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Abstract 

A lifetime prediction scheme is proposed based on the assumption that the lifetime 

(time to failure) of rocks under load is governed by the growth of microstructual 

defects (microcracks). The numerical approach is based on linear elastic fracture 

mechanics. The numerical calculation scheme is implemented as a cellular automat, 

where each cell contains a microcrack with length and orientation following certain 

distributions. The propagation of the microcrack is controlled by the Charles equation, 

based on subcritical crack growth. The zone inside the numerical model fails if the 

microcrack has reached the zone dimension or the stress intensity factor of the crack 

reached the fracture toughness. Macroscopic fractures are formed by these coalesced 

propagating microcracks, and finally lead to failure of the model. In the numerical 

approaches, elasto-plastic stress redistributions take place during the forming of the 

macroscopic fractures. Distinct microcrack propagation types have been programmed 

and applied to the proposed numerical models. These numerical models are studied 

under different loading conditions. Numerical results with excellent agreement with 

the analytical solutions are obtained with respective to predicted lifetime, important 

parameters for the microcracks, fracture pattern and damage evolution. Potential 

applications of the proposed numerical model schemes are investigated in some 

preliminary studies and simulation results are discussed. Finally, conclusions are 

drawn and possible improvements to the numerical approaches and extensions of the 

research work are given. 
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Abstract (in Chinese) 

摘要 

本文认为微结构缺陷（微裂纹）的扩展决定了受力岩石的寿命（破坏时间）。

基于此假设，提出了岩石寿命预测方法。利用线弹性断裂力学理论，通过

FLAC 进行了数值模拟。数值模型中每个单元定义一条初始裂纹，其长度与方

向服从特定分布。基于亚临界裂纹扩展理论，由 Charles 方程决定微裂纹的扩展

（速度）。如微裂纹发展至单元边界，或应力强度系数到达断裂韧度，则单元

破坏。宏观裂纹由微裂纹所联合形成，并最终贯穿模型导致破坏。在形成宏观

裂纹的过程中，发生弹塑性应力重分布。在数值模型中，编制了不同类型的微

裂纹扩展方式，并在不同的受力条件下加以分析。数值模型的岩石寿命，裂纹

形状，破坏方式以及一些重要的参数的数值模拟结果与解析解有较好的一致

性。对本文所提出的数值模型的初步实际应用进行了分析，并讨论了计算结

果。最后讨论了本文所提出的岩石寿命预测方法的可能改良与发展，并对进一

步的研究工作给出建议。 
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1 Introduction 

Rock is the main material which bears loads in geotechnical projects such as civil 

engineering constructions, mining structures, underground storage facilities etc. It is 

necessary for the rock mass to maintain stability in such structures during certain long 

time for safety reason. So behavior of rock under load and the service time (lifetime) 

prediction is of great practical interest for the above industries. In other structures 

such as historical buildings and monuments where rock is also commonly used, 

predicted life time could also provide important information for plans on further 

maintenance work or other necessary measures. The purpose of this study is to 

provide possible lifetime prediction schemes based on the existing theories in fracture 

mechanics through numerical simulation of the microcrack propagations inside the 

rock body. Results of this study are supposed to give practical reference to the 

construction work in the field of rock engineering.  

 

A solid body responds to extreme loading by undergoing large deformation and/or 

fracture (Hellan 1985). The second phenomenon has been the focus of this study. It is 

understood that under loads, microcracks in the natural rock would propagate and 

coalesce and form macroscopic fractures. This process decreases the stability of the 

rock body, and could with ongoing time, finally lead to the failure of the rock mass. In 

view of this, it is considered in this study that the lifetime or time to failure of rocks is 

governed by such micro structural defects as microcracks or voids. The lifetime can 

be predicted by empirical exponential laws or physical laws based on damage and 

fracture mechanics. Based on subcritical crack growth and linear elastic fracture 

mechanical approach, a lifetime prediction scheme has been proposed with a 

numerical cellular automate developed to simulate the rock behavior containing initial 

microcracks (Konietzky et al. 2009). Based on this research work, this study aims to 

further develop the existing approach and make improvement on the numerical 

simulation, and finally apply the developed scheme to geotechnical problems. 

Improvements have been made on the basis of the developed cellular automate, 

including incorporation of the orientation of the microcracks, development of distinct 

lifetime prediction schemes with corresponding numerical model schemes, inclusion 

of anisotropy into the numerical model. Investigations of the factors influencing the 

lifetime have been included. Possible applications of the proposed model schemes 

have also been discussed. 

 

A brief introduction into fracture mechanics and the state of the art of time related 

studies of solids is included in Chapter 2. The basic theories and current laboratory 

results are introduced in Chapter 3. A detailed study of the lifetime prediction 

schemes corresponding to different numerical models are given in Chapter 4. In 

Chapter 5, some examples of possible applications of the proposed numerical models 
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have been given and discussions have been made about their applicability. 

Conclusions of this study and possible future work have been given in Chapter 6. 
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2 State of the art 

In rock mechanics, fracture is one of the results for rocks bearing load to a certain 

magnitude. Fracture causes failure of the rock, and may finally leads to instability and 

failure of the rocks. Thus fracture has always been an important issue that researchers 

and engineers deal with considering the safety of the structures, especially man made 

structures. 

 

Experiments and researches on the phenomenon of fracture could date back to 

centuries ago. But no quantitative result has been acquired during such early ages. It 

was the great work of Griffith (1921) that had lead to the onset of modern fracture 

mechanics. Griffith analyzed the stresses of a cracked plate, which was studied before 

by Inglis (1913), and applied it to the crack propagation. According to Griffith’s 

theory, the fracture propagates when the change of the strain energy overcomes the 

material’s surface energy. Griffith’s theory has shown agreement with data from 

experiments for brittle materials, but was also considered to be limited to certain 

brittle materials such as glasses and ceramics. Orowan (1949) modified Griffith’s 

theory to include the influence of plasticity in the energy balance theory. An extension 

of Griffith’s theory had been made by Irwin (1948), who found that plasticity had an 

indispensible role in ductile materials such as metals, and included a dissipative term 

to Griffith’s energy balance relation, thus applying Griffith approach to metals 

successfully. Later on, Irwin (1956) put forward the concept of energy release rate in 

his study of fast crack propagation in high strength steel and aluminum alloys. 

Another of Irwin’s contribution was to have introduced the parameter later known as 

the stress intensity factor (K), which was related to the energy release rate, and was 

used to describe the stress conditions and displacements near the crack tip in his 

analysis of the stress field and strains near the crack tip (Irwin 1957). After the 

fundamentals of linear elastic fracture mechanics were well established around 1960 

(Anderson 2005), researchers had focused more on the influence of materials’ 

plasticity on the fracture analysis. Researchers following this trend also include Irwin, 

who proposed the plastic zone correction as a further improvement of linear elastic 

fracture mechanics (Irwin 1961). Rice (1968) introduced the parameter of J integral to 

describe the plastic characteristics around the crack tip. Later, Rice and Rosengren 

(1968), Hutchinson (1968) applied the J integral to stress field in nonlinear materials. 

Mindess et al. (1977) tested and verified the applicability of the J integral to concrete. 

Shih (1981) studied the relationship between J integral and the crack opening 

displacement. In recent times, fracture mechanics has become more complete. And 

with the development of computer technology, more complicated material models 

have been applied to fracture mechanical analyses. With the help of advancing 

computing power, the development of numerical models of a microscopic scale has 

been made possible, which allows researchers to study both the microscopic and 
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macroscopic fracture behavior easily. It is shown that the boundary of development 

and application of fracture mechanics has been and will be greatly extended with the 

help of computer.  

 

Recent fracture mechanical researches have also been extensive. One trend in this 

research field of both theory and applications is the time-related or time-dependent 

study on material behavior and parameters, within which lifetime prediction is a 

comparatively new topic with practical application prospects. The lifetime or time 

dependent study on solids has been studied by many researchers. By using the 

empirical Charles power law for the relation between crack propagation velocity and 

stress intensity factor at the crack tip, Kemeny (1991) modeled subcritical crack 

growth in rock under compression. The model can predict the dependence of the 

stress-strain curve on certain applied strain rate and both transient and tertiary creep, 

which makes a time-to-failure prediction possible. Mishnaevsky (1996) developed a 

method to determine the time to fracture on the basis of physical mechanisms of 

microcracks and fractal model of fracture. Based on the dependence of the 

distribution of the maximum crack lengths on the accrued lifetime, a method was 

proposed by Ignatovich (1996) to determine the useful lifetime, and the results of 

prediction of cracks of maximum sizes have been compared with experiments of 

chromium-nickel alloys. Based on the split tension tests on the saturated granite from 

Three Gorges Project in China, Sun and Hu (1997) confirmed time dependency of the 

Three Gorges granite and put forward two criteria for the time-dependent theory of 

rock strength: the failure criterion of stress and the failure criterion of time. Shao et al. 

(1999) studied anisotropic damage in granites through numerical modeling. The time 

dependent microcrack growth can be simulated by the proposed model, and the 

model’s numerical result has been compared with the test data. The time-dependent 

behavior of tabular excavations in the gold mines in South Africa has been studied by 

Malan (1999). Elasto-viscoplastic approach has been used for the simulation of the 

time-dependent stope closure and the numerical results have shown good accordance 

with the experimental data. Later on, Malan (2002) implemented the developed 

continuum viscoplastic approach into the finite difference code to investigate the 

time-dependent closure of stopes and squeezing of tunnels in hard rocks. Aubertin et 

al. (2000) proposed a multiaxial criterion for short and long term rock strength 

including time effects, and applied the proposed criterion to the analysis of failure 

around an underground tunnel. Ritter et al. (2000) studied subcritical crack growth in 

soda-lime glass under mixed-mode loading. The conclusion that subcritical crack 

growth rates are much less than those under Mode I loading at the same energy 

release rates was drawn and possible mechanics for this phenomenon were also 

discussed. Masuda (2001) studied the time-dependent failure strength of granitic 

rocks. The effects of water on rock strength have been studied through tests on both 
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wet and dry samples. Based on the Three Gorges Project in China, Feng et al. (2001) 

studied the effects of water on compressive strength and microcracking of granite, and 

confirmed the reduction of the compressive strength on presence of water. They 

concluded that the pH value has great effect on rock strength. Based on the creep tests 

and analytical modeling, Maranini and Yamaguchi (2001) studied viscoplastic 

behavior of granite in triaxial compression and compared the modelling results and 

test data. Time effects on rock strength and transient creep behavior have been 

discussed. Miura et al. (2003) proposed a model based on the micromechanics for 

predicting the creep failure of hard rock, where the time to failure of the proposed 

model is also studied for different stress and environmental conditions such as water 

and temperature. Kemeny (2003) has developed a model with the degradation of the 

joint cohesion of rock dependent on time. Later on, Kemeny (2005) developed a 

fracture mechanics model in UDEC to simulate the time-dependent failure of rock 

bridges. Chen et al. (2004) proposed a damage-coupled time-dependent constitutive 

model and applied it to the stability study of underground caverns. The numerical 

result has shown good accordance with the field measurements. Chandler (2004) 

developed a modified PFC model to simulate the time-dependence of the rock 

strength, and calibrated the model to laboratory time to failure data for Lac du Bonnet 

granite. Based on strength tests and creep tests on several Japanese rocks including 

igneous rocks, Shin et al. (2005) studied the relation between variations in strength 

and creep under dry and wet conditions as well as different loading conditions, and 

presented the equation describing the time dependency of strength. Lifetime 

prediction of composite materials under constant and monotonic load has been studied 

by Guedes (2006). A numerical model has been proposed by Amitrano and 

Helmstetter (2006) to study the time-dependent damage and deformation of rock 

under creep. Lei et al. (2006) studied pre-failure damage in rock under stress. Based 

on simultaneous measurements of time-to-failure energy release, seismic b value etc. 

accompanying pre-failure damage, they concluded these parameters are functions of 

the time-to-failure and can be used as indicators of the critical point of damage. As an 

improvement to the previous model, Golshania et al. (2007) developed a damage 

model for the simulation of the excavation damaged zone (EDZ) problem in brittle 

rock. The development of the excavation damaged zone around the opening by time 

has been studied through a numerical model. Li et al. (2008) studied the time 

dependence of crack growth in granite under compressive-shear stress state, using 

parameters of subcritical crack growth obtained by the double torsion constant 

displacement load relaxation method. A turning point has been located on the curve of 

crack relative length and crack growth time which describes the boundary between the 

stable and rapid growth of crack. The conclusion that there is no gradual change from 

stable to instable crack in granite was drawn. Le et al. (2009) studied the size effect on 

the lifetime of quasibrittle structures. Damjanac and Fairhurst (2010) found clear 
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evidence of a long-term strength threshold for silicate crystalline rock under long-

duration compression loading, and the laboratory value has been compared with the 

field result. Jiang et al. (2012) investigated the time-dependent damage of rock mass. 

A damage viscoelastic-plastic model was developed to describe the time-dependent 

deterioration of rock mass. Time-dependent rock mechanical properties have been 

investigated by Eberhardt (1998); Szczepanik et al. (2003); Alehossein and Boland 

(2004); Lau and Chandler (2004); Jeong et al. (2007). Time-dependent behavior of 

rocks has been investigated by Cristescu and Hunsche (1998); Fujii et al. (1999); 

Challamel et al. (2006). 

 

It is clearly noticed that limitations exist in the former researches of lifetime. For 

instance, the phenomenological approaches are often used to describe the time-related 

behavior of brittle materials. Time effect on strength or failure criterion is also often 

considered by former researchers. However, in contrast this study uses explicit 

fracture mechanics to describe the time-dependent crack growth. The innovations also 

include simulating specific initial fractures with certain distributions at the micro-

scale. The microcrack propagation process is simulated by incorporating the 

subcritical crack growth theory into the time marching calculations of the numerical 

code. Thus the real “time” is connected to the crack propagation step wisely in the 

simulation. This study assumes the lifetime (time to failure) of rocks is dependent on 

the development of these initial microcracks, which propagate and coalesce under 

loads, and the macroscopic fractures formed by these microcracks could finally lead 

to the failure of the rock. This process has been simulated by Konietzky et al. (2009) 

based on the linear elastic fracture mechanical theory (LEFM) using data from 

Westerly Granite. As a further development of this research work, this study 

improved the crack propagation scheme by considering orientation of the initial 

cracks and including anisotropy into the numerical model. The stress intensity factor 

calculation has also been modified according to the different crack simulation 

schemes. The numerical simulations in this study were performed by the 2D Finite 

Difference Code FLAC (Itasca Consulting Group 2005). Lifetime (time to failure of 

rocks) prediction schemes have been proposed for each numerical model and 

analytical results have been compared with the numerical calculations. The factors 

influencing lifetime have also been investigated through the numerical models. More 

detailed aspects of the theoretical basis adopted in this study are discussed in the 

following chapter. 
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3 Theoretical concepts 

The numerical model of this research is based on the linear elastic fracture mechanical 

theory. The linear elastic fracture mechanics (LEFM) studies the propagation of 

cracks in a brittle material under load from continuum mechanical point of view. That 

is, the body contains the crack is considered to be linear elastic as a whole. In this 

case, plastic behavior near the crack tip is not considered, which makes it necessary to 

restrict the inelastic region near the crack tip to a negligible size. 

 

The applicability of the continuum mechanical approach is influenced to a large part 

by the concept of process zone (Gross 2006), which denotes the region near the crack 

tip. Within the process zone, the microscopic bond breaking process is too complex as 

to be described by continuum mechanics. So for the continuum mechanics to be 

applicable, the size of the process zone should be small enough as to be negligible 

comparing with the size of the crack and the solid body. Continuum mechanics is 

applicable for metals and brittle materials. The object in this research is brittle rock, 

so this approach suits our research very well and thus is adopted in the numerical 

model. 

 

3.1 Griffith energy balance theory and the energy criterion 

The energy balance theory and the energy criterion for fracture were proposed by 

Griffith (1920) based on the earlier work of Inglis (1913). Irwin (1956) further 

developed the energy criterion approach. The Griffith energy balance theory assumes 

that the total energy does not change or decreases during the formation or propagation 

of a crack. We consider an infinitely wide plate under a remote tensile stress σ, with a 

crack inside of length 2a, as shown in Fig. 3-1.  

 

 
Figure 3-1 An infinitely wide plate subjected to a remote tensile stress 
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For an increase dA of the crack area, the balance of the energy could be expressed as: 

 

0



dA

dW

dA

d

dA

dE s                                                                                                  (3-1) 

 

where E denotes the total energy, Π is the potential energy of the internal strain 

energy and external force and Ws describes the work need for the creation of new 

surfaces. The components of the expression are describes as: 

 

E

a

dA

d 2



                                                                                                            (3-2) 

 

s

s

dA

dW
2                                                                                                                  (3-3) 

 

where E is Young’s modulus, σ is the remote tensile stress, a is the half crack length. 

