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Abstract

Graph polynomials are polynomials associated to graphs that encode the number
of subgraphs with given properties. We list diUerent frameworks used to deVne
graph polynomials in the literature. We present the edge elimination polynomial
and introduce several graph polynomials equivalent to it. Thereby, we connect a
recursive deVnition to the counting of colorings and to the counting of (spanning)
subgraphs. Furthermore, we deVne a graph polynomial that not only generalizes
the mentioned, but also many of the well-known graph polynomials, including
the Potts model, the matching polynomial, the trivariate chromatic polynomial
and the subgraph component polynomial. We proof a recurrence relation for this
graph polynomial using edge and vertex operation. The deVnitions and state-
ments are given in such a way that most of them are also valid in the case of
hypergraphs.
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Chapter 1

Introduction

In graph theory, as in discrete mathematics in general, not only the existence, but
also the counting of objects with some given properties, is of main interest. To
count and to encode the number of structures with given properties, generating
functions, formally written as polynomials, are widely used. With respect to
graphs, we speak about graph polynomials that count the number of subgraphs
with given properties.

A graph can nowadays be easily described as the abstraction of a network. It
consists of a set of vertices and a set of edges, where each edge connects at most
two vertices with each other. A graph polynomial is a polynomial associated
to a graph, such that the same polynomial is assigned to graphs arising from a
relabeling of the vertices.

While some graph polynomials, for instance the characteristic polynomial,
the chromatic polynomial, the matching polynomial and the Tutte polynomial,
are already studied intensively and also their relations are well known, this does
not hold for graph polynomials in general. In fact, as more and more speciVc
graph structures, and consequently the corresponding subgraphs, have been an-
alyzed, for many of these a generating function and thereby a graph polynomial
has been deVned. Hence, there is a multitude of graph polynomials — called “the
zoo of graph polynomials” following a suggestion of Zaslavsky [99, footnote on
page 1] — whose similarities and diUerences, and hence whose relations, are not
yet clariVed.

The main aim of this dissertation is to give a substantial contribution to the
long-term goal of establishing a “general theory of graph polynomials”, a term
used by Makowsky in the title of [100]. It is clear, that this will not be possible
in an one-to-one-meaning, as the nature of graph polynomials diUers extremely
depending on the context in which these are deVned.

We have both perspectives on graph polynomials, a very general one by ob-
serving in which frameworks graph polynomials can be deVned, and a very spe-
ciVc one exploring a speciVc graph polynomial, the edge elimination polynomial.
We bring both perspectives together by introducing several graph polynomials
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which are equivalent to the edge elimination polynomial, that means these can
be calculated (for a given graph) from the edge elimination polynomial (of this
graph) and vice versa, but are deVned in diUerent frameworks. By using an
appropriate graph polynomial we can show some properties valid for all these
equivalent graph polynomials, which may be much harder to prove starting from
another deVnition. These results provide some evidence that it makes sense to
consider equivalent graph polynomials.

Related to this is the topic of recurrence relations for graph polynomials.
These either can be stated for given graph polynomials, or can be used to deVne
some. While in the Vrst case, the problem to Vnd (and prove) a recurrence re-
lation, in the second case, to Vnd a combinatorial interpretation of the speciVed
graph polynomial may be challenging. Again, we give some general results on
recurrence relations and some speciVc results on single graph polynomials.

Another focus lies on the deVnition of (slightly more general) graph polyno-
mials unifying several of the major graph polynomials. Regarding this, we deVne
the generalized subgraph counting polynomial. This graph polynomial gener-
alizes two classes of graph polynomials, those satisfying a recurrence relation
with respect to some edge operations and those satisfying a recurrence relation
with respect to some vertex operations. We prove that the generalized subgraph
counting polynomial itself also obeys a recurrence relation.

While we have mentioned only graphs until now, many results are also valid
for the more general case of hypergraphs, where in a hypergraph each edge may
be connect an arbitrary number of vertices.

1.1 “Graph Polynomials and Their Representations”

The title of this dissertation is chosen to include two possible meanings of the
term “representation” in connection with graph polynomials.

Mainly, by “representations for graph polynomials” we mean the frameworks
(ways, formalisms, concepts) used to deVne graph polynomials. Thus, we are
talking about an “edge subset representation” and a “coloring representation” if a
graph polynomial is deVned as a sum over edge subsets and as a sum over color-
ings, respectively. As the name suggests, the chromatic polynomial is originally
deVned in terms of colorings and therefore by a coloring representation.

Furthermore, it seems to be possible to expand this meaning and to refer to a
graph polynomial equivalent to another graph polynomial, but deVned in another
framework (representation), as a “representation” of the given graph polynomial.
With this meaning, a representation of the chromatic polynomial is for example
the adjoint polynomial, which is deVned as a sum over partitions and can be
derived from the chromatic polynomial by replacing the falling factorials in an
appropriate formulation by powers, and vice versa.

Another frequently used term is an “expansion” of a graph polynomial, which
denotes an equivalent graph polynomial (deVned in another framework) yielding
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exactly the same graph polynomial. Many expansions of the chromatic poly-
nomial are known, including an “edge subset expansion” stating the chromatic
polynomial as a sum over edge subsets.

While the term “representation” is rarely used in the literature and not nec-
essarily in the same meaning, the term “expansion” with respect to graph poly-
nomials is widely used with the same meaning. As an example, in the article “Ex-
pansions of the chromatic polynomial” Biggs [14] states several diUerent ways
the chromatic polynomial can be deVned. The Vrst usage in this direction seems
to be Whitney’s “A logical expansion in mathematics” [152], where the edge sub-
set expansion and the broken-cycle expansion of the chromatic polynomial are
given (not using these terms explicitly). The term is often used as “subset expan-
sion”, which half the times denotes what we denote as “edge subset expansion”,
but in the other cases refers to a sum or product over some other ground set than
the edge set.

A related term is “type analog”, which is used by Sarmiento [122] to express
that (two) graph polynomials are stated using similar formalisms: “That is, both
polynomials ‘look similar’ in the sense that” replacing some term by another, one
graph polynomial is transformed into another.

1.2 Literature, Own Contributions and Publications

The point of origin of the present research was the deVnition of the edge elimina-
tion polynomial in connection with the search for graph polynomials satisfying
some recurrence relations and relations between graph polynomials following
from such recurrence relations. Namely we want to mention the following liter-
ature:

• “From a zoo to a zoology: Towards a general theory of graph polynomials”
[100],

• “A most general edge elimination polynomial” and “An extension of the bi-
variate chromatic polynomial”, both introducing the edge elimination poly-
nomial [4; 5],

• some surveys on graph polynomials [54; 55; 108; 113].

My own contributions are in particular the deVnition of the covered com-
ponents polynomial, the subgraph counting polynomial, the trivariate chromatic
polynomial (all equivalent to the edge elimination polynomial) and the gener-
alized subgraph counting polynomial, together with the statement concerning
these graph polynomials.

Some of these results are already published or submitted:

• “The covered components polynomial: A new representation of the edge
elimination polynomial”, introducing the covered components polynomial,
published as [139],
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• “From spanning forests to edge subsets”, relating spanning forest repre-
sentation and edge subset representation, a preprint is published as [137],
submitted to Ars Mathematica Contemporanea,

• “Proving properties of the edge elimination polynomial using equivalent
graph polynomials”, introducing the subgraph counting polynomial and
the trivariate chromatic polynomial, a preprint is published as [138], sub-
mitted to Congressus Numerantium.

1.3 Organization of This Thesis

This thesis consists of six chapters and one appendix, where Chapter 2 and Chap-
ter 6 provide the necessary terms and a conclusion, respectively. The chapters
between are mostly self-contained and can be read in arbitrary order, while the
given order is the one suggested.

In Chapter 2, all deVnitions and notations used throughout the work, with
exception of the deVnition of the graph polynomials, are given.

Then we investigate possible ways to deVne graph polynomials, the represen-
tations for graph polynomials, in Chapter 3. The Vrst section is in an extensive but
not exhaustive overview about the frameworks used in the literature, expanded
by some Vrst classiVcation of them. Relations between representations are given
in the second section. The third section is especially devoted to recurrence rela-
tions.

In Chapter 4, the edge elimination polynomials are considered, which in-
clude the edge elimination polynomial and the graph polynomials equivalent to
it. We start with a short introduction of the edge elimination polynomial and
then present several equivalent graph polynomials. Their combinatorial inter-
pretations are used to prove some properties valid for all edge elimination poly-
nomials and some relations to other graph polynomials.

A new graph polynomial, the generalized subgraph counting polynomial, is
deVned in Chapter 5. This proceeds the results of the previous chapter as it
generalizes some of them. The main theorem there is the recurrence relation
applicable also for hypergraphs, which easily enables to derive many well-known
graph polynomials and their recurrence relations from it.

For the sake of convenience, in Appendix A we itemize references and deVni-
tions for all mentioned graph polynomials, and in the Glossary the occurrences of
the signiVcant terms, including the representations, expansions and graph poly-
nomials, are given.



Chapter 2

Basics in Graph Theory

In this chapter we introduce some graph theory we make use of. Because we dis-
cuss a multitude of diUerent graphs polynomials, we touch a lot of miscellaneous
areas of graph theory, and, consequently, a long list of deVnitions and notations
is necessary.

While we try to deVne every term applied, previous knowledge of graph the-
ory as presented in standard textbooks [10; 15; 25; 28; 47; 65; 144] may be advan-
tageous. Readers familiar with this topic may skip to the next chapter.

For the sake of convenience, we use the terms used for graphs also for hyper-
graphs, for example we speak about “graph polynomial” and “subgraph” instead
“hypergraph polynomials” and “subhypergraphs”. Consequently, corresponding
theorems will only diUer on the assumption of a graph or a hypergraph.

Preliminary, we present the following (non-graph-theoretic) notations: For
elements s1 , . . . , sk , by {s1 , . . . , sk } and {s1 , . . . , sk }∗ we denote the set and the
multiset of these elements, and by |{s1 , . . . , sk }| and |{s1 , . . . , sk }∗ | we denote their
cardinality, respectively. For sets A, B (with A ⊆ B), the interval [A, B] is the set
of subsets of B, which are supersets of A. For a set S ,

(
S
k

)
denotes the set of k-

element subsets of S . For a statement S , let [S] be equal to 1, if S is true, and 0
otherwise [86].

2.1 Graphs and Hypergraphs

DeVnition 2.1. A graph G = (V , E) is an ordered pair of a set of vertices, the
vertex setV , and a multiset of edges, the edge set E, such that each edge is a one-
or two-element subset of the vertex set, i.e. e ∈

(
V
1

)
∪

(
V
2

)
for all e ∈ E. An edge

e ∈ E is a link, if it is a two-element subsets of V , i.e. e ∈
(
V
2

)
, and a loop, if it is

an one-element subset of V , i.e. e ∈
(
V
1

)
.

DeVnition 2.2. A simple graph is a graph G = (V , E), where each edge is a link
and the edge set is a set, i.e. E ⊆

(
V
2

)
.
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DeVnition 2.3. The edgeless graph on n vertices, denoted by En , is a (simple)
graph with n vertices and no edge. The complete graph on n vertices, denoted
by Kn , is a simple graph with n vertices and the edge set equals the set of two-
element subsets of the vertex set.

DeVnition 2.4. A hypergraph G = (V , E) is an ordered pair of a set of vertices,
the vertex set V , and a multiset of (hyper)edges, the edge set E, such that each
edge is a non-empty subset of the vertex set, i.e. e ⊆ V for all e ∈ E.

Consequently, a graph is a hypergraph G = (V , E), where each edge is a set
of at most two vertices: |e | ≤ 2 for all e ∈ E.

For the sake of convenience, we assume that the vertices are not sets itself, to
avoid confusion between a vertex and an edge.

DeVnition 2.5. Let G = (V , E) be a hypergraph. We refer to the vertex set and
to the edge set of G by V (G ) and E (G ), respectively. A vertex v ∈ V and an edge
e ∈ E are incident (to each other), if v ∈ e . Two edges e , f ∈ E of G are adjacent
(to each other), if e ∩ f , ∅.

DeVnition 2.6. Let G = (V , E) be a hypergraph and v ∈ V a vertex of G. The
degree of v in G, deg(G ,v ), is the number of edges incident to v :

deg(G ,v ) = |{e ∈ E | v ∈ e}∗ |. (2.1)

By deg−1 (G , i ) we denote the number of vertices with degree i in G:

deg−1 (G , i ) = |{v ∈ V | deg(G ,v ) = i}|. (2.2)

I (G ) and i (G ) denote the set of isolated vertices in G, i.e. the set of vertices with
degree 0, and the number of isolated vertices in G, respectively:

I (G ) = {v ∈ V | deg(G ,v ) = 0}, (2.3)

i (G ) = |I (G ) | = deg−1 (G , 0). (2.4)

2.2 Homomorphisms and Isomorphisms

DeVnition 2.7. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. A homomor-
phism from G to G′ is a function f : V → V ′, such that for each edge e ∈ E it
holds ⋃

v∈e

{f (v )} ∈ E′. (2.5)

In other words, a homomorphism maps (the incident vertices of) an edge of
G to (the incident vertices of) an edge ofG′. Thereby it is possible that no, one or
several edges of G are mapped to the same edge of G′:{⋃

v∈e

{f (v )}
∣∣∣ e ∈ E} ⊆ E′. (2.6)



2.3. GRAPH INVARIANTS AND GRAPH POLYNOMIALS 7

For the counting of homomorphisms it is usual to also consider which edge of
G is mapped to which edge ofG′, that means to count functions mapping vertices
to vertices and edges to edges.

DeVnition 2.8. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. The number
of homomorphisms from G to G′, denoted by hom(G ,G′), is deVned as

hom(G ,G′) =
∑

f :
{
V →V ′
E→E′

[∀v ∈ V ∀e ∈ E : v ∈ e ⇒ f (v ) ∈ f (e )]. (2.7)

For simple graphs G and G′ (in fact if G′ has no parallel edges), a homomor-
phism is given by the function mapping the vertex sets. Hence,

hom(G ,G′) =
∑

f : V →V ′

[
∀e ∈ E :

⋃
v∈e

{f (v )} ∈ E′
]
. (2.8)

This can be extended to the general case of hypergraphs by considering the
number of edges of E′, to which each edge of E can be mapped:

hom(G ,G′) =
∑

f : V →V ′

∏
e∈E

∣∣∣∣{e′ ∈ E′ : ⋃
v∈e

{
f (v )

}
= e′

}∗∣∣∣∣. (2.9)

This deVnition is similar to those used by Garijo, Goodall and Nešetřil [59,
Subsection 2.1].

DeVnition 2.9. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. An isomor-
phism from G into G′ is a bijective homomorphism, that is a bijective function
f : V → V ′, such that{⋃

v∈e

{f (v )}
∣∣∣ e ∈ E}∗ = E′. (2.10)

The hypergraphsG andG′ are isomorphic, if there is an isomorphism fromG into
G′.

In other words,G andG′ are isomorphic, ifG′ can be obtained by a relabeling
of the vertices of G.

2.3 Graph Invariants and Graph Polynomials

DeVnition 2.10. Let G be the set of hypergraphs and S some set. A graph
invariant is a function f : G → S, such that for isomorphic graphs G ,G′ ∈ G it
holds

f (G ) = f (G′). (2.11)
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DeVnition 2.11. Let G be the set of hypergraphs and R[x1 , . . . , xk ] the ring
of polynomials in the commuting variables x1 , . . . , xk over the real numbers. A
graph polynomial P (G , x1 , . . . , xk ) is a function P : G → R[x1 , . . . , xk ].

DeVnition 2.12. Let G be the set of hypergraphs. An invariant graph polynomial
is a graph polynomial, which is a graph invariant, that is a function P : G →
R[x1 , . . . , xk ], such that for isomorphic hypergraphs G ,G′ ∈ G and commuting
variables x1 , . . . , xk it holds

P (G , x1 , . . . , xk ) = P (G′, x1 , . . . , xk ). (2.12)

Until otherwise stated, we consider only graph polynomials, which are also
graph invariants, and therefore use “graph polynomial” as abbreviation for “in-
variant graph polynomial”. In case of S = {0, 1} and S = N one usually speaks
about (invariant) graph properties and (invariant) graph parameters, respectively.
While we consider polynomial rings over the real numbers for the deVnition,
the coeXcients of the graph polynomials investigated in the following are in-
tegers. Furthermore, all variables are commuting, and in case of multivariate
polynomials we deVne X = (x1 , . . . , xk ) and write R[X ] and P (G ,X ) instead of
R[x1 , . . . , xk ] and P (G , x1 , . . . , xk ), respectively. In particular, by P (G ,X ) we de-
note an arbitrary graph polynomial. Additionally, we use P (G ,X ,y) for a graph
polynomial in the variables x1 , . . . , xk ,y.

DeVnition 2.13. Let G be the set of hypergraphs and P (G ,X ), P ′(G ,X ) two
graph polynomials. P (G ,X ) and P ′(G ,X ) are equivalent (to each other), if there
is a bijection f : R[X ]→ R[X ], such that for all graphs G ∈ G it holds

P (G ,X ) = f (P ′(G ,X )). (2.13)

DeVnition 2.14. Let P = P (G ,X ) be a (graph) polynomial with

P =
∑

i1 ,...,ik

ai1 ,...,ikx
i1
1 · · · x

ik
k , (2.14)

where i1 , . . . , ik ∈ N and ai1 ,...,ik ∈ R. We denote by degx (P ) the degree of x in
P and by [xlj ](P ) the sum of all monomials including the variable xj in the power
l , i.e.

[xlj ](P ) =
∑

i1 ,...,ik
ij=l

ai1 ,...,ikx
i1
1 · · · x

ij−1
j−1 x

ij+1
j+1 · · · x

ik
k . (2.15)

Furthermore, we expand this to several variables and write [xi11 · · · x
ij
j ](P ) instead

of [xi11 ](· · · [xijj ](P ) · · · ).

For a graph polynomial P (G , x ) in a single variable x , [xi ](P (G , x )) is the
coeXcient of xi in P (G , x ).
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2.4 Subgraphs and Components

DeVnition 2.15. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. G′ is a
subgraph of G, denoted by G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. G′ is a proper subgraph
of G, denoted by G′ ⊂ G, if additionally V ′ ⊂ V or E′ ⊂ E.

We say G (properly) contains G′ and G′ is (properly) contained in G.

DeVnition 2.16. LetG = (V , E) be a hypergraph and A ⊆ E an edge subset ofG.
The spanning subgraph G〈A〉 is the graph

G〈A〉 = (V ,A). (2.16)

We say G〈A〉 is the subgraph spanned by A. The spanning subgraph G〈A〉 is
the subgraph obtained from G by deleting the edges of E \A.

DeVnition 2.17. Let G = (V , E) be a hypergraph andW ⊆ V a vertex subset of
G. The induced subgraph G[W ] is the graph

G[W ] = (W , {e ∈ E | e ⊆W }∗ ). (2.17)

We say G[W ] is the subgraph of G induced by W and W induces G[W ] in
G. The induced subgraph G[W ] is the subgraph obtained from G by deleting the
vertices of V \W .

DeVnition 2.18. LetG = (V , E) be a hypergraph and A ⊆ E an edge subset ofG.
The edge-induced subgraph G[A] is the graph

G[A] =
( ⋃
e∈A

e ,A
)
. (2.18)

We say G[A] is the subgraph of G edge-induced by A, A edge-induces G[A]
in G. The edge-induced subgraph G[A] is the subgraph obtained from G by Vrst
deleting the edges of E \ A and then deleting all isolated vertices. In particular,
G[E] is the graph G with all isolated vertices removed.

DeVnition 2.19. LetG = (V , E) be a hypergraph. A component ofG is a subgraph
G′ = (V ′, E′), such that for each edge e ∈ E either e ∈ E′ or e ∩ V ′ = ∅. A
connected component of G is a non-empty component of G minimal with respect
to inclusion. The number of connected components of G is denoted by k (G ). If
k (G ) = 1, then G is connected.

DeVnition 2.20. Let G = (V , E) be a hypergraph. A covered component of G is
a component of G including at least one edge. A covered connected component of
G is a connected components of G including at least one edge. The number of
covered connected components of G is denoted by c (G ).
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Remarks

Please note that especially for the diUerent kind of subgraphs the notation is not
uniform in diUerent textbooks, see [11, Section 1.1; 25, Section I.1; 28, Section 2.1,
2.2; 47, Section 1.1; 65, Section 1.2; 144, Section I.3].

2.5 Cycles, Forests and Spanning Forests

DeVnition 2.21. Let G = (V , E) be a graph. G is cyclic, if G has a subgraph
G′ = (V ′, E′) including at least one edge, such that for each edge e ∈ E′ of G′ it
holds

k (G′) = k (G′−e ). (2.19)

Otherwise, G is acyclic.

DeVnition 2.22. Let G = (V , E) be a graph. G is a cycle, if G is cyclic and has no
proper cyclic subgraph. G is a forest, if G is acyclic. G is tree, if G is acyclic and
connected.

DeVnition 2.23. Let G = (V , E) be a graph and A ⊆ E an edge subset of G. A
treeT = G〈A〉 = (V ,A) is a spanning tree ofG. The set of all spanning trees ofG is
denoted by T (G ).

DeVnition 2.24. Let G = (V , E) be a graph and A ⊆ E an edge subset of G. A
forest F = G〈A〉 = (V ,A) is a spanning forest of G, if k (G ) = k (F ). The set of all
spanning forests of G is denoted by F (G ).

Remarks

While the term “spanning tree” is unambiguous, the term “spanning forest” is not,
because not every spanning subgraph which is a forest is a “spanning forest” [25,
Section X.5]. A spanning forest is the union of spanning trees for each connected
component.

2.6 Graph Operations

DeVnition 2.25. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. The union
G ∪G′ is the graph arising from the union of the vertex sets and edge sets:

G ∪G′ = (V ∪V ′, E ∪ E′). (2.20)

DeVnition 2.26. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. The intersec-
tion G ∩G′ is the graph arising from the intersection of the vertex sets and edge
sets:

G ∩G′ = (V ∩V ′, E ∩ E′). (2.21)
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DeVnition 2.27. Let G = (V , E) and G′ = (V ′, E′) be hypergraphs. The disjoint
union G∪· G′ is the graph arising from the union of disjoint copies of both graphs.

In other words, Vrst (the vertices of) the graphs are relabeled, such that the
intersection of both graphs is empty, and then the union is formed.

DeVnition 2.28. Let G = (V , E) be a hypergraph and e ∈ E an edge of G. We
deVne the following edge operations:

• −e: deletion of the edge e , i.e. e is removed,

• /e: contraction of the edge e , i.e. e is removed and its incident vertices are
merged (parallel edges and loops may occur),

• †e: extraction of the edge e , i.e. the vertices incident to e and their incident
edges (including e itself) are removed.

The arising hypergraphs are denoted by G−e , G/e and G†e , respectively.

DeVnition 2.29. Let G = (V , E) be a hypergraph and e ⊆ V a possible edge of G
(with respect to the type of graph). We deVne the following non-edge operations:

• +e: insertion of the edge e , i.e. e is added,

• /e: contraction of the vertices in e , i.e. the vertices in e are merged (parallel
edges and loops may occur),

The arising hypergraphs are denoted by G+e and G/e , respectively.

DeVnition 2.30. Let G = (V , E) be a hypergraph, v ∈ V a vertex and W ⊆ V a
vertex subset of G. We deVne the following vertex operations:

• 	v : deletion of the vertex v , i.e. v and its incident edges are removed,

• 	W : deletion of all vertices in the vertex subset W , i.e. all vertices v ∈ W
and their incident edges are removed.

The arising hypergraphs are denoted by G	v and G	W , respectively.

Remarks

We use 	W instead of the usual −W for the deletion of the vertex setW from a
graph G = (V , E), because each edge is also a vertex subset, and therefore with
W = e ∈ E we have to distinguish between the deletion of the edge e , −e , and the
deletion of the vertices incident to the edge e , 	e . For probably similar reasons
this notation is already used in the literature [57; 80]. It holds G†e = G	e , but
the Vrst term is deVned only for e ∈ E, whereas the second one is deVned for any
e ⊆ V .
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The deVned edge and vertex operations are known from the recurrence rela-
tions for the chromatic polynomial, see Section 3.3, the matching polynomial [56,
Theorem 1] and the independence polynomial [68, Proposition 4].

