existing elements or at the tips
of growing fracture segments. The first application of 2-dimensional BEM to anisotropic
half-plane problems were done by Pan [70]. For half-plane problems using the Kelvin-type
Green's functions, 2-dimensional BEM has provided very accurate results using relative
coarse discretizations. Numerical applications of the 2-dimensional BEM in rock
mechanics, for example, clearly showed that the degree of rock anisotropy and the

orientation of the anisotropy can have a great impact on the stress distributions.

1.3.2 Summary

In recent years, the rapid development of computing power, interactive computer graphics
and topological data structure, has led to computer simulation becoming a more and more

attractive alternative of investigating the complete of stress-strain field and fracturing. The
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numerical constitutive models are more and more compatible with intrinsic properties of

materials and so are the testing simulations to the experimental tests.

The Brazilian test should considers more and more, the numerical calculation of the stress
components at each point of the disc, especially in the critical domains, i.e. at the center of
the disc and the crack tip; the numerical determination of any stress concentration at the
crack tips and the determination of the orientation angle, at which the rock is considered an

anisotropic medium.

1.4 Conclusion

The Brazilian test has been evaluated and confirmed as a simple way of measuring the
tensile strength of brittle materials. Tensile strength of rocks is among the most important
parameters influencing rock deformation and crushing. Recent developments with respect
to Brazilian tests include fracture mechanical approaches, determination of elastic modulus,
etc, ranging from isotropic to anisotropic material behavior. Many specific lab test
arrangements have been developed with results that are almost impossible to interpret

analytically.

To deduce the tensile strength from Brazilian tests, one must know the principal tensile
stress, especially at the disc center of the rock, however cracks initiate in most though not
all cases. Indeed, for uniform distributed load, it has been shown that under certain
circumstances the failure is due to shear and compressive stresses at the loading points.
Also, failure may initiate not at the center, but at the point where a critical combination of

stress and fabric structures occur.

Numerical simulations provide a powerful instrument for investigating the complete stress-
strain field and simulating the failure pattern even for anisotropic and inhomogeneous

materials.

An efficient method based on a combination of analytical, experimental and numerical
solutions for the analysis of the Brazilian tests of anisotropic rocks is the aim and objective

of this thesis.
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Chapter 2

Diametral compression in a solid disc —
Compilation of analytical and semi-analytical

solutions

2.1 Introduction

This chapter deals with the analytical and semi-analytical solutions of the stress distribution
in a solid disc under diametral compressive loading. Different solutions for 2- and 3-
dimensional considerations of isotropic materials are presented. Remarks which extend the
solutions to anisotropic materials are also made. This Chapter also concentrates on the

comparison and interpretation of existing solutions.

2.2 Diametral compressive stress distribution in an isotropic elastic disc

The starting point in studying diametral compression of a solid disc is the determination of

the stress field, assuming that the material is homogeneous, isotropic, and linearly elastic.

The theoretical solutions assume isotropism, homogeneity, linear elasticity and half-space.
Since Hertz’ initial proposal in 1883 this solution has been expanded on by many
researches like Frocht (1948) [72]; Timoshenko (1951) [73]; Sokolnikoff (1956) [74];
Muskhelishvili (1975) [75]; Timoshenko and Goodier (1982) [76]; Poulos (1991) [77];
Martin (2005) [78] and others.

The problem of a disc in diametral compression as used in experimental stress analysis in
the Brazilian test has had many contributions made to it for several decades now.

Currently, theoretical solutions for solid discs under opposing point loads or load
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distribution over a small arc of the disc’s circumference have been developed for 2-D and

3-D.

2.2.1 Elastic theory of line load

The theoretical solution was first proposed in 1883 by H. R. Hertz. This bothered many
mathematicians for a long time. One of the theoretical contributions put forward by
Timoshenko [73] considers a constant line force acting at the surface of an isotropic,

homogeneous, linearly elastic half-space (Figure 2-1).

Figure 2-1: Uniform line load acting at the surface of a half space (after Timoshenko, [73]). The
solution to this problem was found by Bousssinesq based on a three-dimensional solution put

forward by Flamant in 1892 [79].

The stress in an elastic half-space shows a radial distribution. Any element C at a distance r
from the point where the load is applied is subject to a simple compression in the radial

direction.

o 2P coso @2.1)

,
T r

The stress analysis of a circular disc subjected to concentrated forces has been discussed
further by Frocht (1948) [72]; Timoshenko (1951) [73]; Sokolnikoff (1956) [74];
Muskhelishvili (1975) [75]; Poulos (1991) [77] and others.

Analytical solutions for a pair of diametrally opposite, symmetric and compressive line

loads applied to a disc of isotropic rock material have been provided by Muskhelishvili
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(1975) [75]; Timoshenko and Goodier (1982) [76] and Martin (2005) [78] so that the stress

distribution inside the disc is known.

Indirect tensile test Flamant solution (1) Flamant solution (2) radial tension solution (3)

Figure 2-2: Disc under diametral compression — superposition solution (after Martin [78]).

2.2.2 2D analytical solutions

Based on the theory of elasticity for isotropic medium, Timoshenko and Goodier [76]

provided comprehensive solutions for the stress distribution induced by line loads on a disc.

To compare these theoretical results with actual material behavior photoelasticity was used
to illustrate the stress field experimentally [80]. The obtained isochromatic fringe patterns
were compared with theoretical solutions. As Figure 2-3 documents only neglectable

deviations were found [78].

Theoretical contours Photoelastic contour

Figure 2-3: Maximum shear stress contours obtained by analytical solution and the corresponding

photoelastic isochromatic fringe patterns for a disc under diametral compression. (after Martin [78])

The mode of load application has an important influence of the induced stress pattern.
Figure 2-4 illustrates and compares near-field photoelastic fringe patterns for a rectangular

plate under four different loading conditions.
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point loading uniform loading flat punch loading  cylinder contact loading

Figure 2-4: Isochromatic photoelastic fringe patterns for several contact loadings along a half

plane. (after Martin [78]).

The effect of a finite loading area on the stress distribution is important and was
investigated experimentally. The Saint-Venant’s principle applied to circular discs
subjected to diametral loading was examined by comparing the stress field obtained by
concentrated compression with those from distributed compression over a small angle. The

methods of photoelasticity and Moir¢ interferometry were used (Figure 2-5).
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Figure 2-5: Experimental results of Moiré interferometry and photoelasticity (after Timoshenko

[76]).
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2.2.2.1 Plane disc under diametral compressive line load

This problem was fully resolved by Timoshenko [73] as illustrated in Figure 2-1. Based on
the radial solution, the stress distribution can easily be converted into a Cartesian

coordinate system as illustrated in Figure 2-6.

Figure 2-6: A plane disc subjected to line load

The Cartesian stress components at any point M on a horizontal plane mn at a distance ¢
from the surface of the half-space (Figure 2-1) can be calculated from the compression (P)

in the radial direction:

2P cos’ @ 2P

o, =0,c08 0=—"— =—"—cos' 0
T r e
. 2P .
o, =0,sin’ § =—=—sin’ fcos’ 0 (2.2)
pie
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n r e

On the other hand, the equilibrium equation for two-dimensional solutions is given in polar

coordinates:
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Figure 2-2 is an illustration of an alternative method which utilizes the superposition

principle of three particular stress fields. This method combines the two Flamant solutions

and that of the uniformly loaded disc and these yields the final stress field for an XY-

coordinate system:

2P
o, =—
7[ —
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i
T,

(R—yi*  (R+yp® 1
r ry D
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On the Y-axis in particular, (where X=0), the stresses are:
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(2.5)

Thus, along the loaded diameter at X=0, the body experiences a uniform tensile stress

ofoc_=2P/zD . This formula serves as a basis for calculating the tensile strength in the

Brazilian test.

To record the strain, Jianhong et al. [81] used two strain gauges fixed at the center of a

Brazilian disc both measuring parallel and perpendicular to the line load direction. In

addition, a force sensor was used to record the applied force. The stress—strain curve was

then determined. The tensile elastic modulus £, and strength were derived from a linear

elastic, isotropic finite-element analysis and the regression fitting test data. The analytic

solution for a pair of diametrally opposed, symmetrical and compressive loads on an

isotropic Brazilian

disc could thus be written as:
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Eq. (2.6) deduced by Jianhong et al. [81] is identical with the solution given by Martin

[78].

To highlight the differences in the above given solutions, the stress distribution along the

loading plane at X=0 was calculated under the same boundary condition (i.e., the same

radius, thickness and load, in concrete as: D=50 mm, =25 mm and P=25 kN.).

r/R (-)

Timoshenko

Figure 2-7: Distribution of stress components relative to Egs. (2.2), (2.5) & (2.6)

From Figure 2-7, it is obvious that the stress at the load entry points is infinite. In all three

solutions the distribution of tensile stress o; is constant along the plane X=0. The predicted

vertical compressive stress obtained from the Timoshenko-solution deviates from that of

Martin and Jainhong, which both demonstrate identical values.
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2.2.2.2 Plane disc under diametrally compressively distributed load

An analytical solution for a disc with partially distributed compression was developed by
Hondros [18]. This solution is valid for both plane stress (discs) and plane strain
(cylinders). Since then, many other investigators such as Fairhurst (1964) [19]; Hobbs
(1964) [20]; Jaeger (1967) [82]; Colback (1967) [83]; Hudson et al. (1972) [60]; Wijk
(1978) [35]; Guo et al. (1983) [28] ; Andreev (1991) [25]; Hung et al. (2003) [37]; Wang et
al. (2004) [41]; Ma et al. (2008) [8]; Ma and Hung (2008) [8]; Markides, et al. (2010) [9]

have carefully reviewed and expanded on these solutions.

Y

Figure 2-8: Configuration of a plane disc subjected to compressive load distributed along a curved

line

Hondros' solution for an elastic homogeneous linear isotropic material gives the following

stress fields:

(a) Stresses along the vertical diameter (OY)
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(b) Stresses along the horizontal (OX)
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Hondros’ solution (Egs. (2.7) & (2.8)), valid for a very thin plane disc subjected to a
uniformly distributed pressure applied radially over a short strip at the circumference
predicts intensive local stress concentrations near the applied load. In practice though, due
to the deformation of the specimen and plates, the actual loads are always only distributed

over a finite portion of the disc.

Focusing on the stresses near the load entry arc, Sarris et al. [36] expanded on the Hondros’

solution:

_2p sin2a —(/RV - are an_ (r/R) sin2a _—a
M- {I—Z(r/R)2 cos2a +(r/R)' [1 (/) ] t | 1-(r/RY cos2a | }
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- {1—2(7//R)2 cos2a + (r/R) [( /R) 1] ' | 1—(r/R) cos2a | }

Instead of using series expansion, Ma and Hung [8] successfully expanded on Hondros’
formula and obtained an analytical solution with explicit expressions. For the special case
where a — 0 the problem can be reduced to a disc subjected to concentrated forces acting

along the diameter in which the stress solutions are simplified as follows:

ol Nl 2t 2]
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To compare the different solutions, the stress distribution was calculated under the same

boundary condition using radius, thickness, load and loading angle 2a. Precisely put, the
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conditions are D = 50mm; ¢ = 25mm; Poisson’s ratio # = 0.25 ; applied load P = 25kN; and

loading angle 2 = 20°.

Timoshenko

Jianhong et al.
GI
—— O,
Hondros
O-x
— O,
Sarris et al.
—=— O,
= O,
Ma & Hung
—o— O .
O-y

/R ()

Figure 2-9: Stress component distribution in 2D theoretical solutions

Figure 2-9 shows a comparison of the stress distributions along the axes X=0 obtained from
the different solutions mentioned above. The solution of Sarris et al. has improved on the
stress prediction near the load entry. However, the stresses at the center of the disc are more

or less equal to Hondros’s values.

In general, Hondros’s solution can be considered as the basic means of determining the
tensile strength. This approach of taking the applied load into account is much closer to
reality than the original method which only considered the concentrated line loads.
However, the approximate expressions derived for the stress components often provide
only insufficient in-depth error analysis. It is also difficult to realize the required uniform
and radially oriented load distributed over a pair of arcs in real experiments. Consequently,
there are always differences between the actual stress state and the predictions obtained by

the analytical or semi-analytical solutions.
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2.2.3 3D disc under line and diametral compressive distributed loads

From the theory of elasticity, it is well known that some solutions [73, 78, 84, 85] for

stress, strain or displacement fields are very sensitive to Poisson’s ratio x . In other words,

the tensile stress produced by the Brazilian test has to be taken as a function of the
Poisson’s ratio for the material and consequently, another advanced calculation scheme for

the determination of the tensile strength has to be used.

2.2.3.1 3-dimensional solution for a cylindrical disc under line load

Mindlin [86] expanded on the solution proposed by Boussinesq in 1885 for a force applied
on the boundary of a semi-infinite body and found the corresponding 3-dimensional
solution. Subsequently, the solution for two concentrated forces P acting on the plane of a
cylinder was worked out by Timoshenko [73]. The expressions for the stress components at

any point on the equatorial plane are given in the cylinder co-ordinate system:
o, = i{(1 - 2#){% —iz(rz + 22)_”2} =3rz(r’ + zz)_S/z}
2 ror

3/2
z

o, = —223(7”2 +2°)
2r

(2.11)
o, :%(1—2y){—%+ 22 (P +22) " 4z + 22)_3/2}

r

T = —Elfzz(lf2 +22)7"?
2r

rz

In relation to Boussinesq’s problem, Martin [78] has shown that the stress distribution
within the specimen under 3-dimensional conditions is a function of Poisson’s ratio:

o P [_3r22+(l—2,u)R}

"R R R+z

4

_(1-2wP|z R
27R> | R R+z
3Pz}

0= (2.12)

3Prz’
z-rz -
27R’
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2.2.4 3D solution under diametral compressive distributed load

Wijk [35] suggested a 3D ‘correction’ of the 2D analytical solution for the Brazil test.
Under certain conditions, the elastic solution of a 2-dimensional problem may be used to
construct a solution for the corresponding 3-dimensional problem. For a thin disc, the 3D

solution is converted into a 2D solution.

Based on the assumption that the material is homogeneous and the behavior linear elastic
with a Young's modulus £ and Poisson's number m, the three-dimensional equation for the

middle plane is given as:

2N 2
" (; 2'0 )s;n2a A‘—arctaln(iﬂo2 tana]+
~2p% cos2a + -
o (x=0,y,2)=—L " P P (2.13)
T 4z’ tana (1- p*)1+3p°)+(1+ p*)1-3p%)tan’ &
(m+1R* ((1 —p*) +(1+ p*)’ tan’ a)z

To show the 3D-effect and the influence of the different parameters on the solution more

clearly, a special case of Eq. (2.13) with a vanishing loading angle of 2« is deduced;

4z*(1+3p?%)

lirr(} o (x=0,y,z) =~ (2.14)

ro J(x? +y2)

where =—=
P R

mRt| (m+DR*(1-p*)

r/R ()

Figure 2-10: Stress component distribution along the middle plane of a disc with a thickness-to-

diameter ratio L/D = ' after Wijk, Eq. (2.14)
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2.2.4.1 Effect of finite disc thickness and loading angle after Wijk’s solution

Based on the Wijk’s three-dimensional formula (Eq. (2.13)), the effect of finite thickness

and Poisson’s ratio on the stress distribution can be demonstrated as follows.

plane Z=0 plane Z=0.006 plane Z=0.0125

Figure 2-11: Effect of Poisson’s ratio and the above plane on distribution of the horizontal stress

component in accordance with Wijk’s solution, where 2a =25°; L/D = %.

It can be observed in Figure 2-11 that the stress distribution is independent of the Poisson’s
ratio along the middle plane of the disc, i.e. for Z = 0. In contrast, the stress distributions at
Z # 0 show pronounced differences depending on Poisson’s ratios and the planes under
observations. The higher the Poisson’s ratio and the further away from the center plane, the

more pronounced the stress peaks close to the load entry area.
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Figure 2-12: Effect of finite thickness of the sample on distribution of the horizontal stress

component in accordance with Wijk’s solution, where 2a = 25°.
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Figure 2-12, the stress distribution here indicates distinct differences in the effect of
thickness. The thinner the disc and the smaller the Poisson’s ratio, the more the stress

distributions converge with a corresponding reduction in concentrated stress in the load

entry area.
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Figure 2-13: Effect of loading angle and Poisson’s ratio on distribution of the horizontal stress

component along the middle plane after Wijk’s solution, where L/D = Y.

According to Wijk’s solution, the horizontal stress component is rather inhomogeneous
except for very small loading angles, where extreme values only occur immediately at the
load entry point. For larger loading angles, two local stress peaks can be predicted
depending on the loading angle - one in the immediate region of the load entry area, i.e. at
r/R—1 (local compression) and another in the region around »/R=0.8+1.0 (local
tension). From the stress distribution diagram, Wijk’s solution predicts the largest tensile
stresses not at the center of the disc but closer to the boundary. This solution also predicts

extremely large values.

Wijk’s 3D solution has some drawbacks [63]. The stress predictions for planes away from
the center are particularly questionable. They are not backed up by experimental data or

numerical simulation results.



2.3 Stress and strain in an isotropic solid disc 59

2.3 Stress and strain in an isotropic solid disc

Based on the theory of elasticity, the strain can be normally obtained by applying Hooke’s

law for plane strain conditions in polar coordinates (r,8).