For the infinite plane, the released energy is related to the unit thickness. Thus 

parameter a denoting the half crack length is used in the equations instead of the 

parameter A denoting the crack area. γs denotes the surface energy. So the energy 

balance could be further expressed as: 

 

s
E

a



2

2

                                                                                                                (3-4) 

 

Solving the above equation for fracture stress, the following expression is obtained: 

 

2/1
2











a

E s

f



                                                                                                         (3-5) 

 

Equation (3-2) represents an important parameter first proposed by Griffith (1920), 

known as the energy release rate G. As can be shown by equation (3-2), the energy 

release rate describes the potential energy change for an incremental crack surface 

increase. For the same plate example, the energy release rate is given by: 

 

E

a
G

2
                                                                                                                  (3-6) 

The energy criterion can be described as: the fracture occurs if the released energy is 

enough to overcome the resistance of the material, which includes the surface energy 

and other energy dissipation related to the crack propagation. To be specific, when 
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fracture happens, the energy release rate reaches the critical value, known as the 

critical energy release rate Gc. In the above example shown in Fig. 3-1, the Griffith’s 

energy criterion for fracture is defined by: 

 

cGG                                                                                                                         (3-7) 

 

and 

 

E

a
G

cf

c

2
                                                                                                               (3-8) 

 

where σf denotes the failure stress and ac describes the half crack length. The critical 

energy release rate Gc could be deemed as the material’s resistance to fracture. As 

compared with the factors in the traditional material strength approach, energy release 

rate G is the driving force for the fracture while the critical energy release rate Gc is 

the fracture toughness, which is a material parameter independent of the crack 

geometry. This feature gives the G parameter a characteristic of global applicability 

within the same linear elastic material. 

 

3.2 Crack opening modes 

Three types of opening modes, or loading types, known as Mode I, Mode II and Mode 

III are illustrate in Fig. 3-2, respectively, can be distinguished. 

 

 
Figure 3-2 Three crack opening modes with corresponding stress conditions (Gross 2006) 

 

According to the coordinate system shown in Fig. 3-2, Mode I describes the crack 

surfaces separating from each other and the movement is perpendicular to the x-z 

plane, where the crack tip is subjected to the stress normal to the crack plane. Mode II 

describes in-plane shear loading mode involving a sliding movement of the crack 

surfaces. This relative movement is caused by the shear stress within the x-z plane. 

Mode III describes the out-of-plane shear loading mode involving a relative 
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movement of the crack surfaces within the x-z plane, as a result by the shear stress in 

the x-z plane. 

 

In reality, the rock materials are often subjected to more complex stress conditions 

than any single case of the three basic loading types shown in Fig. 3-2. In such cases, 

a so called mixed-loading mode is required to describe the real stress situation. The 

mixed-mode loading is a combination of some or all of these basic modes (Fig. 3-3). 

For example, a mixed-loading situation of Mode I and Mode II describes the situation 

of the crack tip being subjected to both normal and shear stresses. Crack under 

different modes of loading and mixed-mode loading has been studied by many 

researchers: Erdogan and Sih (1963); Sih (1973, 1974); Ingraffca (1981); Nemat-

Nasser and Horii (1983); Watkins and Liu (1985); Ouchterlony (1988); Lam (1989); 

Hakami and Stephansson (1990); Ashby and Sammis (1990); Kemeny (1991); 

Davenport and Smith (1993); Shen and Stephansson (1993, 1994); Chen and Wang 

(1994); Pang (1995); Kong et al. (1995); Baud et al. (1996); Zhu et al. (1997); 

Lauterbach and Gross (1998); Bobet and Einstein (1998); Ritter et al. (2000); Chang 

et al. (2002); Backers et al. (2002); Sahouryeh et al. (2002); Rao et al. (2003); Yoon 

and Jeon (2003); Zhu et al. (2006); Napier and Backers (2006); Ko and Kemeny 

(2006); Li et al. (2008); Ayatollahi and Aliha (2009); Ayatollahi and Sedighiani 

(2010); Bhat et al. (2011); Zhou and Yang (2012); Backers and Stephansson (2012). 

 

 
Figure 3-3 Crack under mixed-mode loadings (modified from Li 1988) 

 

3.3 Crack-tip field and stress intensity factor 

Stress analysis of the crack tip region is based on the understanding of the different 

crack opening modes described above. Analysis on the stresses and strains close to a 

crack tip, also known as crack-tip field (Gross 2006), has its indispensible role in the 

constitution of linear elastic fracture mechanics. Each of the three different crack 

opening modes has its own crack-tip field. Consider a two-dimensional problem 

containing a straight crack, as shown in Fig. 3-4.  
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Figure 3-4 Stresses near the crack tip in a two-dimensional problem (modified from Anderson 1995) 

 

With the geometry and stresses depicted in Fig. 3-4, the crack-tip field can be 

described as, for Mode I: 
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For Mode II: 
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where σz = υ (σx + σy), ĸ = 3 - 4υ for plane strain and σz = 0, ĸ = (3 - υ) / (1 + υ) for 

plane stress.  

 

For Mode III: 
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The factors KI, KII and KIII in these expressions are defined as stress intensity factors. 

For the straight crack of length 2a, which is subjected to uniaxial remote tensile stress 

σ, in-plane shear stress τ and out-of-plane shear stress τ', respectively, they are 

expressed as: 

 

aK I                                                                                                               (3-15) 

 

aK II                                                                                                               (3-16) 

 

and 

 

aK III                                                                                                              (3-17) 

 

The value of stress intensity factor depends on the remote stress and the size of the 

crack. For each of the crack opening modes, if the K factor is known, the stress 

distribution and displacements near the crack tip can be solely determined by the 

above expressions containing corresponding K factors. So the stress intensity factor 

can be deemed as a parameter describing the stress condition in a cracked linear 

elastic material. Research works concerning stress intensity factor include: Wilson 

(1971); Cartweight and Rooke (1974); Rybicki and Kanninen (1977); Waza et al. 

(1980); Horii and Nemat-Nasser (1983); Huang and Wang (1985); Costin (1985); 

Ashby and Hallam (1986); Ouchterlony (1988); Hakami and Stephansson (1990); 

Lim et al. (1993); Fowell (1995); Baud et al. (1996); Khan and Al-Shayea (2000); 

Guinea et al. (2000); Chao et al. (2001); Chang et al. (2002); Backers et al. (2002); 

Isaksson and Ståhle (2002); Rao et al. (2003); Yoon and Jeon (2003); Liu and Chao 

(2003); Zhu et al. (2006); Ko and Kemeny (2006); Morais (2007); Sun and Qian 

(2009); Kumar et al. (2011); Backers and Stephansson (2012); Ayatollahi and 

Sedighiani (2012). A more detailed description about the stress intensity factor is 

discussed in the following section. 

 

3.4 Fracture criterion based on the stress intensity factor 

Earlier work of Griffith (1920) has formed a strong basis and essential tool to analyze 

fracture for the subsequent researchers. While Griffith (1920) and Orowan (1949) 

studied the material strength and behavior through energy approach, Irwin (1957) 

proposed a criterion based on the analysis of the stress field around the crack tip. 

Irwin (1957) had shown that the stress distribution and displacements near the crack 
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tip could be determined by a single parameter, known as the stress intensity factor. 

Expressions for different loading modes have been described above. Fracture criteria 

in linear elastic body have also been discussed by several researchers, including 

Erdogan and Sih (1963); Sih (1973, 1974); Theocaris and Andrianopoulos (1982); 

Shen and Stephansson (1994); Ukadgaonker and Awasare (1995).  

 

The stress intensity factor criterion of fracture is based on the assumption that the 

fracture starts when the stress intensity factor reaches the critical value KC, also 

known as fracture toughness, which is a material property. Its specific value can be 

determined by experiments. Fracture toughness value controls the fracture initiation 

criterion for corresponding loading mode introduced in the last subsection. For 

example if the material is subjected to Mode I loading, in which case only KI value is 

considered, it fails when KI = KIC. Correspondingly for Mode II, the criterion is 

KII = KIIC and for Mode III, KIII = KIIIC. The criterion for a mixed-mode loading 

condition is more complicated. In this case, a more generalized expression such as 

f(KI, KI, KI) = 0 must be utilized. Expression of such criterion is further discussed in 

the next chapter. 

 

The logic of stress intensity factor approach lies in the fact that it allows a description 

of the stress condition and displacements. So the judgment that the material would fail 

when the stress intensity factor comes to its critical value is based on the stress 

intensity factor’s indication that the stress and strain combination has come to a 

critical condition. As described above, the stress intensity factor is a local parameter, 

so it’s necessary to study the region near the crack tip where K factor dominates. 

 

Take Mode I crack opening as shown in Fig. 3-2(3) for example. As described above, 

the KI factor characterizes the region near the crack tip, which is limited by the radius 

R in Fig. 3-5. The region where KI dominates also has its limit inwards. According to 

Equation 3-9, the stress values would become infinite if r becomes infinitely small, 

and could not be sustained by any material. That means linear elastic theory could not 

describe the real stress and displacement situation inside this region. Actually, 

inelastic deformations happen within the region of radius rp, and there is an additional 

zone within the radius of ρ, where de-bonding process at the crack tip is supposed to 

occur (Gross 2006).  
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Figure 3-5 KI-determined field near the crack tip (Gross 2006) 

 

The processes within the inelastic zone is not considered within this study, but 

assumed to be controlled by the KI-determined field, thus indirectly characterized by 

KI factor. The case applies to Mode II and Mode III as well. So the fracture criterion 

described above would only apply to the K-determined region. And the stress 

intensity factor becomes a state variable or a ‘loading parameter’ (Gross 2006) whose 

value changes with propagation of crack. The above facts make it necessary that K 

value be always recalculated and updated with the new crack geometry and stress 

conditions during crack propagation process when using this crack criterion, which is 

the case in this research. 

 

3.5 Stress intensity factor and Griffith’s energy release rate 

In Irwin’s work (Irwin 1957), the relationship between the local parameter stress 

intensity factor K and global energy parameter, Griffith’s energy release rate G, had 

also been given: 
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where E' = E for plane stress condition and E' = E / (1 - υ
2
) for plane strain condition. 

GI, GII and GIII are the energy release rates in Mode I, Mode II and Mode III 

conditions, respectively. µ is the shear modulus: 
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Energy release rates are scalar quantities, so they are additive for mixed-mode loading 

conditions. For example, for a material subjected to all three loading modes the 

energy release rate becomes: 
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Although the relationship between K and G is unique, the difference between these 

two factors is obvious. The energy release is a global behavior parameter that 

describes the potential energy change in the process of crack propagation. The stress 

intensity factor as a local parameter describes the stress distribution and 

displacements in the crack tip region.  

 

3.6 Subcritical crack growth  

It was assumed by the classical fracture mechanics that in a linear elastic material, the 

crack will propagate ultrasonically when the stress intensity factor K reached the 

fracture toughness KC. Otherwise the crack will remain stable. The critical stress 

intensity factor approach has long been applied to predict catastrophic crack 

propagation in brittle materials. However, the classical fracture mechanics could not 

hold for the long-term constant loading condition, where crack propagates at certain 

velocity when stress intensity factor is lower than the critical value KC. This 

phenomenon is called subcritical crack growth, which was first found in materials 

such as glasses and ceramics, and later in rocks and minerals (Atkinson 1982, 1984). 

Charles and Hillig (1962) proposed that stress-corrosion could be the mechanism for 

the fatigue phenomenon in silicate glass, where propagation of crack was observed 

when the loads were less than the critical value for the fast fracture propagation. 

Wiederhorn (1967) studied static fatigue of glass using a new experimental approach 

and related the measured crack velocity with stress and water vapor concentration. 

Later on, Wiederhorn and Bloz (1970) studied stress corrosion cracking of six glasses 

using fracture mechanical techniques, and concluded that the chemical reaction 

between the glass and water could be the reason for the stress corrosion of glass. The 

effect of water on subcritical crack growth in silicate rocks has been investigated by 

Waza et al. (1980). Swanson (1985) studied subcritical fracture propagation in 

Westerly granite. Kemeny (1991) modeled time dependency in rock deformation 

under compression considering cracks inside the elastic body growing due to 

subcritical crack growth. Yoshida and Horii (1992) proposed an analytical model of 

microcrack growth under compression on the basis of micromechanics to study the 

creep behavior of rock. Dill et al. (1997) investigated subcritical crack growth 

behavior of borosilicate glass under cyclic loads. Mechanical fatigue effect was found 

at low growth rates in both moist and dry environments. Ritter et al. (2000) studied 
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subcritical crack growth in soda-lime glass under mixed-mode loading. Aubertin et al. 

(2000) proposed the damage initiation threshold (DIT) of rocks and introduced it into 

the subcritical crack growth theory. Kemeny (2003) developed a fracture mechanical 

model using subcritical crack growth to simulate degradation of joint cohesion in 

brittle fractured rock. Miura et al. (2003) developed a micromechanical-based model 

for predicting the creep failure of hard rock under compression. Liu (2003) proposed 

to explain rock burst mechanisms by considering time dependency of sub-critical 

crack growth in brittle rock under compression. Lau and Chandler (2004) developed 

laboratory test techniques and used the test data for the calibration of Itasca’s PFC 

stress-corrosion model. Dependence of subcritical crack growth on anisotropy, grain 

size and environment has been investigated by Nara et al. (2004). The dependence of 

subcritical crack growth on water vapor pressure was studied by Nara and Kaneko 

(2004) using double torsion test. Subcritical crack growth in andesite was investigated 

by Nara and Kaneko (2005) using the double torsion test. The effects of water on 

subcritical crack growth have also been discussed. Kemeny (2005) modeled the time 

dependence of the rock bridge failure process using subcritical crack growth. Cao et al. 

(2006) analyzed the behavior of subcritical crack growth for different rocks. Nara and 

Kaneko (2006) studied the subcritical crack growth in granite using the double torsion 

test. Yuan et al. (2006) applied double torsion specimens to study the subcritical crack 

growth of flabby and intricate ore rock. Nara et al. (2006) studied the relation between 

subcritical crack growth behavior and crack paths in granite. Li et al. (2008) presented 

the curves of crack relative length and crack growth time of granite under 

compressive stresses according to subcritical crack growth parameters. Rinne (2008) 

modeled time-dependent failure in brittle rock based on subcritical crack growth 

approach. Ciccotti (2009) reviewed the researches of the mechanisms of subcritical 

crack growth in silicate glasses. Le et al. (2009) studied the consequences of 

subcritical crack growth law for the lifetime statistics of quasibrittle structures. 

Damjanac and Fairhurst (2010) have done numerical analysis on the effect of fracture 

toughness decrease due to stress corrosion of a crystalline rock.  

 

The mechanisms having been proposed which could cause subcritical crack growth 

include stress corrosion, dissolution, diffusion, ion-exchange and micro plasticity 

(Atkinson 1984). Specific environmental and material conditions decide which of the 

possible mechanism is dominant. Subcritical crack growth could be further described 

by the relationship between local stress intensity factor K and corresponding crack 

propagation speed v, as shown in Fig. 3-6.  
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Figure 3-6 Schematic stress intensity factor/crack velocity diagram for tensile crack growth (Atkinson 

1987) 

 

The main mechanism in region 1 of the curve is the stress corrosion, which is a 

process of weakening in bond structure caused by certain chemical reaction 

(Anderson and Grew 1977). The stress corrosion theory postulates that for crystalline 

silicates and for silicate glasses the strained Si-O bonds at crack tips can react more 

readily with the environmental agents than unstrained bonds because of a strain-

induced reduction in the overlap of atomic orbitals (Michalske and Freiman in 

Atkinson 1987). For silicate rocks, the strained Si-O bonds will produce a weakened 

state during the reaction with the environmental agent. Based on the expression for 

silicate glasses and quartz, with water as an environmental corrosive agent, the 

chemical reaction could be described as (Scholz 1972; Martin 1972; Atkinson 1979, 

Atkinson and Meredith 1987): 

 

   OHSiOHSiOSi  22                                                                   (3-23) 

 

In basic environment, the chemical reaction in silica glasses could be described as 

(Charles 1958): 

 

OHSiOSiOHSiOSi                                                            (3-24) 

 

The second part of the K-v curve is also caused by stress corrosion. The speed is 

controlled by the rate of transport of reactive species to crack tips. Crack propagation 

in region 3 is mainly controlled by thermally activated process and it is relatively 

insensitive to the chemical environment (Atkinson 1982, Freiman 1984 in Atkinson 

1987). It is shown in the K-v curve that there exists an upper bound of KIC value (KC 

value in general cases). When this critical stress intensity factor value KC is reached, 

the crack propagation speed reaches ultrasonic speed (Konietzky et al. 2009). 

Theoretically there also exists a lower threshold value KO below which no crack 
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propagation could be observed in practice. A stress corrosion limit has been observed 

in soda-lime silicate and borosilicate glasses, but it is not yet clear whether in fact all 

materials behave in this way (Freiman 1984). Experiments have certainly not yet 

confirmed the existence of a stress corrosion limit in ceramics or rocks (Atkinson 

1984). It is assumed that KO value is about 10 ~ 20 % of KC. However, whether this 

stress corrosion limit KO exists in rocks is not confirmed (Atkinson in Rinne 2008).  

 

3.7 Charles equation 

In Charles’ study on delayed failure problem of glass (Charles 1958), the relationship 

describing the crack velocity was derived by assuming the corrosion rate to conform 

to an arbitrary power function of stress: 

 

kkv n

m  )('                                                                                                         (3-25) 

 

where k' and n are constants , σm is the tensile stress at the crack tip and k is the 

corrosion rate of the material under zero stress. 

 

The above expression was further developed for stress-activated corrosion assuming 

the temperature dependence of the crack growth process is an Arrhenious one. The 

relationship is: 

 

RTAn

cr exxCv /2/)/(                                                                                               (3-26) 

 

where C is a constant, x and xcr are flaw depth and critical flaw depth respectively, A 

is the activation energy term and R is a gas constant (Boltzmann constant). 