There are several more graph operations that can be found in the literature,
for example:

• vertex contraction [134, Section 5.1],

• insertion of “pseudo-edges” [9, Section 1],

• Kellman’s operation (for adjacent vertices) [43, DeVnition 2.0.1]

• NA-Kellman’s operation (for non-adjacent vertices) [43, DeVnition 2.8.1],

• adaption of two vertices [34, Section 3],

• cloning of edges and vertices [78, Section 3].

2.7 Graphs with a Linear Order on the Edge Set

In the following we consider graphsG = (V , E) with a linear order < on the edge
set E. This linear order can be represented by a bijection β : E → {1, . . . , |E |} for
all e , f ∈ E with

e < f ⇔ β (e ) < β (f ). (2.22)

DeVnition 2.31 (Section 7 in [152]). Let G = (V , E) be a graph with a linear
order < on the edge set E. Let C = (VC , EC ) ⊆ G be a cycle and e ∈ EC the
maximal edge of C with respect to <. Then EC \ {e} is a broken cycle in G with
respect to <. The set of all broken cycles of G with respect to < is denoted by
B (G , <).

DeVnition 2.32 (Section 3 in [141]). Let G = (V , E) be a graph with a linear
order < on the edge set E and F = (V ,A) ∈ F (G ) a spanning forest of G. An
edge e ∈ A is internally active in F with respect toG and <, if there exists no edge
f ∈ E \ A, such that e < f and F−e+f ∈ F (G ). We denote the set of internally
active edges and the number of internally active edges of F with respect to G and
< by Ei (F ,G , <) and i (F ,G , <), respectively.

An edge e in the spanning forest F is internally active, if it is the maximal
edge of all edges in the cut crossed by e itself (connecting the vertices in the
connected components arising by deleting e from F ). In other words, the edge
e can not be replaced by a greater edge (not in the spanning forest), such that F
remains a spanning forest. Hence, formally we have

Ei (F ,G , <) = {e ∈ E (F ) | @f ∈ E (G ) \ E (F ) : e < f ∧ F−e+f ∈ F (G )}.
(2.23)
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DeVnition 2.33 (Section 3 in [141]). Let G = (V , E) be a graph with a linear
order < on the edge set E and F = (V ,A) ∈ F (G ) a spanning forest of G. An
edge f ∈ E \A is externally active in F with respect to G and <, if there exists no
edge e ∈ A, such that f < e and F−e+f ∈ F (G ). We denote the set of externally
active edges and the number of externally active edges of F with respect to G and
< by Ee (F ,G , <) and e (F ,G , <), respectively.

An edge f not in the spanning forest F is externally active, if it is the maximal
edge of all edges in the cycle closed by f itself (in the cycle arising by inserting f
into F ). In other words, there is no greater edge (in the spanning forest), which
can be replaced by f , such that F remains a spanning forest. Hence, formally we
have

Ee (F ,G , <) = {f ∈ E (G ) \ E (F ) | @e ∈ E (F ) : f < e ∧ F−e+f ∈ F (G )}.
(2.24)

Remarks

In the literature, instead of “broken cycle” often the term “broken circuit” is used,
also in Whitney’s original deVnition [151, Section 2; 152, Section 7]. Whitney
uses the term “circuit” for what we call “cycle”, and from this by deleting the
maximal edge (in his words “dropping out the last arc” with respect to a “deVnite
order” [151, Section 2]) he came to a “broken circuit”. By the same analogy we
get a “broken cycle”.

Furthermore, in the literature a broken cycle is often deVned as a subgraph,
here it is given as an edge subset. Whitney’s own deVnitions are not explicit in
this way and allow both.

Broken-cycle-free edge subsets, same as broken cycles, were Vrst considered
by Whitney and result in the well-known Broken-cycle Theorem [151, Theorem
1], which states a combinatorial interpretation of the coeXcients of the chromatic
polynomial. We present and extend this result in Subsection 3.1.4.

Internally and externally active edges were Vrst used by Tutte [141] to state
the dichromate, nowadays called Tutte polynomial. For some background to the
deVnition of internally and externally active edges and the Tutte polynomial, see
[8; 92; 145].

Broken cycles and externally active edges are related as follows: A spanning
forest ofG is externally active, if and only if it includes a broken cycle [8, Section
4].

2.8 Partitions of Graphs

DeVnition 2.34. Let S be a set. A partition π of S is a family of non-empty
disjoint subsets of S , such that their union is S . The elements of π are called
blocks and the number of blocks of π is denoted by |π |. The set of partitions of S is
denoted by Π(S ).
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DeVnition 2.35. LetG = (V , E) be a graph. A (vertex) partition ofG is a partition
π ∈ Π(V ) of the vertex setV . The set of (vertex) partitions ofG is denoted by Π(G ).

DeVnition 2.36. Let G = (V , E) be a graph. A connected partition of G is a
partition π ∈ Π(G ) of the vertex setV , such thatG[W ] is connected for allW ∈ π ,
that is the subgraph induced by the vertices of each block is connected. The set
of connected partitions of G is denoted by Πc (G ).

DeVnition 2.37. Let G = (V , E) be a graph. An independent partition of G is a
partition π ∈ Π(G ) of the vertex set V , such that G[W ] is edgeless for allW ∈ π ,
that is the subgraph induced by the vertices of each block is edgeless. The set of
independent partitions of G is denoted by Πi (G ).

Let ≤ be the usual reVnement relation for partitions. Then (Πc (G ), ≤) is a
poset and even more it is a lattice, known as bond lattice [118].

DeVnition 2.38. Let G = (V , E) be a graph and Πc (G ) the set of all connected
partitions of G. We denote the Möbius function and the minimal element of the
lattice (Πc (G ) , ≤) as µΠc (G ) = µ and 0̂Πc (G ) = 0̂, respectively.

2.9 Colorings, Independent Sets and Matchings

DeVnition 2.39. Let G = (V , E) be a hypergraph. A (vertex) coloring of G is
a function from the vertex set V in some set C , whose elements are referred to
as colors. A k-coloring of G is a function ϕ : V → {1, . . . , k }. A monochromatic
edge ofG with respect to some k-coloring ϕ is an edge e ∈ E, such that all vertices
incident to e are mapped to the same color. A proper k-coloring ofG is a k-coloring
without any monochromatic edges.

DeVnition 2.40. Let G = (V , E) be a hypergraph. An independent (vertex) set of
G is a vertex subsetW ⊆ V of G, such that e *W for all edges e ∈ E.

DeVnition 2.41. Let G = (V , E) be a hypergraph. A matching of G is an edge
subset A ⊆ E, such that for all diUerent edges e , f ∈ A it holds e ∩ f = ∅.

Remarks

It would be also possible to generalize proper colorings to hypergraphs by requir-
ing that any two vertices incident to the same edge should be colored diUerently.
With respect to proper colorings, this would be equivalent to substitute each hy-
peredge for a set of edges connecting any two vertices incident to the hyperedge
[131, Footnote 2 on page 281].
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2.10 Reconstructability

The reconstruction conjecture of Kelly [85] and Ulam [146] states that every graph
G = (V , E) with at least three vertices can be reconstructed from (the isomor-
phism classes) of its deckD (G ), which is the multiset of (isomorphism classes) of
vertex-deleted subgraphs, i.e. D (G ) = {G	v | v ∈ V }∗.

This question can be “restricted” to a graph polynomial P (G ,X ) as follows:
Can the graph polynomial of a given graph be reconstructed from the graph
polynomials of its deck?

DeVnition 2.42. LetG = (V , E) be a graph and P (G ,X ) a graph polynomial. The
polynomial deck DP (G ) is the multiset

DP (G ) = {P (G	v ,X ) | v ∈ V }∗ . (2.25)

A graph polynomial is reconstructable from the polynomial deck, if P (G ,X ) can be
determined from DP (G ).

2.11 Reliability Domination

DeVnition 2.43 (Equation (2.3) in [81]). Let G = (V , E) be a graph, A ⊆ E an
edge subset of G and k ∈ N. For all edge subsets B ⊆ A, the signed domination
d (G , B, k ) is recursively deVned by

[k (G〈A〉) ≤ k] =
∑
B⊆A

d (G , B, k ). (2.26)

Theorem 2.44 (Theorem 4.2 in [81]). Let G = (V , E) be a graph, A ⊆ E an edge
subset of G and k ∈ N. The signed domination d (G ,A, k ) satisVes

d (G ,A, k ) =
∑
B⊆A

(−1) |A|− |B |[k (G〈B〉) ≤ k]. (2.27)

Proof. The statement follows directly by Möbius inversion. �

DeVnition 2.45 (Proposition 2.8 in [82]). Let G = (V , E) be a graph, A ⊆ E an
edge subset ofG and k ∈ N. A k-forest ofG〈A〉 is a spanning subgraphG〈B〉, such
that G〈B〉 is a forest, B ⊆ A and k (G〈B〉) ≤ k . We denote the set of k-forests of
G〈A〉 by F (G ,A, k ). A k-formation D of G〈A〉 is a non-empty set of k-forests of
G〈A〉, such that their union isG〈A〉, i.e. a non-empty subset F ⊆ F (G ,A, k ) is a k-
formation ofG〈A〉, if

⋃
H ∈F H = G〈A〉. The set of k-formations ofG〈A〉 is denoted

by D (G ,A, k ). The signed domination d′(G ,A, k ) is deVned as the number of k-
formations of G〈A〉 of odd cardinality minus the number of k-formations of G〈A〉
of even cardinality, i.e.

d′(G ,A, k ) =
∑

D∈D (G,A,k )

(−1) |D |−1. (2.28)



Remarks

Reliability domination has been deVned in order to Vnd a combinatorial inter-
pretation of the coeXcients of the reliability polynomial R (G ,p) [124, Equation
(7)].

We give two diUerent deVnitions for signed domination and show their equiv-
alence in Subsection 3.2.3. Due to Satyanarayana and Tindell [125, Section 1], the
original deVnition of signed domination is given by Satyanarayana [123] in terms
of “formations” of a graph. It is often deVned with respect to a vertex subset, this
is considered in many publications by Satyanarayana and his coauthors, see [24;
116] and the references therein. Another deVnition was given by Huseby [81; 82]
for “clutters”. Both deVnitions above orient more on the last one in the case of
graphs with respect to the number of connected components.

Signed domination is also related to spanning trees: The number of spanning
trees having no externally active edge equals the absolute value of the signed
domination d (G , E , 1) [23, Corollary 4.2].



Chapter 3

Representations for
Graph Polynomials

This chapter is devoted to the multitude of diUerent ways and frameworks ap-
plied to deVne a graph polynomial — to the representations for graph polynomials.

In Section 3.1 we give a survey on diUerent representations used in the liter-
ature. The list does not claim to be exhaustive. However, we hope to mention
the main representatives available in the literature. For each we give an infor-
mal deVnition, an exemplary graph polynomial deVned in this framework, and a
corresponding formulation of the chromatic polynomial. Thereby we introduce
several well-known graph polynomials and expansions of the chromatic polyno-
mial.

Some results that serve as a link between the edge subset representation and
some other representations are presented in Section 3.2. With exception of the
generalization of the Broken-cycle Theorem, the statements are, in principle, al-
ready known. However, these statements provide good examples for non-obvious
relations between diUerent representations of graph polynomials and either the
proofs, for instance for the relation to reliability domination representation, or
the applications, for instance for the relation to spanning forest representation,
seem to be new.

In Section 3.3 we discuss recurrence relations, used to deVne graph polyno-
mials or satisVed by them, in more detail. We show some examples and prove
two general results.

3.1 Overview and DeVnitions

There are various ways to deVne graph polynomials and in this section we in-
troduce the main patterns we found (with names wherever possible also from
the literature). The given itemization is neither complete nor are the given rep-
resentations formally deVned or disjoint. We also mix between how the graph
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polynomials are written down and in which graph theoretic terms these are de-
Vned.

For “how the graph polynomials are written down” there are in fact two pos-
sibilities: value representation, where the number of the counted objects equals
the polynomial at a given value, and generating function representation, where
the number of counted objects equals a coeXcient of a monomial in the polyno-
mial. There are also graph polynomials which combine both, for example the bad
coloring polynomial which counts for a given number of colors (the variable x )
the number of some edges as a generating function (in the variable z).

For the graph theoretic terms used, there are some more possibilities, which
can be grouped as counting subgraphs, counting mappings and others.

For counting subgraphs, most often spanning subgraphs, given by edge sub-
sets, or induced subgraphs, given by a vertex subsets, are considered. Broken-
cycles, reliability domination and spanning forests are in fact deVned in terms of
edge subsets, but we list them as single items because of their relevance.

When mappings are counted, there are again three possibilities: mappings
of the vertex set, mappings of the edge set, and homomorphisms to some graph,
which are in fact mappings of the vertex and edge set. Spin models (mostly
used for graph polynomials deVned in physics) and colorings are in fact the same
kind of vertex mappings, in the Vrst case the vertices are mapped to a set of
“spins”, in the second to a set of “colors”. Consequently, both diUer only in their
“language”, not in the mathematics behind. We add a superior category denoted
“edge mapping representations” to make clear what is meant by a “vertex model”.

The three “other” representations are using matrices and matroids associated
to the graph or recurrence relations.

All together, we classify the representations for graph polynomials as follows:

• value representation,

• generating function representation,

• subgraph representation:

– edge subset representation,

– broken-cycle representation,

– reliability domination representation,

– spanning forest representation,

– vertex subset representation,

• vertex mapping representation:

– spin model,

– coloring representation,

– partition representation,
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• edge mapping representation:

– vertex model,

• homomorphism representation.

• matrix representation,

• matroid representation,

• recurrence relation representation,

We continue by introducing the representations, a characteristic graph poly-
nomial using this representation, and a corresponding expansion of the chromatic
polynomial one by one. The thereby given list of such expansions is not complete,
missing are, amongst others, some subgraph expansions concerning only special
subgraphs [14; 103].

In the following, we assume G = (V , E) to be a graph with some linear order
< on the edge set E. (While most of the deVnitions of graph polynomials also
make sense in the case of hypergraphs, some expansion would not be valid.)

3.1.1 Value Representation

A value representation states a graph polynomial by a combinatorial interpreta-
tion for given values (mostly integers) of the variables.

The chromatic polynomial χ (G , x ) (for x ∈ N) is deVned [18; 52] as the num-
ber of proper (vertex) colorings of G with (at most) x colors,

χ (G , x ) = |{proper colorings of G with x colors}|. (3.1)

In fact, from this deVnition it is not obvious that χ (G , x ) is a polynomial in x .

3.1.2 Generating Function Representation

A generating function representation states a graph polynomial as the generating
function for a number sequence.

The matching polynomial M (G , x ,y) is deVned [56; 64] as the generating
function of the number of matchings with respect to their cardinality,

M (G , x ,y) =
∑
i

aix |V |− |
⋃
e∈A e |yi , (3.2)

where ai is the number of matchings of G with cardinality i .
The chromatic polynomial χ (G , x ) can be deVned [151, Theorem 1; 52, Theo-

rem 2.3.1] as the generating function

χ (G , x ) =
∑
i

mix |V |−i , (3.3)

where (−1)imi is the number of spanning subgraphs of G with i edges not con-
taining any broken cycle (with respect to <).
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3.1.3 Edge Subset Representation

An edge subset representation states a graph polynomial as a sum over edge sub-
sets.

The Potts model Z (G , x ,y) is deVned [129] as

Z (G , x ,y) =
∑
A⊆E

xk (G 〈A〉)y |A| . (3.4)

The chromatic polynomial χ (G , x ) has the edge subset expansion [151, Sec-
tion 2; 52, Theorem 2.2.1]

χ (G , x ) =
∑
A⊆E

(−1) |A|xk (G 〈A〉) . (3.5)

3.1.4 Broken-cycle Representation

A broken-cycle representation states a graph polynomial as a sum over broken-
cycle-free edge subsets.

The chromatic polynomial χ (G , x ) has the broken-cycle expansion [152, Sec-
tion 7; 52, Theorem 2.3.1]

χ (G , x ) =
∑
A⊆E

∀B∈B (G,<) : B*A

(−1) |A|x |V |− |A| . (3.6)

3.1.5 Reliability Domination Representation

A reliability domination representation states a graph polynomial in terms of reli-
ability domination.

The reliability polynomial R (G ,p) can be deVned [124, Equation (7)] as

R (G ,p) =
∑
A⊆E

d (G ,A, 1)p |A| . (3.7)

The chromatic polynomial χ (G , x ) has the reliability domination expansion
[125, Proposition 3.3, due to Rodriguez]

χ (G , x ) = (−1) |E | (1 − x )
|V |−1∑
k=1

d (G , E , k )xk . (3.8)

3.1.6 Spanning Forest Representation

A spanning forest representation states a graph polynomial as a sum over spanning
forests. In case of connected graphs we have spanning trees and therefore speak
about spanning tree representation.
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The Tutte polynomialT (G , x ,y) is deVned [141, Section 3; 15, DeVnition 13.6]
as

T (G , x ,y) =
∑

F ∈F (G )

xi (F,G,<)ye (F,G,<) . (3.9)

The chromatic polynomial χ (G , x ) has the spanning forest expansion [141,
Equation (4) and (21); 15, Theorem 14.1]

χ (G , x ) = (−1) |V | (−x )k (G )
∑

F ∈F (G )
e (F,G,<)=0

(1 − x )i (F,G,<) . (3.10)

3.1.7 Vertex Subset Representation

A vertex subset representation states a graph polynomial as a sum over vertex
subsets.

The independence polynomial I (G , x ) is deVned [68; 94] as

I (G , x ) =
∑

W ⊆V

[W is independent set in G]x |W | . (3.11)

The chromatic polynomial χ (G , x ) (for x ∈ N) has the “recursive vertex sub-
set expansion” [54, Theorem 9.7.17]

χ (G , x ) =
∑

W ⊆V

[W is independent set in G] χ (G	W , x − 1). (3.12)

3.1.8 Spin Model

A spin model states a graph polynomial as a sum over mappings of the vertex
set in a set, whose elements are called “spins” or “states”, therefore also the name
state model is common. The representation has its origin in mathematical physics,
but is in fact equivalent to counting colorings (coloring representation). See also
[70; 105; 126].

The extended Negami polynomial f̃ (G , t , x ,y , z) (for t ∈ N) can be deVned
[105, page 327] as

f̃ (G , t , x ,y , z) =
∑

ϕ : V →{1,...,t }

∏
e∈E

w (e ), (3.13)

where

w (e ) =


x + y if ∀v ∈ e : ϕ (v ) = 1,

z + y if ∃c , 1∀v ∈ e : ϕ (v ) = c ,
y if @c ∀v ∈ e : ϕ (v ) = c .

(3.14)
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The chromatic polynomial χ (G , x ) (for x ∈ N) has the spin model expansion
[70, page 209]

χ (G , x ) =
∑

ϕ : V →{1,...,x }

∏
e∈E

γ (e ), (3.15)

where

γ (e ) =

0 if ∃c : ∀v ∈ e : ϕ (v ) = c ,
1 if @c : ∀v ∈ e : ϕ (v ) = c .

(3.16)

Please observe, that Noble and Welsh use the term “states model representa-
tion” for an equation of the weighted graph polynomial given as a sum over edge
subsets [107, Theorem 4.3].

Spin models may be used to count isomorphisms and therefore to deVne com-
plete graph invariants [70, Proposition on page 213].

3.1.9 Coloring Representation

A coloring representation (vertex coloring model) states a graph polynomial by
counting colorings. It has its origin in graph theory, but is in fact equivalent
to spin models.

The bivariate chromatic polynomial P (G , x ,y) (for x ,y ∈ N) is deVned as
the number of (vertex) colorings with (at most) x colors, such that the vertices
incident to each monochromatic edge are colored by a color c > y [50, Section 1],

P (G , x ,y) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c≤y ∀v∈e : ϕ (v )=c

0. (3.17)

The “coloring expansion” of the chromatic polynomial is exactly its deVni-
tion: The chromatic polynomial χ (G , x ) (for x ∈ N) is deVned as

χ (G , x ) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c ∀v∈e : ϕ (v )=c

0. (3.18)

The connection between graph polynomials “counting generalized colorings”
and graph polynomials deVnable in Second Order Logic (SOL) is examined by
Kotek, Makowsky and Zilber [90; 91].

3.1.10 Partition Representation

A partition representation states a graph polynomial as a sum over set partitions,
usually over (special) partitions of the vertex set.

The partition polynomial Q (G , x ) is deVned [127, Section 4] as

Q (G , x ) =
∑

π∈Πc (G )

x |π | , (3.19)
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and the adjoint polynomial h(G , x ) (for a simple graphG = (V , E)) is deVned [52,
Section 11.1] as

h(G , x ) =
∑

π∈Πi (Ḡ )

x |π | , (3.20)

where Ḡ = (V ,
(
V
2

)
\ E).

The chromatic polynomial χ (G , x ) has the connected partition expansion
[118, Equation (*) in Section 9] and the independent partition expansion [52, The-
orem 1.4.1]

χ (G , x ) =
∑

π∈Πc (G )

µ (0̂, π ) · x |π | , (3.21)

=
∑

π∈Πi (G )

x |π | . (3.22)

3.1.11 Vertex Model

A vertex model states a graph polynomial as a sum over mappings of the edge set
in a set, whose elements are called “states”. The value of each such mapping is
determined by the images of the edges incident to each vertex. This representa-
tion is in fact the opposite of a spin model, as the roles of vertices and edges are
interchanged. Just as there, we can consider the states as colors, therefore also
the names edge model and edge coloring model are used, see [70; 132].

The edge coloring polynomial χ ′(G , x ) is deVned [70, Section 2] as

χ ′(G , x ) =
∑

ϕ : E→{1,...,x }

∏
v∈V

γ (v ), (3.23)

with

γ (v ) =

0 if ∃e1 , e2 ∈ E : v ∈ e1 ∩ e2 ∨ ϕ (e1) = ϕ (e2),

1 otherwise.
(3.24)

Spin model and vertex model can be related via the line graph [70, Subsection
2.3]. Consequently, the chromatic polynomial of a line graph has the “vertex
model expansion”

χ (L(G ), x ) = χ ′(G , x ). (3.25)

3.1.12 Homomorphism Representation

A homomorphism representation deVnes a graph polynomial of a graph by count-
ing its homomorphisms to some graphs.
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In general, for a class H of graphs and a function w : H → R, a graph
polynomial H (G ,H ,w ) can be deVned as the weighted sum of the number of
homomorphisms from G to the graphs inH :

H (G ,H ,w ) =
∑
H ∈H

w (H ) · hom(G ,H ). (3.26)

The homomorphism polynomial by Garijo et al. H (G , k , x ,y , z) (for
k , x ,y , z ∈ N) is deVned [59, page 1044] as

H (G , k , x ,y , z) = hom(G ,Hk,x,y,z ), (3.27)

where the graph Kl
k is a complete graph on k vertices with l loops attached at

each vertex and the graph Hk,x,y,z arises by the join of a Kz
k with the disjoint

union of y copies of Kz
x .

The chromatic polynomial χ (G , x ) (for x ∈ N) has the homomorphism ex-
pansion [72, Proposition 1.7]

χ (G , x ) = hom(G ,Kx ). (3.28)

There are other “homomorphism polynomials”, for example one deVned orig-
inally by Bari for simple graphs [9; 62] and extended by Gillman to graphs [62],
that count homomorphisms of a graph to its subgraphs.

Nowadays, homomorphisms of graphs and polynomials counting them seem
to get increasing attention [59; 60; 72].

3.1.13 Matrix Representation

A matrix representation states a graph polynomial as a function of a matrix. A
good overview of graph polynomials deVned as determinants and permanents of
matrices (related to the adjacency matrix) is given by Parthasarathy [113, Subsec-
tion 2.1 and Section 5].