1 1
gr :E(O-r _luo-ﬁ)’ 819 :E(O-H _luo-r)’ grﬁ :Errﬁ (215)

The strain-displacement relationship for small strains is given by:

. r

ou u,  10u,. _10u, Ouy uy (2.16)

9

r g = ’ €9~
or r r o6 rod or r

The strains given by Timoshenko [73] for a line force (Figure 2-1) where u, and uy are the

components of displacements in the radial and tangential directions, respectively are:

Ou, _ 2P cosf u,  Ouy

Uy
&g = = — &, =1+ = 3 g =T ——L£=0 (2.17
" or £ r L, 'u7zE r ¢ 08 or r ( )

Iz

2P cosb. Ou, , Oy

Integrating Eq. (2.17) provides the displacement u. Substituting u, and uy in Eq. (2.15)
gives

f(@):—%esmemsinewcose, F(r)=cCr (2.18)
7t

where 4, B and C are constants of integration determined by the conditions of constraint.
The expressions for the radial and tangential displacements deduced from the integrated
equations u, and uy are:

ur=—ECOSQIOgV—MQSiHH-FASiH@-i—BCOS@ (2.19)
7k 7k

u, =Esin0+2—Plogrsin6’—wﬁcosﬁ+wsin9+Acos@—Bsin6?+Cr
7k 7k 7k 7E

Based on the results of Cauwellaert et al. [29], Wang [41] developed an approximate
displacement solution for the flat-end region of the specimen exposed by uniformly
distributed load along the load arc (Figure 1-3):

Aue—z—P{(l— y)—ln(l+ 1 ﬂ & (2.20)

ikt sin“«a ) |sina
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Recently, Ma and Hung [8] explored the normal strains and displacements along the
X(#=7/2) and Y (@ =0) axis for partially distributed compressions where the shear strain

along these two lines is zero.

For =0, normal strains ¢, =¢, and ¢, =¢,, the solutions can therefore be reduced as

follows:

2\, 2
£.(p,0)=¢,(p,0)= —2—5{(1 + ,u) 4(1 P )sm 2 + (l — ,u)tan"l(i-i_—’ij tan 0{} (2.21)
7 —-p

2

2p (l—pz)sin2a af1+p
&, (p,0)=¢ (p,0)=—"""<—(1+ ) +0—u)tan” | —— |tana; (2.22
o(P0)=2.(p.0) ﬂE{ () TS reesae T | 125 (222)

where p=r/R

For € =0, the displacements can be obtained as follows:

2

2pR 4 1+p . |1+p2+2pcosa|
u(p,0)=u (p,0)=——"—<(1- tan | ——tana |+sinaIn
(p.0)=u,(p.0) 7k {( ulp (1—,02 ) |1+p2—2pcosa|

—(1- u)cosal tan™ _PSME gt PINE (2.23)
1+ pcosa 1-pcosa

uy(P.0) = u,(p,0) =0

For 8 =7/2, displacements are obtained as follows:

2 2
”f(p’”/z):”y(p’”/z):_zﬂ (1~ p)ptan™ _1+,02 tan +Sinaln|1+p2+2pcosa|
7E 1-p 1+ p? —2pcosa|

- (1 - ,u)cos o{tan1 (ﬂj +tan”' (ﬂﬂ } (2.24)
1+ pcosa - pcosa

u (p,w/2)=u,(p,m/2)=0
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2.4 Stress and strain in anisotropic rocks

Anisotropy is a typical characteristic of intact foliated metamorphic rocks and laminated,
stratified or bedded sedimentary rocks. The deformability and strength of anisotropic media
are different from those of isotropic media. As discussed in detail above, the indirect tensile
strength is deduced by means of equations derived from the theory of isotropic elasticity
and does not consider the anisotropic character of rocks. Consequently, the deduced tensile

strength may be not correct.

In relation to stress and strain in anisotropic rocks, Amadei [3, 87] culled together an
excellent review from the many available lab and field techniques. Lekhnitskii [84] used
the complex stress function method to express the relationship between stress and strain in
a thin disc of anisotropic material under diametral loading. Amadei and Jonsson [88] and
Chen et al. [89] have applied theoretical solutions to tensile strength measurements in
anisotropic rocks in the lab. The mechanical properties of intact anisotropic rocks are
usually determined by using test samples with different loading angles relative to the
apparent planes of anisotropy. The effect of anisotropy on the indirect determination of
tensile strength of rocks using the Brazilian test was investigated by Berenbaum and Brodie
[17] on coal, Hobbs [20] on siltstone, sandstone and mudstone, McLamore and Gray [90]

on shale, and Barla [91] on gneiss and schist.

Stress and strain in anisotropic rocks are commonly analyzed using the theory of elasticity
under assumption of Hooke’s law. The general equation for the constitutive relations of
homogeneous anisotropic elastic media in a Cartesian (XYZ) coordinate system can be

written as follows [87]:
[£],. = [4]x[o].. (2.25)

where [¢],. and [o],, are [6 X 1] column matrices representing the strain and stress tensors

xyz xyz
in the (XYZ) coordinate system, respectively, and [A] is a [6><6] matrix for the elastic
constants whose components are a,;(i,j =1+6). In general, matrix [A] has 21 distinct

elastic constants; this number reducing when symmetry occurs in the inherent structure of

the anisotropic medium. Precisely put, the number reduces to 13 if the medium possesses a
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plane of elastic symmetry perpendicular to one of three axes X, Y or Z, 9 if the medium is
orthotropic, 5 if transversely isotropic (i.e. isotropic within a plane perpendicular to one of

the three coordinate axes) and 2 if isotropic [3, 87, 92].

For transversely isotropic rocks with planar fabric, e.g. assuming the plane of symmetry is

Y-Z, Hooke’s law can be defined for a local coordinate system (X Y’Z’) [92]:

lo]=[D]<e] (2.26)
v Y
o gy
z 0L p Z| o
7
11
] —t—
() line load with components X, and Y, (b) distributed pressure over an angle of 2«
(after Chen et al. [33]) (after Amadei, et al. [93])

Figure 2-14: Configuration of a transverse anisotropic disc under diametral compressive loading

with global Cartesian coordinate (XYZ) and local coordinate (X’Y’Z’).

Lekhnitskii [84], Claesson and Bohloli [94], Amadei [3, 90], Chen et al. [55], Lemmon [31]
and Exadaktylos et al. [95] have attempted to account for the influence of anisotropy on the
distribution of stress. Lekhnitskii [84] developed a complex stress function equation to
express the relationship between stress and strain within a disc of anisotropic material
under diametral loading. Applying this theory, Chen et al. [55] especially focused on

finding a solution for a linear elastic, homogeneous and transversely isotropic thin disc.

According to Figure 2-14(a), the load components X,, Y, are the surface forces measured
per unit area in the x and y directions. The surface forces are assumed to act along the
boundary area of the disc. The equilibrium and compatibility equations, the constitutive
relationships and the boundary conditions are all expressed in terms of average values of

stress, strain and displacement relative to the thickness of the disc. Therefore, the mean
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stress, strain and displacement components should all satisfy the same equations that
govern the classical plane strain formulation in the (XY) plane [84]. Hooke’s law expressed

in Eq. (2.26) for the (XY) plane can be written as follows [33]:

&y a4 A O,
&, |=lan ay ay|X| O, (2.27)
yxy a16 a26 a66 Txy

where a, (i, j=1-6) are compliance components calculated in the (XY) coordinate

system. These components are a function of the angle y and the elastic constants in the
(X’Y’Z’) coordinate system. The constants are Young's moduli (E, E’), Poisson’s ratios
(u,u') and shear modulus (G') in a normal direction and in the plane of transverse
isotropy, respectively. The shear modulus G in the plane of transverse isotropy is equal to

E/2(1+ ).

. 4 4 - 2 '
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Letting F be a stress function such that:
2 2 2
O-x=8127’ O-yza};’ z-)fy:aF’ (2.29)
oy ox oxoy

And substituting Egs. (2.28) & (2.29) into Eq. (2.27), the following differential equation is

obtained:
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0*'F 0*'F

0'F 0'F 0'F
20y 5 =
ox” 0y

6x26y2 —2a, 8x8y3 +a, 8y4 =0 (2.30)

)
+ (2‘112 tdag)

Inserting the root, x4 (i=1+4), into the general solution equation above yields the

characteristic equation:
anp =2aa40° + (2a12 +dgs )ﬂz =20y, + a5, =0 (2.31)

Substituting Eq. (2.28) into Eq. (2.30), the first derivatives of F with respect to x and y can
be expressed, according to Lekhnitskii [84], as:

or
ox

%F = 2Re[u(z,)+ (2, )]

= 2Re[ 1(21 )+ ¢2(Zz )]
(2.32)

where ¢, (zk)(k :1,2) are analytical functions of the complex variables z, =x+ 4,y and

Re defines the real part of the complex expression in the brackets (2.32). Combining Egs.

(2.30) & (2.32) can yield a general expression for the stress components:

o, =2Relui g (z)+ 19,2 )]

o, =2Re4'(z)+4,'(z,)] (2.33)

Ty = -2 Re[ﬂld (Zl )+ ,u2¢2'1 (Zz )]
where @,'(z,)(k=12) are the first derivatives of ¢,(z,) with respect to z,. General
expressions for the functions ¢, (zk) and relation z, /R=cosw + y, sinw (Figure 2-14)
were proposed by Lekhnitskii [84]. The stress components o, and 7, (Eq. (2.33)) can
then be computed for any point (x, y) inside the disc.

Using a polar coordinate system, as shown in Figure 2-14(a), this stress distribution can be

approximated by the following Fourier series for the angle @ :

N-1
o, =4, +Z(An cosnw+ B, sinna) (2.34)
n—1

with 4, =2pa/x, A,,:Q(ﬂ}os%sinm, B =0 (2.35)
T n
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There is no shear stress applied along the contour of the disc. The surface tractions X,, Y,
depend only on p and can then be expressed as Fourier’s series for cos(nw) and sin(na)

with 7 varying between / and N.

If the geometry presented in Figure 2-14(b) is considered, with a disc subjected to
distributed pressure applied over a small angular width of 2« , the rock assumed to be
orthotropic with one of its three planes of anisotropy parallel to the disc (XY) plane and the
X’- and Y’-axes inclined at an angle y with respect to the X- and Y-axes, Amadei [3] has
proposed the following stress concentration factors for stress components at the center of

the disc:

w w w
o,=q,——; O,=q, ——; T, =q, —— 2.36
= u 7Dt y = 7Dt v = 4o 7Dt ( )

The stress concentration factors gy, q,» and gy, have complex expressions, which depend
on the coordinates (x, y) at the point of interest, the loading angle (2¢), and the

compliance components a, ;(i, j =1+6) as well as the strike angle ().

For a Brazilian test on isotropic media and small values of the loading angle 2a (2a < 15°)

[3], stress concentration factors at the center of the disc can be approximated by g..= -2,

g,y= 6 and g,,= 0. The Eq. (2.27) can then be written as follows:

. 1VE —ulE 0 _2
A E 1/E 0 6 237
7 8)/, = —IU X ( . )
Vo 0 0 20+w)/E| |0

Despite the often pronounced anisotropic characteristics of rocks, the evaluation of the
indirect tensile strength test is still based on the isotropic elasticity theory. However, as

documented in detail in the Chapters above, this can be quite misleading.

2.5 Conclusion

The distribution of stress and strain in a disc under diametral compression has been
investigated by many researchers with the help of analytical solutions. A majority of the
studies focusing on theoretical solutions have only been for isotropic rocks, solutions for

anisotropic rocks being much more difficult to obtain. Exact analytical solutions for
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anisotropic rocks are not available so that either numerical analysis or semi-analytical

solutions have to be used.

The following conclusions can be drawn from the analytical solutions:

>

If a finite disc thickness is assumed, the magnitude of the stresses inside the disc can
be said to be strongly influenced by the loading angle (2a) and the plane under

consideration.

Brazilian test on isotropic discs with a low thickness to diameter ratio almost

produce maximum tensile stresses at the center of the disc.

There are local stress concentration phenomena in the region near the loading points
which can lead to shear or mixed-mode failure if the loading angle is very low.
When the loading angle increases, the stress concentration phenomena reduce [19]

and the induced tensile stress dominates in the failure of the material.

Analytical solutions indicate that under certain circumstances tensile stress may be
produced not at the center but more closely to the boundary of the disc, depending

on the Poisson’s ratio, thickness and loading angle.

The analytical solutions discussed above show up several still unsolved problems regarding

the stress distribution:

>

>

The analytical solutions only do consider plane-stress situations.

Only the 3D semi-analytical solution after Wijk’s does explain the effect of
Poisson’s ratio and finite thickness, predicting though, extreme stress values for
planes away from the center. These values are not however supported by numerical

analysis or results of lab tests.

The analytical solutions do not consider the effect of friction between the loading

jaws and the disc.
They do not consider inhomogeneities inside the disc.

And they do not consider anisotropy.
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The discussions in the Chapter above show that the interpretation of the Brazilian tensile
strength test is much more complicated than usually thought and needs further
investigations in order to tackle the still unsolved problems, especially with respect to

anisotropy in rocks.

The tensile strength in relation to anisotropy can be investigated by numerical simulation,
which could provide the full stress-strain field and the failure mechanisms, as well as by

systematic lab tests.

Both were undertaken within the framework of this work and will be explained in the

succeeding Chapters.
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Chapter 3
Laboratory tests

3.1 Introduction

Very few systematic studies on the influence of anisotropy (bedded, laminated or schistose
rocks) on tensile strength have been conducted so far [20, 59, 101]. Also, results from
experimental studies using the Brazilian test with specimens in various orientations of the
loading axis to the planes of weakness are rather limited. All this makes it difficult to give a
sound interpretation of the measured data in terms of tensile strength values.

In this Chapter results of lab tests are presented on three different rock types with different
degrees of anisotropy: sandstone, gneiss and slate, which stand for both bedded
sedimentary tendentious isotropic and foliated, highly anisotropic rocks. In total, 555
Brazilian tests were carried out in order to determine the tensile strength in directions

relative to the planes of schistosity, ranging from 0° to 90° (in incremental steps of 15°).

SPZ 1 SPZ 2 SPZ 3 SPZ1/2 SPZ 1/3 SPZ 2/3

0°<w<90° 0°<p<90° 0°<W<00° B=0° y=0°0°<p <90°

i

Figure 3-1: Experimental arrangement for testing rock anisotropy relative to Orientation () and

|

=

Foliation-Loading (/) angles"® using the Brazilian test. Combining [y] and [8] in 15°

increments creates a [7 X 7] matrix of angles.

() Orientation angle () is an angle between the foliation planes and the test specimen axis.

@ Foliation-Loading angle (B) is an angle between the foliation plane and loading direction.
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Selection of materials for the lab tests

In petrology, rocks are classified into three principal groups according to their geological
origin: igneous rocks, sedimentary rocks and metamorphic rocks. Anisotropy is a
pronounced characteristic of intact foliated metamorphic rocks such as slates, gneisses,

phyllites or schists.

In metamorphic rocks, foliation is often expressed as alternate layers of differing mineral
compositions as in gneiss or slate. It is worthy to note that rocks which have undergone
several processes of formation may present more than one direction of planar anisotropy as
in foliation and bedding planes in slates [3]. These directions may not necessarily be
parallel to each other. In addition, linear features such as lineations can be superimposed on
the planar features. Due to their distinct anisotropy, metamorphic rocks were selected for
this study. The following four types of rocks were chosen specifically for this study:
Freiberger Gneiss from Halsbriicke near Freiberg in Saxony (FG.Gs), Leubsdorfer Gneiss
from the FlI6ha-Valley in Saxony (Le.Gs) and Mosel Slate from Mayen-Koblenz in
Rheinland-Pfalz (My.Sc). Anisotropy is also characteristic of laminated, stratified or
bedded sedimentary rocks such as shales, sandstones, siltstones, limestones or coal. In these
rocks, the anisotropy results from complex physical and chemical processes associated with
transportation, deposition, compaction, cementation, etc. However, the Postaer Sandstone
from Pirna in Saxony (FG.Ss) with a medium-grained size varying from 0.01 to 1.0 mm and
occasionally containing some larger mineral spots, reaching 2.0 and 3.0 mm, is an almost
isotropic rock and was therefore chosen as a reference material for homogeneous isotropic

rocks.

3.2 Laboratory test program

Laboratory tests were carried out to determine both deformation and strength parameters.
Although the whole test program comprises uniaxial and triaxial compressive tests and
ultrasonic wave speed measurements, its main focus is on the Brazilian tests. The
arrangements for the Brazilian tests are described by a [7 X 7] matrix, which contains 7
values for the orientation angle y and another 7 for the foliation-loading angle , each

ranging from 0° to 90° at 15° intervals. The other lab tests were done only either parallel or
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perpendicular to the plane of anisotropy. Table 3-1 gives an overview of the lab tests
conducted, all at the Rock Mechanics Laboratories in the Geotechnical Institute of the
Technical University Bergakademie in Freiberg. Figure 3-2 documents the sample

nomenclature used.

Sample material Total
Type of test Gneiss Slate number of
I L || L samples
Ultrasonic analysis 3 3 6
Uniaxial compression test 3 3 3 3 12
Triaxial compression test (conventional) 1 1 1 1 4
Triaxial compression test (multi-stage) 3 3 6
Brazilian tensile strength test 555

Table 3-1: Laboratory test program ( IE loading direction parallel to plane of anisotropy, 1

loading direction perpendicular to plane of anisotropy).