 

The Charles equation is often referred to with the form where stress intensity factor is 

involved: 
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where v0 is a material constant, K is the stress intensity factor, n is the stress corrosion 

index, T is the absolute temperature and R is the gas constant. 

 

There have been many attempts to characterize the K-v curve by means of the stress 

corrosion process. Charles equation described above is one of the most acknowledged 

expressions to describe the stress corrosion data. With respect to the life time study in 

this research, a general relation between the natural logarithm of life time t and load σ 
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for brittle solids has been given in Fig. 3-7. The linear part of the curve can also be 

explained by Charles equation. 

 

 

Figure 3-7 General relation between life time and load for brittle solids (Konietzky et al. 2009) 

 

3.8 Lab and field results 

In this study, it is assumed the failure of the model is caused by macroscopic fractures 

formed by the coalescence of microcracks, rather than caused by any single crack’s 

propagation through the model. The assumption is that under load, the initial 

microcracks grow simultaneously based on the subcritical crack growth (their distinct 

propagation velocity is controlled by Charles equation). When the coalescence of 

microcracks has reached a critical level (e.g. coalesced area penetrating the model), 

failure is considered to happen in the model. This simulation idea is supported by the 

observation of laboratory tests (Fortin et al. 2011, Mayr et al. 2011, Yang et al. 2012, 

Yoon et al. 2012, Zietlow and Labuz 1998). Exemplary, Fig. 3-8 shows acoustic 

emission (AE) locations observed during laboratory tests of red sandstone under 

compressive load. It is seen in Fig. 3-8 that the acoustic emission locations 

(considered to be identical to growing micro-cracks) were more concentrated at an 

inclined plane, which coincides with the position of the shear plane observed in the 

laboratory test. Nevertheless, growth of micro-cracks is observed within the whole 

sample. The structure of the rock at the grain size level determines location, size and 

orientation of the micro-cracks. Also, the structure at grain size level is responsible 

for temporary crack arrest. For the rock specimen under tension, the macroscopic 

fracture is observed perpendicular to the direction of major tensile load (Fig. 3-9). The 

concentration of the acoustic emission locations also shows agreement with the 

macroscopic fracture in the test (Fig. 3-10). But even in this case, additional local 

micro-crack growth is observed in areas far away from the final macroscopic fracture. 

These observations support the proposed modeling idea described within this thesis. 
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Figure 3-8 Spatial acoustic emission (AE) locations and experimental failure of red sandstone at a 

confining pressure of 35 MPa (Yang et al. 2012) 

 

 
Figure 3-9 Three-point bending test on semi-circular rock specimen (a) experimental set-up; (b) 

fracture pattern of Johnstone in the three point bending test (Ayatollahi and Aliha 2007) 

 

 
Figure 3-10 Acoustic emission (AE) locations and final macroscopic fracture pattern in the three-point 

bending test (a) Berea sandstone; (b) Sioux quartzite; (c) Charcoal granite; (d) Rockville granite 

(Zietlow and Labuz 1998) 



Chapter 3 Theoretical concepts 

 

21 

 

3.9 Life time prediction idea 

In this study, the life time prediction is done with numerical models based on 

subcritical growth using Charles equation. The numerical model is divided by zones 

and it is assumed that each zone contains a microcrack. One can get a rough idea 

about the approximate life time of a zone tzone by integration over the crack length 

(Konietzky et al. 2009): 

 


c

o

a

a

zone
v

da
t                                                                                                               (3-28) 

 

where the initial crack length is given by ao and the critical crack length is given by ac, 

which is deduced by either the fracture toughness or the zone edge length. The crack 

propagation velocity v is obtained from Charles equation as expressed in Equation 3-

27. Life time prediction schemes are discussed in detail in the next Chapter. 
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4 Numerical cellular automate for lifetime prediction 

The modeling and calculations in this study are done with the ITASCA code FLAC 

(Itasca Consulting Group 2005). In this chapter, an introduction to the basic model is 

first given. Following that the realization of life time counting scheme and the 

technique of a changeable time step scheme are explained. Four new numerical model 

schemes are proposed including their properties. The calculation schemes are 

introduced and the corresponding calculation results are analyzed. Influences of 

particular parameters and properties on the calculation result are also investigated. 

 

4.1 Basic model 

4.1.1 Model idea 

(1) Realization of real time counting in FLAC 

FLAC (Itasca Consulting Group 2005) performs a static analysis by default. The 

calculation procedure takes into account the displacement and stress state after each 

step while not after certain time. Because life time prediction is the focus of this study, 

a certain period of time (time step) is attached additionally to each calculation step. 

The time step values are recorded during calculation and added up. The lifetime is 

reached when the model reaches its macroscopic failure stage. Through crack 

propagation velocity obtained from Charles equation, the time step controls the crack 

propagation length in each zone for each step, and the crack length in turn defines the 

mechanical status of the zone, which influences the stress field of nearby zones if 

failure happens. So the realization of lifetime counting is dependent on the simulation 

of propagation of individual crack inside each zone of the model.  

 

(2) Microscopic crack propagation and calculation cycle 

The numerical calculation scheme is designed in such a way that each zone inside the 

model contains an initial crack with its length and orientation following certain 

probability distributions. For each calculation step, the following procedures are 

executed within each zone: the stresses of the zone are first calculated using Mohr-

Coulomb constitutive law; if this zone has already been breached (failed) in the last 

step, the calculation cycle jumps to the end and goes on to the next zone. Otherwise, 

the stresses on the crack are calculated and the stress intensity factor is obtained 

according to the current crack propagation condition; whether the zone is failed or not 

is then determined by examining if the current crack length has reached the zone’s 

dimension or the crack’s fracture toughness has been reached. If the zone has failed 

by either or both of these criterions, post failure regime is then applied to this zone 

and the calculation cycle for this zone jumps to the end and goes on to the next zone. 

Otherwise the new crack propagation velocity is obtained according to the Charles 

equation; by multiplying the current velocity and the time span (time step) assigned to 
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the step, and adding the previous crack length, the new crack length is obtained. Thus, 

both the stress condition and crack propagation condition is “updated” for this zone 

and ready for the next calculation step. This calculation cycle iterates itself through all 

the zones within each calculation step. The flow chart for the calculation cycle is 

shown in Fig. 4-1.  

 

Already failed 

(breached)

Stresses for zone

Begin cycle

K calculation

yes

no

Crack length > zone dimension
Zone failed

(breached)

yes

K > Kc

no

Zone failed

(breached)

yes

no

Propagation velocity

(Charles equation)

Propagation length

End cycle

New crack length

Stresses on crack

 
Figure 4-1 Flow chart for one calculation cycle in a zone 
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(3) Macroscopic fracture simulation 

The macroscopic fractures of the numerical models are represented by the 

coalescence of failed zones. The macroscopic fracturing process is explained using a 

zoomed in area of the numerical model (Fig. 4-2) as an example. In this example, the 

orientation of the initial microcrack inside each zone follow uniform distribution, and 

the microcrack propagates along its original orientation. The difference of the crack 

conditions inside one zone before and after its failure is clearly seen from the crack 

illustration. The calculation cycle of each zone is as introduced in the former section. 

 

It is shown in Fig.4-2 (left), at an earlier calculation step (time), no zone in this area 

has failed. At a later calculation step, as shown in the middle of Fig. 4-2, some zones 

have failed. After one zone fails by either the crack length reaching the zone’s 

dimension or the crack’s fracture toughness being reached, the post failure regime is 

applied to this zone by assigning residual strength values to this zone, which is 

illustrated by gray zones in Fig. 4-2. Stress redistributions in the whole model are 

caused by the failed zones. The zones in the vicinity of the failed zones are more 

influenced by the stress redistributions. It is seen in Fig. 4-2 (right), at an even later 

calculation step, more zones have failed in the vicinity of the already failed zones. 

These failed zones coalesce and form the macroscopic fracture for the whole model. 

The calculations continue until macroscopic fractures (formed by failed zones) 

penetrate the model. Then the whole model is considered to be failed. The 

accumulation of time spans from all the calculation steps is then recorded as the 

lifetime of the model.  

 

 
Figure 4-2 The macroscopic fracturing process (zones in gray: failed zones) 

 

4.1.2 Application 

Life time prediction studies on rocks with two dimensional numerical models have 

been performed by Konietzky et al. (2009) with the model idea described above. The 

2D numerical simulations were done using FLAC with the extensive use of its 

internal program language FISH (Itasca Consulting Group 2005). These simulations 

do not consider crack orientation. It is always assumed, that the crack orientation is 

the most critical one (Konietzky et al. 2009). Data from Westerly Granite were used 

for simulation of uniaxial compression and tensile tests. Table 4-1 shows the material 
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parameters used in the numerical model. In this study, the fracture toughness under 

Mode I and II has been given the same value for the convenience of comparison 

between the numerical results under these loading modes. 

 

Table 4-1 Material parameters (Konietzky et al. 2009) 

Young’s modulus 73.8 GPa 

Poisson’s ratio 0.22 

Bulk modulus 43.9 GPa 

Shear modulus 30.2 GPa 

Density 2700 kg / m
3
 

Initial cohesion 45 MPa 

Initial friction angle 30


 

Initial tensile strength 15 MPa 

Residual cohesion 0 

Residual friction angle 30


 

Residual tensile strength 0 

Stress corrosion index n 33.7234 

Fracture toughness KIC 1.79 MPa-m
1/2

 

Fracture toughness KIIC 1.79 MPa-m
1/2

 

Fracture growth constant C 8.8552 × 10
-214

 m s
-1

 (Pa-m
1/2

)
-n

 

 

A square shaped model with a size of 2 × 2 m
2
 was used for the simulation. The 

model was divided by a 50 by 50 element mesh, with each element containing an 

initial crack. A constant tensile load of 12 MPa was applied in model A, B and C in 

the uniaxial tensile tests, and constant compressive load of the same magnitude in A', 

B' and C' in the uniaxial compressive tests. The initial crack lengths of the models 

follow normal distribution with a mean value of 0.013 m and a standard deviation of 

0.0001 m (Fig. 4-3). The only difference between these models is the different 

realization for the initial crack lengths. Studies on the different model sets are 

described in the following subsections. 

 

  

(a) model A (b) model B 
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(c) model C (d) model A' 

  
(e) model B' (f) model C' 

Figure 4-3 Initial crack length distributions of the models 

 

 

A 

 
   

 0.2032 second 0.2058 second 0.2111 second 

 

 

B 

 
   

 0.2080 second 0.2135 second 0.2172 second 

 

 

C 

 
   

 0.2344 second 0.2358 second 0.2384 second 

Figure 4-4 Uniaxial tensile test of model A, B and C under tensile load of 12 MPa (Initial crack lengths: 

normal distribution, mean = 0.013 m, standard deviation = 0.0001 m) (Konietzky et al. 2009) 
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 

A' 

 
   

 181 years 1 month 182 years 6 months 183 years 0 month 

 

 

B' 

 
   

 181 years 1 month 182 years 10 months 183 years 1 month 

 

 

C' 

 
   

 181 years 1 month 183 years 3 months 183 years 8 months 

Figure 4-5 Uniaxial compressive test of model A, B and C under compressive load of 12 MPa (Initial 

crack lengths: normal distribution, mean = 0.013 m, standard deviation = 0.0001 m) (Konietzky et al. 

2009) 

The predicted life times for the tensile tests are: model A: 0.2111 seconds, model B: 

0.2172 seconds and model C: 0.2384 seconds. The results for the compressive tests 

are respectively: model A': 183 years, model B': 183 years and 1 month, and model C': 

183 years and 8 months (Konietzky et al. 2009). The macroscopic fracture patterns of 

models in tensile tests and compressive tests are shown in Fig. 4-4 and Fig. 4-5, 

respectively. 

 

4.2 Time-dependent studies  

4.2.1 The lifetime prediction scheme and results (single zone) 

Consider a rock structure simulated by a single zone model with constant loadings. 

The idea of predicting life time of this single zone model can be explained by 

integration over the crack propagation length (Konietzky et al. 2009): 

 


c

o

a

a

zone
v

da
t                                                                                                                 (4-1) 
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where ao and ac denote the initial crack length and critical crack length of the zone 

respectively. Letting C = v0 exp (-μ / (RT)) as a rock-specific parameter, Charles 

equation (Eq. 3-27) could be simplified into Eq. 4-2. If only crack opening Mode I 

and Mode II are considered, Eq. 4-1 can be rewritten in terms of stress intensities (Eq. 

4-3): 

 

nCKv                                                                                                                       (4-2) 
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da
t                                                                                  (4-3) 

 

In the basic model, the stress intensity factors are expressed as: 

 

aK MI                                                                                                              (4-4) 

 

aK MII                                                                                                              (4-5) 

 

σM and τM are the maximal tensile stress and maximal shear stress within the zone. If 

the maximal tensile stress σM is minus, a compressive stress is applied on the crack. In 

this case a zero is given to σM instead and only KII contributes to the crack 

propagation velocity.  

 

Substituting Eq. 4-4 and Eq. 4-5 into Eq. 4-3, the lifetime of the zone is calculated: 
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                                                                                (4-6) 

 

The critical crack length ac is determined by the minimum of these three values: the 

critical length calculated by KIC and KIIC and the dimension of the zone dzone. It can be 

described as: 
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In this study, the dzone is expressed as: 
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

S
d zone 2                                                                                                               (4-8) 

 

where S is the area of the zone. When ac is determined and substituted into Eq. 4-6, 

the predicted life time for this single zone model (tzone) is obtained. 

 

The life time prediction idea has been applied and verified in the code. A square 

shaped single zone model with the size of 0.04 × 0.04 m
2
 (the same size as a single 

zone in the multi-zone basic model in this study) was used in the tests. The material 

parameters follow Table 4-1. To verify the calculation results, a comparison has been 

made between the numerical calculation and the analytical solution (Table 4-2). 

 

Table 4-2 Calculation results for uniaxial tests (initial crack length: 0.013 m) 

Uniaxial tensile stress: 6 MPa  

 Analytical solution Numerical calculation Error 

KI 1.5976e6 1.5976e6 < 0.006 % 

KII 7.9880e5 7.9881e5 0.001 % 

Critical crack length (m) 0.0451 0.0451 0.002 % 

Life time 240 y, 56 d, 3 h, 59 min. 240 y, 130 d, 2 h, 3 min. 0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

Uniaxial tensile stress: 12 MPa 

 Analytical solution Numerical calculation Error 

KI  1.7900e6 1.7900e6 < 0.005 % 

KII  8.9500e5 8.9502e5 0.002 % 

Critical crack length (m) 1.4165e-2 1.4166e-2 0.007 % 

Life time 0.3972 s 0.3976 s 0.1 % 

Failure mode KI ≥ KIC  KI ≥ KIC 0 

 

Uniaxial compressive stress: 12 MPa 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KII 1.5976e6 1.5976e6 < 0.006 % 

Critical crack length (m) 0.0451 0.0451 0.002 % 

Life time 240 y, 56 d, 3 h, 59 min. 240 y, 130 d, 2 h, 3 min. 0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

 

It can be seen from Table 4-2 that the numerical calculation has shown great 

accordance with the analytical solution. The numerical calculation has predicted a 

slightly longer life time than the analytical solution for both uniaxial tensile and 

compressive tests, but the error is negligible as compared to the magnitude of the life 

time. For the compressive test, a compressive load of 12 MPa renders 6 MPa of the 

maximum shear stress in a zone, which has the same magnitude as the maximum 

tensile stress of the zone in the tensile test. No tensile stress is caused in this 
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compressive case. For the tensile test, both tensile and shear stress are caused, but the 

crack propagation velocity caused by the maximum shear stress is negligible to that 

caused by the maximum tensile stress. So for this stress configuration, the predicted 

life time in the tensile test is the same as the compressive test. The life time prediction 

idea for the single zone model is applied in multi-zone models for the life time study 

of more complicated cases, which is included in the following subsections. 

 

4.2.2 Time step study on multi-zone models 

The life time prediction scheme is applied to the multi-zone models. The program is 

designed in such a way that the scheme is carried out for every zone of the model. The 

critical crack length ac and predicted life time tzone for each zone is obtained. The 

lifetime prediction scheme requires that the external stresses should be constant. So it 

is only possible to predict the life time of the zone which would be the first to fail 

within the model. After that, the stress conditions for other zones will change because 

of the elasto-plastic stress redistributions. 

 

In view of this situation, the minimum tzone value is identified as the life time of the 

“most critical zone”, which would clearly be the first to reach failure within the model. 

The life time of this “most critical zone” (also referred to “the first zone failure time” 

or “first failure time” in this study) could serve as a reference when choosing the time 

step value. When the life time of “the most critical zone” is determined, the upper 

boundary of all possible time steps is defined (the time step should at least be smaller 

than the life time of “the most critical zone”; also sufficient steps should be carried 

out before that zone fails). Tests have been made to determine the appropriate time 

step. 

 

 

 

 

 
Figure 4-6 Geometry of model A 

 

The uniaxial tensile test is first studied. Model A of Subsection 4.1.2 is used with the 

model parameters taken from Table 4-1. The geometry of the numerical model is 

shown in Fig. 4-6. The initial crack lengths of model A follow normal distribution, as 

is shown in Fig. 4-3 (a). As the life time and failing span of model A are too small for 
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analysis with tensile stress of 12 MPa, the tensile loading has been changed to 6 MPa, 

but the other parameters remain unchanged. Using the scheme described above, the 

“most critical zone” is determined as Zone (12, 8), which is the intersecting zone of 

12
th

 vertical line of zones from the left and the 8
th

 horizontal line of zones from the 

bottom. The analytical life time prediction of this zone is 4,801,063,122 seconds 

(about 152 years 87 days 20 hours 38 minutes). Therefore, for the numerical 

calculation, the time step should at least be smaller than this value. With this 

analytical solution, different time steps have been tried for the uniaxial tensile tests. 