The characteristic polynomial ϕ (G , x ) is deVned [44] as the characteristic
polynomial of the adjacency matrix A(G ),

ϕ (G , x ) = det(xI − A(G )) , (3.29)

where A(G ) = [au,v]u,v∈V with au,v = |{e ∈ E | e = {u ,v}}∗ | and I is the identity
matrix of format |V | × |V |.

While the chromatic polynomial of an arbitrary graph can be written in a ma-
trix equation, each of these in fact uses another representation (to represent the
entries of the matrix). For special (symmetric) graphs there is a “matrix method”
to calculate the values of their chromatic polynomials [16; 17].
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3.1.14 Matroid Representation

A matroid representation states a graph polynomial as a function of a matroid. For
the corresponding deVnitions we refer to [110].

The rank-generating function S (G , x ,y) can be deVned [33, Section 6.2; 25,
Section X.1] as

S (G , x ,y) =
∑
A⊆E

xr (E )−r (A)y |A|−r (A) , (3.30)

where r (A) is the rank of the set A in the cycle matroid of G.
The chromatic polynomial χ (G , x ) has the matroid representation [33, Propo-

sition 6.3.1]

χ (G , x ) = xk (G ) (−1)V −k (G )
∑
A⊆E

(−x )r (E )−r (A) (−1) |A|−r (A) , (3.31)

where r (A) is the rank of the set A in the cycle matroid of G.

3.1.15 Recurrence Relation Representation

A recurrence relation representation states a graph polynomial by recurrence rela-
tions satisVed.

The edge elimination polynomial ξ (G ) = ξ (G , x ,y , z) is deVned [4, Equation
(13)] as

ξ (G ) = ξ (G−e ) + y · ξ (G/e ) + z · ξ (G†e ), (3.32)

ξ (G1 ∪· G2) = ξ (G1) · ξ (G2), (3.33)

ξ (K1) = x . (3.34)

The chromatic polynomial χ (G , x ) satisVes the recurrence relations [153, due
to Foster; 52]

χ (G , x ) = χ (G−e ) − χ (G/e ), (3.35)

χ (G1 ∪· G2) = χ (G1) · χ (G2), (3.36)

χ (K1) = x . (3.37)

Recurrence relations are discussed in more detail in Section 3.3.

3.2 Relations to the Edge Subset Representation

We have already seen that some representations are related to each other, for
instance the spin model and the coloring representation are equivalent. Some
other relations are already given implicitly by the diUerent expansions of the
chromatic polynomial. A generalization of this graph polynomial is the Potts
model, which is deVned in graph theory (as given in Equation (3.4)) by a sum
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over edge subsets and in mathematical physics by a spin model [128; 129]. It
therefore already gives a more general relation of those two representations than
the expansions of the chromatic polynomial.

In this section we look for relations between diUerent representations which
do not assume any special graph polynomial, but hold for all graph polynomi-
als satisfying some properties. The required properties are linked to a function
ranging over edge subsets, consequently such an expansion is necessary for the
application of the statement. In fact, each of these relations is a generalization of
the results known for the chromatic polynomial and hence this graph polynomial
(and the function in its edge subset expansion) fulVlls the requirements.

3.2.1 Broken-cycle Representation

The well-known Broken-cycle Theorem can be extended to link between edge
subset representations and broken-cycle representations.

Please remember that broken cycles of a graph are edge subsets arising from
the edges of its cycles by deleting the maximal edge and that their set is denoted
by B (G , <) (DeVnition 2.31).

The Broken-cycle Theorem was Vrst given by Whitney [151, Theorem 1] and
states a combinatorial interpretation of the coeXcients of the chromatic poly-
nomial. Originally, the Broken-cycle Theorem was given by removing edges,
“(−1)imi is the number of ways of picking out i arcs from G so that not all the
arcs of any broken circuit are removed” [151, Theorem 1]. Later on, the point
of view was changed to the nowadays used (and in fact more general) version
inserting edges, “the number (−1)imi is the number of subgraphs of G of i arcs
which do not contain all the arcs of any broken circuit” [152, Section 7].

We Vrst restate the Broken-cycle Theorem and its proof in order to make the
reader familiar with this result and thereby to point to the diUerences occurring
in the following.

Theorem 3.1 (Section 7 in [152], Theorem 2.3.1 in [52]). Let G = (V , E) be a
graph with a linear order < on the edge set E. The chromatic polynomial χ (G , x )
satisVes

χ (G , x ) =
∑
A⊆E

∀B∈B (G,<) : B*A

(−1) |A|xk (G 〈A〉) (3.38)

=
∑
A⊆E

∀B∈B (G,<) : B*A

(−1) |A|x |V |− |A| . (3.39)

Proof. For each broken cycle B ∈ B (G , <), we denote by
e (B) the minimal edge closing the broken cycle B, i.e. e (B) =

min {e ∈ E | B ∪ {e} is the edge set of a cycle in G}. Assume that B (G , <) =
{B1 , . . . , Bk }, such that i < j if e (Bi ) < e (Bj ).
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We partition the set of edge subsets A ⊆ E into blocks Ei (some of them may
be empty), such that A ∈ Ei , if Bi is the minimal broken cycle (with respect to its
index and to the edge closing it) included in A, i.e. A ∈ Ei , if i = min {j | Bj ⊆ A}.

Then for each i and each A ∈ Ei with e (Bi ) < A, A ∈ Ei if and only if
A∪{e (Bi )} ∈ Ei . For the Vrst direction we assume that A∪{e (Bi )} ∈ Ej with i , j.
Because Bi ∈ A ∪ {e (Bi )}, by the deVnition of Ej it follows that Bj ∈ A ∪ {e (Bi )}
with j < i . But e (Bi ) is in the broken cycle Bj , otherwise A ∈ Bj , and therefore
e (Bi ) < e (Bj ). Consequently i < j, which gives a contradiction. The second
direction follows easily from the fact that if Bi ⊆ A∪ {e (Bi )}, then Bi ⊆ A, and by
deleting an edge no other broken cycle occurs.

For such i and A, e (Bi ) is an edge of a cycle in G〈A ∪ {e (Bi )}〉. Therefore
k (G〈A〉) = k (G〈A ∪ {e (Bi )}〉) and consequently

(−1) |A|xk (G 〈A〉) = −(−1) |A∪{e (Bi )} |xk (G 〈A∪{e (Bi )}〉) .

Hence, for each block Ei , E0 it holds∑
A∈Ei

(−1) |A|xk (G 〈A〉) = 0.

As E0 is the set of edge subsets not including any broken cycle B ∈ B (G , <), we
have E0 = {A ⊆ E | ∀B ∈ B (G , <) : B * A}, and the Vrst statement follows from
the edge subset expansion of the chromatic polynomial as given in Equation (3.5):

χ (G , x ) =
∑
A⊆E

(−1) |A|xk (G 〈A〉)

=
∑
A⊆E
A∈E0

(−1) |A|xk (G 〈A〉)

=
∑
A⊆E

∀B∈B (G,<) : B*A

(−1) |A|xk (G 〈A〉) .

Because broken-cycle-free subgraphs are cycle-free subgraphs (forests), they sat-
isfy k (G〈A〉) = |V | − |A| and therefore the second statement holds. �

The Broken-cycle Theorem as given in Equation (3.38) can be generalized in
two aspects:

1. by enabling a restriction of the regarded set of broken cycles,

2. by introducing more general terms of summation.

Theorem 3.2. Let G = (V , E) be a graph with a linear order < on the edge set
E, B ⊆ B (G , <) a subset of the set of broken cycles of G, and f (G ,A) a function
mapping in an additive abelian group, such that for all A ⊆ E and all e ∈ E \ A it
holds

k (G〈A〉) = k (G〈A〉 ∪ {e}) ⇒ f (G ,A) = −f (G ,A ∪ {e}). (3.40)
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Then ∑
A⊆E

f (G ,A) =
∑
A⊆E

∀B∈B : B*A

f (G ,A). (3.41)

This can be shown by a proof similar to the those for the original statement,
where “broken cycle B ∈ B (G , <)” is replaced by “broken cycle B ∈ B” and
“(−1) |A|xk (G 〈A〉)” is replaced by “f (G ,A)”. We give an alternative proof using
induction with respect to the number of broken cycles in B.

Proof. We use induction with respect to the cardinality of the set B, that is with
respect to the number of broken cycles regarded.

For the basic step we assume that |B| = 0 and the statement holds obviously.
We assume as induction hypothesis that the statement holds for any set B ⊆
B (G , <) with cardinality less than k and consider now a set B ⊆ B (G , <) with
cardinality k .

For each broken cycle B ∈ B (G , <), we denote by e (B)
the maximal edge closing the broken cycle B, i.e. e (B) =

max {e ∈ E | B ∪ {e} is the edge set of a cycle of G}. Let B ∈ B and B′ = B \ {B},
such that e (B) ≮ e (B′) for all B′ ∈ B′.

In fact, we only have to show that the edge subsets, which do include the
broken cycle B, but do not include any broken cycle B′ ∈ B′, cancel each other.
Let A be the set of such edge subsets, i.e.

A =
⋃
A⊆E

∀B′∈B′ : B′*A
B⊆A

{A}.

Then for each A ⊆ E with e (B) < A, A ∈ A if and only if A ∪ {e (B)} ∈ A.
For the Vrst direction we assume that A ∪ {e (B)} includes another broken cycle
B′ ∈ B′: Then e (B) must be in the broken cycle B′, but does not close it, otherwise
B′ ⊆ A, and therefore e (B) < e (B′). This is a contradiction to e (B) ≮ e (B′) for all
B′ ∈ B′, therefore A ∪ {e (B)} does not include another broken cycle. The second
direction follows easily from the fact that if B ⊆ A ∪ {e (B)}, then B ⊆ A, and by
deleting an edge no new broken cycle can occur.

The statement follows by∑
A⊆E

f (G ,A) =
∑
A⊆E

∀B′∈B′ : B′*A

f (G ,A)

=
∑
A⊆E

∀B′∈B′ : B′*A
B*A

f (G ,A) +
∑
A⊆E

∀B′∈B′ : B′*A
B⊆A

f (G ,A)

=
∑
A⊆E

∀B∈B : B*A

f (G ,A) +
∑
A⊆E

∀B′∈B′ : B′*A
B⊆A,e (B)∈A

f (G ,A) +
∑
A⊆E

∀B′∈B′ : B′*A
B⊆A,e (B)<A

f (G ,A)
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=
∑
A⊆E

∀B∈B : B*A

f (G ,A). �

Furthermore, in many cases f (G ,A) = f (G〈A〉,A), that is the function f de-
pends only on the spanning subgraph G〈A〉. This is in fact a special case as, for
example, the edge set E and therefore the number of edges connecting vertices in
diUerent connected components and in the same connected component in G〈A〉
is not known, respectively.

For a given linear order < on the edge set E, the conditions given in Equation
(3.40) must only be satisVed by the edges closing some broken cycle. Claiming
the result for any linear order, the condition is required for any edge which can
be an edge of a broken cycle, which are exactly the edges in a cycle.

An inductive proof for the Broken-cycle Theorem with respect to the number
of edges is given by Dohmen [48].

Corollary 3.3 (Theorem 9 in [50]). Let G = (V , E) be a graph with a linear order
< on the edge set E and B ⊆ B (G , <) a subset of broken cycles of G. The bivariate
chromatic polynomial P (G , x ,y) satisVes

P (G , x ,y) =
∑
A⊆E

∀B∈B : B*A

(−1) |A|xi (G 〈A〉)yc (G 〈A〉) . (3.42)

Proof. The statement follows directly via Theorem 3.2 from the edge subset ex-
pansion of the bivariate chromatic polynomial [139, Corollary 29]. �

DeVnition 3.4 (Proposition 5.1 in [107]). Let G = (V , E) be a graph. The U-
polynomial U (G ,X ,y) is deVned as

U (G ,X ,y) =
∑
A⊆E

|V |∏
i=1

xki (G 〈A〉)
i (y − 1) |A|− |V |+k (G 〈A〉) , (3.43)

where ki (G ) is the number of connected components ofG with exactly i vertices.

Corollary 3.5. Let G = (V , E) be a graph with a linear order < on the edge set E
and B ⊆ B (G , <) a subset of broken cycles of G. The U-polynomial U (G ,X ,y) at
y = 0 satisVes

U (G ,X , 0) =
∑
A⊆E

∀B∈B : B*A

|V |∏
i=1

xki (G 〈A〉)
i (−1) |A|− |V |+k (G 〈A〉) , (3.44)

where ki (G ) is the number of connected components of G with exactly i vertices.

Proof. The statement follows directly via Theorem 3.2 from the deVnition of the
U-polynomial (DeVnition 3.4). �
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3.2.2 Spanning Forest Representation

The relation between spanning forest representations and edge subset represen-
tations follows from the fact that each edge subset arises from exactly one span-
ning forest by deleting some internally active edges and adding some externally
active edges. This was Vrst proven by Crapo [42, Lemma 8] and an analogous
result for matroids has been shown by Björner [22, Proposition 7.3.6].

We restate this proof here for various reasons. First, from the results follows a
nice relation between the sums over edge subsets and sums over spanning forests
(Corollary 3.7). Second, the proof gives a good insight in the consequences of the
deVnition of internally and externally active edges. And third, it can be applied
for direct proofs of the edge subset expansion of the Tutte polynomial (Corollary
3.9) and spanning forest expansions of some graph polynomials, including the
Potts model (Corollary 3.10) and the U-polynomial (Corollary 3.11).

Please remember the following deVnitions: The spanning forests of a graph
are its inclusion minimal spanning subgraphs with the same number of connected
components, and their set is denoted by F (G ) (DeVnition 2.24). An internally ac-
tive edge is an edge of the spanning forest, which is the maximal in the cut it
crosses (DeVnition 2.32), and an externally active edge is an edge not in the span-
ning subgraph, which is the maximal in the cycle it closes (DeVnition 2.33). The
corresponding sets are denoted by Ei (F ,G , <) and Ee (F ,G , <) and their cardinal-
ities are denoted by i (F ,G , <) and e (F ,G , <), respectively.

Theorem 3.6 (Lemma 8 in [42]). Let G = (V , E) be a graph with a linear order <
on the edge set E. Then⋃

·

F =(V,Af )∈F (G )

[Af \ Ei (F ,G , <),Af ∪ Ee (F ,G , <)] =
⋃
·

A⊆E

{A} = 2E . (3.45)

Proof. We have to prove that the intervals for each spanning forest F are mutually
disjoint and that each edge subset is in some interval. Let I (F ) be the interval
arising from the spanning forest F , i.e. I (F ) = [Af \Ei (F ,G , <),Af ∪Ee (F ,G , <)]
for each F = (V ,Af ) ∈ F (G ).

First, we show that I (F 1) ∩ I (F 2) = ∅ for diUerent spanning forests F 1 , F 2 ∈

F (G ). Assume that there is an edge subset A ⊆ E with A ∈ I (F 1) ∩ I (F 2). As
F 1 and F 2 are diUerent spanning forests, there is an edge д ∈ E (F 1) \ E (F 2).
Furthermore, for any choice of д, there is an edge h ∈ E (F 2) \ E (F 1), such that
F 1
−д+h , F

2
−h+д ∈ F (G ). (There is at least one edge on the path connecting the in-

cident vertices of д in F 2, which is in the cut crossed by д in F 1. These conditions
ensure that we can “compare” the edges д and h, because д is in the cycle closed
by adding h to F 1 and, equivalently, in the cut crossed by h in F 2, and vice versa.)

We distinguish whether д (д ∈ E (F 1) but д < E (F 2)) and h (h < E (F 1) but
h ∈ E (F 2)) are in A or not:

• Case 1: д ∈ A,h ∈ A: We have a contradiction by



3.2. RELATIONS TO THE EDGE SUBSET REPRESENTATION 31

– д ∈ A⇒ д ∈ Ee (F 2 ,G , <) ⇒ h < д,

– h ∈ A⇒ h ∈ Ee (F 1 ,G , <) ⇒ д < h.

• Case 2: д ∈ A,h < A: We have a contradiction by

– д ∈ A⇒ д ∈ Ee (F 2 ,G , <) ⇒ h < д,

– h < A⇒ h ∈ Ei (F 2 ,G , <) ⇒ д < h.

• Case 3: д < A,h ∈ A: We have a contradiction by

– д < A⇒ д ∈ Ei (F 1 ,G , <) ⇒ h < д,

– h ∈ A⇒ h ∈ Ei (F 1 ,G , <) ⇒ д < h.

• Case 4: д < A,h < A: We have a contradiction by

– д < A⇒ д ∈ Ei (F 1 ,G , <) ⇒ h < д,

– h < A⇒ h ∈ Ei (F 2 ,G , <) ⇒ д < h.

Hence, there is no such edge subsetA and consequently the intervals for diUerent
spanning forests are mutually disjoint.

Second, we show that for each edge subset A ⊆ E there is a spanning forest
F ∈ F (G ) with A ∈ I (F ).

We arrange the edges of A and E \ A in a sequence e1 , . . . , e |E | , such that the
edges of A appear before the edges of E \ A, that the edges of A are increasing,
and that the edges of E \A are decreasing, both with respect to <.

We start with the edgeless graph on the vertex setV and successively add the
edges of E in this graph as they appear in the sequence, but only if the arising
graph remains acyclic. That means G0 = (V , ∅) and for i ∈ {1, . . . , |E |} we have

Gi =

Gi−1
+ei if Gi−1

+ei is acyclic,

Gi−1 if Gi−1
+ei is cyclic.

Thus, G |E | = F = (V ,Af ) ∈ F (G ) is a spanning forest of G.
An edge that is in A, but not in Af , is not added to Gi , meaning that it would

close a cycle consisting of earlier added and thus lesser edges of A. Hence, this
edge is an externally active edge (maximal edge of the cycles closed by itself),
A \Af = Ae ⊆ Ee (F ,G , <).

An edge that is not in A, but in Af , is added to Gi , meaning that it is the Vrst
and thus greatest edges of E \A crossing the according cut. Hence, this edge is an
internally active edge (maximal edge of the cut crossed by itself), Af \ A = Ai ⊆

Ei (F ,G , <).
Consequently, (Af \ Ai ) ∪ Ae = A, and therefore for each edge subset A ⊆ E

there is a spanning forest F = (V ,Af ) ∈ F (G ) such that A ∈ I (F ). �
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Corollary 3.7 (Corollary 7 in [137]). Let G = (V , E) be a graph with a linear order
< on the edge set E, A ⊆ E an edge subset of G, and f (G ,A) a function in an additive
abelian group. Then∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

f (G ,A) =
∑
A⊆E

f (G ,A). (3.46)

Proof. The statement follows directly from Theorem 3.6, because for each span-
ning forest F ∈ F (G ) we have⋃

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

(Af \Ai ) ∪Ae = [Af \ Ei (F ,G , <),Af ∪ Ee (F ,G , <)],

and hence we sum on both sides of the equation over the same edge subsets. �

When applying the theorems above, it seems useful to point to some kind of
disjointness of internally and externally active edges of a spanning forest, which
results in some kind of independence of deleting and adding these edges.

Lemma 3.8 (Lemma 9 in [137]). Let G = (V , E) be a graph with a linear order <
on the edge set E and F = (V ,A) ∈ F (G ) a spanning forest of G. Then deleting an
internally active edge splits a connected component, which can not be reconnected
by adding externally active edges. Adding an externally active edge connects vertices
connected by a path, which can not be destroyed by deleting internally active edges.

Proof. The statement follows directly form the deVnition of internally and ex-
ternally active edges: Assume there is an internally active edge e ∈ A and an
externally active edge f ∈ E \ A, such that the connected components arising by
deleting e are connected by adding f or the other way around. Then f is in the
cut crossed by e and hence f < e by the deVnition of internally active edges. But
e is in the cycle closed by F and hence e < f by the deVnition of externally active
edges, which gives a contradiction. �

As announced, we can apply the corollary and lemma above for a direct veri-
Vcation of the edge subset expansion of the Tutte polynomial. Usually, this state-
ment is proven by showing that both the Tutte polynomial and its edge subset
expansion satisfy the same recurrence relation and have the same initial value
[25, Theorem 10 in Section X.5].

Corollary 3.9 (Equation (9.6.2) in [144]). Let G = (V , E) be a graph with a linear
order < on the edge set E. The Tutte polynomial T (G , x ,y) satisVes

T (G , x ,y) = (x − 1)−k (G ) (y − 1)−|V |
∑
A⊆E

((x − 1)(y − 1))k (G 〈A〉) (y − 1) |A| .

(3.47)
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Proof. By Corollary 3.7 it holds

(x − 1)−k (G ) (y − 1)−|V |
∑
A⊆E

((x − 1)(y − 1))k (G 〈A〉) (y − 1) |A|

=
∑
A⊆E

(x − 1)k (G 〈A〉)−k (G ) (y − 1)k (G 〈A〉)−|V |+|A|

=
∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

(x − 1)k (G 〈A〉)−k (G ) (y − 1)k (G 〈A〉)−|V |+|A| .

We consider the exponents of (x − 1) and (y − 1): The exponent of (x − 1) is 0
if A = E (F ) (Ai = Ae = ∅), and it increases by 1 with each edge in Ai (k (G〈A〉)
increases by 1), while it is not inWuenced from the edges in Ae . The exponent
of (y − 1) is also 0 if A = E (F ), and it increases by 1 with each edge in Ae (|A|
increases by 1), while it is not inWuenced from the edges in Ai (k (G〈A〉) increases
by 1, but |A| decreases by 1). Consequently we have∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

(x − 1)k (G 〈A〉)−k (G ) (y − 1)k (G 〈A〉)−|V |+|A|

=
∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

(x − 1) |Ai | (y − 1) |Ae |

=
∑

F ∈F (G )

xi (F,G,<)ye (F,G,<)

= T (G , x ,y). �

The following statement, the spanning forest expansion of the Potts model,
can alternatively be shown from the deVnition of the Tutte polynomial by apply-
ing the relation between both graph polynomials.

Corollary 3.10. Let G = (V , E) be a graph with a linear order < on the edge set E.
The Potts model Z (G , x ,y) satisVes

Z (G , x ,y) = (
x
y

)k (G )y |V |
∑

F ∈F (G )

(1 +
x
y

)i (F,G,<) (1 + y)e (F,G,<) . (3.48)

Proof. First, we start with the deVnition of the Potts model as given in Equation
(3.4) and apply Corollary 3.7:

Z (G , x ,y) =
∑
A⊆E

xk (G 〈A〉)y |A|
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=
∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

xk (G 〈A〉)y |A| .

Second, we describe the terms for edge subsets corresponding to spanning forests
and how these change according to the number of internally and externally active
edges: A spanning forest has k (G ) connected components and |V | − k (G ) edges
which generates the monomial xk (G )y |V |−k (G ) ; by deleting an internally active
edge the number of connected components increases by 1 and the number of
edges decreases by 1 (xy ); and by inserting an externally active edge the number
of edges increases by 1 (y). Hence we have

Z (G , x ,y) =
∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

xk (G )y |V |−k (G ) (1 +
x
y

) |Ai | (1 + y) |Ae |

= (
x
y

)k (G )y |V |
∑

F ∈F (G )

(1 +
x
y

)i (F,G,<) (1 + y)e (F,G,<) . �

Along the same line of argumentation the spanning forest expansion of the
chromatic polynomial (Equation (3.10)) can be shown [137, Theorem 12]. Alter-
natively, this can be derived from the Tutte polynomial [141, Equation (4) and
(21); 15, Theorem 14.1].

In the results above, we have given spanning forest expansions depending
only on the number of internally and externally active edges, but not on the edges
itself. The reason is, that these graph polynomials count parameters, whose val-
ues for a spanning forest can be determined and whose change for each internally
active edge deleted and each externally active edge added can be quantiVed.

Sometimes, this in only possible for the change arising by one of the two
operations. For example, for the U-polynomial only the change arising by the
addition of an externally active edge is of such an easy form, because these edges
are added between vertices in the same connected component and therefore do
not change the distribution of the vertices in the connected components.