Location of rock Location of rock
Kind of rock Kind of rock
Orientation angle () Kind of test: 1a (uniaxial)
XX.YY.nn.mm.j/k XX.YY.ia.nn.j/k or 3a (triaxial)
Amount of specimen in a group Amount of specimen in a group
Ordinal specimen in a group Ordinal specimen in a group
Foliation-loading angle () ‘ Orientation angle (\): 0° (parallel)
or 90° (perpendicular)
e.g. FG.Ss.15.45.2/5 e.g.  My.Sc.3a.90.1/3
(for Brazilian test sample) (for other rock mechanic test sample)

Figure 3-2: Specimen nomenclature

3.3 Sample preparation

At the beginning of the sample preparations, cylindrical cores with a diameter of 50 mm
were drilled out of larger rock blocks. It was especially ensured that the axis of the

cylindrical cores have a predefined direction to the bedding planes: = 0°, 15°, 30°, 45°,

60°, 75° and 90°. The cores were then cut into test specimens of suitable length, the end
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faces ground and polished. After the specimen’s dimensions had been measured and found

to meet standards, they were stored in dry air at room temperature.

The experimental arrangement for the Brazilian tests is illustrated in Figure 3-1. The
foliation planes were found to be the true planes of weakness, characterized by very small
cohesive and tensile strength. The sample preparations and tests strictly followed the
stipulations of the International Society for Rock Mechanics [5]. The specimens were all
disc-shaped with a diameter D = 50 mm and a thickness # = 25 mm. A sum total of 555
Brazilian tensile tests were carried out: Postaer Sandstone (FG.Ss) with a total of 97
specimens, Freiberger Gneiss (FG.Gs) - 126, Leubsdorfer Gneiss (Le.Gs) - 160 and Mayen
Mosel-Slate (My.Sc) - 172.

Further tests were carried out to determine additional geophysical and geomechanical
properties. Ultrasonic measurements were used to determine effective porosity, elastic
wave velocity, density and dynamic elastic constants while uniaxial and triaxial
compression tests were used to obtain Young’s modulus, Poisson’s ratio, friction angle and
cohesion. The Brazilian tests were carried out in accordance with the ISRM- and DGGT-
recommendations for cylindrical samples with diameter D = 50 mm and height to diameter

ratio /D = 0.5.

3.4 Ultrasonic measurements

Sample My.Sc.3a. | My.Sc.3a. | My.Sc.3a. | Le.Gs.3a. | Le.Gs.3a. | Le.Gs.3a.
90.1/3 90.2/3 90.3/3 90.1/3 90.2/3 90.3/3
Length (cm) 10.09 10.16 10.15 9.99 10.15 10.15
Diameter (cm) 5.01 5.01 5.01 5.01 5.01 5.01
Density (kg/m’) 2774 2774 2774 2716 2716 2716
](?;V R 0.0 0.36 0.40 0.20 0.41 0.39
Dymamic Yonngts 2136 | 2002 18.79 50.15 22.15 19.20
modulus (GPa) ’ ' ' ' ' '
Dynamic shear modulus | ., . 737 6.69 20.83 7.88 6.92
(GPa)
Pulse-wave (Hz) 13428 12970 12512 21362 13733 12817

Table 3-2: Le.Gs and My.Sc sample data and ultrasonic measurements results.
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3.5 Uniaxial and triaxial compression tests

To determine the constitutive model parameters of the rock structure components, uniaxial
and triaxial tests were carried out on cylindrical test specimens with diameter D = 50 mm

and a height to diameter ratio #/D = 2.0.

To determine the anisotropic properties, tests were done in which the planes of anisotropy

were either parallel or perpendicularly oriented to the loading direction.
3.5.1 Uniaxial compression test

The peak strength o, was obtained during the uniaxial compression tests and the Young’s

modulus determined at 50% peak load Esy (Table 3-3) from deformation measurements.

Sample o,(MPa) | E5(GPa)
Le.Gs.1a.0.1/3 171.41 16.60
Le.Gs.12.0.2/3 177.19 14.67
Le.Gs.1a.0.3/3 180.19 13.61

Average 176.26 14.96
Le.Gs.12.90.1/3 173.84 12.43
Le.Gs.1a.90.2/3 179.32 14.43
Le.Gs.1a.90.3/3 190.67 14.36

Average 181.28 13.74
My.Sc.1a.0.1/3 79.58 11.78
My.Sc.1a.0.2/3 122.62 16.46
My.Sc.1a.0.3/3 148.70 18.48

Average 116.97 15.57
Le.Gs.1a.90.1/3 203.97 12.95
Le.Gs.1a.90.2/3 | 218.63 12.74
Le.Gs.1a.90.3/3 | 225.93 12.21 |

Average 216.18 12.63 E

Table 3-3: Results of unconfined compression Figure 3-3: Typical failure patterns in

tests on Le.Gs and My.Sc Le.Gs.1a.2/3 under unconfined compression test
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3.5.2 Triaxial compression tests

The triaxial tests were carried out either in single- (Table 3-4), or multi-stages (Figure 3-4

and Table 3-5)

o, (MPa) o, (MPa)
y =90° Le.Gs.0.1/2 | My.Sc.0.1/2
4.9 225.1 -
6.51 - 163.47
0;(MPa) | Le.Gs.90.1/2 | My.Sc.90.1/2
y=0° 239 194.03 -
3 - 233.12

Table 3-4: Results of single-stage triaxial compression tests on Le.Gs and My.Sc

From the triaxial tests, peak and residual strength values were obtained. The multi-stage

triaxial test has the advantage of obtaining several peak and residual strength values from a

single specimen under different confining pressures.

300 300 300
—5MPa
250 - 250 250 -
)
£ 200 1 200 - 200 - — 10MPa
£
§ 150 150 150 — 15 MPa
<§ 100 100 100 | 20 MPa
|
50 - 50 - 50 -
—25MPa
04 ‘ ‘ 0 : : 0 ‘
0 00025 0.005 00075 -0.015 -0.01  -0.005 0 -0.015 -0.01 -0.005 0.005
Axial strain (mm/mm) Lateral strain (mm/mm) Volume strain (mm/mm)
Figure 3-4: Results of multi-stage tests on Le.Gs.3a.90.3/3 samples.
o, o, (MPa)
My.Se.3a. | My.Sc.3a. | My.Sc.3a. | Le.Sc.3a. | Le.Sc.3a. | Le.Sc.3a.
(MPa) 90.1/3 90.2/3 90.3/3 90.1/3 90.2/3 90.3/3
v =90° 5 253 241 253 151 98 215
10 278 219 149 160 246 235
15 284 206 207 174 268 252
20 261 233 140 189 287 268
25 273 276 321 202 297 284

Table 3-5: Results of multi-stage triaxial compression tests on Le.Gs and My.Sc



3.5 Uniaxial and triaxial compression tests 75

The failure envelopes for the Mohr-Coulomb- and Hoek-Brown-failure criteria deduced

from the multi-stage triaxial compression tests are presented in Figure 3-5 & 3-6.

300 ..... R
250
=
= :
= :
= 150 : 1507 ¥
R : :
= : & 5
5 100 : S 100 :
= : 7 :
= : o] :
= : -o'; :
S0t SI E 50t .
g
G :
0 50 0 50 100 150 200 250 300
Minor principal stress (MPa) Normal stress (MPa)

Figure 3-5: Results of multi-stage triaxial compression tests on Le.Gs.3a.90 samples

Major principal stress (MPa)

Shear stress (MPa)

0 50 0 50 100 150 200 250 300 350
Minor principal stress (MPa) Normal stress (MPa)

Figure 3-6: Results of multi-stage triaxial compression tests on My.Sc.3a.90
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3.6 Brazilian tensile strength tests

3.6.1 Test apparatus

The rock mechanics test system MTS 20/M (Figure 3-7) was employed for the indirect
tensile tests. MTS 20/M is a computer servo-controlled machine with a maximum load
capacity of £100 kN and an accuracy of 0.01%. The TestWorks-4-System-Software was
used to conduct computer controlled tests. Tests on stress or strain control in tension or in
compression could be performed. The load is measured by the load cell, the displacement
by a linear variable differential transformer (LVDT) and the strain by an extensometer with
an accuracy of up to 0.0002%. The discs with an unchanged loading rate of 200 N/sec,

were loaded up to failure.

ISRM [5] suggests that the load be applied via two steel loading jaws in contact with a disc-
shaped specimen, the radius of the jaws 1.5 times the specimen radius and that the disc

loading jaw contact be a finite arc rather than a single point.

[tm

Figure 3-7: Loading jaws of rock mechanics test system MTS 20/M .

®) The pictures were taken in the Rock Mechanics Laboratories, Geotechnical Institute, TU Bergakademie

Freiberg.
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3.6.2 Laboratory

test results

3.6.2.1 Postaer Sandstone (FG.Ss): (97 tests)

Tensile strength of the FG.Ss samples (MPa)

Sample B=0° | B=15° | PB=30° | P=45° | B=60° | P=75° | B=90°

3.232 3.486 3.819 - 3.563 3.720 | 3.025

3.338 3.621 4.030 | 2.750 3.580 | 3.830 | 3.204

FG.Ss.0.0-90 3387 | 3.720 | 4.242 3.074 3.871 4.065 3.536

3.741 4.181 4.269 3.595 3910 | 4.107 | 3.578

3.952 | 4208 | 4.289 3.842 | 4482 | 4487 | 3.610

3.154 - 3.100 - 3.085 - 1.769

FG.Ss.15.0-90 3.448 - 3.255 - 3.554 - 3.849

3.749 - 3.941 - 3.557 - 4.126

3.031 - 2.907 - 3.251 - 2.945

FG.S$5.30.0-90 3.519 - 3.333 - 3.425 - 3.461

3.589 - 3.397 - 3.488 - 3.693

3.161 - 2.908 - 3.583 - 3.117

FG.S5.45.0-90 3.487 - 3.341 - 3.591 - 3.169

3.765 - 4.048 - 3.621 - 3.377

2.774 - 2.738 - 2.674 - 2.852

FG.Ss.60.0-90 3.199 - 3.546 - 3.208 - 3.400

3.787 - 3.768 - - - 3.416

3.085 - 3.084 - 2.137 - 3.141

FG.Ss.75.0-90 3.251 - 3.197 - 3.178 - 3.245

3.689 - 3.678 - 3.693 - 3.747

FG.Ss.90 3.820 - 3.820 - 3.820 - 3.820

Table 3-6: Results of Brazilian tensile strength test on FG.Ss
Average tensile strength of the FG.Ss samples (MPa)
y=0° y=15° v =30° vy =45° v = 60° y=75° | y=90°

B=0° 3.489 3.450 3.379 3.471 3.253 3.850 3.820
B=15° 3.759 - - - - -

B =30° 4.136 3.521 3.365 3.694 3.142 3.437 3.820
B =45° 3.396 - - - - -

B =60° 3.781 3.399 3.388 3.599 2.941 3.003 3.820
B=75° 4.065 - - - - -

B =90° 3.391 3.987 3.577 3.247 3.408 3.193 3.820

Table 3-7: Average results of Brazilian tensile strength test on FG.Ss
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Figure 3-8: Average tensile strength results of FG.Ss samples as functions of foliation-loading

direction (,B ) and orientation angle (g//)
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Figure 3-9: Tensile strength results of FG.Ss samples as functions of foliation-loading direction
(ﬂ ) and orientation angle (!//) with minimum and maximum values; green: Min-Max-Ranges.
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Figure 3-11: Tensile strength results of FG.Ss samples as functions of foliation-loading direction
(ﬂ ) and orientation angle (l//) with regression surface deduced from multiple regression analysis

and determined by coefficient of multiple determination.



80 Chapter 3. Laboratory tests

3.6.2.2 Postaer Sandstone (FG.Gs): (126 tests)

Tensile strength of the FG.Gs samples (MPa)
Sample p=0° p=15° p=30° p=45° B=60° p=75° B=90°
5.556 5.413 6.804 7.734 7.666 5.441 13.735
FG.Gs.0.0-90 5.939 5.973 7.230 8.236 7.908 10.416 15.038
6.566 6.019 7.768 8.343 8.259 10.757 16.463
6.764 7.070 8.479 8.839 9.434 11.623 16.751
6.106 5.682 8.290 8.441 - 16.540
FG.Gs.15.0-90 10.020 7.192 9.104 8.572 - 16.687
11.403 8.530 9.944 8.680 - 16.842
- 8.760 10.183 10.394 - 18.550
7.112 4.196 7.568 9.702 - 11.234
FG.Gs.30.0-90 8.195 5.233 7.605 11.341 - 13.625
8.650 5.852 9.558 11.444 - 14.027
9.061 13.627 11.638 12.502 - 14.948
11.270 12.476 12.062 12.062 - 14.239
FG.Gs.45.0-90 13.730 15.008 13.366 13.006 - 14.843
14.403 - 16.271 14.117 - 15.373
14.730 - - 15.061 - 16.448
16.328 8.074 15.739 13.278 - 14.283
FG.Gs.60.0-90 16.558 10.046 15.818 13.785 - 14.613
16.563 15.027 17.057 15.050 - 14.923
17.631 15.086 - 15.289 - 15.357
12.574 15.402 13.466 14.960 - 12.661
FG.Gs.75.0-90 13.733 16.537 14.518 15.734 - 14.835
14.235 16.593 16.277 16.979 - 15.172
17.114 17.662 16.533 18.193 - 16.446
FG.Gs.90 18.994 19.836 | 20.605
Table 3-8: Results of Brazilian tensile strength tests on FG.Gs
Average tensile strength of the FG.Gs samples (MPa)
y=0° y=15° v =30° y =45° v = 60° vy =75° v =90°
B=0° 6.206 9.176 8.635 14.288 16.483 13.514 19.812
B=15° 5.802 - - - - - 19.812
B=30° 7.768 8.161 5.094 13.742 12.058 16.548 19.812
B=45° 8.288 9.743 8.244 13.9 16.205 15.199 19.812
B =60° 7.944 8.564 11.762 13.561 14.35 16.466 19.812
B="75° 10.416 - - - - - 19.812
B=90° 16.751 16.69 14.2 14.818 14.794 15.484 19.812

Table 3-9: Average results of Brazilian tensile strength test on FG.Gs
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Figure 3-12: Average tensile strength results of FG.Gs samples as functions of foliation-loading

direction (,B ) and orientation angle (I,V)
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Figure 3-13: Tensile strength results of FG.Gs samples as functions of foliation-loading direction
(ﬂ ) and orientation angle (l//) with minimum and maximum values; green: Min-Max-Ranges.
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Figure 3-15: Tensile strength results of FG.Gs samples as functions of foliation-loading direction
(ﬂ ) and orientation angle (l// ) with regression surface deduced from multiple regression analysis

and determined by coefficient of multiple determination.
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3.6.2.3 Leubsdorfer Gneiss (Le.Gs): (160 tests)

Tensile strength of the Le.Gs samples (MPa)
Sample p=0° p=15° B=30° p=45° B=60° p=75° B=90°
7.686 7.845 8.827 11.500 12.835 14.312 12.830
Le.Gs.0.0-90 8.608 8.864 9.306 11.807 13.048 16.167 18.745
9.035 9.219 10.145 12.674 14.221 16.615 19.323
9.345 10.025 10.761 - 14.450 17.425 19.739
7.992 6.269 8.637 12.835 9.870 13.878 16.186
Le.Gs.15.0-90 8.453 9.289 9.452 13.021 13.703 16.352 16.611
8.578 9.338 10.337 13.211 14.170 16.450 16.766
10.357 10.356 11.609 - 14.298 17.103 19.972
11.706 11.501 10.311 - 15.263 7.992 16.271
Le.Gs.30.0-90 12.799 12.089 13.781 12.835 16.672 8.453 17.096
13.452 12.811 13.900 13.021 18.110 8.578 17.102
14.207 14.065 14.998 13.211 18.205 10.357 17.266
13.918 14.850 14.871 17.212 15.244 16.256 15.907
Le.Gs.45.0-90 16.232 16.745 15.539 17.219 15.433 16.681 17.129
16.494 17.010 16.899 17.322 17.295 17.675 17.136
20.693 17.095 17.414 - 17.537 18.299 18.266
11.667 4.060 14.673 - 16.419 15.892 18.421
Le.Gs.60.0-90 16.921 9.478 16917 17.251 17.850 17.472 18.567
18.599 16.886 16.986 | 20.754 19.634 17.916 18.798
19.580 19.117 18.138 21.239 20.595 18.299 20.155
20.393 22.191 14.623 21.522 12.951 15.559 15.951
Le.Gs.75.0-90 | 27503 | 22206 | 17.155 | 23.665 | 19.491 | 21.581 | 16.384
23.421 24.585 22.533 23.746 22.086 | 22.370 18.968
Le.Gs.90 16.750 18.328 22.530 | 24.653
Table 3-10: Results of Brazilian tensile strength test on Le.Gs
Average tensile strength of the Le.Gs samples (MPa)
y=0° y=15° v =30° v =45° v = 60° vy =75° v =90°
B=0° 8.669 8.845 13.041 16.834 16.692 22.106 20.565
B=15° 8.988 8.813 12.617 16.425 12.385 22.994 20.565
B =30° 9.760 10.009 13.247 16.181 16.678 18.104 20.565
B =45° 11.994 13.023 13.023 17.251 19.748 22.978 20.565
B =60° 13.638 13.010 17.062 16.377 18.625 18.176 20.565
B=75° 16.130 15.946 8.845 17.228 17.395 19.837 20.565
B =90° 17.659 17.384 16.934 17.110 18.986 17.101 20.565