All the numerical results also showed that the first failure happened in Zone (12, 8). 

The model’s macroscopic failure pattern predicted with different time steps are shown 

in Fig. 4-7. It is seen that macroscopic fractures have formed with direction 

perpendicular to the applied tensile load (Fig. 4-7). With a time step equal to or bigger 

than 15 days, multiple macroscopic tensile fractures have formed in the model, while 

single tensile fracture formed if the time step is smaller than this value. The predicted 

first zone failure time has certain differences with the analytical result (Eq. 4-3), and 

the extent of the difference depends on the value of time step. It can be seen from 

Table 4-3 and Fig. 4-8 that the first zone failure time descreases and approaches the 

analytical value when the time step becomes smaller. Coinciding time steps ranging 

from 1 year to 6 hours, the error of the numerical result of first zone failure time drops 

from 3.78 % to 0.004 % of the analytical result of 4,801,063,122 seconds (about 

152 years 87 days 20 hours 38 minutes).  

 

 

A 

 
   

 4.9827e9 (s) 6.0234e9 (s) 7.2217e9 (s) 

Timestep: 1 year 

Lifetime: 229 years 

(a) 

 

A 

 
   

 4.9038e9 (s) 5.9130e9 (s) 6.9064e9 (s) 

Timestep: 182 days 12 hours 

Lifetime: 219 years 

(b) 
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 

A 

 
   

 4.8522e9 (s) 5.3577e9 (s) 6.2364e9 (s) 

Timestep: 90 days 

Lifetime: 197 years 275 days 

(c) 

 

A 

 
   

 4.8185e9 (s) 5.0492e9 (s) 5.9979e9 (s) 

Timestep: 30 days 

Lifetime: 190 years 70 days 

(d) 

 

A 

 
   

 4.8108e9 (s) 4.9391e9 (s) 5.6661e9 (s) 

Timestep: 15 days 

Lifetime: 179 years 245 days 

(e) 

 

A 

 
   

 4.8057e9 (s) 4.8614e9 (s) 4.9757e9 (s) 

Timestep: 7 days 

Lifetime: 157 years 284 days 

(f) 



Chapter 4 Numerical cellular automate for lifetime prediction 

 

34 

 

 

A 

 
   

 4.8019e9 (s) 4.8106e9 (s) 4.8310e9 (s) 

Timestep: 1 day 

Lifetime: 153 years 69 days 

(g) 

 

A 

 
   

 4.8015e9 (s) 4.8061e9 (s) 4.8170e9 (s) 

Timestep: 12 hours 

Lifetime: 152 years 272 days 

(h) 

 

A 

 
   

 4.8013e9 (s) 4.8037e9 (s) 4.8094e9 (s) 

Timestep: 6 hours 

Lifetime: 152 years 184 days 

(i) 

Figure 4-7 Uniaxial tensile tests (6 MPa) with different time steps (Zones in green: tensile failure; 

zones in gray: failed in the past) 

 

Table 4-3 Calculated life times with different constant time steps (corresponding to Fig. 4-7) (analytical 

1st failure time: 4,801,063,122 seconds) 

 
Time 

step 

1st failure 

time (s) 

1st failure time 

error 

Time span  

to failure (s) 

Life time 

(s) 

1st failure 

step 

Total 

steps 

(a) 1 year 4.9827e9 3.78 % 2.2706e9 7.2217e9 158 229 

(b) 182 days 4.9038e9 2.14 % 2.0025e9 6.9064e9 311 438 

(c) 90 days 4.8522e9 1.07 % 1.3841e9 6.2364e9 624 802 

(d) 30 days 4.8185e9 0.36 % 1.1794e9 5.9979e9 1,859 2,314 

(e) 15 days 4.8108e9 0.20 % 8.5536e8 5.6661e9 3,712 4,372 

(f) 7 days 4.8057e9 0.10 % 1.6995e8 4.9757e9 7,946 8,227 

(g) 1 days 4.8019e9 0.02 % 2.9117e7 4.8310e9 55,577 55,914 

(h) 12 hours 4.8015e9 0.008 % 1.5552e7 4.8170e9 111,145 111,505 

(i) 6 hours 4.8013e9 0.004 % 8.1432e6 4.8094e9 222,281 222,658 
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Uniaxial compressive tests on model A with different time steps have also been done. 

A compressive load of 12 MPa is applied on the numerical model. With the model 

unchanged, zone (12, 8) is again determined as “the most critical zone”, and the 

analytical solution of the lifetime of this zone is also 4.8011e9 seconds (152 years 

87 days 20 hours 38 minutes and 42 seconds). Different time steps have been applied 

in the test. All the numerical results also showed the first failure happened in Zone (12, 

8). It is seen from the model’s macroscopic failure pattern in Fig. 4-9 that shear bands 

have formed with the inclination 45º to the direction of applied compressive load. The 

shear bands were more ubiquitously formed in the model with comparatively bigger 

time steps, while with a smaller time step, less shear bands were formed (Fig. 4-9). It 

is noticed from the simulation results (Table 4-4) that the predicted lifetime of the 

model descends when the time step is set smaller; it is also recognized that the 

predicted failure time of “the most critical zone” is the same as that in the tensile tests 

with tensile loading of 6 MPa. But the time span between the first zone failure and the 

macroscopic failure is much longer in the compressive tests. The predicted first zone 

failure time results using different constant time steps are the same as shown in Fig. 4-

8. As can be seen in Table 4-4, the predicted first zone failure time becomes more 

precise if the time step is set smaller. But at the same time, much more computing 

steps (computing time) are needed if the time step is set too small, thus making the 

simulation neither efficient nor practical. So to choose a time step scheme which 

guarantees a precise simulation and an acceptable computing time has been a focus in 

this study. Therefore, a new scheme for the changeable time step has been developed. 

 

 
Figure 4-8 First zone failure time results with different constant time steps 
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 

A 

 
   

 4.9827e9 (s) 6.4649e9 (s) 9.7762e9 (s) 

Timestep: 1 year 

Lifetime: 310 years 

(a) 

 

A 

 
   

 4.9038e9 (s) 6.6226e9 (s) 8.4201e9 (s) 

Timestep: 182 days 12 hours 

Lifetime: 267 years 

(b) 

 

A 

 
   

 4.8522e9 (s) 6.3763e9 (s) 8.1104e9 (s) 

Timestep: 90 days 

Lifetime: 257 years 65 days 

(c) 

 

A 

 
   

 4.8185e9 (s) 5.9357e9 (s) 7.7371e9 (s) 

Timestep: 30 days 

Lifetime: 245 days 125 days 

(d) 
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 

A 

 
   

 4.8108e9 (s) 5.9823e9 (s) 6.7262e9 (s) 

Timestep:  15 days 

Lifetime: 213 years 105 days 

(e) 

 

A 

 
   

 4.8057e9 (s) 5.7662e9 (s) 6.0190e9 (s) 

Timestep: 7 days 

Lifetime: 190 years 314 days 

(f) 

 

A 

 
   

 4.8019e9 (s) 5.4398e9 (s) 5.4864e9 (s) 

Timestep: 1 days 

Lifetime: 173 years 355 days 

(g) 

 

A 

 
   

 4.8015e9 (s) 5.3982e9 (s) 5.4224e9 (s) 

Timestep: 12 hours 

Lifetime: 171 years 344 days 

(h) 
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 
A 

 
   

 4.8013e9 (s) 5.3748e9 (s) 5.3841e9 (s) 

Timestep: 6 hours 

Lifetime: 170 years 266 days 

(i) 

Figure 4-9 Uniaxial compressive tests (12 MPa) with different time steps (zones in green: tensile 

failure; zones in red: shear failure; zones in gray: failed in the past) 

 

Table 4-4 Calculated life times with different constant time steps (corresponding to Fig. 4-9) (analytical 

1st failure time: 4.8011e9 seconds) 

 Time step 

(s) 

1st failure time 

(s) 

1st failure time 

error 

Time span 

to failure(s) 

Life time 

(s) 

1st failure 

step 

Total 

steps 

(a) 1 year 4.9827e9 3.78 % 4.7935e9 9.7762e9 158 310 

(b) 182 days 4.9038e9 2.14 % 3.5163e9 8.4201e9 311 534 

(c) 90 days 4.8522e9 1.07 % 3.2581e9 8.1104e9 624 1,043 

(d) 30 days 4.8185e9 0.36 % 2.9186e9 7.7371e9 1,859 2,985 

(e) 15 days 4.8108e9 0.20 % 1.9155e9 6.7262e9 3,712 5,190 

(f) 7 days 4.8057e9 0.10 % 1.2132e9 6.0190e9 7,946 9,952 

(g) 1 days 4.8019e9 0.02 % 6.8455e8 5.4864e9 55,577 63,500 

(h) 12 hours 4.8015e9 0.008 % 6.2096e8 5.4224e9 111,145 125,519 

(i) 6 hours 4.8013e9 0.004 % 5.8283e8 5.3841e9 222,281 249,264 

 

4.2.3 Calculation scheme with changeable time steps 

Calculation with small time step value but more steps gives better results than one 

with larger time step value but less steps. A procedure with a larger time step is more 

prone to great imbalance caused by insufficient updates. This assumption is supported 

by the calculation results obtained in subsection 4.2.2. However, more computing 

time is needed for a smaller time step value. Efforts have been made to avoid 

consuming more computing time while keeping the calculation result to an acceptable 

precision as well. 

 

It is assumed that for the steps before any zone of the model fails, the influence of the 

time step value is not obvious because of the comparatively static condition of motion 

and stress/strain state. This is also supported by the predicted first zone failure time 

obtained by different constant time steps (subsection 4.2.2), with errors between 

3.78 % and 0.004 %, while the predicted life time for the whole model varies greatly. 

This feature makes the application of a larger time step at the beginning of the 

calculation possible. Based on this observation, the scheme with a changeable time 

step has been proposed and adopted in the program. In this scheme, the maximum 
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local equilibrium ratio (the maximum equilibrium ratio for each grid point) is used as 

a criterion of whether the time step value is changed in a descendent or ascending 

manner in the coming steps. In FLAC (Itasca Consulting Group 2005), a mechanical 

equilibrium state is considered to be achieved by default when the maximum 

unbalanced force ratio drops below 0.001. Therefore, 0.001 was used as the limit 

value in the calculation. For each of the calculation steps, the maximum unbalanced 

force ratio is detected. If it exceeds this limit value, the time step is decreased in the 

next step and increased if otherwise. The changing of the time step will be continued 

stepwise till the defined minimum or maximum is reached. The minimum and 

maximum time step is set earlier in the program for each specific model under study.  

 

For comparison, the same model as in subsection 4.2.2 is used here, with a tensile 

load of 6 MPa in the uniaxial tensile tests and compressive load of 12 MPa in the 

uniaxial compressive tests. The maximum time step value is set to 7 days. As listed in 

Table 4-3 and 4-4, with 7 days as a constant time step, the program renders first zone 

failure in 4.8057e9 seconds (about 152 years 142 days), whose error is about 54 days 

from the analytical first zone failure time of 4.8011e
9
 seconds (about 152 years 

87 days 20 hours), or with other words only 0.1 %. A comparison between the 

predicted life times obtained by changeable and constant time step for the uniaxial 

tensile test is shown in Table 4-5. In the scheme with the changeable time step, the 

maximum value of 7 days is kept unchanged, and the minimum value is set 1 day, 

12 hours and 6 hours, respectively. Comparisons have been made between these 

results and those obtained by the constant time step of 1 day, 12 hours and 6 hours. As 

can be seen from Table 4-5, a considerable number of calculation steps could be 

saved using changeable time step, while only negligible degree of precision is lost. 

For example, using time step ranging from 7 days to 6 hours, the predicted life time is 

4,813,901,280 seconds, which has 0.09 % of difference with the life time of 

4,809,412,800 seconds obtained using constant time step of 6 hours, but has only used 

8,322 steps, reducing the calculation steps by 96.26 %. 

 

Table 4-5 Comparison between life time results 

New scheme (changeable time step) Old scheme (constant time step) 

Time step range Life time (s) Total step Time step (s) Life time (s) Total step 

7 days ~ 1 day 4.8348e9 8,282 1 day 4.8310e9 55,914 

7 days ~ 12 hours 4.8218e9 8,318 12 hours 4.8170e9 111,505 

7 days ~ 6 hours 4.8139e9 8,322 6 hours 4.8094e9 222,658 

 

To further study the influence of the changeable time step on the predicted life time 

and fracture pattern with the maximum time step value of 7 days, more different 

minimum time steps have been tested. The macroscopic failure pattern of the model 

with different minimum time step limit has not changed and results in a macroscopic 
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tensile fracture perpendicular to the direction of the applied tensile load. The fracture 

pattern for different points in time for a minimum time step limit of 1 day is shown in 

Fig. 4-10 as an example. The life time results of tests with different minimum time 

steps are listed in Table 4-6. The life times corresponding to these different minimum 

time steps are also shown in Fig. 4-11. It is seen from Table 4-6 that the lifetime 

decreases when the minimum time step descends from 1 day to 20 seconds. For 

values smaller than 20 seconds the predicted lifetime is nearly constant with only very 

small fluctuations (numerical noise). 

 

 

A 

 
   

 4.8057e9 (s) 4.8170e9 (s) 4.8348e9 (s) 

 Maximum time step: 7 days; Minimum time step: 1 day; Lifetime: 153 years 113 days 

Figure 4-10 Uniaxial tensile test (6 MPa applied on model A) with changeable time steps (Zones in 

green: tensile failure) 

 
Table 4-6 Predicted life time results with changeable time steps 

Time step (s) 
First failure 

time (s) 

Life time 

(s) 

Time span to 

failure(s) 

First failure 

step 

Total 

steps Max. Min. 

7 days 1 day 4.8057e9 4.8348e9 2.9030e7 7,946 8,282 

7 days 12 hours 4.8057e9 4.8218e9 1.6088e7 7,946 8,318 

7 days 6 hours 4.8057e9 4.8139e9 8.1605e6 7,946 8,322 

7 days 3 hous 4.8057e9 4.8101e9 4.3157e6 7,946 8,341 

7 days 1 hour 4.8057e9 4.8074e9 1.6253e6 7,946 8,381 

7 days 30 min. 4.8057e9 4.8066e9 8.9093e5 7,946 8,406 

7 days 10 min. 4.8057e9 4.8061e9 3.7793e5 7,946 8,467 

7 days 5 min. 4.8057e9 4.8060e9 2.4053e5 7,946 8,527 

7 days 100 s 4.8057e9 4.8059e9 1.4713e5 7,946 8,749 

7 days 60 s 4.8057e9 4.8059e9 1.2749e5 7,946 8,955 

7 days 50 s 4.8057e9 4.8059e9 1.2674e5 7,946 9,141 

7 days 40 s 4.8057e9 4.8059e9 1.2103e5 7,946 9,296 

7 days 30 s 4.8057e9 4.8059e9 1.1528e5 7,946 9,553 

7 days 20 s 4.8057e9 4.8058e9 1.0911e5 7,946 10,046 

7 days 10 s 4.8057e9 4.8059e9 1.1300e5 7,946 11,307 

7 days 5 s 4.8057e9 4.8064e9 6.9514e5 7,946 11,320 

7 days 1 s 4.8057e9 4.8066e9 8.5373e5 7,946 11,376 

7 days 0.5 s 4.8057e9 4.8064e9 6.8003e5 7,946 11,400 

7 days 0.1 s 4.8057e9 4.8059e9 1.8977e5 7,946 11,458 

7 days 0.05 s 4.8057e9 4.8059e9 1.2912e5 7,946 11,838 

7 days 0.01 s 4.8057e9 4.8060e9 2.1390e5 7,946 11,690 

7 days 0.005 s 4.8057e9 4.8064e9 6.9055e5 7,946 11,758 

7 days 0.001 s 4.8057e9 4.8066e9 8.5276e5 7,946 12,092 
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Figure 4-11 Life time predictions with different Min. time steps 

 

The scheme with changeable time step has also been applied in the uniaxial 

compressive tests. The maximum time step value is also set to 7 days. Comparisons 

between predicted life times obtained from the constant and changeable time step are 

shown in Table 4-7. It can be recognized, that similar to the tensile tests, large 

numbers of calculation steps are saved using changeable time step, especially when 

the time step value is comparatively small. For example, it takes 29,698 steps for the 

scheme with time step ranging from 7 days to 6 hours to obtain the life time of the 

model, while more than 249,264 steps are necessary for the scheme with the constant 

time step of 6 hours to obtain the result (Table 4-7). The predicted life time obtained 

by these two different time step schemes differs only by 0.06 %. It is concluded that 

the changeable time step scheme can produce acceptable simulation results with much 

less computing time. 