Corollary 3.11 (Theorem 17 in [137]). Let G = (V , E) be a graph with a linear
order < on the edge set E. The U-polynomial U (G ,X ,y) satisVes

U (G ,X ,y) =
∑

F ∈F (G )

ye (F,G,<)
∑

A=Af \Ai
Af =E (F )

Ai ⊆Ei (F,G,<)

x∗ (G〈A〉), (3.49)

where x∗ (G ) =
∏|V |

i=1 x
ki (G )
i and ki (G ) is the number of connected components of G

with exactly i vertices.



3.2. RELATIONS TO THE EDGE SUBSET REPRESENTATION 35

Proof. Applying Corollary 3.7 to the deVnition of the U -polynomial we have

U (G ,X ,y) =
∑
A⊆E

x∗ (G〈A〉) (y − 1) |A|− |V |+k (G 〈A〉)

=
∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

x∗ (G〈A〉) (y − 1) |A|− |V |+k (G 〈A〉) .

Therein we have to describe the terms for edge sets corresponding to spanning
trees and how they change according to the number of internally and externally
active edges: The exponent of (y − 1) for the edge subset corresponding to an
spanning forests equals 0. If an externally active edge is added, then the arrange-
ment of the vertices in the connected components is not aUected, but the number
of edges increases by one ((y − 1)). If an internally active edge is deleted, then
the number of edges decreases by one and the number of connected components
increases by one, hence the exponent of (y − 1) is not aUected. (But the arrange-
ment of the vertices in the connected components changes and does not only
depend on the number of internally active edges deleted.) It follows

U (G ,X ,y) =
∑

F ∈F (G )

∑
A=(Af \Ai )∪Ae

Af =E (F )
Ai ⊆Ei (F,G,<)
Ae ⊆Ee (F,G,<)

x∗ (G〈A〉) (y − 1) |Ae |

=
∑

F ∈F (G )

ye (F,G,<)
∑

A=Af \Ai
Af =E (F )

Ai ⊆Ei (F,G,<)

x∗ (G〈A〉). �

3.2.3 Reliability Domination Representation

We have introduced two deVnitions of signed domination. For the Vrst one, an
edge subset expansion follows directly by Möbius inversion (Theorem 2.44). We
show that the second one has the same edge subset expansion and therefore both
deVnitions are equivalent to each other.

Please remember the two alternative deVnitions of signed domination of a
graph for an edge subset A and an integer k . Either it can be deVned implicitly
such that its sum over all subsets of the edge subsets equals 1 or 0, depending
on whether the subgraph spanned by the edge subset has at most k connected
components or not, and is denoted as d (G ,A, k ) (DeVnition 2.43). Or it is deVned
as the number of k-formations of the subgraph spanned by the edge subset of
odd cardinality minus those of even cardinality, and is denoted as d′(G ,A, k )
(DeVnition 2.45).

Theorem 3.12 (Proposition 2.8 in [82]). Let G = (V , E) be a graph, A ⊆ E an edge
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subset of G and k ∈ N. Then

d′(G ,A, k ) =
∑
B⊆A

(−1) |A|− |B |[k (G〈B〉) ≤ k] = d (G ,A, k ). (3.50)

Proof. For each edge subset B ⊆ E of G, the spanning subgraph G〈B〉 has at most
k connected components, if and only if there is a k-forest of G〈B〉, therefore we
have

[k (G〈B〉) ≤ k] = 1 − [F (G , B, k ) = ∅]

= 1 − 0|F (G,B,k ) |

= 1 − (1 − 1) |F (G,B,k ) |

= 1 −
∑

F ⊆F (G,B,k )

(−1) |F |

=
∑

∅⊂F ⊆F (G,B,k )

(−1) |F |−1

=
∑
A⊆B

∑
∅⊂F ⊆F (G,B,k )⋃

A′∈F A′=A

(−1) |F |−1.

By Möbius inversion it follows that∑
B⊆A

(−1) |A|− |B |[k (G〈B〉) ≤ k] =
∑

∅⊂F ⊆F (G,A,k )⋃
A′∈F A′=A

(−1) |F |−1.

Then, d (G ,A, k ) equals the left hand side and the right hand side equals
d′(G ,A, k ) by

d (G ,A, k ) =
∑
B⊆A

(−1) |A|− |B |[k (G〈A〉) ≤ k]

=
∑

∅⊂F ⊆F (G,A,k )⋃
A′∈F A′=A

(−1) |F |−1

=
∑

D∈D (G,A,k )

(−1) |F |−1

= d′(G ,A, k ). �

The theorem above can be applied to show the reliability domination repre-
sentation of the reliability polynomial and the chromatic polynomial.

Theorem 3.13 (Equation (7) in [124]). Let G = (V , E) be a graph. The reliability
polynomial R (G ,p) satisVes

R (G ,p) =
∑
B⊆E

d (G , B, 1)p |B | . (3.51)
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Proof. The statement follows from the deVnition of the reliability polynomial
[149, Equation (3.4.1)] by

R (G ,p) =
∑
A⊆E

p |A| (1 − p) |E |− |A|[k (G〈A〉) = 1]

= (1 − p) |E |
∑
A⊆E

(
p

1 − p
) |A|[k (G〈A〉) = 1]

= (1 − p) |E |
∑
A⊆E

(
p

1 − p
) |A|

∑
B⊆A

d (G , B, 1)

= (1 − p) |E |
∑
B⊆E

(
p

1 − p
) |B | (1 +

p
1 − p

) |E |− |B |d (G , B, 1)

=
∑
B⊆E

d (G , B, 1)p |B | . �

Theorem 3.14 ([125], due to Rodriguez). Let G = (V , E) be a graph. The chro-
matic polynomial satisVes

χ (G , x ) = (−1) |E | (1 − x )
|V |−1∑
k=1

d (G , E , k )xk . (3.52)

Proof. The statement follow from the edge subset expansion of the chromatic
polynomial as given in Equation (3.5) by

χ (G , x ) =
∑
A⊆E

(−1) |A|xk (G 〈A〉)

=
∑
k

∑
A⊆E

(−1) |A|[k (G〈A〉) = k]xk

=
∑
k

(−1) |E | (d (G , E , k ) − d (G , E , k − 1)) xk

= (−1) |E |
∑

k

d (G , E , k )xk − x
∑
k

d (G , E , k )xk


= (−1) |E | (1 − x )
|V |−1∑
k=1

d (G , E , k )xk ,

where the third identity is by

d (G , E , k ) − d (G , E , k − 1) =
∑
A⊆E

(−1) |E |− |A|[k (G〈A〉) = k]. �

3.3 Recurrence Relations

In this section we delve a little bit more deeply into recurrence relations, either
used to deVne graph polynomials or satisVed by them. We give some more ex-
amples of recurrence relations and proof two general theorems concerning them.
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3.3.1 Some Examples

The probably Vrst recurrence relation introduced for a graph polynomial was the
one for the chromatic polynomial χ (G , x ) of a graph G = (V , E) with an edge
e ∈ E:

χ (G , x ) = χ (G−e , x ) − χ (G/e , x ). (3.53)

According to Kung [92], this equality is due to Foster and was Vrst published by
Whitney [153, Note on page 718].

The equality above is often given in a “non-edge-version”: For a (not neces-
sary) two-element vertex subset f ⊆ V with f < E it holds [52, Theorem 1.3.1]

χ (G , x ) = χ (G+f , x ) + χ (G/f ). (3.54)

Together with the multiplicativity in components (Equation (3.36)) and the
initial value (Equation (3.37)) the chromatic polynomial of every graph can be
determined. Alternatively, it is suXcient to have the recurrence relation and the
values for the edgeless graphs,

χ (En , x ) = xn . (3.55)

In fact, an analogous equation holds for every graph polynomial which is multi-
plicative in components and has the initial value x for a single vertex. In Theorem
3.16 we give conditions under which the reverse holds.

Combining the recurrence relation (Equation (3.53)) and the equality above
we can give a single identity for the chromatic polynomial from which, in prin-
ciple, the value of every graph can be calculated:

χ (G ∪· En , x ) = χ (G−e , x ) · xn − χ (G/e , x ) · xn . (3.56)

The selection of one of the two merged equalities is wrapped in the choice of the
components G and En .

While the recurrence relations introduced so far, and also the ones in the
remainder, are all linear, there is no such restriction. For example, the character-
istic polynomial ϕ (G , x ) of a simple graphG = (V , E) with an edge e = {u ,v} ∈ E
satisVes [117, Equation (6)]

ϕ (G , x ) = ϕ (G−e , x ) − ϕ (G	u	v , x )

−2[ϕ (G	u , x )ϕ (G	v , x ) − ϕ (G−e , x )ϕ (G	u	v , x )]
1
2 . (3.57)

For a not necessarily simple graph G without any edges parallel to e , also the
equality [119, Theorem 1.3]

ϕ (G , x ) = ϕ (G−e , x ) + ϕ (G/e , x ) + (x − 1) · ϕ (G†e , x )

−ϕ (G	u , x ) − ϕ (G	v , x ) (3.58)
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holds. This equality looks similar to a recurrence relation we prove in Chap-
ter 5. But in contrast to the situation there and to all other recurrence relations
discussed, the formula above can not be applied successively to parallel edges.
Instead, all parallel edges must be handled at once: If F ⊆ E is the multiset of all
edges connecting u and v , then Rowlinson [119, Theorem 1.3] shows that

ϕ (G , x ) = ϕ (G−F , x ) + |F | · ϕ (G/F , x ) + |F |(x − |F |) · ϕ (G†F , x )

−|F | · ϕ (G	u , x ) − |F | · ϕ (G	v , x ). (3.59)

In general, there is no restriction on the graph operations or on the depen-
dence of the coeXcients used to deVne a graph polynomial. The only requirement
is that the arising graph polynomial is a graph invariant, that means its value does
not depend on a relabeling of the vertices or on the order of the vertices / edges
to which the operations are applied. Proofs checking the “invariance” of a recur-
rence relation are Vrst given by Averbouch, Godlin and Makowsyky [4, Section
3; 3, Section 3.3], we state such a result in Section 5.3.3.

3.3.2 Two General Theorems

A local graph operation (for an edge or a vertex) is an operation which only
aUects the connected component where the corresponding element belongs to.

DeVnition 3.15. Let G = (V , E) be a graph and д ∈ V ∪ E an element of G. A
local graph operation is a graph operation o(д), such that if G = G1 ∪· G2 for two
graphs G1 = (V 1 , E2), G2 and д ∈ V 1 ∪ E1, then

Go (д) = G1
o (д) ∪· G

2 , (3.60)

where Go (д) is the graph arising from G by applying o(д).

According to the deVnition above, most of the graph operations mentioned
(Section 2.6) are local graph operations, including the deletion, contraction, ex-
traction of an edge and also the deletion and contraction of a vertex. An exception
is the NA-Kellman’s operation, the Kellman’s operation for non-adjacent vertices
[43, DeVnition 2.8.1].

Theorem 3.16. Let P (G ) = P (G ,X ) be a graph polynomial satisfying a linear
recurrence relation with respect to some local graph operations reducing the number
of edges and P (En ) = xn for some x ∈ R[X ]. Then the graph polynomial P (G ) is
multiplicative in components, that is for graphs G1 and G2 it holds

P (G1 ∪· G2) = P (G1) · P (G2). (3.61)

Proof. We assume that for a graph G = (V , E), the graph polynomial P (G ) satis-
Ves

P (G ) =
k∑
i=1

ai · P (Gi ) ,
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P (En ) = xn ,

where k ∈ N, x , ai ∈ R[X ] and the graphs Gi are arising from G by local graph
operations reducing the number of edges.

We use induction with respect to |E |, the number of edges inG = G1 ∪· G2. As
basic step we assume that |E | = 0. ThenG1 ∪· G2 is an edgeless graph, andG1 and
G2 are isomorphic to Er and Es for some r , s ∈ N, respectively. Consequently, the
statement holds by

P (G1 ∪· G2) = P (Er ∪· Es ) = P (Er +s ) = xr +s

= xr · xs = P (Er ) · P (Es ) = P (G1) · P (G2).

As induction hypothesis we assume that the statement holds for graphs with
|E | < m and consider now a graph with |E | =m. Then for G = G1 ∪· G2 it holds

P (G1 ∪· G2) = P (G )

=
∑
i∈I

ai · P (Gi )

=
∑
i∈I

ai · P (G1
i ∪· G

2)

=
∑
i∈I

ai · P (G1
i ) · P (G2)

=

∑
i∈I

ai · P (G1
i )

 · P (G2)

= P (G1) · P (G2). �

Remark 3.17. In the theorem above we restrict the graph operations which may
be used to those reducing the number of edges. This is necessary for the inductive
proof with respect to the number of edges. However, it seems possible to weaken
this condition and to require only that by a repeated application of the recurrence
relation we end up with edgeless graphs. (In this case the induction can be done
with respect to the maximal number of times the recurrence relation must be
applied such that all arising graphs are edgeless.) Furthermore, we have required
that the coeXcients in the linear recurrence relation are constant. In fact, these
coeXcients can depend on the connected components where the handled element
belongs to. (The used functions must be “locally” in the same sense as the graph
operations.)

Theorem 3.18. Let G = (V , E) be a graph, {Gi }i∈I a family of graphs and y , ai ∈
R[X ] for i ∈ I . Let p (G ) be a graph parameter. If a graph polynomial P (G ,X )
satisVes

P (G ,X ) =
∑
i∈I

ai · P (Gi ,X ), (3.62)
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and a graph polynomial P ′(G ,X ) satisVes

P ′(G ,X ) = yp (G ) · P (G ,X ), (3.63)

then

P ′(G ,X ) =
∑
i∈I

yp (G )−p (Gi ) · ai · P ′(Gi ,X ). (3.64)

Proof. The statement follows directly from the deVnition of P ′(G ,X ):

P ′(G ,X ) = yp (G ) · P (G ,X )

= yp (G ) ·
∑
i∈I

ai · P (Gi ,X )

=
∑
i∈I

yp (G )−p (Gi ) · ai · yp (Gi ) · P (Gi ,X )

=
∑
i∈I

yp (G )−p (Gi ) · ai · P ′(Gi ,X ). �

Consider for example as graph parameters the number of vertices and the
number of connected components of a graph G = (V , E). Then for a graph poly-
nomial P (G ) = P (G ,X ) and a,b , c ,d ∈ R[X ] with

P (G ) = a · P (G−e ) + b · P (G/e ) (3.65)

it follows that

c |V | · P (G ) = a · P (G−e ) + bc |e |−1 · P (G/e ), (3.66)

and

dk (G ) · P (G ) = adk (G )−k (G−e ) · P (G−e ) + b · P (G/e ). (3.67)

The value |e | − 1 in the Vrst equality depends (for graphs) on whether the
edge is a link or a loop, the value k (G ) − k (G−e ) in the second equality depends
on whether the edge is a bridge or not. This in some sense explains, why on the
one hand, the Tutte polynomial and the Potts model are strongly related to each
other [129, Equation (2.26)],

T (G , x ,y) = (x − 1)k (G ) (y − 1)−|V | · Z (G , (x − 1)(y − 1) ,y − 1). (3.68)

But on the other hand, only the Potts model satisVes a recurrence relation for an
arbitrary edge [4, Equation (7)], the recurrence relation for the Tutte polynomial
depends on the kind of the edge (loop, bridge, other edge) to which it is applied
[141, Equation (19) and (20); 26, Section X.1].



42 CHAPTER 3. REPRESENTATIONS FOR GRAPH POLYNOMIALS



Chapter 4

Edge Elimination Polynomials

In this chapter we present the edge elimination polynomial and some graph poly-
nomials equivalent to it, which we all together subsume under the term edge elim-
ination polynomials. Thereby we relate a deVnition using recurrence relations to
deVnitions counting subgraphs and counting colorings.

While the edge elimination polynomial generalizes a lot of graph polyno-
mials, each of them containing a lot of combinatorial information, very few is
known about (additional) combinatorial information encoded in the edge elimi-
nation polynomial itself. The recursive deVnition of this graph polynomial con-
strains the direct access to such data, and justiVes the seeking for and observation
of graph polynomials equivalent to the edge elimination polynomial, but with
straightforward combinatorial interpretations.

In Section 4.1 we present

• the edge elimination polynomial [4] (deVned by a recurrence relation)

which is the source of all but one of the following graph polynomials. Then we
introduce equivalent graph polynomials, namely

• the covered components polynomial [139] (counting spanning subgraphs),

• the subgraph counting polynomial [138] (counting subgraphs),

• the extended subgraph counting polynomial (counting subgraphs),

• the trivariate chromatic polynomial [138] (counting colorings),

in Section 4.2 to 4.5, respectively. In Section 4.6 we mention three more edge
elimination polynomials available in the literature, these are

• the hyperedge elimination polynomial [150],

• the subgraph enumerating polynomial [29],

• the trivariate chromatic polynomial by White [150].
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At the end of this chapter, in Section 4.7 and Section 4.8, we use appropriate graph
polynomials to derive some properties and relations valid for all edge elimination
polynomials.

While most of the deVnitions and statements in this chapter are given for
graphs, many of them are also valid in the case of hypergraphs. For this, it may
be necessary to generalize known graph polynomials to hypergraphs, their deV-
nitions are given accordingly in Appendix A.

4.1 The Edge Elimination Polynomial

Motivated by several graph polynomials satisfying a linear recurrence relation
with respect to (two of the) edge operations, deletion, contraction and extraction,
Averbouch, Godlin and Makowsky [4; 5] deVne the edge elimination polynomial
of a graph.

DeVnition 4.1 (Equation (13) in [4]). Let G = (V , E),G1 ,G2 be graphs and e ∈ E
an edge of G. The edge elimination polynomial ξ (G ) = ξ (G , x ,y , z) is deVned as

ξ (G ) = ξ (G−e ) + y · ξ (G/e ) + z · ξ (G†e ), (4.1)

ξ (G1 ∪· G2) = ξ (G1) · ξ (G2), (4.2)

ξ (K1) = x . (4.3)

The authors verify that the edge elimination polynomial is “a most general
graph polynomial” [4, Theorem 3] satisfying such “most general recurrence re-
lation” [4, Section 2], both with respect to the given edge operations for an in-
variant graph polynomial. This is investigated in most detail in the PhD thesis of
Averbouch [3, Section 3.3].

Theorem 4.2 (Theorem 3 in [4]). Let G = (V , E) ,G1 ,G2 be graphs. Each graph
polynomial P (G ) = P (G , a,b , c ,d ) satisfying

• a linear recurrence relation with respect to the deletion, contraction and ex-
traction for each edge e ∈ E of G, i.e.

P (G ) = a · P (G−e ) + b · P (G/e ) + c · P (G†e ), (4.4)

• multiplicativity in components, i.e.

P (G1 ∪· G2) = P (G1) · P (G2), (4.5)

• and an initial condition, i.e.

P (K1) = d , (4.6)

can be calculated from the edge elimination polynomial.
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From its deVnition and the theorem above it follows, that the edge elimi-
nation polynomial generalizes all graph polynomials obeying similar recurrence
relations and graph polynomials that can be calculated from these. This includes
for example the bad coloring polynomial, the bivariate chromatic polynomial,
the matching polynomial, the Potts model, the Tutte polynomial, and the vertex-
cover polynomial. For some of the exact relations, see [4, Remark 4; 6, Section
2].

A Vrst combinatorial interpretation of the coeXcients of the edge elimination
polynomial is given in terms of a 3-partition of the edge set.

Theorem 4.3 (Theorem 5 in [4]). Let G = (V , E) be a graph. The edge elimination
polynomial ξ (G , x ,y , z) satisVes

ξ (G , x ,y , z) =
∑

(AtB)⊆E

xk (G 〈A∪B〉)−c (G 〈B〉)y |A|+|B |−c (G 〈B〉)zc (G 〈B〉) , (4.7)

where (A t B) ⊆ E is used for the summation over pairs of edge subsets
(A, B) : A, B ⊆ E, such that the set of vertices incident to the edges of A and B
are disjoint:

⋃
e∈A e ∩

⋃
e∈B e = ∅.

4.2 The Covered Components Polynomial

The covered components polynomial of a graph is the generating function for the
number of edges, connected components and covered connected components in
its spanning subgraphs.

DeVnition 4.4 (DeVnition 3 and DeVnition 41 in [139]). Let G = (V , E) be a
hypergraph. The covered components polynomial C (G , x ,y , z) is deVned as

C (G , x ,y , z) =
∑
A⊆E

xk (G 〈A〉)y |A|zc (G 〈A〉) . (4.8)

The deVnition is motivated by two properties of the edge elimination polyno-
mial. First, this graph polynomial generalizes the Potts model, and, second, it has
an expansion using the number of covered connected components. The covered
components polynomial generalizes the Potts model by additionally counting the
number of covered connected components.

Proposition 4.5. Let G = (V , E) be a graph. The covered components polynomial
C (G , x ,y , z) generalizes the Potts model Z (G , x ,y) by

Z (G , x ,y) = C (G , x ,y , 1). (4.9)

Theorem 4.6 (Theorem 4 in [139]). Let G = (V , E),G1 ,G2 be graphs and e ∈ E
an edge of G. The covered components polynomial C (G ) = C (G , x ,y , z) satisVes

C (G ) = C (G−e ) + y ·C (G/e ) + (xyz − xy) ·C (G†e ), (4.10)

C (G1 ∪· G2) = C (G1) ·C (G2), (4.11)

C (K1) = x . (4.12)
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Proof. The second equality (multiplicativity in components) holds as the edge
subsets (spanning subgraphs) in diUerent components can be chosen indepen-
dently from each other and the third equality (initial value) holds by deVnition.
Therefore, it only remains to show the Vrst equality.

Let c1 , c2 , c3 be the covered components polynomials of G restricted to those
edge subsets A ⊆ E, such that the edge e is not in A, only e but no edge adjacent
to it is in A, and e and at least one adjacent edge is in A, respectively, i.e.

c1 =
∑
A⊆E

[e < A]xk (G 〈A〉)y |A|zc (G 〈A〉) ,

c2 =
∑
A⊆E

[e ∈ A ∧ @f ∈ A : e ∩ f , ∅]xk (G 〈A〉)y |A|zc (G 〈A〉) ,

c3 =
∑
A⊆E

[e ∈ A ∧ ∃f ∈ A : e ∩ f , ∅]xk (G 〈A〉)y |A|zc (G 〈A〉) .

The covered components polynomial of G−e counts exactly those edge sub-
sets A not including e , i.e.

C (G−e ) = c1.

The covered components polynomial ofG/e counts exactly those edge subsets
A including e , because contracting e keeps the connection properties. But the
polynomial is dived by y, as e is not counted, and, in case no edge adjacent to e
is in A is also divided by z, as the single vertex to which e is contracted is not
counted as a covered connected component, i.e.

C (G/e ) =
c2

yz
+
c3

y
.

The covered components polynomial of G†e counts exactly those edge sub-
sets A including neither e nor any edge adjacent to it. Therefore, xyz · C (G†e )
counts those edge subsets A including e but no edge adjacent to it, where the
factor corresponds to the (covered) connected component consisting of e and its
adjacent vertices, i.e.

C (G†e ) =
c2

xyz
.

Thus, the recurrence relation equals the sum of the three distinct cases:

C (G−e ) + y ·C (G/e ) + (xyz − xy) ·C (G†e ) = c1 + c2 + c3 = C (G ). �

In the proof above we start with the subgraphs arising in the recurrence rela-
tion and determine which situations these are counting. We also can do the other
way around, starting with the three distinct situations and determining by which
subgraphs these are enumerated [139, Proof of Theorem 4]. (The same holds for
analogous proofs in the following sections.)

From the recurrence relation the equivalence of the covered components
polynomial and the edge elimination polynomial follows.
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Corollary 4.7 (Theorem 5, Corollary 6 in [139]). Let G = (V , E) be a graph. The
covered components polynomial C (G , x ,y , z) and the edge elimination polynomial
ξ (G , x ,y , z) are equivalent graph polynomials related by

C (G , x ,y , z) = ξ (G , x ,y , xyz − xy), (4.13)

ξ (G , x ,y , z) = C (G , x ,y ,
z
xy

+ 1). (4.14)

Proof. The Vrst equality follows directly from the theorem above, the second one
follows by algebraic transformations. �

For a direct and more algebraic proof, see [139, Proof of Theorem 5].