Table 3-11: Average results of Brazilian tensile strength test on Le.Gs
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Figure 3-16: Average tensile strength results of Le.Gs samples as functions of foliation-loading

direction (,B ) and orientation angle (I,V)
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Figure 3-17: Tensile strength results of Le.Gs samples as functions of foliation-loading direction
(ﬂ ) and orientation angle (W ) with minimum and maximum values; green: Min-Max-Ranges.
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Figure 3-19: Tensile strength results of Le.Gs samples as functions of loading direction (,B ) and

orientation angle (l//) with regression surface deduced from multiple regression analysis and

determined by coefficient of multiple determination.
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3.6.2.4 Mayen Mosel-Slate (My.Sc): (172 tests)

Tensile strength of the My.Sc samples (MPa)

Sample p=0° p=15° B=30° p=45° p=60° p=75° B=90°
2.385 2.595 2.375 3.390 3.389 8.106 14.878

My.S¢.0.0-90 3.143 3.225 3.670 5.631 3.670 8.925 15.013
5.353 4.581 4.579 5.972 3.846 9.419 15.312

5.985 4.782 4.975 6.582 7.811 10.189 17.022

5.170 3.002 3.368 - 7.210 6.226 7.878

My.Sc.15.0-90 5.254 4.281 3.731 5.334 7.449 7.091 8.583
6.318 5.562 4.562 6.005 7.953 9.647 11.084

6.940 5.817 6.287 6.130 8.363 10.204 11.739

6.443 6.930 6.284 - 5.028 4.800 7.928

My.Sc.30.0-90 6.481 7.069 6.523 7.492 7.545 5.822 10.627
8.726 8.212 8.103 8.528 7.909 7.854 11.302

9.397 8.426 8.297 8.729 8.151 9.487 12.395

9.892 8.298 8.049 - 8.244 7.518 9.913

My.Sc.45.0-90 11.013 8.639 8.158 6.330 8.518 9.301 10.003
11.092 8.763 8.623 8.471 8.733 9.846 12.023

11.338 12.446 10.585 10.058 9.043 10.150 12.036

13.287 12.088 11.571 - 5.465 10.470 8.100

My.Sc.60.0-90 13.313 12.145 11.692 9.104 8.965 10.950 10.184
14.807 14.469 13.897 11.676 11.407 11.394 12.176

18.367 18.240 17.007 12.316 11.549 11.531 12.226

13.091 17.499 17.677 - 12.389 17.499 13.301
My.Sc.75.0-90 20.469 | 21.217 | 22.679 18.509 12.506 | 21.217 15.147
21.781 21900 | 23.977 18.895 13.119 | 21.900 19.916
23.348 | 23.026 | 24.166 19.600 19.730 | 23.026 | 22.114
My.Sc.90 18.164 18.759 19.454 19.869 | 21.195 22.124 | 23.446

Table 3-12: Results of Brazilian tensile strength test on My.Sc
Average tensile strength of all My.Sc specimens (MPa)

y=0° y=15° v =30° y =45° v = 60° v =75° v =90°

B=0° 4.216 5.921 7.762 10.834 14.943 19.672 21.721
B=15° 3.796 4.666 7.659 9.537 14.236 20.911 21.721
B=30° 3.900 4.487 7.302 8.854 13.542 22.125 21.721
B =45° 5.394 5.823 8.250 8.286 11.032 19.001 21.721
B =60° 4.679 7.744 7.158 8.634 9.347 14.436 21.721
B="75° 9.160 8.292 6.991 9.204 11.086 20.911 21.721
B =90° 15.556 9.821 10.563 10.994 10.671 17.619 21.721

Table 3-13: Average results of Brazilian tensile strength test on My.Sc
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Figure 3-20: Average tensile strength results of My.Sc samples as functions of foliation-loading

direction (,B ) and orientation angle (l//)
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Figure 3-23: Tensile strength results of My.Sc samples as functions of foliation-loading direction
(,B ) and orientation angle (l// ) with regression surface deduced from multiple regression analysis

and determined by coefficient of multiple determination.
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3.6.3 Interpretation of the test results

3.6.3.1 Interpretation of tensile strength values

Variant Statistics

Rock FG.Ss FG.Gs Le.Gs My.Sc

Count 97 126 160 172
Median 3.546 12.833 16.244 9.408
Standard Deviation 0.458 3.961 4.231 5.692
Variance 0.210 15.693 17.905 32.401
Standard Error 0.046 0.353 0.335 0.434
Coefficient of variation 13 % 31 % 26 % 61 %

Table 3-14: Total tensile strength variant statistic values of the rock materials

The FG.Ss material has revealed relatively low standard deviations and consequently low
coefficients of variations (below 13% according to Table 3-14). The fracture pattern of all
FG.Ss samples was more or less identical and is characterized by a central tensile crack
independent on the sample orientation (see Appendix 3.1). Therefore, this Sandstone can be
considered as quasi-isotropic and orientation of sample in relation to loading jaws is

practically unimportant.

1\ B FG.Ss FG.Gs Le.Gs My.Sc

v 1.00000 -0.05336 -0.27708 0.69157 0.60162 0.79195

B -0.05336 1.00000 -0.02948 0.28078 0.28568 0.04580
FG.Ss -0.27708 -0.02948 1.00000 -0.09302 0.01118 0.01959

FG.Gs 0.69157 0.28078 -0.09302 1.00000 0.73853 0.75364
Le.Gs 0.60162 0.28568 0.01118 0.73853 1.00000 0.66316
My.Sc 0.79195 0.04580 0.01959 0.75364 0.66316 1.00000

Table 3-15: Tensile strength correlation coefficients of the rock materials

The correlation results given in Table 3-15 indicates that influence of the orientation angle
v is stronger than the loading direction 3 on the tensile strength in all Gneisses and Slate,
especially the correlation coefficient is 0.69157 and 0.28078 for FG.Gs Gneiss, 0.60162
and 0.28568 for Le.Gs Gneiss, 0.79195 and 0.04580 for My.Sc Slate with respect to y and

B.
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The Student’s #-distribution was used to determine the mean value and standard deviation

for each group of specimen with either the same orientation angles or foliation-loading

angle (Table 3-16 & 3-17).

Statistics of tensile strength values as a function of orientation angle (y)

Rock FG.Ss FG.Gs Le.Gs My.Sc

Orient. | N - Std. [Coef.| N - Std. [Coef.| N - Std. [Coef.| N - Std. [Coef.
Angle [sample e Deyv. | Var. [sample MIE Deyv. | Var. |sample| MIE Deyv. | Var. [sample il Deyv. | Var.
y=0° | 34 | 3.72| 0.31| 8%]| 28 [9.03| 3.72| 41 %| 27 |12.41|3.55 |29 %| 27 | 6.67|4.33 |65 %
y=15°| 12 | 3.59| 0.27| 8 %| 19 [10.47| 3.53|34 %| 27 |12.43|3.40 |27 %| 27 | 6.68|1.99 |30 %
y=30°| 12 | 3.43| 0.10] 3%]| 20 [9.59| 3.50| 36 %| 27 [13.54]|2.81 |21 %| 27 |7.96|1.23|15%
y=45°| 12 | 3.50| 0.19] 5% 17 |14.06| 0.50| 4%| 27 |16.77{0.44 |3 % | 27 [9.48|1.06 |11 %
y=60°| 11 | 3.19| 020 6% 19 |14.78| 1.77 12 %| 27 |17.22{2.43 |14 %| 27 |12.12|2.10 |17 %
y=75°| 12 | 3.37| 0.37| 11 %]| 20 [15.44| 1.23| 8 %| 21 |20.19]2.50 [12%| 27 |19.24|2.58 |13 %
y=90°| 4 |3.82| - - 3 |19.81| - - 4 120.57| - - 10 |21.72| - -
Table 3-16: Statistics of tensile strength values as a function of orientation angle ()

Statistics of tensile strength values as a function of orientation angle (3)

Rock FG.Ss FG.Gs Le.Gs My.Sc

Orient. | N - Std. [Coef.| N - Std. [Coef.| N - Std. |Coef.| N - Std. [Coef.
angle |[sample Il Deyv. | Var. [sample ez Deyv. | Var. |sample| ez Deyv. | Var. [sample e Deyv. | Var.
B=0° | 34 |3.53]022]6% | 28 |12.59|4.81 |38 %| 27 |[15.25/5.31|35%]| 27 |12.15]/6.82 {56 %
B=15°| 12 |3.79(0.04 | 1% | 19 |12.81{9.91 |77 %| 27 |14.68|5.52|38 %| 27 |11.79|7.36 |62 %
B=30°| 12 |3.59(0.33 9% | 20 |11.88|5.24 |44 %| 27 (14.93/4.09 |27 %| 27 |11.7|7.67 |66 %
B=45°| 12 |3.61|0.30| 8% | 17 |13.06|4.43 |34 %| 27 (16.94|4.33 |26 %| 27 |11.36|6.47 |57 %
B=60°| 11 [3.42]|0.35|10%| 19 |13.21|4.22 |32 %| 27 |16.78|2.71 |16 %| 27 [10.53|5.76 |55 %
B=75°| 12 [3.94|0.17 | 4% | 20 |15.11]|6.64 |44 %| 21 |16.56|3.83 |23 %| 27 [12.48]6.16 |49 %
B=90°| 4 |352{030{9% | 3 |16.08/1.91|12%| 4 |(17.96/134|7% | 10 |13.85/4.55(33 %

Table 3-17: Statistics of tensile strength values as a function of foliation-loading angle (/)
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Based on the data given in Table 3-16 & 3-17 box plots and Gaussian distribution plots

were drawn up (Figure 3-24 to Figure 3-31).
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Figure 3-24: Box and Gaussian distribution plots of FG.Ss samples as a function of orientation
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Figure 3-27: Box and Gaussian distribution plots of FG.Gs samples as a function of foliation-
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Figure 3-31: Box and Gaussian distribution plots of My.Sc samples as a function of foliation-

loading angles

Compared to the Sandstone, the Gneiss and Slate materials showed much higher
coefficients of variations with values of up to 77%. This indicates that the orientation of the
sample in relation to the loading direction is very sensitive for the measured peak strength.
As the fracture patterns reveal (see Appendices 3.2, 3.3 and 3.4), the crack development

follows, to a large degree, the weak anisotropy planes (bedding planes, schistosity planes).
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Hence, a material characterized by a high degree of anisotropy will have the orientation of
the sample influencing the fracture pattern (fracture type, fracture orientation) in relation to

the loading direction and consequently the measured peak load.

3.6.3.2 Interpretation of fracture pattern

The digital pictures shown in Figure 3-10, 3-14, 3-18 & 3-22; and Appendices 3.1, 3.2, 3.3,
& 3.4 document observations of the failure pattern after the peak strength had been reached
during the Brazilian tests. Typical of the FG.Ss Sandstone is a distinct pattern of fracture
which splits the sample into two. Sometimes, wedges are formed immediately under the
loading jaws. In the FG.Gs and Le.Gs Gneisses in contrast, and especially in the My.Sc
Slate, the fracture pattern is strongly influenced by the orientation of the weak planes
(anisotropy). In many cases, the fracture pattern is characterized by sub-parallel crack along

the existing weak planes (like in step faults or staircase-shaped fractures).

A high-speed camera was used to try to capture the crack development. However, the
fracture process was so fast, that even a camera with a speed of 10.000 pictures/minute
could not catch it. It was thus impossible to find out where the crack first appeared and how

it developed with time.

3.6.3.3 Compilation of material data set

The data in Table 3-18 were compiled based on the whole set of mechanical rock properties
determined above, relevant literature material on similar rock types and lab tests carried out

in previous projects.
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Mechanical rock parameter Set of material parameters ‘V°"®
Gneiss Slate

Young’s modulus £ (GPa) 45.0-54.7 35.0-47.0
Poisson’s ratio z (-) 03-04 0.3-0.45
Cohesion matrix C,, (MPa) 17.9-31.5 10.3-32.0
Cohesion joint C; (MPa) 5.0-19.0 50-13.2
Friction matrix ¢, (°) 27.6 —54.8 43.7-49.0
Friction joint ¢; (°) 35.7-43.2 22.6-44.4
Cohesion residual matrix C,.,, (MPa) 1.0-13.7 4.84-13.7
Cohesion residual joint C,.,.; (MPa) 1.0-10.0 484-93
Friction residual matrix @ jem (°) 20.0-32.4 21.2-31.0
Friction residual joint ¢ s (°) 22.0-35.0 21.0-345

Table 3-18: Summary of material parameters from lab and reference results [2, 102, 103].

3.7 Conclusion

The laboratory tests have shown that the degree of anisotropy has a strong influence on the
measured peak strength obtained in the Brazilian test. Whereas the orientation of the
sample in relation to the loading direction is unimportant for nearly isotropic materials,
strongly anisotropic materials, like Gneiss and Slate reveal a strong dependence of the peak
strength on the sample orientation relative to the loading direction. Also, isotropic materials
show distinct tensile cracks along the centerline in contrast to the latter, where the fracture

pattern is more complicated and composed of cracks along the weak planes and the matrix.

Several different laboratory tests were done in order to enable the determination of a set of
material parameters for a ubiquitous joint model, this comprising strength data for the

matrix and the weak planes as well as for the orientation of the latter.

@ Walter, K. and Konietzky, H. Bericht der Standsicherheitsberechnungen/Dimensionierung fiir das
Dachschieferbergwerk Katzenberg. 2009, Technische Universitidt Bergakademie Freiberg.

® Hoek, E., ed. Practical rock engineering. 2000, Rocscience

©® Goodman, R. E., ed. Rock Mechanics. 1989, John Wiley & Sons



Chapter 4

Numerical simulation of isotropic materials -

Comparison with analytical solutions

4.1 Introduction

For homogeneous and isotropic elastic materials, a handful of comprehensive analytical or
semi-analytical solutions exist (see Chapters 1 & 2). Some of them deal in depth with the
influence of Poisson’s ratio, the thickness of the specimen and the loading arc under which

the loading jaws act.

Some of these solutions are used here for comparison with the numerical 3-dimensional
simulations. In the forefront of this comparison was the investigation of the different
numerical meshes. The numerical simulation results were then compared with the lab

results of the Postaer Sandstone.

4.2 Numerical simulation of isotropic materials

4.2.1 FLAC® simulation program

FLAC’P - Fast Lagrangian Analysis of Continua - is a 3-D explicit finite-difference code
for engineering mechanical simulations [6]. The explicit, Lagrangian calculation scheme
and the mixed-discretization zoning technique used in FLAC" ensure that plastic collapse

and flow are modeled very accurately.
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4.2.2

Simulation procedure

A comprehensive parameter study was done using the analytical solutions of Hondros [18]

and Wijk [35] as well as the 3-dimensional numerical model developed by them.

Brazilian tests were carried out with different thickness-to-diameter ratios, different

material parameters and different loading angles (2a) but identical initial and boundary

conditions. The sample diameter and elastic modulus were also fixed and the same uniform

loading, i.e., 1000 N/mm disc thickness, applied. The following aspects were investigated:

>

4.2.3

Mesh structure: three different mesh types - radial, orthogonal and tetrahedral
grids - were investigated (Figure 4-1). In the middle section, where the load acts and

most of the fracturing takes place, the mesh structure was refined.

Thickness-to-diameter ratio (L/D): in order to investigate the slenderness,

Brazilian test samples with a thickness-to-diameter ratio equal to Y4, %2, and )4 and

a disc diameter of D=50 mm were designed and investigated.

Site of section under investigation: the stress state inside the specimen was

investigated along the edge-, quarter- and middle-section.

Influence of Poisson’s ratio: the influence of three different Poisson’s ratios (u =

0.15, 0.25 and 0.35) on the state of the stress was investigated at constant Young’s

modulus.

Loading angle (2¢) : different loading angles (2a = 1°, 5°, 10°, 15°, 20° and 25°)

were selected to calculate the internal stress in the sample.

Numerical model setup

Three models with very different mesh techniques were designed using FLAC® (Figure

4-1). All three meshes have a fine mesh pattern on the surface where the load was applied.
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Figure 4-1: 3D models showing mesh structure (thickness-to-diameter ratio L/D = %)

4.2.4 Influence of mesh type

As is well known, the meshing influences the results of numerical simulations. Figure 4-2
shows the stress distribution of the horizontal stress component along the vertical center

line for different loading angles but otherwise identical conditions.
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Figure 4-2: Influence of mesh type on oy along the center with = 0.25 and thickness-to-diameter
ratio L/D ="

The radial mesh (see Figure 4-1a & 4-2a) is relatively coarse and not optimized in terms of

mesh refinement and areas of high stress gradients. Also the zones are not adjusted to the
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stress profiles of interest, e.g. the vertical center line. Therefore, the obtained stress profiles,

as shown in Figure 4-2a, show a rather wave-like or step-wise curve progression.

The orthogonal mesh (see Figure 4-1b & 4-2b) is generated only by brick elements so that
the outer boundary is somewhat jagged. A mesh refinement done on the central part of the
model resulted in a good stress profile, except around the boundary areas where the jagged

surface yielded slightly wrong results.