 

Table 4-7 Comparison between predicted life times 

New scheme (changeable time step) Old scheme (constant time step) 

Time step range Life time (s) Total step Time step (s) Life time (s) Total step 

7 days ~ 1 day 5.4885e9
 

15,842 1 day 5.4864e9 63,500 

7 days ~ 12 hours 5.4227e9 22,213 12 hours 5.4224e9 125,519 

7 days ~ 6 hours 5.3876e9 29,698 6 hours 5.3841e9 249,264 

 

With a time step of 7 days as the upper time step limit, more different minimum time 

steps have been tested in the changeable time step scheme. The observed macroscopic 

fracture pattern is similar for different ranges of time steps (Fig. 4-12). Multiple shear 

bands were formed with a minimum time step of 3 hours and higher. Single shear 
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band was form with a minimum time step less than 3 hours. The shear bands have an 

inclination of 45º from the direction of the applied compressive load. Especially, 

additional tensile fractures have been formed following the loading direction if the 

minimum time step is set equal or less than 0.1 second. The lifetime results 

corresponding to the models shown in Fig. 4-12 are listed in Table 4-8. The lifetimes 

corresponding to different minimum time steps are also shown in Fig. 4-13. It can be 

recognized that the lifetime is becoming smaller with decreasing minimum time step 

values as long as the time step is bigger than 60 seconds. The lifetime results are more 

or less constant for time steps smaller than 60 seconds (Fig. 4-13, Table 4-8). 

 

 
A 

 
   

 4.8057e9 (s) 5.4264e9 (s) 5.4885e9 (s) 

Timestep: 7 days ~ 1 day 

Lifetime: 174 years 14 days 

(a) 

 

A 

 
   

 4.8057e9 (s) 5.3903e9 (s) 5.4227e9 (s) 

Timestep: 7 days ~ 12 hours 

Lifetime: 171 years 347 days 

(b) 

 

A 

 
   

 4.8057e9 (s) 5.3731e9 (s) 5.3876e9 (s) 

Timestep: 7 days ~ 6 hours 

Lifetime: 170 years 306 days 

(c) 
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 
A 

 
   

 4.8057e9 (s) 5.3547e9 (s) 5.3617e9 (s) 

Timestep: 7 days ~ 3 hours 

Lifetime: 5361716160 (s) 

(d) 

 

A 

 
   

 4.8057e9 (s) 5.3400e9 (s) 5.3417e9 (s) 

Timestep: 7 days ~ 1 hour 

Lifetime: 169 years 140 days 

(e) 

 

A 

 
   

 4.8057e9 (s) 5.3379e9 (s) 5.3389e9 (s) 

Timestep: 7 days ~30 min. 

Lifetime: 169 years 107 days 

(f) 

 

A 

 
   

 4.8057e9 (s) 5.3328e9 (s) 5.3332e9 (s) 

Timestep: 7 days ~ 10 min. 

Lifetime: 169 years 41 days 

(g) 
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 

A 

 
   

 4.8057e9 (s) 5.3328e9 (s) 5.3330e9 (s) 

Timestep: 7 days ~ 5 min. 

Lifetime: 169 years 39 days 

(h) 

 

A 

 
   

 4.8057e9 (s) 5.3318e9 (s) 5.3319e9 (s) 

Timestep: 7 days ~ 100 s 

Lifetime: 169 years 26 days 

(i) 

 

A 

 
   

 4.8057e9 (s) 5.3323e9 (s) 5.3323e9 (s) 

Timestep: 7 days ~ 60 s 

Lifetime: 169 years 31 days 

(j) 

 

A 

 
   

 4.8057e9 (s) 5.3325e9 (s) 5.3325e9 (s) 

Timestep: 7 days ~ 50 s 

Lifetime: 169 years 34 days 

(k) 
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 
A 

 
   

 4.8057e9 (s) 5.3341e9 (s) 5.3342e9 (s) 

Timestep: 7 days ~ 40 s 

Lifetime: 169 years 53 days 

(l) 

 

A 

 
   

 4.8057e9 (s) 5.3331e9 (s) 5.3331e9 (s) 

Timestep: 7 days ~ 30 s 

Lifetime: 169 years 41 days 

(m) 

 

A 

 
   

 4.8057e9 (s) 5.3320e9 (s) 5.3320e9 (s) 

Timestep: 7 days ~ 20 s 

Lifetime: 169 years 28 days 

(n) 

 

A 

 
   

 4.8057e9 (s) 5.3335e9 (s) 5.3335e9 (s) 

Timestep: 7 days ~ 10 s 

Lifetime: 169 years 45 days 

(o) 
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 
A 

 
   

 4.8057e9 (s) 5.3356e9 (s) 5.3356e9 (s) 

Timestep: 7 days ~ 5 s 

Lifetime: 169 years 69 days 

(p) 

 

A 

 
   

 4.8057e9 (s) 5.3373e9 (s) 5.3373e9 (s) 

Timestep: 7 days ~ 1 s 

Lifetime: 169 years 89 days 

(q) 

 

A 

 
   

 4.8057e9 (s) 5.3365e9 (s) 5.3365e9 (s) 

Timestep: 7 days ~ 0.5 s 

Lifetime: 169 years 80 days 

(r) 

 

A 

 
   

 4.8057e9 (s) 5.3350e9 (s) 5.3350e9 (s) 

Timestep: 7 days ~ 0.1 s 

Lifetime: 169 years 62 days 

(s) 
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 

A 

 
   

 4.8057e9 (s) 5.3383e9 (s) 5.3383e9 (s) 

Timestep: 7 days ~ 0.05 s 

Lifetime: 169 years 101 days 

(t) 

 

A 

 
   

 4.8057e9 (s) 5.3374e9 (s) 5.3374e9 (s) 

Timestep: 7 days ~ 0.01 s 

Lifetime: 169 years 90 days 

(u) 

 

A 

 
   

 4.8057e9 (s) 5.3368e9 (s) 5.3368e9 (s) 

Timestep: 7 days ~ 0.005 s 

Lifetime: 169 years 83 days 

(v) 

 

A 

 
   

 4.8057e9 (s) 5.3368e9 (s) 5.3368e9 (s) 

Timestep: 7 days ~ 0.001 s 

Lifetime: 169 years 83 days 

(w) 

Figure 4-12 Uniaxial compressive tests (12 MPa) with different minimum time steps (zones in green: 

tensile failure; zones in red: shear failure; zones in gray: failed in the past) 
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Figure 4-13 Life time predictions with different min. time steps 

 

Table 4-8 Predicted life times with changeable time steps (corresponding to Fig. 4-12) 

 Time step (s) 
First failure 

time (s) Lifetime (s) 

Failing time 

span(s) 

First failure 

step 

Total 

steps  
Max. Min. 

(a) 7 days 1 days 4.8057e9 5.4885e9 6.8273e8 7,946 15,842 

(b) 7 days 12 hours 4.8057e9 5.4227e9 6.1691e8 7,946 22,213 

(c) 7 days 6 hours 4.8057e9 5.3876e9 5.8182e8 7,946 29,698 

(d) 7 days 3 hours 4.8057e9 5.3617e9 5.5598e8 7,946 35,577 

(e) 7 days 1 hour 4.8057e9 5.3417e9 5.3597e8 7,946 46,051 

(f) 7 days 30 min. 4.8057e9 5.3389e9 5.3311e8 7,946 51,151 

(g) 7 days 10 min. 4.8057e9 5.3332e9 5.2744e8 7,946 63,033 

(h) 7 days 5 min. 4.8057e9 5.3330e9 5.2722e8 7,946 65,246 

(i) 7 days 100 s 4.8057e9 5.3319e9 5.2616e8 7,946 74,300 

(j) 7 days 60 s 4.8057e9 5.3323e9 5.2660e8 7,946 79,199 

(k) 7 days 50 s 4.8057e9 5.3325e9 5.2680e8 7,946 78,320 

(l) 7 days 40 s 4.8057e9 5.3342e9 5.2842e8 7,946 82,410 

(m) 7 days 30 s 4.8057e9 5.3331e9 5.2740e8 7,946 77,534 

(n) 7 days 20 s 4.8057e9 5.3320e9 5.2628e8 7,946 83,372 

(o) 7 days 10 s 4.8057e9 5.3335e9 5.2775e8 7,946 92,570 

(p) 7 days 5 s 4.8057e9 5.3356e9 5.2982e8 7,946 88,104 

(q) 7 days 1 s 4.8057e9 5.3373e9 5.3154e8 7,946 90,041 

(r) 7 days 0.5 s 4.8057e9 5.3365e9 5.3078e8 7,946 95,057 

(s) 7 days 0.1 s 4.8057e9 5.3350e9 5.2923e8 7,946 106,342 

(t) 7 days 0.05 s 4.8057e9 5.3383e9 5.3258e8 7,946 109,009 

(u) 7 days 0.01 s 4.8057e9 5.3374e9 5.3165e8 7,946 105,888 

(v) 7 days 0.005 s 4.8057e9 5.3368e9 5.3107e8 7,946 119,457 

(w) 7 days 0.001 s 4.8057e9 5.3368e9 5.3105e8 7,946 169,522 
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4.2.4 Conclusions 

Time-dependency of the numerical model has been the focus of this section. 

Specifically, the lifetime prediction scheme has been introduced using the basic model. 

The lifetime prediction scheme has been tested on a single zone, and the calculation 

results have shown great accordance between the numerical calculation and the 

analytical solution, with respect to both the lifetime and failure mode. For the multi-

zone numerical model, the lifetime prediction scheme has also been applied to predict 

the first zone failure and correct results with high precision were obtained. Different 

time step values have been used for the uniaxial tensile and compressive tests for the 

model, to study its influence on the lifetime. The macroscopic fracture patterns have 

also been studied accordingly. It was shown that a lifetime result with better precision 

can be obtained with a smaller time step value. To save computing time and to 

guarantee a precise simulation, a changeable time step scheme has been proposed and 

applied to the model. Macroscopic fracture pattern of the model with changeable time 

step scheme have also been discussed for tensile and compressive tests. It can be 

concluded that, these calculations can still render results with more or less the same 

precision, but can save considerable calculation time, which is especially the case 

when the time step is set very small. The time-related study of the numerical model 

has formed a valuable base for the other models. For reason of efficiency, the 

changeable time step scheme has been used in the modeling strategies of all 

subsequent studies.  

 

4.3 New modeling strategies 

The basic model scheme has given reasonable results under uniaxial tensile and 

compressive loading in terms of fracture evolution and damage pattern as well as for 

the predicted lifetime. Nevertheless, some simplifications have been made in the 

numerical simulations making further studies necessary. The purpose of this study is 

to improve this two dimensional modeling scheme in respect to the following aspects: 

inclusion of orientation of initial micro cracks; inclusion of different crack 

propagation schemes and the corresponding K value calculation and inclusion of 

anisotropic elasto-plastic constitutive law with softening into the model. 

 

Four sets of numerical models are proposed in addition to the basic model. The new 

models are named fixed orientation model, wing crack model, fixed orientation 

combined ubiquitous-joint model and wing crack combined ubiquitous-joint model, 

respectively. The model schemes are illustrated in Fig. 4-14.  
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Figure 4-14 Different new model schemes 

 

The fixed orientation model has included initial crack orientation and the cracks 

inside each zone are considered to propagate in their original planes. That means the 

cracks have constant propagation directions. Wing crack model assumes that the crack 

inside each zone propagates towards the direction of the maximum circumferential 

stress and a superposition method for K calculation has been adopted. In both of these 

two model schemes hold: when the crack inside a zone has reached the critical 

condition (crack reaches the zone boundary or stress intensity factor of the crack tip 

reaches the fracture toughness), the zone is considered to be failed and residual 

strength values are assigned to the whole zone. The fixed orientation combined 

ubiquitous-joint model and wing crack combined ubiquitous-joint model have 

included anisotropic elasto-plastic constitutive law with softening (ubiquitous-joint 

constitutive model) on the basis of the former two models. In this case, when the 

crack inside a zone has reached the critical condition, residual strength values are 

assigned only to the direction described by the crack, representing the weak plane 

inside the zone. For the fixed orientation combined ubiquitous-joint model, the 

orientation of the weak plane is the same as the orientation of the initial crack. While 

for the wing crack combined ubiquitous-joint model, as illustrated by the dashed line 

in Fig. 4-14, the weak plane is simplified by connecting the two wing crack tips, and 

the orientation value is obtained accordingly. The distinct characteristics of these 

models are also listed in Table 4-9.  
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Table 4-9 Distinct characteristics of numerical models 

Model 
Lifetime 

prediction 

Crack 

length 

Crack 

orientation 
Anisotropy 

Basic model 

√ √ × × 

Key characteristics 

Microcrack orientation is not considered, but most 

critical orientation is used. Maximal tensile stress 

and shear stress within the zone are used for the 

calculation of KI and KII, respectively. 
 

Fixed orientation model 

Lifetime 

prediction 

Crack 

length 

Crack 

orientation 
Anisotropy 

√ √ √ (constant) × 

Key characteristics 

Microcrack orientation is defined, and crack 

propagates in its own plane. The normal stress and 

shear stress on the crack is used for the calculation 

of KI and KII, respectively. 
 

Fixed orientation combined  

ubiquitous-joint model 

Lifetime 

prediction 

Crack 

length 

Crack 

orientation 
Anisotropy 

√ √ √ (constant) √ 

Key characteristics 

Based on the fixed orientation model, material 

strength anisotropy is included by assigning 

residual strength values on the direction represented 

by the crack orientation if the crack has reached 

critical condition, rather than assigning residual 

strength values to the entire zone. 
 

Wing crack model 

Lifetime 

prediction 

Crack 

length 

Crack 

orientation 
Anisotropy 

√ √ √ (wing) × 

Key characteristics 

Orientation of the initial crack is defined, and the 

crack propagates by forming “wing crack”. Only KI 

at the wing crack tip is used to calculate the crack 

propagation velocity since the wing crack 

propagates in pure Mode I. 
 

Wing crack combined  

ubiquitous-joint model 

Lifetime 

prediction 

Crack 

length 

Crack 

orientation 
Anisotropy 

√ √ √ (wing) √ 

Key characteristics 

This model is a further extension of wing crack 

model. When the propagating crack has reached 

critical condition, instead of assigning residual 

strength values to the entire zone, this model 

assigns the residual strength values only to the 

plane represented by the direction of the crack’s 

geometry. Thus this model includes strength 

anisotropy by including a ‘weak plane’ into the 

zone. 
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4.4 Fixed orientation model 

4.4.1 Initial microcracks 

Study on microcracks in rocks has long been the focus of geoscientists and engineers 

(Hadley 1976, Tapponier and Brace 1976, Costin 1983, Wong 1985, Wong et al. 1996, 

Wong et al. 2006). Kranz (1983) summarized studies on microcrack population in 

different rock types, and performed an additional study on intracrystalline microcrack 

length probability density distributions for three types of granites. It was concluded 

that for the natural, unstressed rock, micro cracks in plan view are more or less 

randomly oriented. For a stressed rock, a normal distribution may describe 

observations on the microcrack orientation. Acceptable assumptions of initial 

microcrack lengths include lognormal or exponential distribution. The assumption of 

an exponential distribution of crack lengths was also supported earlier by Dienes 

(1978). 

 

Since microcrack characteristics are of great importance for mechanical behavior of 

rock, inclusion of initial crack parameters has been one of the keys for appropriate 

numerical modeling. In this research, crack characteristics including initial length and 

orientation have been considered in the numerical model. As has been already 

introduced, an initial crack is defined in each zone to simulate the universally existing 

microcracks in the rock specimen. One zone of the model with initial crack is shown 

in Fig. 4-15 as an example. Uniform, normal and lognormal distribution functions 

have been programmed to describe the lengths of initial cracks. The initial crack 

orientation is defined by the angle β (the angle between the crack and horizontal 

direction). Numerical calculations with different distributions of initial crack length 

and orientation have been performed and results are compared. The simulations are 

discussed in detail in the following subsections. 

 

 
Figure 4-15 Zone of the model with initial crack 

 

4.4.2 The lifetime prediction scheme for fixed orientation model (single zone) 

In this subsection, lifetime prediction scheme for fixed orientation model has been 

introduced. The initial crack orientation is considered and crack within the zone 
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propagates along its original orientation. This means Mode I and Mode II loading 

conditions are superimposed on the crack. Consider a zone with an initial crack under 

biaxial loading, the normal and shear stresses on the crack are given as: 

 

     2cos
2

1
HvHvN                                                                       (4-9) 

 

   2sin
2

1
HVT                                                                                           (4-10) 

 

where β denotes the orientation of the initial crack (from horizontal direction); σV 

denotes the vertical stress applied on the zone and σH denotes the horizontal stress 

applied on the zone; σN and σT denote the normal stress and shear stress on the crack, 

respectively. The stress intensity factors of the crack in this case are: 

 

aK NI                                                                                                             (4-11) 

 

aK effII                                                                                                           (4-12) 

 

where |σeff| = |σT| - μ|σN|, denoting the effective shear stress on the crack. μ is the 

coefficient of friction. The determination of crack propagation velocity is based on the 

superposition of both KI and KII components. Consulting Charles equation, the crack 

propagation velocity is expressed as: 

 

n

II

n

I

n CKCKCKv                                                                                             (4-13) 

 

where parameter C and n have the same meanings as in Equation 4-2. Similar to Eq. 

4-3 in Subsection 4.2.1, the life time of the zone is given: 
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The critical crack length ac is determined by the minimum of these three values: the 

critical length determined by KIC and KIIC and the dimension of the zone dzone, as 

shown in Eq.4-15: 
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where dzone denotes the length of the zone; a(dzone) is expressed as:  

 

 
cos

zone
zone

d
da                                                                                                         (4-16) 

 

if the orientation of the crack β is less than or equal to 45º (Fig. 4-16 (c), (d)), and 

 

 
sin

zone

zone

d
da                                                                                                         (4-17) 

 

if β is bigger than 45º (Fig. 4-16 (e)).  