4.3 The Subgraph Counting Polynomial

The subgraph counting polynomial of a graph is the generating function for the
number of vertices, edges and connected components in its subgraphs.

DeVnition 4.8 (DeVnition 2 in [138]). Let G = (V , E) be a hypergraph. The
subgraph counting polynomial H (G ,v , x ,y) is deVned as

H (G ,v , x ,y) =
∑

H =(W,F )⊆G

v |W |xk (H )y |F | . (4.15)

The subgraph counting polynomial generalizes the Potts model by summing
over all subgraphs instead only over spanning subgraphs.

Proposition 4.9. Let G = (V , E) be a graph. The subgraph counting polynomial
H (G ,v , x ,y) generalizes the Potts model Z (G , x ,y) by

Z (G , x ,y) = [v |V |](H (G ,v , x ,y)), (4.16)

and has the vertex subset expansion

H (G ,v , x ,y) =
∑

W ⊆V

v |W | · Z (G[W ], x ,y). (4.17)

The deVnition of the subgraph counting polynomial is motivated by the fol-
lowing consideration: The covered components polynomial counts the number
of connected components and covered connected components, and therefore, as
their diUerence, also the number of isolated vertices. Deleting a subset of the
isolated vertices from the spanning subgraphs, all subgraphs are generated. This
idea is applied in the proof of the following theorem.

Theorem 4.10. Let G = (V , E) be a graph. The subgraph counting polynomial
H (G ,v , x ,y) and the covered components polynomial C (G , x ,y , z) are equivalent
graph polynomials related by

H (G ,v , x ,y) = v |V | ·C (G ,
1 +vx
v
,y ,

vx
1 +vx

), (4.18)
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C (G , x ,y , z) = (x − xz) |V | · H (G ,
1

x − xz
, xz ,y). (4.19)

Proof. We only prove the Vrst equality, the second one follows by algebraic trans-
formations. From the deVnition of the covered components polynomial (DeVni-
tion 4.4) we get

C (G ,v + x ,y ,
x

v + x
) =

∑
F ⊆E

(v + x )k (G 〈F 〉)y |F | (
x

v + x
)c (G 〈F 〉)

=
∑
F ⊆E

(v + x )i (G 〈F 〉)xc (G 〈F 〉)y |F |

=
∑
F ⊆E

∑
W̄ ⊆I (G 〈F 〉)

v |W̄ |x |I (G 〈F 〉)\W̄ |xc (G 〈F 〉)y |F |

=
∑

W̄ ⊆V

∑
F ⊆E (G [V \W̄ ])

v |W̄ |xi ((V \W̄ ,F ))xc ((V \W̄ ,F ))y |F |

=
∑

W̄ ⊆V

∑
F ⊆E (G [V \W̄ ])

v |W̄ |xk ((V \W̄ ,F ))y |F |

=
∑

H =(V \W̄ ,F )⊆G

v |W̄ |xk (H )y |F | ,

where in the fourth identity we change the summation to determine the sub-
graph: Instead of Vrst selecting the edges included and then the vertices not
included, we Vrst select the vertices not included and then the edges included.

Replacing v by v−1 and multiplying with v |V | the statement follows:

v |V | ·C (G ,
1 +vx
v
,y ,

vx
1 +vx

) = v |V |
∑

H =(V \W̄ ,F )⊆G

v−|W̄ |xk (H )y |F |

=
∑

H =(W,F )⊆G

v |W |xk (H )y |F | . �

Using the theorem above we can derive a recurrence relation satisVed by the
subgraph counting polynomial.

Theorem 4.11 (Theorem 3 in [138]). Let G = (V , E),G1 ,G2 be graphs and e ∈ E
an edge of G. The subgraph counting polynomial H (G ) = H (G ,v , x ,y) satisVes

H (G ) = H (G−e ) +v |e |−1y · H (G/e ) − v |e |−1y · H (G†e ), (4.20)

H (G1 ∪· G2) = H (G1) · H (G2), (4.21)

H (K1) = 1 +vx . (4.22)

Proof. The second equality (multiplicativity in components) holds as the sub-
graphs in diUerent components can be chosen independently from each other
and the third equality (initial value) holds by deVnition. Therefore, it only re-
mains to show the Vrst equality.
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Let H̄ = H̄ (G ,v , x ,y) = v−|V | · H (G ,v , x ,y) = C (G , 1+vx
v ,y ,

vx
1+vx ). From the

recurrence relation for the covered components polynomial (Theorem 4.6), we
get

H̄ (G ) = H̄ (G−e ) + y · H̄ (G/e ) −
y
v
· H̄ (G†e )

for an edge e ∈ E. For H (G ) = H (G ,v , x ,y), it follows

H (G ) = v |V | · H̄ (G )

= v |V | ·
[
H̄ (G−e ) + y · H̄ (G/e ) −

y
v
· H̄ (G†e )

]
= v |V | · H̄ (G−e ) +v |V |y · H̄ (G/e ) − v |V |

y
v
· H̄ (G†e )

= v |V (G−e ) | · H̄ (G−e ) +v |e |−1yv |V (G/e ) | · H̄ (G/e )

−v |e |−1yv |V (G†e ) | · H̄ (G†e )

= H (G−e ) +v |e |−1y · H (G/e ) − v |e |−1y · H (G†e ). �

For a direct and more combinatorial proof, see [138, Proof of Theorem 3].

Corollary 4.12 (Corollary 4 in [138]). Let G = (V , E) be a graph. The sub-
graph counting polynomial H (G ,v , x ,y) and the edge elimination polynomial
ξ (G , x ,y , z) are equivalent graph polynomials related by

H (G ,v , x ,y) = v |V | · ξ (G ,
1 +vx
v
,y , −

y
v

), (4.23)

ξ (G , x ,y , z) = (x − y) |V | · H (G ,
1

x − y
,y ,

z
x − y

). (4.24)

Proof. The statements can be derived via the relations to the covered components
polynomial (Corollary 4.7 and Theorem 4.10). �

Alternatively, the corollary above can be derived directly from the recurrence
relation, see [138, Proof of Corollary 4].

4.4 The Extended Subgraph Counting Polynomial

The extended subgraph counting polynomial of a graph is the generating func-
tion for the number of vertices, edges, connected components and covered con-
nected components in its subgraphs.

DeVnition 4.13. Let G = (V , E) be a hypergraph. The extended subgraph count-
ing polynomial H ′(G ,v , x ,y , z) is deVned as

H ′(G ,v , x ,y , z) =
∑

H =(W,F )⊆G

v |W |xk (H )y |F |zc (H ) . (4.25)
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The extension of the subgraph counting polynomial is motivated by the ques-
tion, whether “the combination” of the covered components polynomial and the
subgraph counting polynomial creates a proper generalization or not.

Proposition 4.14. Let G = (V , E) be a graph. The extended subgraph count-
ing polynomial H ′(G ,v , x ,y , z) generalizes the covered components polynomial
C (G , x ,y , z) and the subgraph counting polynomial H (G ,v , x ,y) by

C (G , x ,y , z) = [v |V |](H ′(G ,v , x ,y , z)) , (4.26)

H (G ,v , x ,y) = H ′(G ,v , x ,y , 1). (4.27)

It turns out, that the relation (and its proof) between the covered compo-
nents polynomial and the subgraph counting polynomial (Theorem 4.10) can be
easily adapted to the extended subgraph counting polynomial. Consequently,
the extended subgraph counting polynomial is not a proper generalization of the
others but equivalent to them and thus also to the edge elimination polynomial.

Theorem 4.15. Let G = (V , E) be a graph. The extended subgraph counting poly-
nomial H ′(G ,v , x ,y , z) and the covered components polynomial C (G , x ,y , z) are
related by

H ′(G ,v , x ,y , z) = v |V | ·C (G ,
1 +vx
v
,y ,

vxz
1 +vx

), (4.28)

C (G , x ,y , z) = (x − xz) |V | · H ′(G ,
1

x − xz
, xz ,y , 1). (4.29)

Proof. The proof is analogous to the proof of Theorem 4.10. �

Theorem 4.16. Let G = (V , E),G1 ,G2 be graphs and e ∈ E an edge of G. The
extended subgraph counting polynomial H ′(G ) = H ′(G ,v , x ,y , z) satisVes

H ′(G ) = H ′(G−e ) +v |e |−1y · H ′(G/e )

+v |e |−1y (vxz − vx − 1) · H ′(G†e ), (4.30)

H ′(G1 ∪· G2) = H ′(G1) · H ′(G2), (4.31)

H ′(K1) = 1 +vx . (4.32)

Proof. The proof is analogous to the proof of Theorem 4.11. �

Corollary 4.17. Let G = (V , E) be a graph. The extended subgraph counting poly-
nomial H (G ,v , x ,y) and the edge elimination polynomial ξ (G , x ,y , z) are equiva-
lent graph polynomials related by

H ′(G ,v , x ,y , z) = v |V | · ξ (G ,
1 +vx
v
,y , xyz − xy −

y
v

), (4.33)

ξ (G , x ,y , z) = (x − y) |V | · H ′(G ,
1

x − y
,y ,

z
x − y

, 1). (4.34)
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Proof. The statements can be derived via the relations to the covered components
polynomial (Corollary 4.7 and Theorem 4.15). �

Corollary 4.18. Let G = (V , E) be a graph. The extended subgraph counting
polynomial H ′(G ,v , x ,y , z) and the subgraph counting polynomial H (G ,v , x ,y)
are equivalent graph polynomials related by

H ′(G ,v , x ,y , z) = (1 +vx − vxz) |V | · H (G ,
v

1 +vx − vxz
, xz ,y) (4.35)

= (1 +vx − vxz) |V | · H ′(G ,
v

1 +vx − vxz
, xz ,y , 1) , (4.36)

H (G ,v , x ,y) = H ′(G ,v , x ,y , 1). (4.37)

Proof. The Vrst equality follows by inserting both equalities of one of the rela-
tions stated above into each other. The second equality follows from the deVni-
tion. �

4.5 The Trivariate Chromatic Polynomial

The trivariate chromatic polynomial1 of a graph is the generating function for
the number of so-called “bad monochromatic” edges in its colorings.

DeVnition 4.19 (DeVnition 5 in [138]). Let G = (V , E) be a hypergraph. The
trivariate chromatic polynomial P̃ (G , x ,y , z) is deVned (for x ,y ∈ N, x ≥ y) as

P̃ (G , x ,y , z) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c≤y ∀v∈e : ϕ (v )=c

z. (4.38)

The well-known chromatic polynomial counts the number of (vertex) color-
ings not including any monochromatic edges, which are edges whose incident
vertices are all colored by the same color. The bad coloring polynomial counts
all colorings, but with respect to number of monochromatic edges (also known
as “bad edges”), and thereby generalizes the chromatic polynomial. Another
generalization of the chromatic polynomial is the bivariate chromatic polyno-
mial, where two color classes are considered, a set of “proper” colors, generating
“bad monochromatic” edges, and a set of “arbitrary” colors, generating “good
monochromatic” edges. The bivariate chromatic polynomial counts the number
of colorings not including any bad monochromatic edge.

The trivariate chromatic polynomial combines both generalizations by count-
ing all colorings using the colors 1, . . . , x , but with respect to the number of bad
monochromatic edges, which are edges whose incident vertices are all colored by
the same (proper) color from 1, . . . ,y.

1The present author has introduced this graph polynomial under the name “bivariate bad col-
oring polynomial” in several talks, Vrst time at a conference at the Zhejiiang Normal University
(Jinhua, China) in 2010. Because of the conWict of a “bivariate” polynomial in three variables, the
name is changed into the same used by White [150] for an almost similar graph polynomial.
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Proposition 4.20. Let G = (V , E) be a graph. The trivariate chromatic polyno-
mial P̃ (G , x ,y , z) generalizes the chromatic polynomial χ (G , x ), the bad coloring
polynomial χ̃ (G , x , z) and the bivariate chromatic polynomial P (G , x ,y) by

χ (G , x ) = P̃ (G , x , x , 0), (4.39)

χ̃ (G , x , z) = P̃ (G , x , x , z), (4.40)

P (G , x ,y) = P̃ (G , x ,y , 0). (4.41)

To get a coloring counted by the trivariate chromatic polynomial we can Vrst
select a set of vertices which we color (independently) by one of the x−y arbitrary
colors, and then color the remaining vertices with one of the y proper colors.

Proposition 4.21. Let G = (V , E) be a graph. The trivariate chromatic polynomial
P̃ (G , x ,y , z) satisVes

P̃ (G , x ,y , z) =
∑

W ⊆V

(x − y) |W | · χ̃ (G	W ,y , z). (4.42)

Theorem 4.22 (Theorem 6 in [138]). Let G = (V , E), G1, G2 be graphs and e ∈ E
an edge of G. The trivariate chromatic polynomial P̃ (G ) = P̃ (G , x ,y , z) satisVes

P̃ (G ) = P̃ (G−e ) + (z − 1) · P̃ (G/e ) + (1 − z) (x − y) · P̃ (G†e ) , (4.43)

P̃ (G1 ∪· G2) = P̃ (G1) · P̃ (G2), (4.44)

P̃ (K1) = x . (4.45)

Proof. We only prove the Vrst equality, the other two follow from the deVnition
and are in full analogy to the chromatic polynomial and the mentioned general-
izations.

For the coloring of the vertices incident to the edge e there are three distinct
cases:

1. e is not monochromatic, i.e. not all vertices of e are mapped to the same
color c: @c ∀v ∈ e : ϕ (v ) = c ,

2. e is bad monochromatic, i.e. all vertices of e are mapped to the same color
c ≤ y: ∃c ≤ y ∀v ∈ e : ϕ (v ) = c ,

3. e is good monochromatic, i.e. all vertices of e are mapped to the same color
c > y: ∃c > y ∀v ∈ e : ϕ (v ) = c .

Let p1, p2 and p3 be the trivariate chromatic polynomial of G enumerating
exactly those colorings of G corresponding to the Vrst, second and third case,
respectively. Obviously, P̃ (G ) = p1 + p2 + p3.

Each coloring of G−e corresponds to a coloring of G, where the number of
bad monochromatic edges is counted correctly, except in the second case, where
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the vertices incident to e are colored by the same color c ≤ y and e is not counted
as bad monochromatic, as it does not appear in the graph:

P̃ (G−e ) = p1 +
p2

z
+ p3.

Each coloring of G/e corresponds to a coloring of G, where all vertices in-
cident to e are mapped to the color c , to which the vertex arising through the
contraction of e is mapped. This covers the second and third case. But again, in
the second case e is not counted as bad monochromatic:

P̃ (G/e ) =
p2

z
+ p3.

Each coloring of G†e corresponds to a colorings of G excluding the vertices
incident to e . If we assume that the vertices of e , as in the third case, are all
colored by the same color c > y, then there are x − y for them:

P̃ (G†e ) =
p3

x − y
.

The statement follows by

P̃ (G−e ) + (z − 1) · P̃ (G/e ) + (1 − z) (x − y) · P̃ (G†e ) = p1 + p2 + p3

= P̃ (G ). �

From the recurrence relation above it follows, that the trivariate chromatic
polynomial is equivalent to the edge elimination polynomial.

Corollary 4.23 (Corollary 7 in [138]). Let G = (V , E) be a graph. The
trivariate chromatic polynomial P̃ (G , x ,y , z) and the edge elimination polynomial
ξ (G , x ,y , z) are equivalent graph polynomials related by

P̃ (G , x ,y , z) = ξ (G , x , z − 1, (1 − z) (x − y)), (4.46)

ξ (G , x ,y , z) = P̃ (G , x , x +
z
y
,y + 1). (4.47)

Proof. The Vrst equality follows directly from the recurrence relation stated in the
theorem above. The second equality follows by algebraic transformations. �

The following statement can be derived via the corollary above, but we give
an independent, more algebraic proof. In fact, we show the edge subset expansion
of the trivariate chromatic polynomial by an argumentation analogous to the one
used for the edge subset expansion of the bad coloring polynomial [54, Theorem
9.6.6].

Theorem 4.24. Let G = (V , E) be a graph. The trivariate chromatic polynomial
P̃ (G , x ,y , z) and the covered components polynomial C (G , x ,y , z) are related by

P̃ (G , x ,y , z) = C (G , x , z − 1,
y
x

), (4.48)

C (G , x ,y , z) = P̃ (G , x , xz ,y + 1). (4.49)
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Proof. We only prove the Vrst equality, the second one follows by algebraic trans-
formations. Starting with the deVnition of the trivariate chromatic polynomial
(DeVnition 4.4) we get

P̃ (G , x ,y , z) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c≤y ∀v∈e : ϕ (v )=c

z

=
∑

ϕ : V →{1,...,x }

z | {e∈E |∀v∈e : ϕ (v )=c≤y} |

=
∑

ϕ : V →{1,...,x }

(z − 1 + 1) | {e∈E |∀v∈e : ϕ (v )=c≤y} |

=
∑

ϕ : V →{1,...,x }

∑
A⊆{e∈E |∀v∈e : ϕ (v )=c≤y}

(z − 1) |A|

=
∑
A⊆E

∑
ϕ : V →{1,...,x }

A⊆{e∈E |∀v∈e : ϕ (v )=c≤y}

(z − 1) |A|

=
∑
A⊆E

xi (G 〈A〉)yc (G 〈A〉) (z − 1) |A|

=
∑
A⊆E

xk (G 〈A〉) (z − 1) |A| (
y
x

)c (G 〈A〉)

= C (G , x , z − 1,
y
x

),

whereby the last but two identity holds as the vertices of each edge in A have
to be colored with the same color c ≤ y. Thus, for the vertices of each covered
connected component there are y colors possible and for the isolated vertices
there are x colors possible, which can be chosen independently of each other. �

Corollary 4.25. Let G = (V , E) be a graph. The trivariate chromatic polynomial
P̃ (G , x ,y , z) has the edge subset expansion

P̃ (G , x ,y , z) =
∑
A⊆E

xi (G 〈A〉)yc (G 〈A〉) (z − 1) |A| . (4.50)

Proof. The proof is included in the proof of the theorem above. �

Corollary 4.26. Let G = (V , E) be a graph. The trivariate chromatic polynomial
P̃ (G , x ,y , z) and the subgraph counting polynomial are equivalent graph polyno-
mials related by

P̃ (G , x ,y , z) = (x − z + 1) |V | · H (G ,
1

x − z + 1
, z − 1,

(1 − z) (x − y)
x − z + 1

),

(4.51)

H (G ,v , x ,y) = v |V | · P̃ (G ,
1 +vx
v
, x ,y + 1). (4.52)
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Proof. The statements can be derived via the relations to the edge elimination
polynomial (Corollary 4.12 and Corollary 4.23). �

The trivariate chromatic polynomial and its recurrence relation given above
are utilized by Garijo, Goodall and Nešetřil [59, Theorem 34] to prove that the
edge elimination polynomial can be stated as counting graph homomorphisms.

Theorem 4.27 (Theorem 34 in [59]). Let G = (V , E) be a graph. The trivariate
chromatic polynomial P̃ (G , x ,y , z) equals (for x ,y , z ∈ N, x ≥ y) the number of
homomorphisms of G into K1

x−y + Kz
y , where K

z
n is the complete graph of n vertices

with z loops attached at each vertex and the graph K1
x−y +Kz

y arises from the join of
a K1

x−y and a K
z
y ,

P̃ (G , x ,y , z) = hom(G ,K1
x−y + Kz

y ). (4.53)

4.6 Further Edge Elimination Polynomials

In this section we mention some other graph polynomials equivalent to the edge
elimination polynomial, which are given in the literature.

4.6.1 The Hyperedge Elimination Polynomial

The hyperedge elimination polynomial ξ (G , x ,y , z) has been introduced by
White [150, Section 4] as an (explicit) “hyperedge version” of the edge elimination
polynomial. It is deVned [150, DeVnition 1] by an identity similar to the expan-
sion of the edge elimination polynomial in terms of 3-partitions of the edge set
[4, Theorem 5] (Theorem 4.3), which instead of the number of covered connected
components of a spanning subgraph uses the number of connected components
in the edge-induced subgraph.

DeVnition 4.28 (DeVnition 1 in [150]). Let G = (V , E) be a hypergraph. The
hyperedge elimination polynomial ξ (G , x ,y , z) is deVned as

ξ (G , x ,y , z) =
∑

(AtB)⊆E

xk (G 〈A∪B〉)−k (G [B])y |A|+|B |−k (G [B])zk (G [B]) , (4.54)

where (A t B) ⊆ E is used for the summation over pairs of edge subsets
(A, B) : A, B ⊆ E, such that the set of vertices incident to the edges of A and B
are disjoint:

⋃
e∈A e ∩

⋃
e∈B e = ∅.

White [150, Proposition 1] shows that the hyperedge elimination polynomial
satisVes exactly the same recurrence relation that are used to deVne the edge
elimination polynomial (DeVnition 4.1).
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4.6.2 The Subgraph Enumerating Polynomial

The Vrst graph polynomial deVned that is equivalent to the edge elimination
polynomial, is in fact not the edge elimination polynomial itself, but the sub-
graph enumerating polynomial deVned by Borzacchini and Pulito more than two
decades ago.

DeVnition 4.29 (Equation (1) in [29]). Let G = (V , E) be a graph. The subgraph
enumerating polynomial P (G ,u ,v ,p) is deVned as

P (G ,u ,v ,p) =
∑
A⊆E

uī (G 〈A〉)v |A|pk (G 〈A〉) , (4.55)

where ī (G ) is the number of non-isolated vertices in G.

Furthermore, the authors also proved a recurrence relation with respect to
the usual three edge elimination operations.

Theorem 4.30 (Theorem 2 in [29]). Let G = (V , E),G1 ,G2 be graphs and e ∈ E
an edge of G. The subgraph enumerating polynomial P (G ) = P (G ,u ,v ,p) satisVes

P (G ) = P (G−e ) + u |e |−1v · P (G/e ) + u |e |−1 (u − 1)vp · P (G†e ), (4.56)

P (G1 ∪· G2) = P (G1) · P (G2), (4.57)

P (K1) = p. (4.58)

The subgraph enumerating polynomial is strongly related to the covered
components polynomial, both diUer only in the usage of the number of non-
isolated vertices and covered connected components, respectively.

Theorem 4.31. Let G = (V , E) be a graph. The subgraph enumerating polynomial
P (G ,u ,v ,p) and the covered components polynomial C (G , x ,y , z) are equivalent
graph polynomials related by

P (G ,u ,v ,p) = u |V | ·C (G ,
p
u
,v ,u), (4.59)

C (G , x ,y , z) = z−|V | · P (G , z ,y , xz). (4.60)

Proof. The Vrst equality follows from

P (G ,u ,v ,p) =
∑
A⊆E

uī (G 〈A〉)v |A|pk (G 〈A〉)

=
∑
A⊆E

u |V |−k (G 〈A〉)+c (G 〈A〉)v |A|pk (G 〈A〉)

= u |V | ·
∑
A⊆E

(
p
u

)k (G 〈A〉) v |A| uc (G 〈A〉)

= u |V | ·C (G ,
p
u
,v ,u),

and the second one by algebraic transformations. �
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4.6.3 The Trivariate Chromatic Polynomial by White

The trivariate chromatic polynomial P (G ,p ,q, t ) as introduced by White [150,
Section 6] equals the trivariate chromatic polynomial P̃ (G , x ,y , z) except a
change of the Vrst two variables.

Proposition 4.32. Let G = (V , E) be a graph. The trivariate chromatic polyno-
mial P̃ (G , x ,y , z) and the trivariate chromatic polynomial by White P (G ,p ,q, t )
are equivalent graph polynomials related by

P̃ (G , x ,y , z) = P (G ,y , x , z), (4.61)

P (G ,p ,q, t ) = P̃ (G ,q,p , t ). (4.62)

White [150, Proposition 5] states an vertex subset expansion in terms of the
bivariate chromatic polynomial similar to the one for the trivariate chromatic
polynomial (Proposition 4.21).