The tetrahedral mesh (see Figure 4-1c & 4-2c¢) has the highest resolution and most
appropriate mesh structure for the underlying problem. All the elements inside of the
specimen are orthogonal, tetrahedral elements used only at the boundary. A mesh
refinement at the center of the model was also carried out here, the element boundaries
parallel and perpendicular to the Cartesian axes. Compared to the radial and orthogonal
mesh, the tetrahedral mesh revealed the best performance and was therefore used in all the
subsequent studies. Further results on the tetrahedral model are presented in Appendices 4.1

&4.2.
4.2.5 Influence of specimen thickness

Up until now, nearly all analytical, numerical and lab test results have not considered the
effect of thickness. In fact the test specimens are either thin discs or cylinders. ASTM [10]
stipulates that the diameter of the specimen be at least 10 times larger than the largest
mineral grain constituent and that the thickness-to-diameter ratio (L/D) lie between 0.2 and
0.75. According to ISRM [5] and DGGT [12] the thickness should be approximately equal

to the radius.

The influence of specimen thickness on the tensile stress and the strength, was investigated
on the tetrahedral model using different loading angles (2a) and thickness-to-diameter
ratios. The results were normalized, with the tensile strength calculated using the analytical

solutions given in Eq. (1.2) at a constant load of P = 10 kN (see Table 4-1).
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L/D = Y4 L/D =% LD= Y

Edge | Quar. [Middle| Dev. | Edge | Quar. Middle| Dev. | Edge | Quar. Middle| Dev.

200
section|section|section| (max/ |section|section|section|(max/ |section|section|section|(max/

min) min) min)
1° | 1.000|0.995|0.973 | 1.028 | 1.000 | 0.920 | 0.895 | 1.117 | 1.000 | 0.867 | 0.873 | 1.153
5° [5.650|5.6115.499 |1.027 | 5.650 | 5.196 | 5.051 | 1.119 | 5.653 | 4.890 | 4.924 | 1.156
10° 110.623{10.499(10.340| 1.027 {10.628| 9.758 | 9.471 | 1.122 {10.645] 9.169 | 9.229 | 1.161
15° 116.236(15.970(15.796| 1.028 [16.270{14.893|14.429| 1.128 {16.339(13.970{14.052| 1.170
20° |21.826(21.392{21.200| 1.030 {21.898{20.000{19.279| 1.136 [{22.200{18.638|18.650| 1.191
25° [24.788|24.255|25.566| 1.054 [24.975|22.717|21.941| 1.138 [25.180{21.267|21.395| 1.184

Table 4-1: Normalized tensile stress values at the center of the disc as function of thickness-to-

diameter ratio and loading angles (2a) with p=0.25.
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Figure 4-3: Deviation of tensile stress as function of thickness to diameter ratio and load angle (2a)

in the tetrahedral model.

The influence of thickness-to-diameter ratio on the tensile stress is shown in Table 4-1 and
Figure 4-3 with the tensile stress values normalized and the deviations between maximum

and minimum tensile stresses compared. The results make some differences as in the

following cases:

» For L/D = Y, the tensile stresses obtained for the different sections are nearly

identical, the amplitude Omax/Omin (Table 4-1) ranging from 1.028 to 1.054.
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However, in Figure 4-3, this difference increases steeply with a large loading angle

(20, > 20°).

» For L/D = ', an indication that the tensile stresses at the edge of the section

increase can already clearly be seen. The amplitude Gpax/Omin (Table 4-1) ranges

from 1.117 to 1.138.

» For L/D =){, the increase in tensile stress at the edges is even more pronounced.

The amplitude Gmax/Omin (Table 4-1) ranges from 1.153 to 1.191, a nearly 20%

increase compared to the stress at the center.

» Figure 4-3 shows the significance of the influence of thickness of a specimen. The
increase in the L/D ratio tends to raise the difference 12.5% in tensile strength on

the plane section located within the sample.

Although a very small thickness is advantageous from a theoretical point of view, in order
to avoid eccentric loading, misalignment and buckling, it is suggested that the upper limit

of L/D be less than }{ and the lower limit not smaller than about Y. Such considerations are

governed more by reasons of practicability and expediency like material availability,
uniform loading across the thickness of the specimen and size and capacity of the test

machine.
4.2.6 Influence of Poisson’s ratio

Based on the assumption of the rock materials being linearly elastic and homogeneous, the
influence of Poisson’s ratio was investigated. The analytical 2D solution after Hondros [18]
was used parallel to adequate numerical simulations. A Young’s modulus of 8.5 GPa was

chosen with reference to the lab results of the numerical calculations.
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Figure 4-4, 4-5 & 4-6 illustrate that, firstly, when Poisson’s ratio decreases, the influence of
Poisson’s ratio and loading angle on the stress components also increases. Secondly, the
analytical and numerical solutions show qualitatively the same behavior and that the

quantitative differences between analytical and numerical solutions are quite small.

4.2.7 Influence of loading angle (2a)

A more detailed analysis of the influence of loading angle on the tensile stress was done
using the tetrahedral model (Figure 4-7, 4-8 & 4-9). The results indicate that the loading
angle (2ar) can play a significant role in the Brazilian test because the peak tensile stress
does not develop any further at the center under certain conditions but more at the
periphery of the disc. This can happen in combinations of very large loading angles and

small Poisson’s ratios as documented by the Figure 4-7, 4-8 & 4-9.
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4.2.8 Comparison of 3D analytical and numerical results

Wijk’s formula [35] is the only 3-dimensional quasi-analytical solution available today for
the Brazilian test. As Figure 4-10 reveals, the analytical solution is in close agreement with
the numerical solutions and consequently, also with the 2-dimensional analytical solutions
for a broad range of loading angles and Poisson’s ratios in relation to the middle section.
For small loading angles and moving away from the middle section towards the sample

edge, the analytical solutions give very questionable (even wrong) results.
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4.2.9 Influence of stress concentration at the loading jaws

Stress concentrations at the loading jaws are a problem in Brazilian tests [96]. The classical
analytical solutions ignore this effect though. In fact, the specimen can be destroyed in the
initial stages of stress concentration under the loading areas instead of at its center where
the tensile stress is nearly uniform (see also Figure 4-4 to Figure 4-10. This can then make

it impossible to evaluate the Brazilian test in the classical way.

4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss)

The numerical simulations are based on the laboratory results of the Postaer Sandstone
(FG.Ss), which is taken as a homogeneous material (see Chapter 3). Assuming that the
specimen is a continuous, isotropic and homogeneous elastic body, the stress distribution at
failure is determined from the model at the stage where the simulated load is close to the
failure load measured in the laboratory (Table 4-2). The specimen models an elastic

1sotropic solid with the following characteristics: E = 8.5 GPa; u=0.25.

Parameter Wileasted Sl aien Explanations
Values Values
Force (N) 7181 7111 () average lab results as in Eq.
Tensile strength (MPa) 35350 | 30-360 |12
@ distribution from center to edge
Axial strain (mm/mm) 1.72E-4 1.70E-4 @ )
approximate values
Length of loading arc (mm) 119 13
Loading angle 2« (°) 27°0 32°

Table 4-2: Laboratory and numerical simulation results of the Brazilian test on FG.Ss
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(a) o,(MPa) in plane XZ (b) o, (MPa) in plane XZ
Figure 4-11: Numerical simulation of tensile (a) and compressive (b) stress distributions in a

specimen with a thickness-to-diameter ratio L/D = 'z along the edge section.

(a) o, (MPa) in 3-D (b) o, (MPa) in 3-D

Figure 4-12: Numerical simulation of tensile (a) and compressive (b) stress distributions in a

specimen with a thickness-to-diameter ratio L/D = Y.

The numerical simulation results are in close agreement with those of the lab tests. Figure
4-11 & 4-12 show the tensile and compressive stresses o, and o, immediately before the
point of failure is reached. At the center of the disc, the tensile stress reaches o = 3.0 MPa,

which is somewhat (about 15%) lower than the average lab result of 3.535 MPa. At the

edge however, the tensile stress o reaches 3.6 MPa, which is slightly higher than the
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average lab value of 3.535 MPa. The classical analytical 2D solutions assume that the
fracture starts at the center, where the highest tensile stress is expected. The numerical
model in contrast predicts the highest tensile stresses at the edges. Thereby the initiation of

the fracture process in the end sections of the disc.

The stress component o, is always compressive and shows a significant concentration

under the loading jaws. This can lead, as quite often observed during the lab tests, to shear

failure and inclined fracture close to the loading area.

In general, Figure 4-12 documents that a quite complex 3-dimentional stress state is
produced inside the disc under diametral compressive loading even for a homogeneous

isotropic elastic material.

4.4 Conclusion

» The stress distribution near the center of a disc under diametral loading is quite the

same in both 2D and 3D analytical solutions and 3D numerical simulations.

» The tensile stresses in the edge sections of the disc can be slightly smaller or even
higher than those at the center depending on the parameters (loading angle,

Poisson’s ratio and L/D).

» The loading angle 2ot > 10° is in accordance with the ISRM [5] recommendations;
Fairhurst’s [19] suggestion, 2o = 15° and Hondros [18] use of 2a. = 10° are for

endless specimens.

» The lower and upper limits for the length-to-thickness ratios should be in the range

Ya<L/D< Y

» The specimen can be initially fractured by the stress concentration at the loading
jaws. This means that fracture initiation can be triggered in this region instead of the

center of the disc as usually assumed.

» The formula usually used for calculating the tensile strength is derived from a 2D

analytical elastic solution. It ignores however, the effect of the loading angle (2«x),



4.4 Conclusion 115

the thickness-to-diameter ratio (L/D), the Poisson’s ratio(x) and the stress

concentrations at the loading jaws and may hence disagrees with experimental

results.

The developed and tested 3-dimensional numerical model for the stress and failure
analyses of the Brazilian test seems to be suitable not only for isotropic, but more

generally also for anisotropic and inhomogeneous materials.
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Chapter 5

Numerical simulation of anisotropic materials

- Comparison with laboratory tests

5.1 Introduction

The mechanical behavior of anisotropic rocks under compression and/or tension is
directional [3, 92]. This characteristic is a product of well-defined fabric elements which
may form in the rock as bedding, stratification, layering or foliation. This chapter focuses

on the modeling of Le.Gs Gneiss and My.Sc Slate as transversely isotropic materials.

In Chapter 3, laboratory tests carried out on Le.Gs Gneiss and My.Sc Slate are documented
with deducing the mechanical rock parameters. This chapter also presents the results of
corresponding numerical simulations for those rocks. The results, obtained from both

procedures were compared and then used for interpretations.

A constitutive law which explicitly considers weakness planes in transverse isotropic rocks
is the so-called bilinear strain-hardening/softening ubiquitous-joint FLAC™® model. The
plane of weakness can be created in any desired direction. To enable a direct comparison
with the lab results, seven discrete bedding-plane orientations (y) and loading directions (J3)

each were chosen to cover the full spectrum of potential constellations for the simulations.

5.2 General procedure for simulating the Brazilian test using FLAC™"

FLAC?® [97] is a powerful and globally applied 3-dimensional numerical simulation
method especially developed to solve rock- and soil mechanical problems. The code is
based on the explicit Finite-Difference method and enables simulation of highly non-linear

problems. Figure 5-1 illustrates the simulation procedure used here.



118 Chapter 5. Numerical simulation of anisotropic materials - Comparison ...

Y

|
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Figure 5-1: Solution procedure simulating Brazilian tests on anisotropic materials (after Itasca [97])
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5.2.1 Conceptual model

The conceptual model is based on the experiences gained from the simulation of isotropic
materials as described in detail in Chapter 4. A high resolution tetrahedral mesh, inclusive a
frictional interface, was selected for all the tests and the loading jaw simulations so that the
frictional contact between the loading jaws and the disc could be taken into account in the

load entry area (Figure 5-2).

Figure 5-2: General model for simulating the Brazilian test: disc and upper and lower loading jaws

A tetrahedral mesh with 81.549 gridpoints and 73.584 zones (see also Chapter 4) and a
higher mesh resolution in the center region duplicated the lab tests in a standard model. The
extreme mesh resolution was necessary in order to duly illustrate the locally large stress

gradients and complicated failure patterns.

5.2.2 Boundary Conditions

During the Brazilian test simulations, load was applied by two loading jaws. The force
between the loading jaws and the disc was transmitted via an interface. The load was
generated by applying a constant but reversed velocity to the two loading jaws. In addition,

no displacements were allowed along the perpendicular to loading direction X-Y-plane:

fix x y range x -0.0576 -0.0574 y -0.0251 -0.0249
fix x y range x 0.0576 0.0574 y 0.0251 0.0249
apply zvel @ nvel range z 0.0575 0.0585
apply zvel @ nvell range z -0.0575 -0.0585

The codes apply for all model boundary gridpoints falling between 0.0575 <z < 0.0585 for
the top jaw and -0.0575 <z <-0.0585 for the bottom jaw.
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The interface elements used incorporate automatic contact detectors so that deformation of

the disc due to increase in the loading contact area with increasing load can be considered.

5.2.3 Numerical model set-up

The numerical model set-up mainly considers the orientation of the weakness planes in
relation to the loading direction, this requiring the definition of a corresponding reference
coordinate system. The orientation of the weakness plane here is given by a unit normal
vector in the global x-, y-, z- coordinate system. A local system of reference axes is defined
by the x’-axis pointing downward in the direction of dip, the y’-axis in the plane and 2’
pointing in the direction of the unit normal (n). All the orientation () and foliation-loading

(B) angles have to be transformed into dip (dip) and dip direction (dd) in FLAC’".

The d-s-n-axes form a right-angled co-ordinate system in which:

£ d-s-n The d-s-n axes form a right-handed
local face coordinate system in which:
axes, y
The n-axis is the outward normal
o / to the face.
Xyz (b"a %d The s-axis is parallel to the
projected intersection between the

xy-plane and the face.

The d-axis is the line with the
greatest negative z-component on
the face (i.e., the direction of
steepest descent on the plane).

Figure 5-3: Local axes defined by the dip (d) strike (s) and normal (n) in FLAC’® [97].

(a) dip plane = 150° dd =-10° (b) dip plane = 130° dd =-15° (c) dip plane = 105° dd =-15°

Figure 5-4: An arbitrary orientation of a plane of weakness inside the numerical model.
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5.3 Constitutive model

5.3.1 Choice of constitutive model

FLAC® provides a library of build-in constitutive models. Each model is developed to
represent a specific type of constitutive behavior commonly associated with specific

geologic materials.

The most suitable model for simulating Brazilian tests on anisotropic rocks is the so-called
bilinear strain-softening ubiquitous-joint model. This model enables simulation of both the
softening and hardening of rock matrix materials and the weak planes using preset
variations of the ubiquitous-joint model properties (cohesion, friction, dilation, tensile

strength) as functions of accumulated plastic shear and tensile strain.

For the loading jaws, isotropic linear elastic constitutive laws were applied because the
loading level was far below the failure state or plasticity threshold and linearity could be

assumed.

5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98]

The bilinear strain-hardening/softening ubiquitous-joint model [98] is a generalization of
the ubiquitous-joint model which is an anisotropic plastic model that contains weak planes
of specific orientation embedded in a Mohr-Coulomb solid. In the bilinear model, the
failure envelopes for the matrix and joint planes are a combination of two Mohr-Coulomb
criteria with a tension cut-off that can be hardened or softened according to laid down laws.
A non-associated flow rule is used for the shear-plastic flow and an associated flow rule for

the tensile-plastic flow.

The softening behavior of the matrix and the joint are specified relative to four independent
hardening parameters (two for the matrix and two for the joint) which measure the amount
of plastic shear and tensile strain. In this numerical model, a general failure is first detected
for the step with relevant plastic corrections made, the new stresses analyzed for failure on
the weak plane and then accordingly updated. In this numerical model, general failure is
determined first for the step and relevant plastic corrections made and then the new stresses

analyzed for failure on the weak plane and accordingly updated. The hardening parameters
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are increased where plastic flow had taken place and the cohesion, friction, dilation and

tensile strength parameters adjusted for the matrix and the joint using tables.
Failure Criterion for the Matrix

The matrix failure criterion used in this model is sketched in the principal stress plane (o,

03) in Figure 5-5. (Compressive stresses are negative and by convention, 6; <o, < 63.)

c,/tan ¢,

c/tan 0,

A\

Figure 5-5: FLAC3D bilinear matrix failure criterion [98]

The failure envelope is defined by two Mohr-Coulomb failure criteria f;’ =0 and f' =0
for segments A — B and B — C and a tension failure criterion /' =0 for segment C — D.
The shear failure criterion has the general formula f* = 0. The criterion is characterized by
a cohesion,c,, and a friction angle, @,, for segment A — B, and by a cohesion,c,, and a
friction angle, ¢, , for segment B — C. The tensile failure criterion is specified by means of
the tensile strength, o' (positive value), thus:
f*=0,-0;N,+2c[N, (5.1)
f'=0,-0 (5.2)

where
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N - 1+ sin(g)
? " 1—sin(g)

The tensile cap acts on segment B — C of the shear envelope and, for a material with non-

(5.3)

zero frictional angle ¢, , the maximum value of the tensile strength is given by

t G
™ tang,

(5.4)

Failure Criterion for the Weak Plane

The stresses, corrected for plastic flow in the matrix, are resolved into components parallel
and perpendicular to the weak plane and then tested for ubiquitous-joint failure. The failure

criterion is expressed in relation to the magnitude of the tangential traction component,

T =407 + 0 , and the normal traction component, &, on the weak plane.