 

 
Figure 4-16 Cases of the critical crack length in single zone models 

 

The lifetime prediction idea has first been studied on a single zone model of the size 

0.04 × 0.04 m
2
. The material parameters follow Table 4-1. The zone is put under the 

tensile load of 12 MPa and the compressive load of 18 MPa, respectively. The crack 

conditions of the model at failure in the uniaxial tests are shown in Fig. 4-17. It is 

seen that both failure modes have been detected: in the tensile tests, with the crack 

orientation being 0º, the model fails by KI value reaching the critical value KIC (Fig. 

4-17 (a)), while with the crack orientation of 45º, the model fails by crack propagation 
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reaching the zone boundary (Fig. 4-17 (b)). In the compressive tests, with the crack 

orientation of 45º, the model fails by KII value reaching the critical value KIIC (Fig. 4-

17 (c)), while with the crack orientation of 60º, the model fails by crack propagation 

reaching the zone boundary (Fig. 4-17 (d)).  

 

Table 4-10 Calculation results under uniaxial loads (corresponding to Fig. 4-17) 

(a) Under uniaxial tensile load of 12 MPa 

 Analytical solution Numerical calculation Error 

KI 1.7900e6 1.7901e6 0.006 % 

KII 0 0 0 

Critical crack length (m) 0.0142 0.0142 0.007 % 

Life time 0.3972 (s) 0.3976 (s) 0.1 % 

Failure mode KI ≥ KIC KI ≥ KIC 0 

 

(b) Under uniaxial tensile load of 12 MPa 

 Analytical solution Numerical calculation Error 

KI 1.7885e6 1.7886e6 0.006 % 

KII 1.7885e6 1.7886e6 0.006 % 

Critical crack length (m) 0.0566 0.0566 0.002 % 

Life time 
3.7867e9 (s) 

(120 y, 28 d, 1 h, 59 min.) 

3.7898e9 (s) 

(120 y, 62 d, 20 h, 27 min.) 
0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

 

(c) Under uniaxial compressive load of 18 MPa 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KII 1.7900e6 1.7900e6 < 0.005 % 

Critical crack length (m) 0.0514 0.0514 0.002 % 

Life time 
1.4612e9 (s) 

(46 y, 122 d, 11 h, 29 min.) 

1.4624e9 (s) 

(46 y, 135 d, 21 h, 29 min.) 
0.08 % 

Failure mode KII ≥ KIIC KII ≥ KIIC 0 

 

(d) Under uniaxial compressive load of 18 MPa 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KII 1.7358e6 1.7358e6 < 0.005 % 

Critical crack length (m) 0.046188 0.046189 0.002 % 

Life time 
6.8109e8 (s) 

(21 y, 218 d, 40 min.) 

6.8163 (s) 

(21 y, 224 d, 6 h, 45 min.) 
0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

 

The lifetime is influenced greatly by the crack condition. For example, under the same 

tensile load (12 MPa), the zone fails in less than 1 second if the crack orientation is 0º; 

while with crack orientation of 45º, the lifetime of the zone is more than 120 years 

(Table 4-10). This feature is also seen in the compressive tests: under the compressive 

load of 18 MPa, the zone fails in more than 46 years if the crack orientation is 45º, 
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while with crack orientation of 60º, the lifetime of the zone is less than 22 years 

(Table 4-10). The analytical solution of the lifetime for each case in Fig. 4-17 is also 

listed in Table 4-10. It is seen that the predicted lifetimes and other related parameters 

have shown good agreement with the analytical solutions (Eq. 4-14) in all cases 

(deviations no bigger than 0.1 % for lifetimes; deviations no bigger than 0.006 % for 

K values; deviation no bigger than 0.007 % for critical crack lengths). In all cases the 

correct fracture mode was predicted. 

 

  
Uniaxial tensile load: 12 MPa (vertical);  

initial crack length: 0.013 m;  

crack orientation: 0º; 

failure mode: KI ≥ KIC 

(a) 

Uniaxial tensile load: 12 MPa (vertical);  

initial crack length: 0.013 m;  

crack orientation: 45º; 

failure mode: crack length > zone size 

 (b) 

  

  
Uniaxial compressive load: -18 MPa (vertical);  

initial crack length: 0.013 m;  

crack orientation: 45º; 

failure mode: KII ≥ KIIC 

(c) 

Uniaxial compressive load: -18 MPa (vertical);  

initial crack length: 0.013 m;  

crack orientation: 60º; 

failure mode: crack length > zone size 

 (d) 

Figure 4-17 Crack condition at failure under uniaxial loads 

 

To further test the applicability of the lifetime prediction for the fixed orientation 

model, biaxial loading condition has also been investigated (major principal stress 

applied vertically). Still considering one zone with different biaxial loading 

configurations, the simulation results are shown in Fig. 4-18. It is seen that under 

biaxial tensile loads, the zone fails by KI ≥ KIC if the crack orientation is 45º, and fails 

by crack reaching the zone boundary if the crack orientation is 50º (magnitudes of 

loads are seen in Fig. 4-18 (a), (b)). Zone failure by KII ≥ KIIC has not been found in 

the numerical simulations. This phenomenon is supported by the theory: under biaxial 

tensile loads, it is known from the stresses condition on the crack (Eq. 4-9 and 4-10) 

that the normal stress on the crack is always bigger than the shear stress. This makes 

the KI value always bigger than KII value (Eq. 4-11 and 4-12) (in this case the 

effective shear stress is equal to the shear stress). So in biaxial tensile loading 

condition, failure by KII ≥ KIIC is not possible. With the major principal stress being 

tensile and minor principal stress being compressive, cases where zone fails by 

KI ≥ KIC, by KII ≥ KIIC and by crack reaching the zone boundary have all been found 
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with different magnitudes of loads and crack characteristics (Fig. 4-18 (c), (d) and (e)), 

such is also the case if the major principal stress is compressive and the minor 

principal stress is tensile (Fig. 4-18 (f), (g) and (h)). Under biaxial compressive loads, 

only zone failure by KII ≥ KIIC or by crack reaching the zone boundary has been found. 

This phenomenon is also supported by theory: in this case, the normal stress on the 

crack is always compressive, so the crack is not under Mode I loading condition, thus 

failure by KI ≥ KIC is not possible. The numerical predicted lifetimes have shown 

excellent agreement with the analytical solutions in all cases. It is shown (Table 4-11) 

that the deviations between the numerical predicted lifetime and the analytical 

solution has been no bigger than 0.08 % for all loading configurations. For the stress 

intensity factor KI and KII at failure, the deviations between the numerical calculation 

and analytical result has been no bigger than 0.009 %. For the critical crack length, 

the deviations have been no bigger than 0.005 %. In all cases the correct fracture 

mode was predicted.  

 

The failure of the zone under different loading configurations has been studied 

exhaustively, where every possible loading condition has been modeled, and every 

possible failure mode under corresponding loads has been found. The numerical 

results have shown excellent agreement with the analytical results with respect to the 

important parameters related to lifetime. Especially, the numerical predicted lifetime 

has been found in good agreement with the analytical solution. The simulation results 

proved the applicability of the lifetime prediction scheme for fixed orientation model 

to any complex stress conditions, and formed the base for extending this model 

scheme to a multi-zone numerical model. 

 

  
Principal stresses: 12 MPa, 6 MPa;  

crack orientation: 45º; 

failure mode: KI ≥ KIC 

(a) 

Principal stresses: 12 MPa, 2 MPa;  

crack orientation: 50º; 

failure mode: crack length > zone size 

 (b) 
  

Loading case I: major principal stress (vertical): tensile;  

minor principal stress (horizontal): tensile 

 

  
Principal stresses: 12 MPa, -2 MPa;  

crack orientation: 30º; 

failure mode: KI ≥ KIC 

(c) 

Principal stresses: 12 MPa, -6 MPa;  

crack orientation: 30º; 

failure mode: KII ≥ KIIC 

(d) 
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Principal stresses: 12 MPa, -2 MPa;  

crack orientation: 60º; 

failure mode: crack length > zone size 
 

(e) 

 

  

Loading case II: major principal stress (vertical): tensile;  

minor principal stress (horizontal): compressive 

 

  
Principal stresses: -18 MPa, 6 MPa;  

crack orientation: 45º; 

failure mode: KII ≥ KIIC 

(f) 

Principal stresses: -18 MPa, 2 MPa;  

crack orientation: 70º; 

failure mode: crack length > zone size 

 (g) 
  

 

 

Principal stresses: -18 MPa, 9 MPa;  

crack orientation: 80º; 

failure mode: KI ≥ KIC 

(h) 

 

  

Loading case III: major principal stress (vertical): compressive;  

minor principal stress (horizontal): tensile 

 

  
Principal stresses: -20 MPa, -1 MPa;  

crack orientation: 45º; 

failure mode: KII ≥ KIIC 

(i) 

Principal stresses: -20 MPa, -1 MPa;  

crack orientation: 60º; 

failure mode: crack length > zone size 

 (j) 
  

Loading case IV: major principal stress (vertical): compressive; 

minor principal stress(horizontal): compressive 

 

Figure 4-18 Crack condition at failure under biaxial loads (Initial crack length: 0.013 m) 
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Table 4-11 Calculation results under biaxial loads (corresponding to Fig. 4-18) 

Loading case I 

(a) 

 Analytical solution Numerical calculation Error 

KI 1.7900e6 1.7900e6 < 0.005 % 

KII 5.9667e5 5.9668e5 0.002 % 

Critical crack length (m) 0.025183 0.025184 0.004 % 

Life time (s) 
8,727 

(2 h, 25 min.) 

8,734 

(2 h, 25 min.) 
0.08 % 

Failure mode KI ≥ KIC KI ≥ KIC 0 

(b) 

 Analytical solution Numerical calculation Error 

KI 1.7561e6 1.7561e6 < 0.005 % 

KII 1.4102e6 1.4102e6 < 0.006 % 

Critical crack length (m) 0.052216 0.052217 0.002 % 

Life time (s) 
3.6382e9 

115 y, 134 d, 1 h, 5 min.) 

3.6411e9 

(115 y, 167 d, 10 h, 49 min.) 
0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

Loading case II 

(c) 

 Analytical solution Numerical calculation Error 

KI 1.7900e6 1.7900e6 < 0.005 % 

KII 1.2766e6 1.2766e6 < 0.007 % 

Critical crack length (m) 0.028232 0.028233 0.004 % 

Life time (s) 
5.9983e4 

(16 h, 39 min.) 

6.0031e4 

(16 h, 40 min.) 
0.08 % 

Failure mode KI ≥ KIC KI ≥ KIC 0 

(d) 

 Analytical solution Numerical calculation Error 

KI 1.7224e6 1.7225e6 0.006 % 

KII 1.7900e6 1.7900e6 < 0.005 % 

Critical crack length (m) 0.033577 0.033578 0.003 % 

Life time (s) 
8.7639e5 

(10 d, 3 h, 26 min.) 

8.7708e5 

(10 d, 3 h, 38 min.) 
0.08 % 

Failure mode KII ≥ KIIC KII ≥ KIIC 0 

(e) 

 Analytical solution Numerical calculation Error 

KI 4.0403e5 4.0404e5 0.002 % 

KII 1.6329e6 1.6329e6 < 0.006 % 

Critical crack length (m) 0.046188 0.046189 0.002 % 

Life time (s) 
5.3494e9 

(169 y, 228 d, 23 h, 6 min.) 

5.3536e9 

(169 y, 278 d, 1 h, 54 min.) 
0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 
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Loading case III 

(f) 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KII 1.7900e6 1.7900e6 < 0.005 % 

Critical crack length (m) 0.019606 0.019607 0.005 % 

Life time (s) 
127 

(2 min, 7 s) 

128 

(2 min, 8 s) 
0.08 % 

Failure mode KII ≥ KIIC KII ≥ KIIC 0 

(g) 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KII 1.6358e6 1.6358e6 < 0.006 % 

Critical crack length (m) 0.042567 0.042567 < 0.002 % 

Life time (s) 
1.2717e9 

(40 y, 118 d, 14 h, 22 min.) 

1.2727e9 

(40 y, 130 d, 6 h, 36 min.) 
0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

(h) 

 Analytical solution Numerical calculation Error 

KI 1.7900e6 1.7900e6 < 0.005 % 

KII 1.0097e6 1.0097e6 < 0.009 % 

Critical crack length (m) 0.030441 0.030442 0.003 % 

Life time (s) 
2.1359e5 

(2 d, 11 h, 19 min.) 

2.1376e5 

(2 d, 11 h, 22 min.) 
0.08 % 

Failure mode KI ≥ KIC KI ≥ KIC 0 

Loading case IV 

(i) 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KII 1.7900e6 1.7900e6 < 0.005 % 

Critical crack length (m) 0.050587 0.050588 0.002 % 

Life time (s) 
1.1193e9 

(35 y, 179 d, 17 h, 54 min.) 

1.1202e9 

(35 y, 190 d, 33 min.) 
0.08 % 

Failure mode KII ≥ KIIC KII ≥ KIIC 0 

(j) 

 Analytical solution Numerical calculation Error 

KI 0 0 0 

KI 1.7514e6 1.7514e6 < 0.005 % 

Critical crack length (m) 0.046188 0.046189 0.002 % 

Life time (s) 
5.0344e8 

(15 y, 351 d, 21 h, 19 min.) 

5.0384e8 

(15 y, 356 d, 12 h, 16 min.) 
0.08 % 

Failure mode Crack length > zone size Crack length > zone size 0 

 

Before the fixed orientation model scheme is extended to a multi-zone numerical 

model, more simulations have been performed with the same material parameters but 

different loadings or crack conditions (length and orientation) to study how they 

influence the lifetime. Lifetime results of the zone under different constant uniaxial 
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loads, initial crack lengths and crack orientations are listed in Table 4-12, 4-13 and 4-

14, respectively. To illustrate how these factors influence the lifetime, the numerical 

results corresponding to the tables are also shown in Fig. 4-19, 4-20 and 4-21, 

respectively.  

 

Table 4-12 Uniaxial tests under different constant loads (corresponding to Fig. 4-19) 

(a) Under tensile loads 

Load  

(MPa) 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

11 
7.1224e10 

(2,258 y, 179 d, 5 h, 16 

min.) 

7.1280e10 

(2,260 y, 103 d, 4 h, 22 

min.) 

Crack length > zone 

size 

15 2.0424e6 

(23 d, 15 h, 19 min.) 

2.0440e6 

(23 d, 15 h, 46 min.) 
KI ≥ KIC 

20 
124 

(2 m, 4 s) 

124 

(2 m, 4 s) 
KI ≥ KIC 

22 4.9 4.9 KI ≥ KIC 

24 0.2 0.2 KI ≥ KIC 

(b) Under compressive loads 

Load  

(MPa) 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

16 
7.7581e10 

(2,460 y, 33 d, 15 h, 14 

min.) 

7.7643e10 

(2,462 y, 15 d, 23 h, 20 

min.) 

Crack length > zone 

size 

20 
4.1843e7 

(1 y, 119 d, 7 h, 3 min.) 

4.1876e7 

(1 y, 119 d, 16 h, 16 min.) 
KII ≥ KIIC 

22 1.6816e6 

(19 d, 11 h, 6 min.) 

1.6829e6 

(19 d, 11 h, 28 min.) 
KII ≥ KIIC 

24 
8.9405e4 

(1 d, 50 min.) 

8.9475e4 

(1 d, 51 min.) 
KII ≥ KIIC 

 

It is seen in Table 4-12 that, with the initial crack length of 0.013 m and crack 

orientation of 45º unchanged, in the tensile tests, the zone fails by crack reaching the 

zone boundary under tensile load of 11 MPa, while fails by KI ≥ KIC under bigger 

load. In the compressive tests, the zone fails by crack reaching the zone boundary 

under compressive load of 16 MPa, while fails by KII ≥ KIIC under bigger load. It is 

seen in Table 4-13 that, with the crack orientation of 45º unchanged, under the tensile 

load of 12 MPa, the zone fails by crack reaching the zone boundary with the initial 

crack length ranging from 0.011 m to 0.033 m; while under the compressive load of 

18 MPa, the zone fails by KII ≥ KIIC with the initial crack length ranging from 0.011 m 

to 0.027 m. It is seen in Table 4-14 that, with the initial crack length of 0.013 m 

unchanged, under the tensile load of 12 MPa, the zone fails by KI ≥ KIC if the crack 

orientation is smaller than 45º, while the zone fails by crack reaching the zone 

boundary if the crack is equal to or bigger than 45º. Under the compressive load of 

18 MPa, the zone fails by KII ≥ KIIC for the crack orientation ranging from 45º to 55º, 
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while for crack orientation smaller than 45º or bigger than 55º, the zone fails by crack 

reaching the zone boundary. 

 

Table 4-13 Uniaxial tests with different initial crack lengths (corresponding to Fig. 4-20) 

(a) Under tensile load of 12 MPa 

Initial crack length 

(m) 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

0.011 
5.3585e10 

(1,699 y, 61 d, 14 h, 50 

min.) 

5.3627e10 

(1,700 y, 188 d, 15 h) 

Crack length > zone 

size 

0.013 
3.7867e9 

(120 y, 28 d, 1 h, 59 min.) 

3.7898e9  

(120 y, 62 d, 20 h, 27 

min.) 

Crack length > zone 

size 

0.015 
3.9129e8 

(12 y, 148 d, 18 h, 40 

min.) 