4.7 Properties

In this section we list a few properties for the edge elimination polynomials.
Some more results are already known and given in terms of the covered compo-
nents polynomial [139].

4.7.1 Encoded Invariants

It is known that the covered components polynomial of a graph encodes several
graph invariants [139, Section 3]. We restate only two of the results here, men-
tion that a lot of “chromatic invariants” can be derived, and unify two results
concerning the number of vertices of a given degree.

That the number of vertices of a graph is encoded in its edge elimination
polynomials has been implicitly stated in the results about the equivalence of
these graph polynomials. This number can be determined as the degree of the
“Vrst” variable of the graph polynomials.

Proposition 4.33. Let G = (V , E) be a graph. The number of vertices of G is
encoded in the edge elimination polynomials:

|V | = degx (ξ (G , x ,y , z)), (4.63)

= degx (C (G , x ,y , z)), (4.64)

= degv (H (G ,v , x ,y)), (4.65)

= degv (H ′(G ,v , x ,y , z)) , (4.66)

= degx (P̃ (G , x ,y , z)). (4.67)
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One graph invariant that is not included in many graph polynomials is the
number of edge-induced subgraphs with given number of vertices, edges and con-
nected components. This number can be derived from the covered components
polynomial [139, Theorem 16], but a generalization can be easily obtained from
the coeXcients of the extended subgraph counting polynomial.

Proposition 4.34. Let G = (V , E) be a graph. The number of subgraphs with
exactly n vertices, m edges, k connected components, c of them covered connected
components, denoted by д(n,m, k , c ), is given as a coeXcient of the extended sub-
graph counting polynomial H ′(G ,v , x ,y , z):

д(n,m, k , c ) = [vnxkymzc ](H ′(G ,v , x ,y , z)). (4.68)

From the trivariate chromatic polynomial many chromatic invariants can be
determined. Beside the usual chromatic number, that is the minimal number of
colors necessary for a proper coloring of the vertices, also some extensions up
to the number of colors necessary for a partial coloring with a given number of
monochromatic edges.

Proposition 4.35. Let G = (V , E) be a graph. The minimal number of colors
necessary for a coloring of all but a vertices such that b edges are monochromatic,
denoted by χa,b (G ), is encoded in the trivariate chromatic polynomial P̃ (G , x ,y , z):

χa,b (G ) = min {x ∈ N | [vazb](P̃ (v + x , x , z)) > 0)}. (4.69)

There are already two results concerning the encoding of the number of ver-
tices with a given degree: First, the number of vertices of degree 0, 1 and of
minimum degree can be determined from the covered components polynomial
[139, Section 3]. Second, the number of vertices of a given degree in a forest
is encoded in the edge elimination polynomial [139, Theorem 36] (shown by a
proof using the recurrence relation). Using the trivariate chromatic polynomial
both results can be uniVed.

Theorem 4.36 (Theorem 11 in [138]). Let G = (V , E) be a graph. The number
of vertices with degree i in G, deg−1 (G , i ), is encoded in the trivariate chromatic
polynomial P̃ (G , x ,y , z):

deg−1 (G , i ) = [v1z |E |−i ](P̃ (G ,v + 1, 1, z)), (4.70)

where |E | = degz (P̃ (G ,v + 1, 1, z)).

Informal this can be shown as follows: We consider the number of bad
monochromatic edges in a coloring using v arbitrary and 1 proper color. Each
term including v1 corresponds to colorings where exactly one vertex is colored
by one of the v arbitrary colors and all other vertices are colored by the same
proper color. Hence, all edges except the edges incident to the one arbitrary col-
ored vertex are bad monochromatic, and their number is counted in the variable
z.
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For a proof following this argumentation, see [138, Theorem 11]. Here we
give a slightly diUerent proof using the edge subset expansion of the trivariate
chromatic polynomial.

Proof. Applying the edge subset expansion of the trivariate chromatic polynomial
(Corollary 4.25),

P̃ (G , x ,y , z) =
∑
A⊆E

xi (G 〈A〉)yc (G 〈A〉) (z − 1) |A| ,

for P̃ (G ,v + 1, 1, z), it follows

P̃ (G ,v + 1, 1, z) =
∑
A⊆E

(v + 1)i (G 〈A〉)1c (G 〈A〉) (z − 1) |A|

=
∑
A⊆E

(v + 1) |I (G 〈A〉) | (z − 1) |A|

=
∑
A⊆E

∑
W ⊆I (G 〈A〉)

v |W | (z − 1) |A|

=
∑

W ⊆V

∑
A⊆E (G	W )

v |W | (z − 1) |A|

=
∑

W ⊆V

v |W |
∑

A⊆E (G	W )

(z − 1) |A|

=
∑

W ⊆V

v |W |z |E (G	W ) | .

Consequently, the coeXcient in front of the monomial v1z |E |−i counts the num-
ber of vertices, whose deletion removes i edges, and hence the number of vertices
with degree i in G, deg−1 (G , i ). �

4.7.2 Derivatives

The following theorem is analogous to a statement given for the subgraph enu-
merating polynomial [29, Theorem 4].

Theorem 4.37. Let G = (V , E) be a graph. The subgraph counting polynomial
H (G ,v , x ,y) satisVes

|V | · H (G ,v , x ,y) =
∑
v∈V

H (G	v ,v , x ,y) +v
∂H (G ,v , x ,y)

∂v
. (4.71)

Proof. The subgraph counting polynomial H (G ,v , x ,y) enumerates the number
of vertices, edges and connected components in the subgraphs of G, i.e.

H (G ,v , x ,y) =
∑
i,j,k

h(G , i , j , k )vix jyk ,
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where h(G , i , j , k ) is the number of subgraphs of G with i vertices, j edges and k
connected components.

By Kelly’s Lemma [85], each subgraph with exactly i vertices is a subgraph of
|V | − i vertex-deleted subgraphs (with one of the |V | − i missing vertices deleted),
i.e. for all i , j , k we have

( |V | − i ) · h(G , i , j , k ) =
∑
v∈V

h(G	v , i , j , k ).

Hence,

( |V | − i )
∑
i,j,k

h(G , i , j , k )vix jyk =
∑
v∈V

∑
i,j,k

h(G	v , i , j , k )vix jyk .

Using the deVnition of the subgraph counting polynomial and the identity

i
∑
i,j,k

h(G , i , j , k )vix jyk = v
∂
∑
i,j,k h(G , i , j , k )vix jyk

∂v
,

the statement follows:

|V | · H (G ,v , x ,y) =
∑
v∈V

H (G	v ,v , x ,y) +v
∂H (G ,v , x ,y)

∂v
. �

4.7.3 Reconstructability

Kotek [89, Theorem 2.5] has shown that the edge elimination polynomial of a
simple graph with at least three vertices is reconstructable from the isomorphism
classes of its deck.

This is also possible without having exactly (the isomorphism classes of) the
graphs in the deck. It is enough to know the corresponding incidence matrix
N (G ), deVned by Thatte [133], which represents how often any induced sub-
graph of G is induced in any other.

Corollary 4.38. Let G = (V , E) be a simple graph with at least three vertices. The
covered components polynomial C (G , x ,y , z) is reconstructable from the incidence
matrix N (G ).

Proof. The statement follows directly from [133, Lemma 3.14] by the same ar-
gument used for the rank polynomial in [133, Lemma 3.15]: From N (G ) the
“number of subgraphs with v vertices (none of which isolated), e edges and l
[connected] components”, and hence all coeXcients of the covered components
polynomial can be determined. �

For the polynomial reconstructability, the probably Vrst aXrmative statement
in this direction is given by Tutte for the rank polynomial [142; 143].
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DeVnition 4.39 (Equation (5) in [142]). Let G = (V , E) be a graph. The rank
polynomial R (G , x ,y) is deVned as

R (G , x ,y) =
∑
A⊆E

xr (G 〈A〉)y |A|−r (G 〈A〉) , (4.72)

where r (G〈A〉) = |V | − k (G〈A〉).

From this deVnition it follows, that additionally knowing the number of ver-
tices (or the number of connected components), the rank polynomial is equiv-
alent to the Potts model, and consequently this is also reconstructable from its
polynomial deck.

Proposition 4.40. Let G = (V , E) be a graph. The rank polynomial R (G , x ,y) and
the Potts model Z (G , x ,y) are related by

R (G , x ,y) = (
x
y

) |V | · Z (G ,
y
x
,y), (4.73)

Z (G , x ,y) = x |V | · R (G ,
y
x
,y). (4.74)

Lemma 4.41. Let G = (V , E) be a simple graph with at least three vertices. The
Potts model Z (G , x ,y) of G is reconstructable from the polynomial deck DZ (G ).

Proof. From the polynomial deck of G for the Potts model, DZ (G ), the polyno-
mial deck of G for the rank polynomial, DR (G ), can be calculated. From this the
rank polynomial R (G , x ,y) can be reconstructed [143, Theorem 7.4] and conse-
quently the Potts model Z (G , x ,y) can be determined via Proposition 4.40.

For the transformations in both directions the number of vertices is neces-
sary. For the Vrst direction, this can be calculated from the maximal power of x
appearing in the Potts model. For the second direction, the number of vertices
equals the cardinality of the polynomial deck. �

Brešar, Imrich and Klavžar [30] have shown that graph polynomials counting
induced subgraphs of an “increasing family” of graphs are reconstructable from
the polynomial deck. This includes the result for the clique polynomial and the
independence polynomial.

We show that the subgraph counting polynomial of a graph is reconstructable
from its corresponding polynomial deck by applying Lemma 4.41.

Theorem 4.42. Let G = (V , E) be a simple graph with at least three vertices.
The subgraph counting polynomial H (G ,v , x ,y) of G is reconstructable from the
polynomial deck DH (G ).

Proof. We use the vertex subset expansion of the subgraph counting polynomial
(Proposition 4.9):

H (G ,v , x ,y) =
∑

W ⊆V

v |W | · Z (G[W ], x ,y).
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Analogous to Kelly’s Lemma [85], in the sum of the polynomials in the poly-
nomial deck each summand of H (G ,v , x ,y) including vi arises ( |V | − i )-times,
because each subgraph with exactly i vertices is a subgraph of |V | − i vertex-
deleted subgraphs.

Hence, only the summands including v |V | are missing, which correspond
to the Potts model of G. We can calculate the Potts model of a graph from its
subgraph counting polynomial (Proposition 4.9) and consequently the same holds
for the polynomial decks, i.e. from DH (G ) we can calculate DZ (G ). From this
polynomial deck, the Potts model of G can be reconstructed by Lemma 4.41. �

4.8 Relations to other Graph Polynomials

In this section we give some relations of the edge elimination polynomials to
other graph polynomials. While there are only three possible relations, namely
one graph polynomial can (proper) generalize the other, both are equivalent, or
both can not be related (are “incomparable”), for diUerent graph classes (forests,
simple graphs, graphs) diUerent situations may occur.

4.8.1 Relation to the U-polynomial

Noble and Welsh [107, Proposition 5.1] deVne the U-polynomialU (G ,X ,y) as an
unweighted version of the weighted graph polynomial. Averbouch, Godlin and
Makowsky [5, Subsection 1.3] asked, “whether ξ (G , x ,y , z) can be obtained as a
substitution instance of” the U-polynomial. We show, that for graphs without
loops (but with parallel edges allowed) this is the case, otherwise it is not.

Theorem 4.43. Let G = (V , E) be a graph without loops. The U-polynomial
U (G ,X ,y) generalizes the covered components polynomial C (G , x ,y , z) by

C (G , x ,y , z) = U (G ,X ′,y + 1) (4.75)

where X ′ = (x ′1 , . . . , x
′
|V | ) with x

′
1 = x and x ′i = xyi−1z for all i ∈ {2, . . . , |V |}.

Proof. Substituting the variables in the U-polynomial as given above, where ki (G )
is the number of connected components with exactly i vertices, we get

U (G ,X ′,y + 1)

=
∑
A⊆E

|V |∏
i=1

x ′i
ki (G 〈A〉)y |A|− |V |+k (G 〈A〉)

=
∑
A⊆E

xk1 (G 〈A〉)
|V |∏
i=2

(xyi−1z)ki (G 〈A〉)y |A|− |V |+k (G 〈A〉)

=
∑
A⊆E

xk (G 〈A〉)y |V |−k (G 〈A〉)zc (G 〈A〉)y |A|− |V |+k (G 〈A〉)

= C (G , x ,y , z). �
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G1 G2

G3 G4

Figure 4.1: G1 and G2 are graphs with the same U-polynomial, but diUerent cov-
ered components polynomial, G3 and G4 are graphs with the same covered com-
ponents polynomial, but diUerent U-polynomial.

Proposition 4.44. Let G = (V , E) be a graph and e ∈ E a loop of G. The U-
polynomial U (G ,X ,y) satisVes

U (G ,X ,y) = y ·U (G−e ,X ,y). (4.76)

From the proposition above it follows that shifting loops does not change
the U-polynomial, but it may change the covered components polynomial. An
example is the path P3 on three vertices with a loop at an outer vertex or at the
inner vertex. In fact, the minimal example with respect to the number of vertices
is a graph consisting of two vertices with two loops at one vertex or one loop at
each vertex.

Remark 4.45. The covered components polynomial and the U-polynomial of
graphs are not related to each other. This can be observed as follows: The graphs
G1 and G2 in Figure 4.1, which are paths on 3 vertices with a loop attached to
an outer or an inner vertex, have the same U-polynomial, but diUerent covered
components polynomial, observe for example the coeXcient of x2y2z2 that is 0
and 1, respectively. The graphs G3 and G4 in Figure 4.1 [139, G5 and G6 in Figure
2] have the same covered components polynomial, but diUerent U-polynomial,
notice for example the coeXcients of x4x6 that is 1 and 0, respectively.

4.8.2 Relation to the Chromatic Symmetric Function

The chromatic symmetric function X (G ,X ), originally deVned by Stanley [130],
is a specialization of the U-polynomial [107, Theorem 6.1]. For simple graphs it
is incomparable with the covered components polynomial.

Remark 4.46. The covered components polynomial and the chromatic symmet-
ric function of simple graphs are not related to each other in general. This can be
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G5 G6

G7 G8

Figure 4.2: G5 and G6 are graphs with the same chromatic symmetric function,
but diUerent covered components polynomial, G7 and G8 are graphs with the
same covered components polynomial, but diUerent chromatic symmetric func-
tion.

observed as follows: The graphs G5 and G6 in Figure 4.2 [130, G and H in Figure
1] have the same chromatic symmetric function, but diUerent covered compo-
nents polynomial, notice for example the coeXcient of x2y5z. The graphs G7 and
G8 in Figure 4.2 [139, G5 and G6 in Figure 2] have the same covered components
polynomial, but diUerent chromatic symmetric function, because all trees with
at most 23 vertices have a unique chromatic symmetric function [101, Section 0,
due to Tan].

The situation changes if only trees are considered.

Remark 4.47. The chromatic symmetric function generalizes the covered com-
ponents polynomial of trees. This can be concluded from the relations of both
polynomials to the U-polynomial: For trees, the chromatic symmetric function is
equivalent to the U-polynomial (“[107, Theorem 6.1] is easily seen to be reversible
for trees” [101, Section 0]), and the U-polynomial generalizes the covered compo-
nents polynomial (Theorem 4.43).

4.8.3 Relation to the Subgraph Component Polynomial

The subgraph component polynomial Q (G , x ,y) is the generating function for
the number of vertices and connected components in the induced subgraphs.

It is known that the subgraph component polynomial of the line graph L(G )
can be derived from the edge elimination polynomial of G [134, Theorem 23].
We show that for forests the subgraph counting polynomial and the subgraph
component polynomial are equivalent to each other.

Theorem 4.48 (Theorem 8 in [138]). Let G = (V , E) be a forest. The sub-
graph counting polynomial H (G ,v , x ,y) and the subgraph component polynomial
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Q (G ,v , x ) are equivalent graph polynomials related by

H (G ,v , x ,y) = Q (G ,v (x + y),
x

x + y
), (4.77)

Q (G ,v , x ) = H (G ,v , x , 1 − x ). (4.78)

Proof. We start with the vertex subset expansion of the subgraph counting poly-
nomial in terms of the Potts model (Proposition 4.9). The Potts model of a forest
depends only on the number of vertices and the number of connected compo-
nents (each edge reduces the number of connected components by one), hence
we have

H (G ,v , x ,y) =
∑

W ⊆V

v |W | · Z (G[W ], x ,y)

=
∑

W ⊆V

v |W |xk (G [W ]) (x + y) |W |−k (G [W ]) .

Then the Vrst equality follows by

Q (G ,v (x + y),
x

x + y
) =

∑
W ⊆V

(v (x + y)) |W |
(

x
x + y

)k (G [W ])

=
∑

W ⊆V

v |W |xk (G [W ]) (x + y) |W |−k (G [W ])

= H (G ,v , x ,y),

and the second equality follows by

H (G ,v , x , 1 − x ) =
∑

W ⊆V

v |W |xk (G [W ]) (1) |V |−k (G [W ])

=
∑

W ⊆V

v |W |xk (G [W ])

= Q (G ,v , x ). �

Remark 4.49. The subgraph component polynomial and the subgraph counting
polynomial of simple graphs are not related to each other. This can be observed
as follows: The graphs G9 and G10 in Figure 4.3 [139, G3 and G4 in Figure 2]
have the same subgraph counting polynomial, but diUerent subgraph component
polynomial, notice for example the coeXcient of v6x1. The graphs G11 and G12

in Figure 4.3 [7, G7 and G8 in Figure 1] have the same subgraph component poly-
nomial, but diUerent chromatic polynomial and hence diUerent subgraph count-
ing polynomial. (For non-simple graphs this follows already from the fact that
the subgraph component polynomial does not consider parallel edges and loops,
which the subgraph counting polynomial does.)
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G9 G10

G11 G12

Figure 4.3: G9 and G10 are graphs with the same subgraph counting polynomial,
but diUerent subgraph component polynomial, G11 and G12 are graphs with the
same subgraph component polynomial, but diUerent subgraph counting polyno-
mial.

4.8.4 Relation to the Extended Negami Polynomial

The extended Negami polynomial f̃ (G , t , x ,y , z) counts vertex mappings with
respect to the images of the vertices incident to the edges.

DeVnition 4.50 (Page 327 of [105]). Let G = (V , E) be a graph. The extended
Negami polynomial f̃ (G , t , x ,y , z) is deVned (for t ∈ N) as

f̃ (G , t , x ,y , z) =
∑

ϕ : V →{1,...,t }

∏
e∈E

w (e ), (4.79)

where

w (e ) =


x + y if ∀v ∈ e : ϕ (v ) = 1,

z + y if ∃c , 1∀v ∈ e : ϕ (v ) = c ,
y if @c ∀v ∈ e : ϕ (v ) = c .

(4.80)

The extended Negami polynomial is a proper generalization of the Negami
polynomial [104], which is known to be strongly related to the Tutte polynomial
[109] and hence also to the Potts model.

For the extended Negami polynomial no more relations then those via its non-
extended version are known. We also have no statement connecting the extended
Negami polynomial and the trivariate chromatic polynomial, but we can deVne
another specialization of both in two variables, which seems not to be equivalent
to the other graph polynomials in two variables we have mentioned, including
the Negami polynomial, the Potts model, the bivariate chromatic polynomial and
the subgraph component polynomial.
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Theorem 4.51. Let G = (V , E) be a graph. There are specializations of the
trivariate chromatic polynomial P̃ (G , x ,y , z) and the extended Negami polynomial
f̃ (G , t , x ,y , z) that equal each other:

P̃ (G , x , x − 1, z) = f̃ (G , x , 0, 1, z − 1) (4.81)

Proof. The trivariate chromatic polynomial can be stated as

P̃ (G , x ,y , z) =
∑

ϕ : V →{1,...,x }

∏
e∈E

w (e ),

where

w (e ) =

z if ∃c ≤ y ∀v ∈ e : ϕ (v ) = c ,
1 else.

Consequently, for P̃ (G , x , x − 1, z) the function w (e ) changes to

w (e ) =

z if ∃c ≤ x − 1∀v ∈ e : ϕ (v ) = c ,
1 else,

which equals the corresponding function for f̃ (G , x , 0, 1, z − 1) (with exception
that the colors / states are renamed). �

4.8.5 Relation to the Bivariate Chromatic Polynomial

By Proposition 4.20, the bivariate chromatic polynomial is a specialization of
the trivariate chromatic polynomial, and for forests both are equivalent. This is
shown by the present author for the covered components polynomial [139, The-
orem 38]. Here we show the equivalence of the bivariate and trivariate chromatic
polynomial more directly by making use of the fact that for forests the number
of edges is determined by the number of vertices and the number of connected
components.

Theorem 4.52. Let G = (V , E) be a forest. The trivariate chromatic polynomial
P̃ (G , x ,y , z) and the bivariate chromatic polynomial P (G , x ,y , z) are equivalent
graph polynomials related by

P̃ (G , x ,y , z) = (1 − z)−|V | · P (G ,
x

1 − z
,

y
1 − z

), (4.82)

P (G , x ,y) = P̃ (G , x ,y , 0). (4.83)

Proof. Using the edge subset expansions of both polynomials (Corollary 4.25), the
statement follows by

P̃ (G , x ,y , z) =
∑
A⊆E

xi (G 〈A〉)yc (G 〈A〉) (z − 1) |A|
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G13 G14

Figure 4.4: G13 andG14 are graphs with the same bivariate chromatic polynomial,
but diUerent trivariate chromatic polynomial.

=
∑
A⊆E

xi (G 〈A〉)yc (G 〈A〉) (1 − z) |V |−k (G 〈A〉) (−1) |A|

= (1 − z)−|V |
∑
A⊆E

( x
1 − z

)i (G 〈A〉) ( y
1 − z

)c (G 〈A〉)
(−1) |A|

= (1 − z)−|V | · P (G ,
x

1 − z
,

y
1 − z

). �

Remark 4.53. The trivariate chromatic polynomial properly generalizes the bi-
variate chromatic polynomial of simple graphs. This can be concluded from the
graphsG13 andG14 in Figure 4.4 [139,G1 andG2 in Figure 1], which have the same
bivariate chromatic polynomial, but diUerent covered components polynomials,
observe for example the number of vertices of degree 4.

4.8.6 Relation to the Wiener Polynomial

The Wiener polynomial W (G , x ) is the generating function for the distance of
two vertices.

DeVnition 4.54 (Equation 1 of [120]). Let G = (V , E) be a connected graph. The
Wiener polynomialW (G ,q) is deVned as

W (G ,q) =
∑

{u,v }∈(V2 )

qd (G,u,v ) , (4.84)

where d (G ,u ,v ) is the distance of the vertices u and v in G.

Remark 4.55. The covered components polynomial and the Wiener polynomial
of simple graphs are not related to each other. This can be observed as follows:
The graphs G15 and G16 in Figure 4.5, which are a cycle on 4 vertices and a cycle
on 3 vertices with an additional pendent edge, have the same Wiener polynomial
(2 pairs of vertices of distance 2, all other pairs have distance 1), but diUerent cov-
ered components polynomial, observe for example that the coeXcient of x2y3z1

is 0 and 1, respectively. The graphs G17 and G18 in Figure 4.5 [139, G5 and G6 in
Figure 2] have the same covered components polynomial, but diUerent Wiener
polynomial, notice for example thatG12 has two vertices of distance 7, whichG11

does not have.
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G15 G16

G17 G18

Figure 4.5: G15 andG16 are graphs with the same Wiener polynomial, but diUerent
covered components polynomial, G17 and G18 are graphs with the same covered
components polynomial, but diUerent Wiener polynomial.
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Chapter 5

The Generalized Subgraph
Counting Polynomial —
A Unifying Graph Polynomial

The edge elimination polynomial and the subgraph component polynomial are
“most general graph polynomials” with respect to recurrence relations using dele-
tion, contraction and extraction of an edge [4, Theorem 3], and deletion, neigh-
borhood deletion and contraction of a vertex [134, Theorem 22], respectively.
That means that every graph polynomial satisfying such recurrence relation can
be calculated from them.