A

Figure 5-6: FLAC3D bilinear joint failure criterion [98]

This failure criterion is presented in Figure 5-6 and corresponds to two Mohr-Coulomb

failure criteria: f; =0 for segment A — B, and /> =0 for segments B — C; and a tension
failure criterion /' =0 for segment C — D. Each shear criterion has the general
form f* =0, and is characterized by a cohesion and a friction anglec,, ¢, equal toc,,, ¢,

along segment A — B, andc;,, ¢, along segment B — C. The tensile criterion is specified by

means of the tensile strength, o’ (positive value), thus:



124 Chapter 5. Numerical simulation of anisotropic materials - Comparison ...

f*=t—-0ytang, —c, (5.5)
f'=0y-0} (5.6)
For a weak plane with non-zero frictional angleg, , the maximum value of the tensile

strength is given by

o = (5.7)
m tan g,

5.4 Parameter calibration

Parameter calibration involves adjusting the simulation parameters in such a way as to
match the simulation results with those obtained in the laboratory. Lab results with

statistical variability were used as input parameters.

5.4.1 Material parameters used

The material parameters in FLAC®" are generally categorized into elastic deformation
(Young’s modulus and Poisson’s ratio) and strength (cohesion, friction angle and tensile
strength) properties. The laboratory test program for gneiss and slate paid particular
attention to the foliation in the rocks. In fact, loading was applied parallel and perpendicular
to the planes of weakness (joint planes) in order to determine the strength parameters of the
rock matrix and the planes of weakness. The material parameters described in Chapter 3
were derived from the lab tests conducted by the author with additional values from

literature.
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strength

Figure 5-7: Material parameter calibrating procedure

Based on the calibration procedure in Figure 5-7, the following final input parameters were

used for the bilinear strain-hardening/softening ubiquitous-joint model (Table 5-1):



126 Chapter 5. Numerical simulation of anisotropic materials - Comparison ...

Model Parameters Le.Gs Gneiss Parameters | My.Sc Slate Parameters
global emod = 55.0e9 45.0e9
global ny = 0.33 0.33
Global tens matrix = 23.0e6 21.7e6
Global tens_ joint = 9.5e6 6.5e6
global coh matrix = 38.0e6 32.0e6
global coh joint = 18.0e6 12.5e6
global fric matrix = 46.0 51.0
global fric joint = 43.0 41.0
global tens matrix re = 1.0e6 1.0e6
global tens joint re = 0.5e6 0.5e6
global coh matrix re = 5.0e6 2.5e6
global coh joint re = 2.0e6 1.5e6
global fric matrix re = 33.0 33.0
global fric joint re = 30.0 30.0

Table 5-1: Material parameters (SI units) used in the numerical simulations

5.4.2 Contact between disc and loading jaws

As already described in Chapter 4, the loading angle (2a) plays an important role in the
Brazilian tensile strength tests. During the test, the load is applied by means of loading jaws
and transferred via an interface to the rock disc. This interface creates the link between the
sub-grids in the calculations. The contact plane represents a physical discontinuity between

two different materials (rock and steel).

FLAC’” uses triangular elements for the interface each of which is defined by three nodes
(interface nodes). Each interface node has a representative area associated with it such that
the total area of the entire interface is divided into active interface nodes. Generally,
interface elements are attached to a zone surface. Each quadrilateral zone face is defined by
two triangular interface elements so that interface nodes are automatically created at every
interface element vertex. When another grid surface comes into contact with an interface
element, the contact is detected at the interface node and is characterized by normal and

shear stiffnesses as well as sliding properties (friction).

The fundamental relationship at the contact is defined by the interface node and a zone
surface, also known as the target face. The normal direction of the interface force is
determined by the orientation of the target face. This means, for instance, that the

compressive stresses on the target face are also diametrally compressive on the disc.
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The material properties are related to the steel, rock parts and the interface via the following

codes:

model elas range group jaw_top jaw bottom

prop bulk 1.6ell shear 7.7el0 range group jaw_top jaw bottom

global kn = (_bulk + 1.3333 * shear) * 12.5

interface 1 face range z 0.0375,0.05 &
cylinder endl (0,-0.0125,0.025) end2 (0,0.0125,0.025) radius 0.0251 &
cylinder endl (0,-0.0125,0.025) end2 (0,0.0125,0.025) radius 0.0249 not

interface 2 face range z 0.0125,0
cylinder endl (0,-0.0125,0.025) end2 (
cylinder endl (0,-0.0125,0.025) end2 (

interface 1 prop kn=@ kn ks=@ kn fric 15

interface 2 prop kn=@ kn ks=@ kn fric 15

.0125,0.025) radius 0.0251 &
.0125,0.025) radius 0.0249 not

~

o O
~
O O 2 O

N S
N

Figure 5-8: Interface reaction beneath loading jaws during the Brazilian test. Colored areas indicate

potential and real contacts between disc and loading jaws.

Shear and normal stiffness have to be taken as the minimum prerequisite. A good thumb of
the rule as found in FLAC’® manuals is, that kn and ks be set at tenfold the equivalent
stiffness of the stiffest neighboring zone. The apparent stiffness of a zone in the normal

direction expressed in stress per unit distance, is:

max[(KAJ;—%G)} (5.8)

where: K & G are the bulk and shear moduli, respectively;

Az . 1is the smallest width of an adjoining zone in the normal direction.

min
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The interface parameters used in the simulations are given in Section 5.4.2. Contact area,
loading angle and contact force components were determined by the author’s developed so-

called Fish-functions based on the internal program language.

5.4.3 Post-failure deformation properties

The post-failure behavior was inserted in the simulation. Initiating material hardening or
softening is a gradual process once plastic yield begins. At failure, deformation becomes
more and more inelastic as a result of micro-cracking. This leads to degradation in strength

of these materials and the initiation of shear bands or tensile cracks.

The bilinear strain-hardening/softening ubiquitous-joint model is based on the FLAC’"
Mohr-Coulomb model with non-associated shear and associated tension flow rules. If peak
strength values (cohesion, friction, dilation and tensile strength) are reached for the matrix
and/or the joints, they will be automatically modified according to infinite linear laws
demarcated as input functions. Cohesion, friction and dilation are then defined as infinite-
linear functions of the accumulated plastic shear strain. An infinite-linear softening law is

used for the tensile strength, this being a function of the accumulated plastic tensile strain.

For example, the user-defined hardening/softening parameters for My.Sc Slate are:

table 101 0,@ tens matrix le-4,0.1 2e-4,0.75 le-3,0.95
5e-3,@ tens matrix re

table 102 0,@ tens joint le-4,0.1 2e-4,0.75 le-3,0.95
5e-3,@ tens joint re

table 103 0,@ fric matrix le-3,0.1 2e-3,0.75 4e-3,0.95
5e-3,Q@ fric matrix re

table 104 0,@ fric joint le-3,0.1 2e-3,0.75 4e-3,0.95
5e-3,@ fric joint re

table 105 0,@ coh matrix le-3,0.1 2e-3,0.75 4e-3,0.95
5e-3,Q@ coh matrix re

table 106 0,@ coh joint le-3,0.1 2e-3,0.75 4e-3,0.95

5e-3,@ coh joint re

Figure 5-9 & 5-10 document the softening functions used for the two anisotropic materials

investigated in this thesis.
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Figure 5-9: User-defined softening functions analyzed with respect to tensile stress, friction and

cohesion for Le.Gs Gneiss.
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Figure 5-10: User-defined softening functions analyzed with respect to tensile stress, friction and

cohesion for My.Sc Slate.

Hardening and softening parameters were calibrated for each and every one of the analyses
and the values generally back-calculated from the laboratory test results.
5.4.4 Tension cut-off

Tensile failure is characterized by pronounced softening within very small ranges of plastic

tensile strain (Figure 5-9 & 5-10).
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Figure 5-11: Brazilian lab test results of My.Sc.0.0.2/4 specimen (compare Figure 5-12)
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Figure 5-12: Numerical simulation results of My.Sc.0.0 specimen (compare Figure 5-11). Tensile

stress (Pa) vs. calculation steps.
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Figure 5-11 (b) & 5-12 show that the peak strength (tensile failure) reached in the lab is
more or less identical with the result of the numerical simulation. After reaching the peak, a
sudden drop is observed (brittle behavior in tension). The tensile stress values given in
Figure 5-11 & 5-12 are based on Eq. 1.2 and therefore directly proportional to the load of
the loading jaws. Figure 5-12 reveals that tensile failure starts to develop at the center line

of the disc. This tensile failure determines the peak load and the subsequent softening.

5.5 Numerical simulation results

5.5.1 Introduction

The investigation of the damage and failure pattern is of prime importance because the
Brazilian test is an indirect test method. This means that the deduced strength (mainly

tensile strength) is not measured directly but requires correct interpretation.

Exemplarily, Figure 5-13 shows a series of Mohr’s circles together with the linear
envelopes for the joint planes (the red dash lines) and matrix (the magenta dash lines) given
by Eq. (5.2). The failure envelopes correspond to the Mohr-Coulomb failure criterion with

a tension cut-off.

FLAC3D 4.00 Brazilian test - Mohr circle & Mohr envelope - My.Sc.75.90
©2009 Itasca Consulting Group, Inc. 5.0
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Figure 5-13: Development of Mohr’s circles for the center zone under loading until peak strength

of My.Sc.75.90 and failure envelopes for the joints and matrix plane.
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Figure 5-13 exemplarily shows the development of the Mohr’s stress circle for the center

element of the disc with loading. The circle development starts at (0, 0) and increases step

by step, first moving decidedly towards the left and later back to the right and finally

reaching the shear failure envelope. The stress state at the center of the disc never reaches

the tension cutoff of the matrix. The failure mechanism at the center of the specimen is

therefore shear failure. This is also evident in Figure 5-14. The shear failure (shear-n or

u:shear-n) dominates the pattern of plasticity. A mixed-mode fracture pattern is observed as

indicated by Figure 5-14. In contrast, the classical evaluation procedure suggests, that this

sample (orientation of weak planes perpendicular to loading direction) would fail in matrix

tension.
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Figure 5-14: Plasticity (failure) pattern at peak strength for Le.Gs.75.90

This example shows that for anisotropic rocks, the failure pattern can be quite complex and

a careful stress and fracture pattern analysis has to be undertaken to deduce the right

strength values from the Brazilian test.
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5.5.2 Stress distribution and failure state
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(a) Plasticity state in the middle plane at peak (b) Horizontal stress (MPa) contours at peak
strength and development of “tensile” stress at the strength

center of the specimen relative to Eq. 1.2

Figure 5-15: Plasticity state at peak strength in the middle plane and the development of “tensile”
stress in the center element relative to Eq. 1.2; (a) and (b) horizontal stress component contours at

peak strength for Le.Gs Gneiss (y =0° and 3 = 0° + 90°).

The plastic zone state, the “tensile” stress calculated from the standard Eq. 1.2 for the
center of the specimen and the horizontal stress component contours of a disc of
Le.Gs.0.0/15/30/45/60/75/90 are presented in Figure 5-15. When B = 0°, plastic zones
develop quickly and move towards the center of the sample. Tensile failure appears exactly
along the weakness planes at the center of the disc. For B = 15° the plastic zone
development is first under the loading jaws and then suddenly re-orients quickly along the
center line in the direction parallel to the weakness planes. Clearly, tensile failure at the
center still dominates. For 30° < 3 < 75°, the plasticized area increases in width and shows
a symmetric pattern with respect to the load direction. Shear plastification dominates and
tensile failure appears within the plasticized area (several parallel tensile fractures) at the
ubiquitous joints. As a result, strongly localized tensile failure at the center of the specimen
is not observed any more but now along the joints and in the matrix. Where B = 90°, the
plasticized area appears first at the rim of the disc along the weakness planes, then develops
under the loading jaws and finally moves in a direction perpendicular to the weakness plane

along the center line. The results show that tensile matrix failure dominates in this case.
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In general, results of the simulations using various orientation () and foliation-loading
angles (P) indicate that tensile strength depends very strongly on the orientation of the

bedding or weakness planes and is relative to the loading direction.

Brazilian tests were performed in order to assess the effect of changes in y and 3 angles on
the strength and fracture pattern of Le.Gs Gneiss and My.Sc Slate. The results are shown in
Appendices 5.1 and 5.2.

5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes

This section focuses on the state of stress in an isotropic elastic material as a function of the
orientation of the planes (y) in relation to the loading direction (f). The shear/tensile stress
states directly relate to the location and type of failure in the joint planes or the matrix.
Particularly after yielding has started, the stress-strain behavior is no longer elastic and

stress redistributions occur.

In a first step, the stress components for arbitrarily oriented planes are investigated. This

procedure can indicate the conditions under which tensile or shear failure is to be expected.

Assuming isotropic elastic behavior, stress tensor components obtained from the theoretical
transformation equations [92] were compared with the simulation results in order to specify

the different potential failure mechanisms with respect to y and 3.

The three dimensional stress transformation equations can be obtained when the primed
coordinate system is derived from the unprimed system by rotating the angles of dip (dip)
and dip direction (dd) as defined in Figure 5-16, linking the orientation angle (y) and
foliation-loading angle (j3).
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Figure 5-16: Relationship between fixed global coordinates (XYZ) and transverse plane

orientations (X’Y’Z’); (0O <dip < 3600) ; (0° <dd < 900) (after Wittke [92]).

The transformation of the stress tensor {0'} from the global co-ordinate system into the

local x’-y’-z’ system is given by: {0'} = [T ] {(7} . For transversely isotropic materials, an
equation is obtained for the required shear and normal stress component [92] by:

Ty = oLl + o mym; +0, Ny + 7, (Lm, +1m,)+ T, (myny + myny)+7_ (), +n,l,)

T =0 Ll +omm +7 (Im+Lm)+7 _mn,+7_nl (5.9)
o.=0l + O'ym32 +o.n +2t _Lm, + 2t .myny + 27, nyl;
[, =sin(dip) m, = cos(dd)

[, = cos(dd) cos(dip) m, = —cos(dip)sin(dd)
[, = —sin(dip)cos(dd)  m, = sin(dip)sin(dd)

in which n, = —sin(dip)

n, = —cos(dip)

Parallel to the analytical solution, the stress state at the center of the numerical model was
determined and then rotated into the same local co-ordinate system. The results obtained
from both methods with respect to v and [ are compared in Figure 5-17 & 5-18 for the
Le.Gs Gneiss and the My.Sc Slate respectively. To make the comparison easier, the tensile

stress value for y = 0° was normalized to one.
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Figure 5-17: Comparison of normalized tensile stress with y for Le.Gs Gneiss.
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Figure 5-18: Comparison of normalized tensile stress with y for My.Sc Slate.

Figure 5-17 & 5-18 illustrate that there is only a small difference between theoretically
calculated and numerically simulated stress states. In fact, this small difference only occurs
when y and B angles are small, i.e. when (y, B) < 30° for Gneiss and (y, ) < 15° for Slate.

This means that the influences of the elastic parameters on the stress state are negligible in

relation to the orientation of the local planes () and the loading directions (j3).
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Meanwhile, a clear distinction between potential tensile and shear failure domains has been
shown as a function of y and 3. Depending on the loading direction, B < 8°; y < 60°, both
shear and tensile failure are possible. Below y < 8°, only tensile failure is possible and
shear failure only when y > 60°. In other words, shear failure should be considered as a
potential failure mechanism over a large span of possible anisotropic plane orientations.
One should keep in mind that the actual failure mechanism depends on several factors, on

the strength ratios, for instance.

5.5.4 Plasticity states

Plastic zones display the state in which the stresses satisfy the yield criterion. The plasticity
pattern across entire width of disc indicate which failure mechanism has developed. Two
principal failure mechanism types can be distinguished: shear and tension failure. In the
ubiquitous-joint model, shear failure along the joint planes is designated u:shear and tensile
failure u:tension in the plasticity plots. The plots also indicate whether stresses within a
zone are currently at the yield surface (i.e., the zone is in active failure now, -n), or the zone
has failed earlier but the stresses currently fall below the yield surface (the zone failed in
the past, -p). Plastic flow can occur at a certain point in time during the simulation but
subsequent stress re-distributions may lead to partial unloading so that the yield criterion is
no longer satisfied. This is indicated by shear-p or tension-p (on plots of the plasticity

state).

Figure 5-19 illustrates the different plasticity states in the Le.Gs.0.45 sample shortly after
the peak strength had been reached.
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Figure 5-19: Plasticity state in the Le.Gs.0.45 specimen.
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FLAC® is a continuum code and as such, crack propagation cannot be explicitly modeled.
However, based on the development of stresses and the appearance and development of
plastic states in each step of the numerical calculations, development of the plasticity

pattern can be interpreted as a fracture propagation process.

5.5.5 Damage and fracture process

Figure 5-20 & 5-21 illustrate the process of damage development whereby different stages

are considered in the numerical simulations; example:

» First, tensile plastic zones appear at /R = 0.72 in Le.Gs.0.0 and at /R = 0.76 in
Le.Gs.0.90 and then spread towards the center of the disc.

» In the middle plane, tensile plastic zones do not only first appear at the center but also
at r/R = 0.44 and 0.48 in Le.Gs.0.0 and Le.Gs.0.90, respectively. This means that the
initial damage does not occur at the center of the disc but that triggered by the initial
damage; secondary tensile plastic zones rapidly develop along the sample’s center

line.

» Tensile strength of joints (9.5 MPa) in Le.Gs.0.0 reaches its maximum along the
center plane, leading to tensile failure. Figure 5-20 indicates that apparently not all
elements really reached their ultimate strength. But this is misleading then the
plastification indicates that at least one of the 10 sub-elements had reached the critical
stress state. In such a case, the whole element is considered to be in the state of failure
and softening begins, this being extremely strong for tensile failure and therefore

leading to a sudden drop in stress.