3.9160e8 

(12 y, 152 d, 8 h, 53 

min.) 

Crack length > zone 

size 

0.017 
5.3739e7 

(1 y, 256 d, 23 h, 30 min.) 

5.3782e7 

(1 y, 257 d, 11 h, 21 

min.) 

Crack length > zone 

size 

0.025 
1.1847e5 

(1 d, 8 h, 54 min.) 

1.1856e5 

(1 d, 8 h, 56 min.) 

Crack length > zone 

size 

0.033 1,448 

(24 min., 8 s) 

1,449 

(24 min., 9 s) 

Crack length > zone 

size 

(b) Under compressive load of 18 MPa 

Initial crack length 

(m) 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

0.011 2.0677e10 

(655 y, 247 d, 20 h, 36 min.) 

2.0694e10 

(656 y, 72 d, 17 h, 9 

min.) 

KII ≥ KIIC 

0.015 
1.5099e8 

(4 y, 287 d, 13 h, 47 min.) 

1.5111e8 

(4 y, 288 d, 23 h, 4 min.) 
KII ≥ KIIC 

0.019 
3.5526e6 

(41 d, 2 h, 50 min.) 

3.5555e6 

(41 d, 3 h, 37 min.) 
KII ≥ KIIC 

0.023 
1.7157e5 

(1 d, 23 h, 39 min.) 

1.7170e5 

(1 d, 23 h, 41 min.) 
KII ≥ KIIC 

0.027 
1.3486e4 

(3 h, 44 min.) 

1.3496e4 

(3 h, 44 min.) 
KII ≥ KIIC 

 

Table 4-14 Uniaxial tests with different crack orientations (corresponding to Fig. 4-21) 

(a) Under tensile load of 12 MPa 

Crack 

orientation 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

0º 0.4 0.4 KI ≥ KIC 

10º 1.4 1.4 KI ≥ KIC 

20º 35 35 KI ≥ KIC 

30º 
8,727 

(2 h, 25 min.) 

8,734 

(2 h, 25 min.) 
KI ≥ KIC 

40º 
3.4125e7 

(1 y, 29 d, 23 h, 8 min.) 

3.4152e7 

(1 y, 30 d, 6 h, 39 min.) 
KI ≥ KIC 

45º 
3.7867e9 

(120 y, 28 d, 1 h, 59 min.) 
3.7898e9 

(120 y, 62 d, 20 h, 27 min.) 

Crack length > zone 

size 

50º 1.2657e10 

(401 y, 130 d, 14 h, 15 min.) 

1.2667e10 

(401 y, 246 d, 19 h, 26 

min.) 

Crack length > zone 

size 
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(b) Under compressive load of 18 MPa 

Crack 

orientation 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

40º 
4.4145e10  

(1,399 y, 297 d, 13 h, 51 

min.) 

4.4180e10 

(1,400 y, 337 d, 21 h, 42 

min.) 

Crack length > zone 

size 

45º 
1.4612e9 

(46 y, 122 d, 11 h, 29 

min.) 

1.4624e9 

(46 y, 135 d, 21 h, 29 min.)  
KII ≥ KIIC 

50º 
2.5840e8 

(8 y, 70 d, 17 h, 28 min.) 

2.5860e8 

(8 y, 73 d, 2 h, 25 min.) 
KII ≥ KIIC 

55º 
2.0204e8 

(6 y, 148 d, 8 h, 54 min.) 

2.0220e8 

(6 y, 150 d, 5 h, 26 min.) 
KII ≥ KIIC 

60º 
6.8109e8 

(21 y, 218 d, 40 min.)  

6.8163e8 

(21 y, 224 d, 6 h, 45 min.) 

Crack length > zone 

size 

65º 
1.1255e10 

(356 y, 327 d, 19 h, 42 

min.) 

1.1264e10 

(357 y, 66 d, 3 h, 55 min.) 

Crack length > zone 

size 

 

Fig. 4-19 shows that the zone fails faster under a bigger load under both tensile and 

compressive load. It is also noticed that under the same magnitude of load, the zone 

fails much faster under tension than under compression. With other factors remaining 

the same, a longer initial crack length would also cause the zone to fail faster under 

both tensile load and compressive load (Fig. 4-20). It is also seen in Fig. 4-21 that 

under a constant tensile load (12 MPa), the lifetime ascends while the orientation 

becomes bigger (the lifetime is less than one second at 0º and over 400 years at 50º). 

While under a compressive load (18 MPa), the lifetime descends first and then 

ascends as the crack orientation becomes bigger, and the shortest lifetime (less than 

6 years 6 months) is obtained at an orientation of about 55º. 

 

  
(a) Initial crack length: 0.013 m;  

Crack orientation: 45º 

(Uniaxial tensile loads) 

(b) Initial crack length: 0.013 m; 

Crack orientation: 45º 

(Uniaxial compressive loads) 

Figure 4-19 Natural logarithm of lifetimes (seconds) with different constant loads 
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(a) Uniaxial tensile load: 12 MPa;  

Crack orientation: 45º 
(b) Uniaxial compressive load: 18 MPa; 

Crack orientation: 45º 

Figure 4-20 Natural logarithm of lifetimes (seconds) with different initial crack lengths 

 

  
(a) Uniaxial tensile load: 12MPa;  

Initial crack length: 0.013 m 
(b) Uniaxial compressive load: 18 MPa; 

Initial crack length: 0.013 m 

Figure 4-21 Natural logarithm of lifetimes (seconds) with different crack orientations 

 

4.4.3 Study on the multi-zone models 

The lifetime prediction scheme for fixed orientation model has been extended to the 

multi-zone model. The geometry is the same as for the basic model. The material 

parameters follow Tabel 4-1, except that the tensile strength has been assigned larger 

for some cases. This measure was taken to put the focus on the crack’s subcritical 

crack growth instead of triggering a sudden tensile failure. A zone’s sudden tensile 

failure could be otherwise caused by the stress exceeding the tensile strength due to 

the stress redistributions. The initial crack lengths follow the normal distribution 

(initial crack length data from realizations of model A, B and C in Fig. 4-3). Another 

model (named model D) with initial crack lengths following lognormal distribution 

(Fig. 4-22) has also been tested. As for the crack orientation, both the uniform and 

normal distributions of crack orientation have been applied to the numerical model. 

The crack orientation distribution patterns are seen in Fig. 4-23 and 4-24; the 

corresponding initial crack conditions are illustrated in Fig. 4-25 and 4-26, 

respectively.  
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Figure 4-22 Lognormal distribution of initial crack lengths (model D) 

 

 
Figure 4-23 Uniform distribution of crack orientation 

 

 
Figure 4-24 Normal distribution of crack orientation (Mean value: 10º; standard deviation: 1º) 
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Figure 4-25 Initial crack conditions of fixed orientation model (Initial crack lengths (realization: model 

A): normal distribution, mean = 0.013 m, STD = 0.0001 m; initial crack orientation: uniform 

distribution) 

 

 
Figure 4-26 Initial crack conditions of fixed orientation model (Initial crack lengths (realization: model 

A): normal distribution, mean = 0.013 m, STD = 0.0001 m; initial crack orientation: normal 

distribution, mean = 10º, STD = 1º) 

For the tensile tests, the failure process of the models under a constant load of 12 MPa 

is shown in Fig. 4-27 to Fig. 4-30, where for the normal crack orientation distribution, 

the mean orientation was set to 10º and standard deviation (STD) 1º. The 

corresponding lifetime results are listed in Table 4-15.  

 

 

A 

 
   

 0.2864 second 0.3040 second 0.3600 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 
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 
A 

 
   

 0.4704 second 0.4739 second 0.4826 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 10º, STD = 1º 
 

Figure 4-27 Uniaxial tensile tests (12 MPa) of model A (zones in green: tensile failure; zones in red: 

shear failure; zones in gray: failed in past) 

 

 

B 

 
   

 0.2496 second 0.2931 second 0.3734 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 
 

 

B 

 
   

 0.5800 second 0.5804 second 0.5811 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 10º, STD = 1º 
 

Figure 4-28 Uniaxial tensile tests (12 MPa) of model B (zones in green: tensile failure; zones in red: 

shear failure; zones in gray: failed in the past) 

 

 

C 

 
   

 0.2488 second 0.3202 second 0.4224 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 
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 
C 

 
   

 0.5968 second 0.6023 second 0.6064 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 10º, STD = 1º 
 

Figure 4-29 Uniaxial tensile tests (12 MPa) of model C (zones in green: tensile failure; zones in red: 

shear failure; zones in gray: failed in the past) 

 

 
D 

 
   

 0.2480 second 0.2986 second 0.3620 second 

 Initial crack lengths: lognormal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 
 

 

D 

 
   

 0.5776 second 0.5813 second 0.5858 second 

 Initial crack lengths: lognormal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 10º, STD = 1º 
 

Figure 4-30 Uniaxial tensile tests (12 MPa) of model D (zones in green: tensile failure; zones in red: 

shear failure; zones in gray: failed in the past) 

 

Coalescence of the microcracks has been detected in each model. It is seen that under 

a tensile load, the macroscopic fracture was formed perpendicular to the applied load 

for normally distributed orientation. It is also seen that the macroscopic fracture 

pattern is greatly influenced by the initial crack orientation: if crack orientation 

follows the uniform distribution, despite the fact that the main trend of macroscopic 

fracture growing direction is still perpendicular to the applied tensile force, the 

macroscopic fracture showed a more uneven pattern. As is seen from the lifetime 
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results shown in Table 4-15, for each case, the numerical predicted first zone failure 

time revealed great agreement with the analytical solution (Eq. 4-14), and the position 

of the first failure zone also matches the analytical solution. For model A to D, the 

first zone failure time ranges from 0.2466 seconds to less than 0.2844 seconds, and 

the lifetimes ranges from 0.3600 seconds to 0.4224 seconds if the initial crack 

orientation follows uniform distribution. If the initial crack orientation follows normal 

distribution (mean orientation: 10º, standard deviation (STD: 1º) the first zone failure 

time ranges from 0.4682 seconds to 0.5948 seconds, and the lifetimes ranges from 

0.4826 seconds to 0.6064 seconds. It is concluded that the initial crack orientation 

also influences the lifetimes. Both the first zone failure time and the lifetime are 

longer if the initial crack orientation follows normal distribution (mean orientation: 

10º, standard deviation (STD: 1º) than if the initial crack orientation follows uniform 

distribution. The lifetime results and macroscopic failure patterns revealed similarity 

between the models with different realizations of normal distribution (model A, B and 

C) and lognormal distribution (model D) of initial crack lengths. 

 

Table 4-15 Lifetime results of models in uniaxial tensile tests (12 MPa) 

 Analytical results Numerical results 

Model First failure 

zone 

First failure time 

(s) 

First failure 

zone 

First failure time 

(s) 

Lifetime 

(s) 

Initial crack orientation: uniform distribution 

A (35, 45) 0.2844 (35, 45) 0.2864 0.3600 

B (50, 20) 0.2480 (50, 20) 0.2496 0.3734 

C (41, 36) 0.2469 (41, 36) 0.2488 0.4224 

D (50, 20) 0.2466 (50, 20) 0.2480 0.3620 

Initial crack orientation: normal distribution (mean = 10º, STD = 1º) 

A (41, 26) 0.4682 (41, 26) 0.4704 0.4826 

B (7, 2) 0.5778 (7, 2) 0.5800 0.5811 

C (18, 31) 0.5948 (18, 31) 0.5968 0.6064 

D (7, 2) 0.5761 (7, 2) 0.5776 0.5858 

 

The crack condition of each model at the stage of failure has been studied. Exemplary, 

the macroscopic fracture of model A with a zoomed in area presenting the 

microcracks forming the macroscopic fracture is shown in Fig. 4-31 and Fig. 4-32. It 

is seen that most of the zones forming the macroscopic fracture failed by tension and 

some of them failed by shear if the crack orientation follows uniform distribution, 

while all zones failed by tension if the crack orientation follows normal distribution. 

This indicates the influence of the crack orientation on the failure model of the zone. 

And it is clearly seen from the zoomed in area that in the failed zones, the 

microcracks have not reached the zone boundary, which means these zones fail by 

KI ≥ KIC (zone fails immediately as the crack propagates ultrasonically). Such 
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phenomenon is also supported by the comparatively short lifetime results (Table 4-15), 

which implied a sudden failure of the model. 

 

 
Figure 4-31 Crack condition of model A at failure (zones in green: tensile failure; zones in red: shear 

failure; zones in gray: failed in the past; initial crack lengths: normal distribution, mean = 0.013 m, 

STD = 0.0001 m; initial crack orientation: uniform distribution) 

 

 
Figure 4-32 Crack condition of model A at failure (zones in green: tensile failure; initial crack lengths: 

normal distribution, mean = 0.013 m, STD = 0.0001 m; initial crack orientation: normal distribution, 

mean = 10º, STD = 1º) 

 

The influence of the crack orientation on lifetime has also been studied. For this 

purpose the initial crack length data of model A (initial crack lengths are normally 

distributed; mean length: 0.013 m, STD: 0.0001 m) are used. Uniaxial tensile tests 

have been conducted on the model with different mean orientations. The numerical 

lifetime results are listed in Table 4-16. Analytical solutions of the position of the first 

failure zone and first failure time have also been given for comparison. The numerical 

results have shown great agreement with the analytical solutions with respect to the 

first zone failure time, and for each mean orientation tried in the test, the position of 

the first failure zone was predicted correctly (Table 4-16). The predicted lifetime 

results with different mean orientations of cracks are also shown in Fig. 4-33. It is 

seen that in principal, the numerical results show the same trends as shown in Fig. 4-

21 (a). It takes longer time for the zone to fail if the mean initial crack orientation is 
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bigger. It is also noticed that the mean orientation has great influence on the lifetime 

of the model: the lifetime changes from about 0.2 second if the mean crack orientation 

is 0º to more than 166 years if the mean crack orientation is 50º. 

 

Table 4-16 Lifetime of model A with different mean orientations under tensile load of 12 MPa (initial 

crack orientation following normal distribution) 

 Analytical results Numerical results 

Mean 

orientation 

First 

failure 

zone 

First failure 

time (s) 

First 

failure 

zone 

First failure 

time (s) 

Lifetime  

(s) 

0º (12, 8) 0.2028 (12, 8) 0.2040 0.2049 

5º (3, 32) 0.2909 (3, 32) 0.2928 0.2941 

10º (41, 26) 0.4682 (41, 26) 0.4704 0.4826 

15º (45, 48) 1.5589 (45, 48) 1.5608 1.5626 

20º (45, 48) 6.4926 (45, 48) 6.5200 6.5231 

30º (45, 48) 550.8 (45, 48) 554.5 554.6 

40º (45, 48) 
5.8122e5 

(6 d, 17 h, 26 

min.) 

(45, 48) 
5.8422e5 

(6 d, 18 h, 16 

min.) 

5.85315e5 

(6 d, 18 h, 35 

min.) 

50º (45, 48) 
5.0181e9 

(159 y, 45 d, 5 

h, 20 min.) 

(45, 48) 
5.2111e9 

(165 y, 88 d, 15 

h, 46 min.) 

5.2558e9 

(166 y, 240 d, 13 

h, 11 min.) 

 

 
Figure 4-33 Natural logarithm of lifetime (seconds) in uniaxial tensile test (tensile load of 12 MPa) 

with different mean crack orientation 

 

Uniaxial compressive tests have also been performed on model A, B, C and D. The 

compressive load of 18 MPa is applied vertically to the model. The crack orientation 

follows uniform and normal distributions. For those cases where crack orientation 

follows normal distribution, the mean angle is 45º and the standard deviation is 1º. An 

additional set of calculations with a standard deviation of initial crack orientation of 
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5º has been included in each model to study its influence on the macroscopic crack 

pattern and life time. The failure process of the specific model is documented in Fig. 

4-34 to Fig. 4-37. The corresponding lifetime results are also listed in Table 4-17.  

 

 

A 

 
   

 4 years 232 days 6 years 3.6 hours 7 years 230 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 

 

 

A 

 
   

 9 years 346 days 11 years 30 days 11 years 68 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

 

A 

 
   

 4 years 176 days 4 years 308 days 4 years 336 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 5º 

 

Figure 4-34 Uniaxial compressive tests (18 MPa) of model A (zones in green: tensile failure; zones in 

red: shear failure; zones in gray: failed in the past) 
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 

B 

 

   
 4 years 273 days 6 years 71 days 9 years 11 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 

 

 

B 

 

   
 7 years 57 days 8 years 108 days 8 years 176 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

 

B 

 

   
 4 years 299 days 4 years 322 days 4 years 350 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 5º 

 

Figure 4-35 Uniaxial compressive tests (18 MPa) of model B (zones in green: tensile failure; zones in 

red: shear failure; zones in gray: failed in the past) 
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 

C 

 
   

 4 years 208 days 6 years 3.6 hours 8 years 268 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 

 

 

C 

 
   

 10 years 148 days 11 years 190 days 11 years 264 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

 

C 

 
   

 4 years 253 days 5 years 7 days 5 years 54 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 5º 

 

Figure 4-36 Uniaxial compressive tests (18 MPa) of model C (zones in green: tensile failure; zones in 

red: shear failure; zones in gray: failed in the past) 
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 
D 

 
   

 4 years 269 days 6 years 61 days 9 years 254 days 

 Initial crack lengths: lognormal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 

 

 

D
 

 
   

 7 years 42 days 8 years 107 days 8 years 158 days 

 Initial crack lengths: lognormal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

 

D
 

 
   

 4 years 295 days 4 years 322 days 4 years 351 days 

 Initial crack lengths: lognormal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 5º 

 

Figure 4-37 Uniaxial compressive tests (18 MPa) of model D (zones in green: tensile failure; zones in 

red: shear failure; zones in gray: failed in the past) 

 

It is seen (Fig. 4-34 to Fig. 4-37) that shear band has been formed with an inclination 

of about 60º to the horizontal direction (30º to the loading direction). The inclination 

of the shear band confirms Mohr-Coulomb theory, where inclination (β) of the weak 

plan to the applied compressive load is expressed as β = (π / 4) + (φ / 2). φ = 30º 

denotes the friction angle in this study. The zones forming the shear bands showed a 

more scattered pattern if the crack orientation follows uniform distribution than if the 

crack orientation follows normal distribution. It is clearly observed that with a bigger 

standard deviation of the crack orientation (5º instead of 1º), the shear band is more 

scattered but the inclination is the same. Especially, multiple shear bands appeared in 
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two models (model B and model D) in such case. Most of the failed zones forming the 

shear bands have shear failure. More zones failed by tension have been found in the 

case where the crack orientation follows uniform distribution than normal distribution. 