In Section 5.1 we deVne the generalized subgraph counting polynomial, a
unifying graph polynomial in the sense that it generalizes both the edge elimi-
nation polynomial (by generalizing the subgraph counting polynomial) and the
subgraph component polynomial. As main result of this chapter we prove a re-
currence relation of the newly introduced graph polynomial applicable for hy-
pergraphs.

Some relations to other graph polynomials and some properties are given in
Section 5.2 and Section 5.3, respectively. In the last we give some evidence, why
the generalized subgraph counting polynomial probably is not “a most general
graph polynomial” with respect to the recurrence relation satisVed by itself.

While most of the deVnitions and statements in this chapter are given for
graphs, many of them are also valid in the case of hypergraphs. For this, it may
be necessary to generalize known graph polynomials to hypergraphs, their deV-
nitions are given accordingly in Appendix A.

5.1 DeVnition and Recurrence Relation

The generalized subgraph counting polynomial extends the subgraph counting
polynomial by additional counting the number of edges in the subgraphs induced
by the vertex set of the considered subgraph.
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DeVnition 5.1. LetG = (V , E) be a hypergraph. The generalized subgraph count-
ing polynomial F (G ,v , x ,y , z) is deVned as

F (G ,v , x ,y , z) =
∑

H =(W,F )⊆G

v |W |xk (H )y |F |z |E (G [W ]) | . (5.1)

The generalized subgraph counting polynomial of a hypergraph satisVes a re-
currence relation where additional to the already used edge operations (deletion,
contraction and extraction of an edge), the deletion of a subset of the vertices
incident to an edge is applied.

Theorem 5.2. Let G = (V , E),G1 ,G2 be hypergraphs and e ∈ E an edge of G. The
generalized subgraph counting polynomial F (G ) = F (G ,v , x ,y , z) satisVes

F (G ) = z · F (G−e ) +v |e |−1yz · F (G/e ) − v |e |−1yz · F (G	e )

+(z − 1) ·
∑
∅⊂B⊆e

(−1) |B | · F (G	B ), (5.2)

F (G1 ∪· G2) = F (G1) · F (G2), (5.3)

F (K1) = 1 +vx . (5.4)

Proof. The second equality (multiplicativity in components) holds as the sub-
graphs in diUerent components can be chosen independently from each other,
and the third equality (initial value) holds by deVnition. Therefore, it only re-
mains to show the Vrst equality.

Let [W ′, F ′] be the generalized subgraph counting polynomial counting ex-
actly those subgraphs H = (W , F ) of G with W ∩ e =W ′ and F ∩ {e} = F ′. We
have

F (G−e ) =
∑
A⊂e

[A, ∅] +
[e , ∅]
z
,

F (G/e ) = [∅, ∅] +
[e , {e}]
v |e |−1yz

,

F (G	B ) =
∑

A⊆e\B

[A, ∅],

where ∅ ⊂ B ⊆ e . The statement follows by

z · F (G−e ) +v |e |−1yz · F (G/e ) − v |e |−1yz · F (G	e )

+(z − 1) ·
∑
∅⊂B⊆e

(−1) |B | · F (G	B )

= z ·
∑
A⊂e

[A, ∅] + [e , ∅] +v |e |−1yz · [∅, ∅] + [e , {e}] − v |e |−1yz · [∅, ∅]

+(z − 1) ·
∑
∅⊂B⊆e

(−1) |B | ·
∑

A⊆e\B

[A, ∅]
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=
∑
A⊂e

[A, ∅] + [e , ∅] + [e , {e}]

+(z − 1) ·
∑
A⊂e

[A, ∅] + (z − 1) ·
∑
∅⊂B⊆e

(−1) |B | ·
∑

A⊆e\B

[A, ∅]

= F (G ),

where the last identity holds because∑
∅⊂B⊆e

(−1) |B | ·
∑

A⊆e\B

[A, ∅]

=
∑
∅⊆B̄⊂e

(−1) |e |− |B̄ | ·
∑
A⊆B̄

[A, ∅]

=
∑
A⊂e

[A, ∅](−1) |e | ·

 ∑
A⊆B̄⊂e

(−1)−|B |


=
∑
A⊂e

[A, ∅](−1) |e | ·

 ∑
A⊆B̄⊆e

(−1)−|B | − (−1) |e |


=
∑
A⊂e

[A, ∅](−1) |e | (−1)(−1) |e |

= −
∑
A⊂e

[A, ∅]. �

Corollary 5.3. Let G = (V , E) be graphs and e = {u ,v}, f = {v} ∈ E a link and
a loop of G. The generalized subgraph counting polynomial F (G ) = F (G ,v , x ,y , z)
satisVes

F (G ) = z · F (G−e ) +vyz · F (G/e ) + (z − 1 − vyz) · F (G†e )

+(1 − z) · F (G	u ) + (1 − z) · F (G	v ), (5.5)

= (z + yz) · F (G−f ) + (1 − z − yz) · F (G†f ). (5.6)

Proof. The statement follows directly from the theorem above. �

5.2 Relations

The generalized subgraph counting polynomial is a generalization of both the
subgraph counting polynomial and the subgraph component polynomial. While
the Vrst fact follows directly from the deVnition, for the second one we have
to show that we can extract the terms corresponding to subgraphs including all
edges appearing in the induced subgraph on the same set of vertices.

Proposition 5.4. Let G = (V , E) be a hypergraph. The generalized subgraph
counting polynomial F (G ,v , x ,y , z) generalizes the subgraph counting polynomial
H (G ,v , x ,y) by

H (G ,v , x ,y) = F (G ,v , x ,y , 1). (5.7)
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Theorem 5.5. Let G = (V , E) be a graph. The generalized subgraph counting poly-
nomial F (G ,v , x ,y , z) generalizes the subgraph component polynomial Q (G ,v , x )
by

Q (G ,v , x ) = F (G ,v , x ,
1
z
, z)

∣∣∣∣∣
z=0
. (5.8)

Proof. Substituting y by 1
z in the deVnition of the generalized subgraph counting

polynomial, we get

F (G ,v , x ,
1
z
, z) =

∑
H =(W,F )⊆G

v |W |xk (H ) (
1
z

) |F |z |E (G [W ]) |

=
∑

H =(W,F )⊆G

v |W |xk (H )z |E (G [W ]) |− |F | .

Substituting z by 0, all summands corresponding to subgraphs with |E (G[W ]) | ,
|F | equal 0, hence for each vertex subsetW only one subgraph is counted (in the
case |E (G[W ]) | = |F |) and therefore the statement follows:

F (G ,v , x ,
1
z
, z) |z=0 =

∑
H =(W,F )⊆G

v |W |xk (H )[|E (G[W ]) | = |F |]

=
∑

W ⊆V

v |W |xk (G [W ])

= Q (G ,v , x ). �

Corollary 5.6. Let G = (V , E) be a graph and e = {u ,v}, f = {v} ∈ E a link and a
loop of G. The subgraph component polynomial Q (G ) = Q (G ,v , x ) satisVes

Q (G ) = v ·Q (G/e ) − (1 +v ) ·Q (G†e ) +Q (G	u ) +Q (G	v ), (5.9)

= Q (G−f ). (5.10)

Proof. The statement follows directly by applying the relation to the generalized
subgraph counting polynomial (Theorem 5.5) in its recurrence relation (Corollary
5.3). �

Remark 5.7. The generalized subgraph counting polynomial is a proper gener-
alization of both the subgraph counting polynomial and the subgraph component
polynomial. This results from the pairs of non-isomorphic graphs having one of
the graph polynomials in common, but not the other one (Remark 4.49).

In contrast, for forests all three graph polynomials are equivalent.

Theorem 5.8. Let G = (V , E) be a forest. The generalized subgraph counting
polynomial F (G ,v , x ,y , z) and the subgraph component polynomial Q (G ,v , x ) are
equivalent graph polynomials related by

Q (G ,v , x ) = F (G ,v , x ,
1
z
, z)

∣∣∣∣∣
z=0
, (5.11)
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F (G ,v , x ,y , z) = Q (G ,v (x + y)z ,
x

(x + y)z
). (5.12)

Proof. The Vrst equality results from the situation for graphs (Theorem 5.5). For
the second equality we can argue, that from the term of the subgraph component
polynomial (counting |W | and k (G[W ])), the number of edges in the induced sub-
graph can be determined (|E (G[W ]) | = |W | − k (G[W ])). Then, by assuming that
an edge may be in a subgraph or not, we can extend the summation to all sub-
graphs, where the number of connected components in the subgraph increases
by one for each missing edge. That means, starting with the deVnition of the
subgraph component polynomial, the statement follows by

Q (G ,v (x + y)z ,
x

(x + y)z
)

=
∑

W ⊆V

(v (x + y)z) |W |
(

x
(x + y)z

)k (G [W ])

=
∑

W ⊆V

v |W |xk (G [W ]) (x + y) |W |−k (G [W ])z |W |−k (G [W ])

=
∑

W ⊆V

v |W |xk (G [W ]) (x + y) |E (G [W ]) |z |E (G [W ]) |

=
∑

W ⊆V

v |W |xk (G [W ])

 ∑
F ⊆E (G [W ])

x |E (G [W ]\F ) |y |F |
 z |E (G [W ]) |

=
∑

W ⊆V

∑
F ⊆E (G [W ])

v |W |xk (G [W ])+|E (G [W ]\F ) |y |F |z |E (G [W ]) |

=
∑

H =(W,F )⊆G

v |W |xk (H )y |F |z |E (G [W ]) |

= F (G ,v , x ,y , z). �

The equivalence for forests of the subgraph counting polynomial and its gen-
eralized version can be concluded from the theorem above and its equivalence
to the subgraph component polynomial in the case of forests (Theorem 4.48).
However, we state it directly because of the maybe interesting proof.

Theorem 5.9. Let G = (V , E) be a forest. The generalized subgraph counting
polynomial F (G ,v , x ,y , z) and the subgraph counting polynomial H (G ,v , x ,y) are
equivalent graph polynomial related by

H (G ,v , x ,y) = F (G ,v , x ,y , 1), (5.13)

F (G ,v , x ,y , z) = H (G ,v , x , xz + yz − x ). (5.14)

Proof. The Vrst equality follows directly from the deVnitions. For the second
equality we compare the recurrence relation for both graph polynomials in case
of pendent edges, which are edges such that at least one incident vertex has de-
gree 1.
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Because each non-empty forest has at least one pendent edge, a graph poly-
nomial of a forest can be calculated recursively by a recurrence relation for pen-
dent edges (together with the multiplicativity with respect to components and an
initial value).

Let e = {u ,v} ∈ E be a pendent edge of G with deg(G ,u) = 1. From the
recurrence relation for the generalized subgraph counting polynomial F (G ) =
F (G ,v , x ,y , z) of an arbitrary edge (Theorem 5.2) we get

F (G ) = z · F (G−e ) +vyz · F (G/e ) + (z − 1 − vyz) · F (G†e )

+(1 − z) · F (G	u ) + (1 − z) · F (G	v )

= z (1 +vx ) · F (G	u ) +vyz · F (G	u ) + (z − 1 − vyz) · F (G	u	v )

+(1 − z) · F (G	u ) + (1 − z) (1 +vx ) · F (G	v )

= [vxz +vyz + 1] · F (G	u ) + [vx − vxz − vyz] · F (G	u	v ),

and for H (G ) = H (G ,v , x ,y) = F (G ,v , x ,y , 1) it follows

H (G ) = [vx +vy + 1] · H (G	u ) + [−vy] · H (G	u	v ).

Therefore, H (G ,v , x , xz +yz − x ) and F (G ,v , x ,y , z) satisfy the same recurrence
relation and consequently the second equality holds. �

In the literature there is another graph polynomial generalizing both the edge
elimination polynomial and the subgraph component polynomial, the homomor-
phism polynomial H (G , k , x ,y , z) [59, page 1044] deVned by Garijo, Goodall and
Nešetřil. It is deVned as the number of homomorphisms from G to the graph
Hk,x,y,z , H (G , k , x ,y , z) = hom(G ,Hk,x,y,z ), where Hk,x,y,z is the join of a Kz

k with
the disjoint union of y copies of Kz

x , where Kl
n is a complete graph on n vertices

with l loops attached at each vertex. The authors give a vertex subset expansion
of the graph polynomial in terms of the Potts models of induced graphs, which
can be rewritten such that the diUerence to the generalized subgraph counting
polynomial becomes more clear.

Proposition 5.10 (Page 1044 in [59]). Let G = (V , E) be a graph. The homomor-
phism polynomial h(G , k , x ,y , z) satisVes

h(G , k , x ,y , z) =
∑

W ⊆V

k |V |− |W |yk (G [W ])P (G[W ], x , z) (5.15)

=
∑

H =(W,F )⊆G

k |V |− |W |yk (G [W ])xk (H )z |F | . (5.16)

Therefore, in addition to renaming variables, the diUerence between the gen-
eralized subgraph counting polynomial and the homomorphism polynomial is
that the Vrst counts the edges and the second counts the connected components
in the subgraph induced by the vertex set of the considered subgraph.

But this fact gives no straightforward insight into the relation of both graph
polynomials and hence this is an open problem (Question 6).
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5.3 Properties

5.3.1 Polynomial Reconstructability

The generalized subgraph counting polynomial of a graph is reconstructable from
its polynomial deck by the same line of arguments valid for the non-generalized
version (Theorem 4.42), caused by a similar vertex subset expansion as a sum
over Potts models.

Proposition 5.11. Let G = (V , E) be a graph. The generalized subgraph counting
polynomial F (G ,v , x ,y , z) generalizes the Potts model Z (G , x ,y) by

Z (G , x ,y) = [v |V |](F (G ,v , x ,y , 1)), (5.17)

and has the vertex subset expansion

F (G ,v , x ,y , z) =
∑

W ⊆V

v |W |z |E (G [W ]) | · Z (G[W ], x ,y). (5.18)

Theorem 5.12. Let G = (V , E) be a simple graph with at least three vertices. The
generalized subgraph counting polynomial F (G ,v , x ,y , z) of G is reconstructable
from the polynomial deck DF (G ).

Proof. We use the vertex subset expansion of the generalized subgraph counting
polynomial (Proposition 5.11):

F (G ,v , x ,y , z) =
∑

W ⊆V

v |W |z |E (G [W ]) | · Z (G[W ], x ,y).

Analogous to Kelly’s Lemma [85], in the sum of the polynomials in the poly-
nomial deck each summand of F (G ,v , x ,y , z) including vi arises ( |V | − i )-times,
because each subgraph with exactly i vertices is a subgraph of |V | − i vertex-
deleted subgraphs.

Hence, only the summands including v |V | are missing, which correspond to
the Potts model of G (the factor z |E | can be determined as degy (Z (G , x ,y))). We
can calculate the Potts model of a graph from its extended subgraph counting
polynomial (Proposition 5.11) and consequently the same holds for the polyno-
mial decks, i.e. fromDF (G ) we can calculateDZ (G ). From this polynomial deck,
the Potts model of G can be reconstructed by Lemma 4.41. �

5.3.2 Non-isomorphic Graphs with Coinciding Generalized Sub-
graph Counting Polynomial

We have already shown that the generalized subgraph counting polynomial is
a proper generalization of the subgraph counting polynomial and the subgraph
component polynomial. This can also be seen from the fact that the last two do
not distinguish all simple graphs with 8 vertices, which is done by the Vrst.
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G19 G20

Figure 5.1: G19 and G20 are two non-isomorphic graphs with the same extended
subgraph counting polynomial.

Remark 5.13. The generalized subgraph counting polynomial distinguishes sim-
ple graphs with less than 9 vertices. The graphs G19 and G20 of Figure 5.1 are the
minimal non-isomorphic graphs (minimal with respect to the number of vertices)
with the same generalized subgraph counting polynomial.

For forests, all three mentioned graph polynomials are equivalent (Theorem
5.8 and Theorem 5.9). Therefore, the pairs of non-isomorphic trees with the same
covered components polynomial have also the same generalized subgraph count-
ing polynomial. For all those pairs with up to 12 vertices, see [139, Figure 2 and
Figure 3].

5.3.3 Not Necessarily a “Most General” Graph Polynomial

The edge elimination polynomial and the subgraph counting polynomial are the
most general graph polynomials with respect to those graph polynomials satisfy-
ing a similar recurrence relation. However, it seems unlikely that the same holds
for the generalized subgraph counting polynomial.

DeVnition 5.14. Let G = (V , E),G1 ,G2 be a graphs and e = {u ,v}, f =
{w } ∈ E a link and a loop of G. The (non-invariant) graph polynomial Ξ(G ) =
Ξ(G , α , β ,γ , δ , ϵ , ζ , x ) is deVned by

Ξ(G ) = α · Ξ(G−e ) + β · Ξ(G/e ) + γ · Ξ(G†e ) (5.19)

+δ · Ξ(G	u ) + δ · Ξ(G	v ), (5.20)

Ξ(G ) = ϵ · Ξ(G−f ) + ζ · Ξ(G†f ), (5.21)

Ξ(En ) = xn . (5.22)

We determine suXcient conditions of the parameters α , . . . , ζ , such that the
graph polynomial Ξ(G ) is an invariant.

Remark 5.15. We have already assumed that the coeXcients of Ξ(G	u ) and
Ξ(G	v ) are equal (here δ ), because this is obviously a necessary condition for an
invariant graph polynomial.
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Figure 5.2: DiUerent cases for the elimination of two edges e and f .

By Theorem 3.16 it follows that the graph polynomial Ξ(G ) is multiplicative
in components.

We have to determine under which conditions the application of the re-
currence relation for two edges is interchangeable. This approach and also
the following analysis are analogous to those given by Averbouch, Godlin and
Makowsky [3, Section 3.3; 4, Section 2].

Theorem 5.16. The graph polynomial Ξ(G , α , β ,γ , δ , ϵ , ζ ) is an invariant graph
polynomial if the following equations are satisVed:

(α − 1)γ = (β + δ )δ , (5.23)

(α − 1)ζ = δ (ϵ − 1), (5.24)

(β + δ )ζ = γ (ϵ − 1). (5.25)

Proof. We have to check all situations of the mutual location of two edges, either
these are two links, a link and a loop, or two loops. The cases are displayed in
Figure 5.2.

Let EF i be Ξ(Gi ) calculated by eliminating Vrst the edge e and second the
edge f and let FEi be Ξ(Gi ) calculated by eliminating Vrst the edge f and second
the edge e . The conditions must be determined, under which the arising graph
polynomial is independent of the order of the elimination of the edges e and f , i.
e. EF i = FEi = 0 for i = 1, . . . , 7.

If the two edges have no common vertex, as in the graphs G1, G2 and G3, or
are symmetrically, as in the graphs G6 and G7, the graphs occurring and their
prefactors do not depend on the order of the operated edge. Hence, the resulting
polynomials EF i and FEi are identical for i = 1, 2, 3, 6, 7.
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It remains to check the cases for i = 4, 5, where we write Gs instead of Ξ(Gs )
for the sake of brevity.

The graph G4 contains the edges e = {u ,v} and f = {v ,w }. We have

EF 4 = α ·G−e + β ·G/e + γ ·G†e + δ ·G	u + δ ·G	v
= α · [α ·G−e−f + β ·G−e/f + γ ·G−e†f + δ ·G−e	v + δ ·G−e	w ]

+ β · [α ·G/e−f + β ·G/e/f + γ ·G/e†f + δ ·G/e	v + δ ·G/e	w ]

+ γ ·G†e
+ δ · [α ·G	u−f + β ·G	u/f + γ ·G	u†f + δ ·G	u	v + δ ·G	u	w ]

+ δ ·G	v

and

FE4 = α ·G−f + β ·G/f + γ ·G†f + δ ·G	v + δ ·G	w
= α · [α ·G−f −e + β ·G−f/e + γ ·G−f †e + δ ·G−f 	u + δ ·G−f 	v]

+ β · [α ·G/f −e + β ·G/f/e + γ ·G/f †e + δ ·G/f 	u + δ ·G/f 	v]

+ γ ·G†f
+ δ ·G	v
+ δ · [α ·G	w−e + β ·G	w/e + γ ·G	w†e + δ ·G	w	u + δ ·G	w	v].

Using the commutativity of the following operations

G−e−f = G−f −e , G−e/f = G/f −e , G−e	w = G	w−e ,

G/e−f = G−f/e , G/e/f = G/f/e , G/e	w = G	w/e ,

G	u−f = G−f 	u , G	u/f = G/f 	u , G	u	w = G	w	u ,

and the following identities

G	v = G−e	v = G−f 	v ,

G	u	v = G/e	v = G†e = G−f †e ,

G	v	w = G−e†f = G†f = G	v	w ,

G	u	v	w = G/e†f = G/f †e = G	u†f = G	w†e ,

we get as a necessary condition for a graph invariant that

EF4 − FE4 = (G	u	v −G	v	w ) · (−αγ + βδ + γ + δ 2) = 0,

which equals

(α − 1)γ = (β + δ )δ . (5.26)

The graph G5 contains the edges e = {u ,v} and f = {v}. We have

EF 5 = α ·G−e + β ·G/e + γ ·G†e + δ ·G	u + δ ·G	v
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= α · [ϵ ·G−e−f + ζ ·G−e†f ]

+ β · [ϵ ·G/e−f + ζ ·G/e†f ]

+ γ ·G†e
+ δ · [ϵ ·G	u−f + ζ ·G	u†f ]

+ δ ·G	v

and

FE5 = ϵ ·G−f + ζ ·G†f
= ϵ · [α ·G−f −e + β ·G−f/e + γ ·G−f †e + δ ·G−f 	u + δ ·G−f 	v]

+ ζ ·G†f .

Using the commutativity of the following operations

G−e−f = G−f −e , G−e/f = G/f −e , G/e−f = G−f/e ,

G/e/f = G/f/e , G	u−f = G−f 	u , G	u/f = G/f 	u ,

and the following identities

G	v = G−e†f = G†f = G−e	v = G−f 	v ,

G	u	v = G/e	v = G†e = G−f †e = G	u†f = G/e†f = G/f †e ,

we get as a necessary condition for a graph invariant that

EF5 − FE5 = G	u	v · (βζ + γ + δζ − ϵγ )

+ G	v · (αζ + δ − δϵ − ζ ) = 0,

which equals

(α − 1)ζ = δ (ϵ − 1),

(β + δ )ζ = γ (ϵ − 1). �

The edge elimination polynomial corresponds to the case δ = 0, ϵ = α + β
and ζ = γ . Thereby, the second equation is fulVlled and the third one equals the
Vrst one. The Vrst equation has in fact two diUerent solutions, α = 1 and γ = 0.
Hence, to show that this graph polynomial is “a most general” one satisfying such
kind of recurrence relation, it has been necessary to argument that the case α = 1
is more general than γ = 0. This holds, because the second case is equivalent to
the Potts model [4, Equation 21].

While the generalized subgraph counting polynomial also satisVes the equa-
tions given in the theorem above, there are much more solutions for them.
Whether each of these solutions is a specialization of or equivalent to the gener-
alized subgraph counting polynomial is an open problem (Question 7), but at least
it seems to be unlikely. Therefore, to attack this problem, it seems appropriate
to look for solutions corresponding to graph polynomials distinguishing non-
isomorphic graphs with the same generalized subgraph counting polynomial, for
example G1 and G2 in Figure 5.1.
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Chapter 6

Conclusion

The aim of this dissertation is to make some progress to a better understanding
of graph polynomials and their relations. This is done by

• collecting several concepts used to deVne graph polynomials and stating
relations between them (Chapter 3),

• introducing graph polynomials equivalent to the edge elimination poly-
nomial and thereby linking a graph polynomial deVned by a recurrence
relation to the counting of (spanning) subgraphs and colorings (Chapter 4),

• deVning a graph polynomial that uniVes several of the well-known graph
polynomials (Chapter 5).

We think some evidence is given that the investigation of equivalent graph
polynomials can be very useful, although or rather because these are mathemat-
ically the same.