» As indicated by Figure 5-21, matrix tensile failure dominates in Le.Gs.0.90. The

elements along the central plane therefore only reach peak values of about 23 MPa.

» The damage in anisotropic materials during the Brazilian test is a very complicated

process comprising tensile and shear fracturing.
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5.5 Numerical simulation results
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5.5 Numerical simulation results
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5.5.6 Fracture patterns — Comparison of lab results and numerical simulations

Figure 5-22 shows a comparison of typical fracture patterns observed in the Le.Gs Gneiss

during the lab tests and revealed by the numerical simulations as well. Notice that photos

for lab results show front side, but numerical simulations view behind.
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(a) Typical fracture pattern I (¢ = 0°): single fracture develops along the central line.
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(b) Typical fracture pattern I (15° < y < 45°): a more diffuse inclined fracture network (fracture

coalescence) develops within a wider area along the center of the disc.
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(c) Typical fracture pattern III (60° < y < 75°): fracture development away from the center line of

the disc begins at the rim.

o —

FLAC3D 4.00 Brazilian test - zone state of Le.Gs.0.90
©2009 tasca Consuling Group, Ine

Step 29505
05.04.2011 14:39:57 20 4

Plane
Origin: (0,0,0)
Normal: (0.000,1.000,0.000) 1.8 9

= T T T T T
TU By demie Freiberg 0.50 1.00 150 2.00 2.50
Lehrstuhl Felsmechanik Step x10°4

(d) Typical fracture pattern IV (y = 90°): initial fractures appear at the rim near the loading area

followed by fracture across the center line of the disc.

Figure 5-22: Typical fracture patterns observed in lab tests compared with numerical simulation

results (see also Appendices).

5.6 Tensile strength — Comparison of lab results and numerical

simulations

In this section, the numerical simulation results will be compared with the results from lab
tests. Special attention will be paid to the stress component perpendicular to the disc axis at
the center of the specimen (sxx _cen) since the classical evaluation is based on the
assumption that the maximum tensile stress and the tensile cracking are respectively created
and initiated there. Also of major interest is the calculated tensile strength from Eq. 1.2
(theoretical sxx_cen). This is based on either the measured peak load observed during the
lab tests or the peak load transferred through the interface from the loading jaws to the disc

during the numerical simulations.

Figure 5-23 to Figure 5-26 compare lab results and selected results obtained from the

numerical simulations.
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5.6.1 Tensile strength of Le.Gs Gneiss

w=0° | y=15° | y=30° | w=45° | y=60° | y=75° | y=90°
B=0° 7.25 8.23 12.44 16.38 18.18 17.98 21.07
B=15° 8.90 8.98 12.55 15.66 18.38 17.93 21.07
B =30° 11.09 11.44 13.57 15.04 15.07 18.16 21.07
B =45° 12.87 13.73 15.60 16.35 14.66 16.21 21.07
B = 60° 13.46 15.11 13.96 16.28 14.84 15.56 21.07
B=75° 15.04 14.78 12.80 15.73 14.79 15.54 21.07
B =90° 17.77 17.60 17.66 17.29 14.71 15.48 21.07

Table 5-2: Numerical tensile strength (numerical sxx_cen) results of Le.Gs Gneiss (MPa).

w=0° | w=15° | y=30° | w=45° | y=60° | y=75° | y=90°
B=0° 7.75 9.40 14.87 19.17 21.23 21.51 23.72
B=15° 10.49 10.40 14.59 18.08 21.29 21.30 23.72
B =30° 11.47 12.61 12.86 18.04 17.46 21.13 23.72
B =45° 14.62 15.02 17.37 17.35 17.39 18.83 23.72
B = 60° 16.26 15.15 16.90 18.05 17.23 18.27 23.72
B=75° 17.25 17.33 15.22 18.13 17.26 18.05 23.72
B =90° 21.29 21.40 21.45 20.72 17.16 17.95 23.72

Table 5-3: Theoretical tensile strength (theoretical sxx_cen) results of Le.Gs Gneiss (MPa).

v =0° y=15° v =30° Y =45° v =60° y =75° v =90°
B=0° 6% 12% 16% 15% 14% 16% 11%
B=15° 15% 14% 14% 13% 14% 16% 11%
B=30° 3% 9% -5% 17% 14% 14% 11%
B =45° 12% 9% 10% 6% 16% 14% 11%
B =60° 17% 0% 17% 10% 14% 15% 11%
B=75° 13% 15% 16% 13% 14% 14% 11%
B=90° 17% 18% 18% 17% 14% 14% 11%

Table 5-4: Differences between theoretical and numerical tensile strength of Le.Gs Gneiss.
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Figure 5-23: Tensile strengths of Le.Gs Gneiss relative to the orientation angle ()
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Tensile strength values obtained by different approaches with regard to different orientation
(v) and foliation-loading () angles are displayed in Table 5-2 & 5-4 and Figure 5-23 & 5-
24 for the Le.Gs Gneiss. The comparison shows that the determined numerical values are

close to experimental ones. Both methods reveal a significant influence of y and f3.
Assessment of numerically determined tensile strength relative to the orientation angle (y):

» At y < 15° tensile strength values show a strong dependence on the foliation-

loading angle (). Tensile strength significantly increases with increasing -values,

90°
with the ratio of p = 90° to B = 0° at its maximum value f3, o Y =2.45.

» At 30° <y <45°, no clear tendency can be detected; the maximum tensile strength

90° 90°

ratio equal to 3%, =1.42 for y =30°and B0, =1.15 for y =45°.

» At 60° <y < 75°, bisection becomes visible. The tensile strength is slightly higher

at low [B-values (smaller than about 40°), the maximum ratio at y = 60° equal

90° 90°
to 8,7 =0.81 and B, =0.86 at y =75°.
» v =90° is a special case. Tensile strength here does not depend on 3 because the

weakness planes always occur parallel to the loading direction. In this case, the

maximum tensile strength value is 21.07 (MPa).

Assessment of the numerically determined tensile strength relative to the foliation-loading
angle (B):

» At B < 60° a significant increase in tensile strength is observed with increasing

orientation angle (y). With increasing -values, this increase is decrescent, the ratio

90° 90°
varying between y S, =2.91 at § =0° and y ' =1.56 at § = 60°.
» Where B > 75°, the influence of y on the tensile strength is small. It would seem

that up to about y =45°, a near tensile strength constancy is valid followed by a

small decrease and a final strong increase. The maximum tensile strength ratio is

90° 90°

then equal to y 27, =1.65 and y (2. =1.43 at B =75° and 3 = 90°, respectively.
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Based on the gradients in Figure 5-23 & 5-24, it becomes clear that the influence of v is

larger than that of B in the Le.Gs Gneiss, especially when both y and [ are small.
Analysis of failure state (see also Appendix 5.1)

» Aty <30°and = 0° pure tensile failure occurs exactly along the weakness plane

across the disc center. Failure is completely governed by the tensile failure joint.

» At B = 15° and 90°, plastic zones develop first under the loading jaws and then
quickly spread towards the center line. Mixed tensile-shear failure appears along the
center line of the disc but tensile failure dominates. Tensile failure also dominates
only in the joints at § = 15° and in the matrix at all § = 90°. At 15° <3 < 75°, the
plasticized area becomes wider and more complicated in detail though a symmetric
pattern is still observed with respect to the loading direction. Shear plastification
dominates and tensile failure appears to be ubiquitous within the plasticized area

(several parallel tensile fractures). Failure is along the joints and also in the matrix.

» At vy = 30° mixed tensile-shear failure appears to be ubiquitously within the
plasticized area at all B except where y = 30°, B = 30°, pure shear failure occurring

along the joints in this case.

» Where y > 30°, the plasticized area, though becoming wider relative to the loading
direction, shows a symmetric pattern. Mixed shear-tensile failure appears
ubiquitously within the plasticized area except at y = 45°, = 30°, where shear

failure dominates in the joint plane.
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5.6.2 Tensile strength of My.Sc Slate

y =0° y = 15° y =30° Yy =45° Yy = 60° y =75° y =90°
B=0° 4.14 5.07 6.12 11.98 14.42 17.24 19.15
B=15° 4.33 5.15 6.23 11.00 14.26 17.13 19.15
B=30° 6.33 6.22 7.49 9.54 13.44 17.00 19.15
B =45° 8.16 6.17 9.36 9.77 13.18 17.70 19.15
B =60° 9.40 8.15 10.47 10.94 12.07 17.88 19.15
B=75° 10.00 8.71 11.11 11.41 10.82 17.80 19.15
B=90° 15.20 12.84 12.74 12.45 10.77 18.05 19.15

Table 5-5: Numerical tensile strength (numerical sxx_cen) results of My.Sc Slate (MPa).

y =0° y = 15° y =30° Yy =45° Yy = 60° y =75° y =90°
B=0° 4.69 5.77 6.93 14.50 17.02 20.42 19.92
B=15° 4.98 5.89 7.24 13.50 15.54 20.47 19.92
B=30° 7.19 7.30 8.54 11.58 14.59 20.45 19.92
B =45° 9.33 7.12 11.33 11.32 14.47 19.21 19.92
B =60° 11.32 9.48 11.83 11.72 13.55 19.36 19.92
B=75° 11.60 9.54 13.17 13.00 12.67 19.49 19.92
B =90° 17.90 15.51 15.07 14.74 12.74 19.54 19.92

Table 5-6: Theoretical tensile strength (theoretical sxx_cen) results of My.Sc Slate (MPa).

v =0° y=15° v =30° Y =45° v =60° y =75° v =90°
B=0° 12% 12% 12% 17% 15% 16% 4%
B=15° 13% 13% 14% 19% 8% 16% 4%
B=30° 12% 15% 12% 18% 8% 17% 4%
B =45° 13% 13% 17% 14% 9% 8% 4%
B =60° 17% 14% 11% 7% 11% 8% 4%
B=75° 14% 9% 16% 12% 15% 9% 4%
B =90° 15% 17% 15% 16% 15% 8% 4%

Table 5-7: Differences in the theoretical and numerical tensile strength of My.Sc Slate.
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Figure 5-25: Tensile strengths of My.Sc Slate relative to the orientation angle (y)



157

5.6 Tensile strength — Comparison of lab results and numerical simulations

=25

dIN) P3Suans J[ISud I,

90

5
Orientation angle y (°)

30 45 60 7

15

B =15°

Orientation angle v (°)

=(°

Q

T T T f
')
(gl

(edIN) PSuans S[ISud |,

— —

|
|
|
”
S wnvn o »n O
Q

v (=} \n

O 4 — _ _
5
0

30 45 60 75 90
Orientation angle y (°)

15

45°

B=

Orientation angle vy (°)

30 45 60 75 90
Orientation angle y (°)

15

0

75°

Q= =

N
(edIN) YrSuans oisua |,

Orientation angle v (°) p

60°

p

wn)
E
=
= o
2 8 5 S 8
— I © roe
5 % 4% % %
E = 2 = = 2
o) = 2 s
= £ 8 5 4 &
2 2 . 2
5§ & 5 § &
2 9 > 2
S € & & S &
—_
o
%(
>
-
=
o
28
=
8
5
$E
o
S
on
o)
—
S
o]
[—]
(=)
I
(dIN) p3uams o[ISua I, o

Figure 5-26: Tensile strengths of My.Sc Slate relative to the foliation-loading angle ()
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The results displayed in Table 5-5, 5-6 & 5-7 and Figure 5-25 & 5-26 are analogous to the
section above and show the tensile strength of My.Sc Slate relative to different orientation
(v) and foliation-loading () angles. Again, a satisfactory agreement is observed between

lab and numerical simulation results.
Assessment of the tensile strength with respect to the orientation angle (y):

» Aty < 45° tensile strength increases with increasing foliation-loading angle (B).

90° 90°
The maximum tensile strength ratio is f,%.=3.67; B%.=253 and

90°

LY =2.08 at y =0°, 15° and 30°, respectively.

v

» Ay =45° a minimum is observed at B = 45° with slight symmetrically increasing
values in both directions, towards B = 0° and = 90°.

> At y = 60°, tensile strength slightly decreases with increasing p-values. The

90°

maximum tensile strength ratio is ﬂffwo =0.75.

» Aty =75° the values show no dependence on f.

» v =90° is a special case. Tensile strength does not depend on the foliation-loading
angle P because the weakness planes are inherently parallel to the loading direction.

Here, the maximum tensile strength of about 20 MPa is reached.
Assessment of the tensile strength with respect to the foliation-loading angle (j3):

> At 0° < B<45° tensile strength strongly increases with increasing . The

90°
maximum tensile strength ratio is y ;. = 4.63 at § = 0°.

» At 60 < B and B > 75°, the tensile strength is relatively low and constant at y < 60°

although it shows a remarkable increase at y > 60°.

» At B = 90° a small decrease in tensile strength is observed up to about y = 60°,

followed by a sharp increase at y > 60°.
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As observed in Figure 5-25 & 5-26 in the Slate, the influence of v is stronger than that of f3,

especially where both y and 3 are small.
Analysis of failure state (see also Appendix 5.2):

» Aty <45° B =0°and in the special cases (v = 15°, B = 15°) and (y = 30°, B =
90°) pure tensile failure appears exactly along the weakness planes at the center of
the disc. For the remaining constellations, mixed shear-tensile failure is observed. In
these cases, failure is governed by the joint plane except at B = 90° where matrix
failure is observed and (¢ = 0°, B = 15°) as well as (y = 15°, B = 60°), failure here

occurring along joints and the matrix.

» At y = 45° mixed mode failure is observed for all B-values, whereby failure

dominates along joints at 3 = 0°, 30°, 60° and 75° and inside the matrix at 3 = 15°,

45° and 90°.

» Aty > 45°: the plasticized area becomes wider relative to the loading direction and

has a symmetric pattern. Plastification is dominated by mixed shear-tensile failure.

In general, the numerical results in Table 5-2 to Table 5-6 and the diagrams in Figure 5-23
to Figure 5-26 clearly show that the tensile strength value is strongly dependent on both the
orientation (y) and foliation-loading () angles relative to the weak foliation planes in

anisotropic rocks.

5.7 Summary and Review

The finite difference code FLAC® was successfully adopted to simulate the Brazilian test
by using the bilinear strain-hardening/softening ubiquitous-joint model. The results
obtained from the numerical simulations are in close agreement with the observations made
in the experimental tests. The behavior of anisotropic rocks varies with foliation and

loading directions as discovered in the evaluation of laboratory and simulating results.

5.7.1 Potential failure state deduced from pure elastic considerations

The pure elastic considerations have revealed that tensile failure are only possible in joints

(weak planes) if y < 60°. Within the range 8° < y < 60°, tensile failure and shear failure
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are possible depending on . At y < 8°, only tensile failure is possible, the actual failure

type also depending on the ratio of the strength between matrix and joints.

5.7.2 Tensile strength distribution

In order to assess the effect of loading direction and weakness plane orientation on

tensile strength of the Gneiss and the Slate, the results were normalized by exact numerical

values at y = 0° and 3 = 0° (Figure 5-27 & 5-28).

3.1
2.8
2.4
2.1
1.7
1.4

Norm. tensile strength (-)

Norm. tensile strength (-)

—_
(=]

Number of observation = 49
Coeflicient of Multiple Determination (R*2) = 0.664
Y =1.49 + 1.97e-2%y - 4.01e-4*y"2 + 3.67e-6*y"3 + 3.62e-3*f

Figure 5-27: Normalized tensile strength as functions of B and y of Le.Gs Gneiss
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-)

Norm. tensile strength (

Norm. tensile strength (-)

Number of observation = 49
Coeflicient of Multiple Determination (R*2) = 0.857
Y=1.58 - 8.43e-3*y + 1.86e-4*y"2 + 1.09e-5*y"3 - 9.12e-8*y"4 + 8.37e-3*B

Figure 5-28: Normalized tensile strength as functions of 3 and y of My.Sc Slate

The regression analyses allow a prediction of the tensile strength with respect to any
arbitrary orientation and foliation-loading angle with just one single conducted test:

Gneiss (Le.Gs, see also Figure 5-27) yields the following:

0" =149+1.97%e—2xy—40le—4%y’ +3.6Te—6%y" +3.62e—3% 3 (5.10)
Slate (My.Sc, see also Figure 5-28) yields the following:

0"’ =1.58—843¢ 3%y +1.86e—4*y’ +1.09% 5%y’ —9.12—8*y* +8.37e—3* (5.11)

The coefficient of multiple determination is relatively low (0.86 for slate and 0.66 for

gneiss) but it has to be taken into account that only one data set and constitutive law each
was used for any constellation of B and y. As expected, the anisotropic strength is more

pronounced in the slate whereas the qualitative relations are similar.

5.7.3 Tensile strength — determining the anisotropy factor

The strength anisotropy factor, normalized to 1 at =0 and y =0, for Le.Gs and My.Sc is
shown in Figure 5-29 & 5-30. The anisotropy ratio of the tensile strength can reach values

of up to 2.75 and 4.50 for Gneiss and Slate, respectively.



162 Chapter 5. Numerical simulation of anisotropic materials - Comparison ...

3.50
2.75
2.50
2.25
2.00
: 1.75
1.50
1.25
1.00
0 15 30 45 60 75 90

Orientation angle vy (°)

~
[9)]

D
[e)

Foliation-loading angle f (°)
S &

—_
()]

(=]

Figure 5-29: Normalized tensile strength of Le.Gs Gneiss

90—

4.50
4.25
4.00
3.75
3.50
3.25
3.00
2.75
2.50
2.25
2.00
1.75
1.50
1.25
1.00

~
(V)]

Foliation-loading angle B (°)
& & 2

—_
(93]

0 15 30 45 60 75
Orientation angle v (*)

Figure 5-30: Normalized tensile strength of My.Sc Slate

Figure 5-30 indicates that the highest tensile strength anisotropy factor for My.Sc slate

reaches 4.5. Also, at y > 45°, the tensile strength seems to be nearly independent of 3.
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5.7.4 Tensile strength — different procedures - different results

To get a better idea of the Brazilian test limitations, it is necessary that the stress
distribution within specimens be carefully considered. Actually, the tensile strength can be
determined by several different procedures: direct tensile tests and different indirect tensile
tests like 3- or 4-point bending tests or the Brazilian test. Although all these tests enable
measurement of tensile strength, they do not necessarily give the same results because

stress distributions or effective volumes are not the same in all of them [99].

Comparison between direct and indirect tensile strength values of rocks show that these can

largely differ. Several authors have come to the conclusion that o”"*" " > g/ ! "¢ o

Jaeger [82] for Carrara marble, Hardy and Jayaraman [100] for Berea sandstone, Indiana
limestone, Leuders limestone, Crab Orchard sandstone and Barre granite as well as

Alehossein [101] for Australian granite. But Jaeger [82] also obtained the result

o for Bowral

Direct test Brazilian test Direct test < GBrazilian test
t - t

= o, for Gosford sandstone and o,

trachyte. According to Tang [4], the ratio of Brazilian tensile strength and direct tensile
strength for isotropic materials varies from 1.005 (5%) to 1.214 (21%) depending on the
relative load-bearing strip width (a) where (a/D) is from 0.04 to 0.16. It should be noted
however that the aforementioned tests were carried out almost exclusively on isotropic
rocks. According to Classon [94], the error in the approximate formulas of the principal
tensile and compressive stresses at the center of a 2D disc for transversely anisotropic

materials ranges from 0.1% to 10.8% depending on the anisotropy of stiffness

p=VEE (i— 2“) and (E’/E).

2 \G¢" F

The classical model for the evaluation of the Brazilian test (isotropic materials under 2D
conditions) assumes that tensile strength can be calculated at failure from the applied force.
It assumes further that failure starts at the center of the loaded diameter. If that is the case,

the specimens would break down into two half-discs and the tensile strength could now be

: . 2P : . :
determined by Eq. 1.2 with o, = vl However, the numerical simulations have shown

that the damage and fracture mode during the Brazilian test are not comparable to the one

in a direct tension test. Also, the failure state is often not a pure tension mode.
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The simulation results indicate that the tensile strength determined by the conventional
theoretical formula (Eq. 1.2) is almost slightly higher than the maximum tensile stress
observed at the center. The deviation here is equal to -5% to 18% for the Le.Gs Gneiss
(Table 5-4) and 4% to 19% for the My.Sc Slate (Table 5-7), depended on the orientation of
the anisotropic planes. This result indicates that the critical stress state (initial failure state)
1s not always located at the center of the disc. These results are similar to the difference in

tensile strength of the Brazilian test and the direct tensile test.
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Conclusion and Recommendations

The Brazilian test is a simple way of determining the tensile strength of brittle materials.
Tensile strength of rocks counts amongst the most important geotechnical parameters

influencing rock strength, deformability, damage, fracturing and crushing.

Research results indicate that the material anisotropy has significant influence on the stress
distribution, crack initiation, fracture pattern and peak load. In transverse anisotropy, the
key parameter is the orientation of the cleavage, bedding or schistosity planes with respect
to the direction of the applied load. The results obtained from the numerical simulations
show a close agreement with the observations made during the experimental tests. The
behavior of anisotropic rocks varies with the foliation and loading directions as observed in

the laboratory and the simulations.
The results of the present research can be summarized thus:

» The laboratory tests show that the character anisotropy has a strong influence on the
measured peak strength obtained in a Brazilian test. Whereas the relation sample
orientation to loading direction is unimportant for nearly isotropic materials,
strongly anisotropic materials like Gneiss and Slate reveal a strong dependence of

the peak strength on this interrelation.

» The formula usually used for calculating the tensile strength is derived from an
analytical 2D elastic solution which ignores the effect of the loading angle (2¢«), the
thickness-to-diameter ratio (L/D) and the Poisson’s ratio(u). However, the local

stress concentration phenomena and induced tensile stresses inside the disc greatly

depend on the above-mentioned conditions.
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Chapter 6. Conclusion and Recommendations

The stress distribution near the center of a disc under diametral loading is largely
the same in isotropic materials, whether in 2D, 3D analytical solutions or 3D

numerical simulations.

The tensile stresses in the edge sections (border region) of the disc can be slightly
smaller or even higher, as the case may be, than those at the center depending on the
loading angle, Poisson’s ratio and thickness-to-diameter ratio L/D. This has
important influence on the location of the fracture initiation and the interpretation of

the test results.

Small loading angles (2o < 20°) produce the maximum tensile stresses at the center
of the disc. Larger loading angles (2a. > 20°) produce this same effect closer to the
rim of the disc. Very small loading angles (2o < 10°) may lead to damage at the

load entry points. The recommended loading angle is therefore, 10° < 2o < 20°.

The thin disc produces maximum tensile stresses at the center of the disc. With
increasing thickness, e.g. for an L/D from Y4 to )/, the tensile stress along the center
plane becomes smaller and increases for planes towards the end of the cylinder, by

about 12.5% for an L/D = Y4 sample as against one with an L/D = }{, for example.

Although from a theoretical point of view a very small thickness is advantageous, in
order to avoid eccentric loading, misalignment and buckling, it is recommended that
the lower and upper limits of the length to thickness ratio range between % < L/D <

X . An L/D = Y ratio is recommended here.

The tensile stress component is independent of the Poisson’s ratio along the middle
plane of the disc. In contrast, the higher the Poisson’s ratio induced, the further the
observation plane for stress distributions move away from the center of the disc, the

more pronounced the stress peaks close to the load entry area.

Present analytical solutions only consider plane-stress situations. The 3-dimensional
quasi-analytical solution after Wijk shows some agreement with numerical
simulations for the center plane. Away from the center however, very questionable
results were obtained. According to Wijk’s formulations, the horizontal stress
component yields extreme values close to the load entry point so that the largest

tensile stress is not found at the center of the disc but closer to the boundary.
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» The FG.Ss Sandstone shows relatively low standard deviations and consequently,
low coefficients of variation equal to 13% for the determined peak (tensile)
strength. Gneisses and Slate on the other hand, document large tensile strength
deviation values with coefficients of variation 31%, 26% and 61% for FG.Gs
Gneiss, Le.Gs Gneiss and Le.Sc Slate respectively. Large coefficient of variation

values indicates anisotropic behavior.

» Lab results of FG.Ss Sandstone show a distinct fracture pattern which is
characterized by the sample splitting into two halves. Sometimes, wedges are
formed immediately under the loading jaws. The fracture pattern was more or less
identical for all FG.Ss samples and is characterized by a central tensile crack
independent of the sample orientation. In the FG.Gs and Le.Gs Gneisses in contrast,
and especially in the My.Sc Slate, the fracture pattern is strongly influenced by the
orientation of the weak planes. In many cases, the fracture pattern is characterized
by sub-parallel cracks like in step faults or staircase-shaped fractures along the

existing weak planes.

y

A

type 1: tensile failure type 2: tensile-shear failure type 3: shear failure

Figure 6-1: Typical failure mechanisms in the Brazilian test

» The specimen can be initially fractured by stress concentration at the loading jaws.
That means that fracture initiation can be triggered off in this region instead of at

the center of the disc as is usually assumed.

» Exact analytical solutions for anisotropic rocks are not available so that either

numerical analysis or semi-analytical solutions had to be used.
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» The simulation results indicate that the tensile strength determined by the
conventional theoretical formula is often slightly lower than the maximum tensile
strength. The maximum deviation is equal to 18% in the Gneisses and 19% in the
Slates, depending on the orientation of the anisotropy planes. This result indicates
that the critical stress state (initial failure state) is not always located at the center of

the disc if anisotropic strength is considered.

» The anisotropic character and loading direction strongly influence failure
mechanisms of the sample. Pure tensile failure along weakness planes occurs only
at y < 15° for Gneiss and y < 30° for Slate as loading directions parallel to planes
of weakness. In all other constellations, plastifications are characterized by mixed
mode (shear-tensile) damage and final failure appears in a smear manner within the

plasticized area.

» The normalized tensile strength of transverse anisotropic rocks could reach quite
high values of deviation from 2.65 to 5.24 in lab results and from 2.75 to 4.5 in

simulation results for Gneiss and Slate respectively.

» The regression analyses enable a prediction of the peak (tensile) strength with

respect to any arbitrary orientation and foliation-loading angle from one single test:
Le.Gs Gneiss yields the following:

0"’ =1.49+1.97e—-2*y—4.0le—4*y’ +3.67e—6%y’ +3.62e—3* 3
and My.Sc Slate yields:

0"’ =1.58-843¢-3*y+1.86e—4*y” +1.09% 5%y’ —9.12—8*y* +837e—3*

Recommendations for future research

Although this research has made great progress in relation to the influence of anisotropy on
tensile strength as determined by the Brazilian test, further efforts are necessary in order to

enhance points like:

» The development of inhomogeneous material models as in natural rocks (see Figure

6-2).
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Figure 6-2: Inhomogeneous continuum model of Gneiss with a random distribution of

minerals: mica 10% (white), quartz 30% (grey) and feldspar 60% (black).

» Extension of the lab tests and numerical simulations to encompass stiffness
anisotropy in addition to determining the strength anisotropy. The following
parameters have to be determined when examining transverse anisotropy: E, E’, p,

w,G,C, C,¢,¢ and o, oy’

» Incorporating additional measuring techniques, e.g. high-speed camera,
seismoacoustic analyses, etc. to capture damage and fracture process as a function

of time and location in more detail.
» Using the discontinuum mechanics method to better understand the fracture process.

» Investigation of the influence of stiffness and frictional behavior of the interface

between rock disc and loading jaws.
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APPENDICES

Appendix 3.1 - Fracture patterns in FG.Ss samples

FG.Ss.0.0-90 (B =0°, 15°,30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Ss.30.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Ss.45.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Ss.60.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Ss.75.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Appendix 3.2 - Fracture patterns in FG.Gs samples

FG.Gs.0.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Gs.15.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)

|
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FG.Gs.45.0-90 (B =0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Gs.60.0-90 (B =0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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FG.Gs.75.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Appendix 3.3 - Fracture patterns in Le.Gs samples

Le.Gs.0.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Le.Gs.15.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Le.Gs.30.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Le.Gs.45.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Le.Gs.60.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)




188 Appendices

Le.Gs.75.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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Le.Gs.90 (SPZ1)
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Appendix 3.4 - Fracture patterns in My.Sc samples

My.Sc.0.0-90 (B = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
E F “« B
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My.Se.15.0-90 (f = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)

r = T ~z F -
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My.Se.30.0-90 (p = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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My.Se.45.0-90 (f = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
F [ F
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My.Se.60.0-90 (p = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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My.Se.75.0-90 (f = 0°, 15°, 30°, 45°, 60°, 75°, 90° from top to bottom)
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My.Sc.90 (SPZ1)
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Appendix 4.1 - Influence of loading angle

4.1.1 Results of the radial model
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4.1.2 Comparison of the results of the orthogonal model
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Appendix 4.2 - Influence of material properties

4.2.1 Results of the radial model
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4.2.2 Comparison of the results of the orthogonal model
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n

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40
Step x10"4



212 Appendices

FLAC3D 4.00
©2000 asca Consuting Group, nc
Step 22501
30032011 18:15:41

Plane

Origin: (0,0,0)

Normal: (0.000,1.000,0.000)
Zone

Plane: on

Colorby: State

e
Uitension-n itension-p
utension-n

B utension-p

B ushearp

B tension-p ushear-p
History

Brazilian test - zone state of Le.Gs.30.0 FLAC3D 4.00 Brazilian test - zone state of Le.Gs.30.15

o o
® o
P

Tensile stress x1047
3
L

©2008 tasea Co
Step 22901
30.03.2011 18:16:50

suting Group. Inc.

Plane
Origin: (0,0,0)
Normal: (0.000,1.000,0.000)

Zone
Plane: on
Colorby: State

ne
tension-p ushear-p
ushear-p

B ushearn ushear-
uishear-n uishear-p ufension-p
usshear-p utension-p
utensionn ushear-p ufansion-

TU Bergakademie Freiberg
Lehrstunl Felsmechanik

tension-p
P ) History £
vs. Step ——— 11 _sxx_cen_in (FISH)
20 T srass oTzone 65144 |
0.6 vs. Step A
b
0.5 o f
d
0.4 4
0.3 1
0.2 1
0.1 4
EEE—_ T T 7 T T T y T T T = | | 00 T T T T T T y T T T T
TU Bergakademie Freiberg 020 0.40 0.60 0.80 1.00 1.20 140 1.60 1.80 2.00 220 [ TUBergakademie Freiberg 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20
Lehrstunl Felsmechanik Step x10°4 Lehrstunl Felsmechanik Step x104
FLAC3D 4.00 Brazilian test - zone state of Le.Gs.30.30 FLAC3D 4.00 Brazilian test - zone state of Le.Gs.30.45
(©2008 kasca Consuleng Grou, ne ©2008 s 9 Group. Inc
Step 20828 13 A Step 25601
05.04.2011 14:40:47 30.03.2011 18:17:68 16 ]
Plane 12 A1 Plane
Origin: (0,0,0) Origin: (0,0,0)
Normal: (0.000,1.000,0.000) [ 1 Normal: (0.000,1.000,0.000) "
Zone Zone :
Plane: on 1.0 A Plane: on
Colorby: State cﬁ""sg nzme ]
None 09 - urensonausnesep usensong 12
ushear-n wshearp | ushear-p ~
utension-n uishear-p Utensionp
B ushearputensionp |=0g us:ear.pu«e;smn.p S
I ushear-p " oo e sonp | # 1.0
earen shearp utension-p iy
B utension-p £07 : g
tension-p g l tonsion H
History 206 B shearn shearp 508
1 _sxx_cen_in (FISH)| == . i 2
20 Bestiess orzone 95144 B History Z o
vs. Step 505 j—1 5 U '
= s Step = 0.6 1 't
04 A
03 A 0.4
02 A1
0.2
01 A
— | 00 ]
TU Bergakademie Freiberg TU Bergakademie Freiberg 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40
Lehrstuhl Felsmechanik Step x10°4 Lefrstuhl Felsmechanik Step x10°4
FLAC3D 4.00 | Brazilian test - zone state of Le.Gs.30.60 FLAC3D 4.00  |Brazilian test - zone state of Le.Gs.30.75
©2000 asca Consuting Group, nc ©2008 tasca Consuting Group, I
Step 24451 Step 23051 15 4
30032011 18:19:27 1.6 4 30032011 18:22:17 -
Plane Plane .
Origin: (0,0,0) Origin: (0,0,0) 13 4
Normal: (0.000,1.000,0.000) 14 4 Normal: (0.000,1.000,0.000) :
Zone Zone 12 1
Plane: on Plane: on
Colorby: State 2] Colorby: State 114
p udensi ekt Sy 1
Uishearp wisnsion-p e 1o
p utensionsp
B ushear-n ushear-p 1.0 1
B ushearpulensony |2 iy Mot SN
" w 0.8 1
B tensionp ushear-n ushear-p
History 208 tension-p u'shear-p -z ]
T 11 _ooc_cen_in (FISH) | & utension-n utension-p | % 0-7
20 Cecstss of zone 86144 | 1 ushear-p utension-p |7
vs. Step - tension-p 0.6
0.6 History
e (FISH) 0.5 1
- side
vs. Step 04 1
0.4 4
0.3 1
0.2 021
0.1 4
EEE—_ T T T T T T y T T T T - |— | 00+ T 7 T T 7 T y 7 T 7 T
TU Bergakademie Freiberg 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 | TU Bergakademie Freiberg 0.20 0.40 0.60 0.80 1.00 120 1.40 1.60 1.80 2.00 220
Lehrstunl Felsmechanik Step x10°4 Lehrstuhl Felsmechanik Step x10°4
FLAC3D 4.00 | Brazilian test - zone state of Le.Gs.30.90
©2008 asca Consuting Group, nc
Step 29351
30.03.2011 18:20:57 20
Plane
Origin: (0,0,0)
Normal; 1.000,0.000) 18 4
Zone
Plane: on 16 4
Colorby: State
None
tension-p .
tension-n tension-p - 14
B shearnshear-p =
B shearp o
tension-n shear-p tension-p| ., 1.2
shesn heat purensonutenson |
History H
T e |7 10 1
vs. Step =
Z
308 1
=
0.6
0.4 o
0.2 4

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80
Step x10°4

Figure AS5.1-4: Failure zone state in Le.Gs Gneiss where y = 30°
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Figure AS5.1-5: Failure zone state in Le.Gs Gneiss where y = 45°
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Figure AS5.1-7: Failure zone state in Le.Gs Gneiss where y = 75°
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Appendix 5.2: Failure zone state in My.Sc Slate
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Figure AS5.2-1: Failure zone state in My.Sc slate where y = 90°
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