We have restricted our investigation to graph polynomials associated to hy-
pergraphs with a constant number of variables. Therefore, neither graph poly-
nomials associated to other graph-like structures, for example directed graphs,
graph embeddings and knots, nor multivariate graph polynomials, where usu-
ally a variable for each vertex or edge is used, are considered here. Furthermore,
the topic of this thesis has been concentrated on graph polynomials that can be
deVned by or satisfy a recurrence relation.

For sure, this sole work can not cover all topics related to graph polynomials,
not even with the mentioned restrictions. But it seems that graph polynomials get
a lot of attention in the last years, especially from PhD students. Hence, together
with the theses of Averbouch [3], Csikvari [43] and HoUmann [78], whose topics
are all mostly mutually disjoint, there has been some progress “towards a general
theory of graph polynomials” [100].

In the following Section 6.1 we present graphically our current knowledge
about the relations between some graph polynomials. Some open problems men-
tioning unknown relations and other questions for further research are given in
Section 6.2.
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6.1 An Overview about Graph Polynomials

We summarize the most of our knowledge about the relations between diUerent
graph polynomials in Figure 6.1. There we display a “graph of graph polynomi-
als”, where the vertices represent graph polynomials and where an directed edge
from graph polynomial A to graph polynomial B means that B can be calculated
from A in the case of graphs.

Please note the following remarks for the dashed edges:

• the relation from the U-polynomial to the covered components polynomial
holds only for simple graphs,

• for the calculation of the Potts model and the Negami polynomial from the
Tutte polynomial, the number of vertices is necessary.

6.2 Open Problems

We list some of the questions still open, mostly regarding relations of the men-
tioned graph polynomials. Some of them arise from some “missing edges” in
Figure 6.1 and could be answered in the negative by Vnding some speciVc pair of
non-isomorphic graphs having some graph polynomial in common, but not some
other one.

All recurrence relations discussed in this work are linear, with exception of
one given for the characteristic polynomial in Equation (3.57) .

Question 1. Are there other non-linear recurrence relations for graph polynomials?

The chromatic symmetric function can be generalized to a “bad coloring”
version, which we denote as bad coloring symmetric function X̃ (G ,X , z). This is
equivalent to the U-polynomial [107, Theorem 6.2].

Question 2. Is there a “direct combinatorial” relation between the bad coloring
symmetric function and the trivariate chromatic polynomial?

There are some graph polynomials generalized by both the trivariate chro-
matic polynomial and extended Negami polynomial. But nothing is known about
their relation to each other.

Question 3. Are the trivariate chromatic polynomial and the extended Negami
polynomial related (for graphs / forests)?

We know that there are pairs of non-isomorphic trees with the same covered
components polynomial but diUerent Wiener polynomial, but are not aware of
examples for the other way around.

Question 4. Is the Wiener polynomial a generalization of the covered components
polynomial for forests?
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Figure 6.1: A “‘graph of graph polynomials” presenting the relations between
diUerent graph polynomials.
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The generalized subgraph counting polynomial generalizes the trivariate
chromatic polynomial. Can the generalized subgraph counting polynomial be
deVned in terms of colorings which makes this relation obvious?

Question 5. Is there a coloring expansion of the generalized subgraph counting
polynomial?

There are some other graph polynomials generalizing the same graph polyno-
mials as the generalized subgraph counting polynomial. It seems that the relation
between these graph polynomials is not yet considered.

Question 6. Are the generalized subgraph counting polynomial, the extended
Negami polynomial, and the homomorphism polynomial related to each other (for
graphs / forests)?

Question 7. Is the generalized subgraph counting polynomial a “most general
graph polynomial” with respect to the recurrence relation it satisVes?

If we restrict the recurrence relations to those with δ = 0, is then the edge
elimination polynomial also most general or are by the independence of the fac-
tors for a link and a loop other graph polynomials possible?

Question 8. Is there a most general graph polynomial satisfying Theorem 5.16 in
the case δ = 0?



Appendix A

List of Graph Polynomials

In this appendix we list some literature and a deVnition for the used graph poly-
nomials. If possible, the deVnitions are given in such a way, that they can easily
be generalized to hypergraphs.

Adjoint polynomial h(G , x )

Literature: [52; 97; 159; 160; 162].

DeVnition A.1 (Section 11.1 in [52]). Let G = (V , E) be a simple graph. The
adjoint polynomial h(G , x ) is deVned as

h(G , x ) =
∑

π∈Πi (Ḡ )

x |π | , (A.1)

where Ḡ = (V ,
(
V
2

)
\ E).

Bad Coloring Polynomial χ̃ (G , x ,y)

Literature: [33; 54; 66; 129; 140; 142; 147; 149].

DeVnition A.2 (Page 63 in [147]). Let G = (V , E) be a graph. The bad coloring
polynomial χ̃ (G , x , z) is deVned (for x ∈ N) as

χ̃ (G , x , z) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c ∀v∈e : ϕ (v )=c

z. (A.2)

Bad Coloring Symmetric Function X̃ (G ,X , z)

Literature: [38; 107; 122; 131].

DeVnition A.3 (DeVnition 3.1 in [131]). Let G = (V , E) be a graph. The bad
coloring symmetric function X̃ (G ,X , z) is deVned as

X̃ (G ,X , z) =
∑

coloring ϕ

∏
v∈V

xϕ (v )

∏
e∈E

∃c ∀v∈e : ϕ (v )=c

1 + z. (A.3)
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Bivariate Chromatic Polynomial P (G , x ,y)

Literature: [4; 5; 49; 50; 73; 77; 78].

DeVnition A.4 (Section 1 in [50]). Let G = (V , E) be a graph. The bivariate
chromatic polynomial P (G , x ,y) is deVned as

P (G , x ,y) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c≤y ∀v∈e : ϕ (v )=c

0. (A.4)

Characteristic Polynomial ϕ (G , x )

Literatur[44; 67; 80; 117; 119; 136]

DeVnition A.5 (Section 0.1 in [44]). Let G = (V , E) be a graph with adjacency
matrix A(G ). The characteristic polynomial ϕ (G , x ) is deVned as

ϕ (G , x ) = det(xI − A(G )) , (A.5)

where I is the identity matrix of format |V | × |V |.

Chromatic Polynomial χ (G , x )

Literature: [8; 13; 14; 16; 17; 18; 19; 20; 23; 37; 52; 103; 112; 114; 115; 128; 141;
151; 152; 153; 161].

DeVnition A.6 ([18], Section 2 in [151]). Let G = (V , E) be a graph. The chro-
matic polynomial χ (G , x ) is deVned (for x ∈ N) as

χ (G , x ) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c ∀v∈e : ϕ (v )=c

0. (A.6)

Chromatic Symmetric Function X (G ,X )

Literature: [38; 101; 130; 131].

DeVnition A.7 (DeVnition 2.1 in [130]). Let G = (V , E) be a graph. The chro-
matic symmetric function X (G ,X ) is deVned as

X (G ,X ) =
∑

proper coloring ϕ

∏
v∈V

xϕ (v ) . (A.7)
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Clique Polynomial C (G , x )

Literature: [58; 69; 75; 96].

DeVnition A.8 (DeVnition 2.1 in [75]). Let G = (V , E) be a simple graph. The
clique polynomial is deVned as

C (G , x ) =
|V |∑
i=0

ci (G )xi , (A.8)

where ci (G ) is the number of complete subgraphs of G with exactly i vertices.

Covered Components Polynomial C (G , x ,y , z)

Literature: [3; 6; 139].

DeVnition A.9 (DeVnition 3 in [139]). Let G = (V , E) be a hypergraph. The
covered components polynomial C (G , x ,y , z) is deVned as

C (G , x ,y , z) =
∑
A⊆E

xk (G 〈A〉) y |A| zc (G 〈A〉) . (A.9)

Edge Coloring Polynomial χ ′(G , x )

Literature: [70].

DeVnition A.10 (Section 2 in [70]). LetG = (V , E) be a graph. The edge coloring
polynomial χ ′(G , x ) is deVned as

χ ′(G , x ) =
∑

ϕ : E→{1,...,x }

∏
v∈V

γ (v ), (A.10)

with

γ (v ) =

0 if ∃e1 , e2 ∈ E : e1 ∪ e2 ⊇ {v} ∨ ϕ (e1) = ϕ (e2),

1 otherwise.
(A.11)

Edge Elimination Polynomial ξ (G , x ,y , z)

Literature: [3; 4; 5; 6; 7; 76; 77; 78; 138; 139].

DeVnition A.11 (Equation (13) in [4]). Let G = (V , E),G1 ,G2 be graphs and
e ∈ E an edge of G. The edge elimination polynomial ξ (G ) = ξ (G , x ,y , z) is
deVned as

ξ (G ) = ξ (G−e ) + y · ξ (G/e ) + z · ξ (G†e ), (A.12)

ξ (G1 ∪· G2) = ξ (G1) · ξ (G2), (A.13)

ξ (K1) = x . (A.14)
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Extended Negami Polynomial f̃ (G , t , x ,y , z)

Literature: [105; 106].

DeVnition A.12 (Page 327 of [105]). Let G = (V , E) be a graph. The extended
Negami polynomial f̃ (G , t , x ,y , z) is deVned (for t ∈ N) as

f̃ (G , t , x ,y , z) =
∑

ϕ : V →{1,...,t }

∏
e∈E

w (e ), (A.15)

where

w (e ) =


x + y if ∀v ∈ e : ϕ (v ) = 1,

z + y if ∃c , 1∀v ∈ e : ϕ (v ) = c ,
y if @c ∀v ∈ e : ϕ (v ) = c .

(A.16)

Extended Subgraph Counting Polynomial H ′(G ,v , x ,y)

DeVnition A.13 (DeVnition 4.13). LetG = (V , E) be a hypergraph. The extended
subgraph counting polynomial H ′(G ,v , x ,y , z) is deVned as

H ′(G ,v , x ,y , z) =
∑

H =(W,F )⊆G

v |W |xk (H )y |F |zc (H ) . (A.17)

Generalized Subgraph Counting Polynomial F (G ,v , x ,y , z)

DeVnition A.14 (DeVnition 5.1). Let G = (V , E) be a hypergraph. The general-
ized subgraph counting polynomial F (G ,v , x ,y , z) is deVned as

F (G ,v , x ,y , z) =
∑

H =(W,F )⊆G

v |W |xk (H )y |F |z |E (G [W ]) | . (A.18)

Homomorphism Polynomial H (G , k , x ,y , z)

Literature: [59].

DeVnition A.15 (Page 1044 in [59]). Let G = (V , E) be a graph. The homomor-
phism polynomial H (G , k , x ,y , z) is deVned (for k , x ,y , z ∈ N) as

H (G , k , x ,y , z) = hom(G ,Hk,x,y,z ), (A.19)

where the graph Kl
k is a complete graph on k vertices with l loops attached at

each vertex and the graph Hk,x,y,z arises by the join of a Kz
k with the disjoint

union of y copies of Kz
x .
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Hyperedge Elimination Polynomial ξ (G , x ,y , z)

Literature: [150].

DeVnition A.16 (DeVntion 1 in [150]). Let G = (V , E) be a hypergraph. The
hyperedge elimination polynomial ξ (G , x ,y , z) is deVned as

ξ (G , x ,y , z) =
∑

(AtB)⊆E

xk (G 〈A∪B〉)−k (G [B])y |A|+|B |−k (G [B])zk (G [B]) , (A.20)

where (A t B) ⊆ E is used for the summation over pairs of edge subsets
(A, B) : A, B ⊆ E, such that the set of vertices incident to the edges of A and B
are disjoint:

⋃
e∈A e ∩

⋃
e∈B e = ∅.

Independence polynomial I (G , x )

Literature: [31; 68; 94; 95].

DeVnition A.17. Let G = (V , E) be a graph. The independence polynomial
I (G , x ) is deVned as

I (G , x ) =
∑

W ⊆V

[W is independent set] x |W | . (A.21)

Matching PolynomialM (G , x ,y)

Literature: [56; 64; 71; 80; 93].

DeVnition A.18. LetG = (V , E) be a graph. The matching polynomial M (G , x ,y)
is deVned as

M (G , x ,y) =
∑
A⊆E

[A is matching] x |V |− |
⋃
e∈A e |y |A| . (A.22)

Negami Polynomial f (G , t , x ,y)

Literature: [63; 104; 105; 106; 109].

DeVnition A.19 (Page 601 in [104]). Let G = (V , E) be a graph. The Negami
polynomial f (G , t , x ,y) is deVned as

f (G , t , x ,y) = x · f (G/e , t , x ,y) + y · f (G−e , t , x ,y), (A.23)

f (En , t , x ,y) = tn . (A.24)

Partition Polynomial Q (G , x )

Literature: [127].

DeVnition A.20. Let G = (V , E) be a graph. The partition polynomial Q (G , x ) is
deVned as

Q (G , x ) =
∑

π∈Πc (G )

x |π | . (A.25)
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Potts Model Z (G , x ,y)

Literature: [128; 129; 149; 156].

DeVnition A.21 (Equation (1.1) in [129]). Let G = (V , E). The Potts model
Z (G , x ,y) is deVned as

Z (G , x ,y) =
∑
A⊆E

xk (G 〈A〉)y |A| . (A.26)

Rank Polynomial R (G , x ,y)

Literature: [142; 143].

DeVnition A.22 (Equation (5) in [142]). Let G = (V , E) be a graph. The rank
polynomial R (G , x ,y) is deVned as

R (G , x ,y) =
∑
A⊆E

xr (G 〈A〉)y |A|−r (G 〈A〉) , (A.27)

where r (G〈A〉) = |V | − k (G〈A〉).

Rank-generating Function S (G , x ,y)

Literature: [25; 33; 147].

DeVnition A.23 (Section 6.2 in [33]). Let G = (V , E) be a graph. The rank-
generating function S (G , x ,y) is deVned as

S (G , x ,y) =
∑
A⊆E

xr (E )−r (A)y |A|−r (A) , (A.28)

where r (A) is the rank of the set A in the cycle matroid of G, i.e. r (A) = |V | −
k (G〈A〉).

Reliability Polynomial R (G ,p)

Literature: [23; 36; 40; 54; 65; 112; 149].

DeVnition A.24 (Equation (3.4.1) in [149]). Let G = (V , E). The reliability poly-
nomial R (G ,p) is deVned as

R (G ,p) =
∑
A⊆E

[k (G〈A〉) = 1]p |A| (1 − p) |E\A| . (A.29)

Subgraph Component Polynomial Q (G , x ,y)

Literature: [7; 59; 134].

DeVnition A.25 (Section 1.1 in [134]). Let G = (V , E) be a graph. The subgraph
component polynomial Q (G ,v , x ) is deVned as

Q (G ,v , x ) =
∑

W ⊆V

v |W |xk (G [W ]) . (A.30)
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Subgraph Counting Polynomial H (G ,v , x ,y)

Literature: [138].

DeVnition A.26 (DeVnition 4.8). Let G = (V , E) be a hypergraph. The subgraph
counting polynomial H (G ,v , x ,y) is deVned as

H (G ,v , x ,y) =
∑

H =(W,F )⊆G

v |W |xk (H )y |F | . (A.31)

Subgraph Enumerating Polynomial P (G ,u ,v ,p)

Literature: [29].

DeVnition A.27 (Equation (1) in [29]). Let G = (V , E) be a graph. The subgraph
enumerating polynomial P (G ,u ,v ,p) is deVned as

P (G ,u ,v ,p) =
∑
A⊆E

uī (G 〈A〉)v |A|pk (G 〈A〉) , (A.32)

where ī (G ) is the number of non-isolated vertices in G.

Trivariate Chromatic Polynomial P̃ (G , x ,y , z)

Literature: [59; 138].

DeVnition A.28 (DeVnition 4.19). LetG = (V , E) be a hypergraph. The trivariate
chromatic polynomial P̃ (G , x ,y , z) is deVned (for x ,y ∈ N) as

P̃ (G , x ,y , z) =
∑

ϕ : V →{1,...,x }

∏
e∈E

∃c≤y ∀v∈e : ϕ (v )=c

z. (A.33)

Trivariate Chromatic Polynomial by White P (G ,p ,q, t )

Literature: [150].

DeVnition A.29 (Section 6 in [150]). Let G = (V , E) be a hypergraph. The
trivariate chromatic polynomial by White P (G ,p ,q, t ) is deVned (for x ,y ∈ N) as

P (G ,p ,q, t ) =
∑

ϕ : V →{1,...,q}

∏
e∈E

∃c≤p ∀v∈e : ϕ (v )=c

t . (A.34)

Tutte Polynomial T (G , x ,y)

Literature: [1; 2; 8; 12; 21; 26; 32; 33; 35; 39; 41; 42; 45; 54; 61; 66; 74; 84; 87; 88;
98; 111; 113; 129; 135; 141; 144; 147; 148].

DeVnition A.30 (Section 3 in [141]). Let G = (V , E) be a graph with a linear
order < on the edge set E. The Tutte polynomial T (G , x ,y) is deVned as

T (G , x ,y) =
∑

F ∈F (G )

xi (F,G,<)ye (F,G,<) . (A.35)
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U-polynomialU (G ,X ,y)

Literature: [107].

DeVnition A.31 (Proposition 5.1 in [107]). Let G = (V , E) be a graph. The U-
polynomial U (G ,X ,y) is deVned as

U (G ,X ,y) =
∑
A⊆E

|V |∏
i=1

xki (G 〈A〉)
i (y − 1) |A|− |V |+k (G 〈A〉) , (A.36)

where ki (G ) is the number of connected components ofG with exactly i vertices.

Vertex-cover Polynomial Ψ(G , x )

Literature: [51].

DeVnition A.32. LetG = (V , E) be a graph. The vertex-cover polynomial Ψ(G , x )
is deVned as

Ψ(G , x ) =
∑

W ⊆V

[W is vertex-cover] x |W | , (A.37)

where a vertex subsetW ⊆ V is a vertex-cover in G, if for each edge e ∈ E there
is a vertex incident to e inW , i.e. e ∩W , ∅ for all edges e ∈ E.

Wiener PolynomialW (G ,q)

Literature: [46; 53; 79; 80; 83; 102; 120; 121; 154; 155; 157; 158].

DeVnition A.33 (Equation (1) of [120]). Let G = (V , E) be a connected graph.
The Wiener polynomialW (G ,q) is deVned as

W (G ,q) =
∑

{u,v }∈(V2 )

qd (G,u,v ) , (A.38)

where d (G ,u ,v ) is the distance of the vertices u and v in G.
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bad coloring polynomial 45, 51–53, 85, 87
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broken-cycle representation 18, 20
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generalized subgraph counting polynomial 71–78, 81, 85, 86, 90

generating function representation 18, 19

homomorphism polynomial 24, 76, 86, 90

homomorphism representation 18, 19

hyperedge elimination polynomial 43, 55, 91

independence polynomial 61, 85, 91

matching polynomial 45, 85, 91

matrix representation 18, 19

matroid representation 18, 19
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partition polynomial 22, 91

partition representation 18

Potts model 25, 41, 45, 47, 61, 62, 65, 66, 76, 77, 81, 84, 85, 92

rank polynomial 60, 61, 92

rank-generating function 25, 92

recurrence relation representation 18, 19

reliability domination expansion 20

reliability domination representation 18, 20

reliability polynomial 92

spanning forest expansion 21, 30, 33, 34

spanning forest representation 4, 18, 20, 30

spanning tree representation 20

spin model 18, 21
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subgraph expansion 19

subgraph representation 18
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trivariate chromatic polynomial (White) 43, 57, 93

Tutte polynomial 41, 45, 66, 84, 85, 93

U-polynomial 62–64, 84, 85, 94

value representation 18, 19

vertex mapping representation 18

vertex model 18, 19

vertex subset expansion 21, 47, 57, 61, 65, 76, 77

vertex subset representation 18, 21

vertex-cover polynomial 45, 85, 94

weighted graph polynomial 22, 62

Wiener polynomial 68, 69, 84, 94



98 GLOSSARY



Bibliography

[1] Martin Aigner. A Course in Enumeration. Vol. 238. Graduate Texts in
Mathematics. Berlin: Springer, 2007. doi: 10.1007/978-3-540-39035-
0.

[2] Artur Andrzejak. “An algorithm for the Tutte polynomials of graphs of
bounded treewidth”. In: Discrete Mathematics 190.1-3 (1998), pp. 39–54.
doi: 10.1016/S0012-365X(98)00113-7.

[3] Ilia Averbouch. “Completeness and Universality Properties of Graph In-
variants and Graph Polynomials”. PhD thesis. Israel Institute of Technol-
ogy, Nov. 2010. url: http://cs.technion.ac.il/~ailia/thesis/
Work/thesis.pdf.

[4] Ilia Averbouch, Benny Godlin, and Johann A. Makowsky. “A most general
edge elimination polynomial”. In: Graph-Theoretic Concepts in Computer
Science. Vol. 5344. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2008, pp. 31–42. doi: 10.1007/978-3-540-92248-3_4.

[5] Ilia Averbouch, Benny Godlin, and Johann A. Makowsky. “An extension
of the bivariante chromatic polynomial”. In: European Journal of Combi-
natorics 31.1 (2010), pp. 1–17. doi: 10.1016/j.ejc.2009.05.006.

[6] Ilia Averbouch, Tomer Kotek, Johann A. Makowsky, and E. Ravve. “The
Universal Edge Elimination Polynomial and the Dichromatic Polynomial”.
In: Electronic Notes in Discrete Mathematics 38.0 (2011). The Sixth Euro-
pean Conference on Combinatorics, Graph Theory and Applications, Eu-
roComb 2011, pp. 77–82. doi: 10.1016/j.endm.2011.09.013.

[7] Ilia Averbouch, Johann A. Makowsky, and Peter Tittmann. “A graph poly-
nomial arising from community structure (extended abstract)”. In: Graph-
Theoretic Concepts in Computer Science. Ed. by C. Paul and M. Habib.
Vol. 5911. Lecture Notes in Computer Science. 2010, pp. 33–43. doi: 10.
1007/978-3-642-11409-0_3.

[8] Ruth A. Bari. “Chromatic Polynomials and the Internal and External Ac-
tivities of Tutte”. In: Graph Theory and Related Topics. Ed. by J. A. Bondy
and U. S. R. Murty. Proceedings of the conference held in honour of Pro-
fessor W. T. Tutte on the occasion of his sixtieth birthday, University of
Waterloo, July 5-9, 1977. London: Academic Press, 1979, pp. 41–52.

http://dx.doi.org/10.1007/978-3-540-39035-0
http://dx.doi.org/10.1007/978-3-540-39035-0
http://dx.doi.org/10.1016/S0012-365X(98)00113-7
http://cs.technion.ac.il/~ailia/thesis/Work/thesis.pdf
http://cs.technion.ac.il/~ailia/thesis/Work/thesis.pdf
http://dx.doi.org/10.1007/978-3-540-92248-3_4
http://dx.doi.org/10.1016/j.ejc.2009.05.006
http://dx.doi.org/10.1016/j.endm.2011.09.013
http://dx.doi.org/10.1007/978-3-642-11409-0_3
http://dx.doi.org/10.1007/978-3-642-11409-0_3


100 BIBLIOGRAPHY

[9] Ruth A. Bari. “Homomorphism polynomials of graphs”. In: Journal of
Combinatorics, Information & System Sciences 7.1 (1982), pp. 56–64.

[10] Claude Berge. Graphs and hypergraphs. North-Holland, 1973. Google
Books: Wy2mhanRnk4C.

[11] Claude Berge. Hypergraphs. Vol. 45. North-Holland Mathematical Li-
brary. North-Holland, 1989. url: http://www.sciencedirect.com/
science/bookseries/09246509/45.

[12] Olivier Bernardi. “A Characterization of the Tutte Polynomial via Com-
binatorial Embeddings”. In: Annals of Combinatorics 12.2 (2008), pp. 139–
153. doi: 10.1007/s00026-008-0343-4.

[13] Pascal Berthomé, Sylvain Lebresne, and Kim Nguyễn. “Computation
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