In the case where the crack orientation follows normal distribution, more zones failed 

by tension if the standard deviation of the crack orientation is 5º instead of 1º (Fig. 4-

34 to Fig. 4-37). This phenomenon indicates that the crack orientation has its 

influence on the failure mode of the zone. As can be seen from Table 4-17, the 

numerical predicted first zone failure time and position revealed good agreement with 

the analytical solutions (Eq. 4-14) for each case. For model A to D, the numerical 

predicted lifetime ranges from about 7 years 230 days (model A) to 9 years 254 days 

(model D) if the crack orientation follows uniform distribution. For the case where 

crack orientation follows normal distribution, and standard deviation is 1º, the 

numerical predicted lifetime ranges from about 8 years 158 days (model D) to 

11 years 264 days (model C). If the standard deviation is 5º, the numerical predicted 

lifetimes are shortened by about half the amount: lifetime ranges from about 4 years 

336 days (model A) to 5 years 54 days (model C). Considering the first zone failure 

time, the results have the same magnitude in the cases where the crack orientation 

follows uniform distribution and normal distribution. But with the standard deviation 

of 5º, the first zone failure times are more than 4 years but less than 5 years for both 

cases. For the cases where the crack orientation follows normal distribution but with 

the standard deviation of 1º, the first zone failure times are over 7 years but less than 

11 years (Table 4-17). This finding is explained by consulting Fig. 4-21 (b), where the 

shortest lifetime is found at a crack orientation of 55º under compressive load. In the 

multi-zone model, the cases where the mean crack orientation follows uniform 

distribution and normal distribution (mean orientation: 45º) but with the standard 

deviation of 5º have more zones with crack orientation closer to 55º than the case 

where the mean crack orientation follows normal distribution (mean orientation: 45º) 

but with the standard deviation of 1º. So the first zone failure time is longer for the 

case where the standard deviation is 1º than the other two cases. Similar to the 

observations in the tensile tests, the lifetime results and macroscopic failure patterns 

showed similarity between the models with different realizations of normal 

distribution (model A, B and C) and lognormal distribution (model D) of initial crack 

lengths. 
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Table 4-17 Lifetime results of models under compressive load of 18 MPa  

 Analytical results Numerical results 

Model  

First 

 failure 

zone 

First failure time  

(s) 

First  

failure 

zone 

First failure time 

(s) 

Lifetime  

(s) 

Initial crack orientation: uniform distribution 

A (30, 39) 

1.4586e8 

(4 y, 228 d, 3 h, 54 

min.) 

(30, 39) 
1.4625e8  

(4 y, 232 d, 17 h) 

2.4063e8 

(7 y, 230 d, 42 min.) 

B (27, 41) 

1.4939e8  

(4 y, 269 d, 58 

min.) 

(27, 41) 

1.4975e8 

(4 y 273 d 5 h 13 

min.) 

2.8484e8 

(9 y 11 d 17 h 14 

min.) 

C (10, 27) 

1.4379e8  

(4 y, 204 d, 6 h, 18 

min.) 

(10, 27) 

1.4415e8 

(4 y, 208 d, 9 h, 40 

min.) 

2.7548e8 

(8 y, 268 d, 10 h, 6 

min.) 

D (27, 41) 

1.4903e8 

(4 y, 264 d, 21h, 48 

min.) 

(27, 41) 
1.4940e8 

(4 y, 269 d, 4 h) 

3.0581e8  

(9 y, 254 d, 11 h, 14 

min.) 

Initial crack orientation: normal distribution (mean = 45º, STD = 1º) 

A (44, 24) 

3.1336e8 

(9 y, 341 d, 21 h, 2 

min.) 

(44, 24) 

3.1375e8 

(9 y, 346 d, 8 h, 46 

min.) 

3.5280e8 

(11 y, 68 d, 6 h, 38 

min.) 

B (44, 24) 

2.2536e8 

 (7 y, 53 d, 6 h, 56 

min.) 

(44, 24) 

2.2575e8 

(7 y, 57 d, 20 h, 20 

min.) 

2.6750e8 

(8 y, 176 d, 2 h, 52 

min.) 

C (44, 24) 

3.2775e8 

(10 y, 143 d, 8 h, 59 

min.) 

(44, 24) 

3.2815e8 

(10 y, 148 d, 46 

min.) 

3.6976e8 

(11 y, 264 d, 15 h, 

19 min.) 

D (44, 24) 

2.2402e8 

 (7 y, 37 d, 20 h, 45 

min.) 

(44, 24) 

2.2440e8 

(7 y, 42 d, 5 h, 20 

min.) 

2.6597e8 

(8 y, 158 d, 8 h, 58 

min.) 

Initial crack orientation: normal distribution (mean = 45º, STD = 5º) 

A (3, 30) 

1.4101e8 

(4 y, 172 d, 1 h, 27 

min.) 

(3, 30) 

1.4140e8 

(4 y, 176 d, 13 h, 

46 min) 

1.5518e8 

(4 y, 336 d, 1 h, 56 

min) 

B (1, 40) 

1.5176e8 

 (4 y, 296 d, 11 h, 

16 min) 

(1, 40) 
1.5198e8 

(4 y, 299 d, 40 min) 

1.5641e8 

(4 y, 350 d, 6 h) 

C (14, 10) 

1.4766e8 

(4 y, 249 d, 2 h, 2 

min) 

(14, 10) 
1.4805e8 

(4 y, 253 d, 13 h) 

1.6242e8 

(5 y, 54 d, 20 h, 47 

min) 

D (21, 40) 

1.5148e8 

 (4 y, 293 d, 6 h, 51 

min) 

(21, 40) 

1.5171e8 

(4 y, 295 d, 21 h, 

40 min) 

1.5648e8 

 (4 y, 351 d, 2 h) 

 

The fracture pattern of each model at the stage of failure has also been studied. The 

fracture pattern of model A is shown in Fig. 4-38 and Fig. 4-39 as an example. It is 
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seen that most of the zones forming the shear band failed in shear. From the zoomed 

in area in Fig. 4-38 and Fig. 4-39, it is seen that in most of the failed zones the 

microcracks have reached the zone boundary, which means these zones fail in the 

subcritical crack propagation phase, which is also supported by the comparatively 

long lifetimes of the models (Table 4-17). 

 

 
Figure 4-38 Fracture pattern of model A at failure (zones in green: tensile failure; zones in red: shear 

failure; zones in gray: failed in the past; initial crack lengths: normal distribution, mean = 0.013 m, 

STD = 0.0001 m; initial crack orientation: uniform distribution) 

 

 
Figure 4-39 Fracture pattern of model A at failure (zones in green: tensile failure; zones in red: shear 

failure; zones in gray: failed in the past; initial crack lengths: normal distribution, mean = 0.013 m, 

STD = 0.0001 m; initial crack orientation: normal distribution, mean = 45º, STD = 1º) 

 

To study the influence of the crack orientation on the lifetime, uniaxial compressive 

tests on models with different orientations have also been performed. With initial 

crack length and orientation following normal distribution (different mean values, 

STD: 1º), uniaxial compressive test were performed. Model A’s realization of initial 

crack lengths has been used here. Both the analytical and numerical predicted 

lifetimes are listed in Table 4-18. The numerical predicted lifetime results are also 

shown in Fig. 4-40. It is seen from Table 4-18 that the numerical results are in good 

agreement with the analytical results with respect to both the first zone failure time 

and position. In principal, the numerical results show the same trends as already 

documented in Fig. 4-21 (b). The shortest lifetime is found at a mean crack orientation 
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of about 55º. It takes longer time for the zone to fail if the mean initial crack 

orientation is bigger or smaller. The influence of the mean orientation on the lifetime 

is also great: the lifetime is only about 4 years 26 days if the mean orientation is 55º, 

while ascends to about 110 years 45 days if the mean orientation is 40º. 

 

Table 4-18 Lifetime of model A with different mean orientations under compressive load of 18 MPa 

(initial crack orientation follow normal distribution) 

 Analytical results Numerical results 

Mean  

orientation 

First  

failure 

zone 

First failure time 

(s) 

First  

failure 

zone 

First failure time 

(s) 

Lifetime  

(s) 

40º (44, 24) 

2.6821e9 

(85 y, 17 d, 20 h, 

11 min.) 

(44, 24) 

2.6849e9 

(85 y, 50 d, 14 h, 8 

min.) 

3.4729e9 

(110 y, 45 d, 18 h, 

35 min.) 

45º (44, 24) 

3.1336e8 

(9 y, 341 d, 21 h, 2 

min.) 

(44, 24) 

3.1375e8 

(9 y, 346 d, 8 h, 46 

min.) 

3.5280e8 

(11 y, 68 d, 6 h, 38 

min.) 

50º (37, 7) 

1.4233e8 

(4 y, 187 d, 6 h, 45 

min.) 

(37, 7) 
1.4256e8 

(4 y, 190 d) 

1.5111e8 

(4 y, 289 d, 20 

min.) 

55º (12, 8) 

1.2248e8 

(3 y, 322 d, 14 h, 5 

min.) 

(12, 8) 

1.2264e8 

(3 y, 324 d, 10 h, 

40 min.) 

1.2847e8 

(4 y, 26 d, 23 h, 16 

min.) 

60º (41, 26) 

1.9086e8 

(6 y, 19 d, 1 h, 33 

min.) 

(41,26) 

1.9110e8 

(6 y, 21 d, 19 h, 20 

min.) 

2.0481e8 

(6 y, 180 d, 10 h, 40 

min.) 

65º (41, 26) 

1.2313e9 

(39 y, 15 d, 16 h, 

23 min.) 

(41, 26) 

1.2327e9 

(39 y, 32 d, 17 h, 

15 min.) 

1.3811e9 

(43 y, 290 d, 4 h, 37 

min.) 

 

 
Figure 4-40 Natural logarithm of lifetime (seconds) in uniaxial compressive test with different mean 

crack orientation 
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4.4.4 Conclusions 

The lifetime prediction scheme for fixed orientation model has been proposed and the 

application of this scheme to both the single zone and multi-zone model has been 

successful. The single zone model under different load configuration has been studied 

exhaustively, and precise lifetime predictions were obtained with correct fracture 

mode predicted for every case, which ensured the applicability of this model scheme 

to the multi-zone model with more complex stress conditions. For a single zone, the 

lifetime is shorter if the load becomes bigger or the initial crack is longer under both 

tensile and compressive loading conditions. In tensile tests, the lifetime is longer the 

more the crack axis is parallel to the applied tensile stress (the same holds for the 

mean orientation in multi zone models); while in compressive tests the lifetimes have 

a U-shaped curve with ascending crack orientation. The shortest lifetime was found at 

a crack orientation of about 55º (the same holds for the mean orientation in multi zone 

models). The numerical predicted lifetimes of the first zone failure also showed good 

agreement with the analytical solutions in multi-zone models. Especially, the position 

of the first failure zone has been predicted correctly for each case in the multi-zone 

model under both tensile and compressive load. It is observed from multiple zone 

models that the macroscopic fractures grow perpendicularly to the tensile loading 

directions; while under compressive loads, shear bands are formed with the 

inclination of about 60º to the horizontal direction (30º to the loading direction), 

which confirms Mohr-Coulomb theory. The macroscopic fracture pattern formed 

under tensile load is more uneven and the shear band has a more scattered pattern 

with uniformly distributed crack orientation compared to normally distributed crack 

orientation. Also, the influence of the standard deviation of the crack orientation has 

been studied under compressive load. The shear band is found more scattered and the 

lifetime is shorter with bigger standard deviation (5º instead of 1º). Similar to the 

basic model, it is observed that under tensile loads, the zones are more likely to fail by 

KI > KIC, while in compressive tests, the zones often fail by crack lengths reaching the 

zone dimensions (subcritical crack propagation phase). 

 

4.5 Wing crack model 

It’s more commonly seen in natural rock structures that more than one loading mode 

is present, known as mixed-mode loading condition. Considering only 2D model 

again, this means Mode I and Mode II loading are superimposed on the crack. In the 

basic model and the fixed orientation model, the mixed-mode loading condition is 

considered, but the technique was to calculate the stress intensity factor under each 

loading mode separately, and to include both contributions into the crack propagation 

velocity through Charles equation. In this section, the wing crack model strategy is 

proposed where the crack does not extend in its own plane but forms a wing crack in 

the direction of the maximum circumferential stress. The stress intensity factor at the 
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wing crack tip is obtained through a superposition method. Lifetime prediction 

scheme for wing crack model is also proposed and tested. Various initial crack 

orientations, wing crack propagation and corresponding stress intensity factor 

calculation scheme under mixed load loading is also introduced. 

 

4.5.1 Crack initiation (Kink model)  

Consider a single crack with the length of 2a under biaxial loading with the major 

stress being vertical. The normal and shear stresses on the crack are described by Eq. 

4-9 and Eq. 4-10, respectively. The stress intensity factors of the crack in this case are 

expressed by Eq. 4-11 and Eq. 4-12. By using these two stress intensity factors KI and 

KII differentiated by different loading modes on the initial main crack, the 

circumferential stress near the crack tip is given (Gross 2006): 
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where r and θ are the polar coordinates originated at the tip of the crack, as shown in 

Fig. 4-41. 

 

 
Figure 4-41 Initiation of the crack under mixed-mode loading 

 

A small kink forms at the tip of the crack in the initial phase of the propagation. The 

direction of the kink is affected by the comparative dominance of either of the two 

loading modes. Research done by Erdogan and Sih (1963) has shown that the crack 

would kink to the direction of the maximum circumferential stress (maximum hoop 

stress). The denotation of the kink direction θ is the angle between the kink and the 

initial main crack, which can be deduced from 
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and leads to 
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or  
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if KI ≠ 0. 

 

Under pure Mode I loading (KI ≠ 0 and KII = 0), according to the equation, θ equals to 

0, which means the propagation starts in the tangential direction from the crack tip. 

For pure Mode II (KI = 0 and KII ≠ 0), the equation leads to cosθ = 1 / 3, which means 

approximately ± 70.5º for the kink direction. The positive or negative direction 

depends on the sign of KII. 

 

The crack tip stress fields (in polar coordinates) for pure Mode I and Mode II loading 

are given by Anderson (1995): 
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The local Mode I stress intensity factor at the kink tip can be deduced by the nominal 

K values of the main crack through summing the normal and shear stresses, as is 

shown below 
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which is also in agreement with the expression of circumferential stress.  

 

Take biaxial compression as an example: in this case KI will be ignored since the 

main crack is closed, and pure Mode II (KI = 0 and KII ≠ 0) condition occure. The 

stress intensity factor for the kink is 
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Thus substituting θ = ± 70.5º (sign of θ depends on that of KII), the local stress 

intensity factor at the crack tip is calculated. 

 

4.5.2 Crack propagation model (Wing crack model) 

In consideration that the crack propagates along a curved path under general loading 

conditions, an approximation scheme is needed for the further crack propagation 

simulation. An improved wing crack model proposed by Baud et al. (1996) has been 

adopted in this research. This innovative model simplified the exact local stress 

intensity factor derivation for the wing crack system proposed by Nemat-Nasser and 

Horii (1982), Horii and Nemat-Nasser (1985). The simplification involves replacing 

the curved crack by a straight one by connecting the original main crack tip to the 

wing crack tip, as shown in Fig. 4-42. It is observed that the curved wing crack 

orientation is related to its length. Thus the orientation of the simplified straight crack 

also depends on its length. 

 

 
Figure 4-42 Replacement of the real wing crack with a straight one (Baud et al. 1996) 

 

To decide which direction the wing crack tip is propagating for different time span, a 

propagation path simplification for each time step is applied in the code. The ‘time 

step’ is used as a parameter in the code representing a real time span. It has been 

demonstrated by Cotterell and Rice (1980) that the crack propagation follows the 

direction where crack tip is under pure Mode I condition (KII = 0 and the energy 

release rate has a local maximum). For each time step, the crack (simplified to a 

straight crack) propagates from the former crack tip and follows the direction where 

pure Mode I condition is met. Then the main crack tip and this new wing crack tip are 

connected to replace the real wing crack. The numerical simulation scheme for the 

simplified wing crack propagation is illustrate in Fig.4-43. 
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Figure 4-43 Simplified propagation scheme for wing crack 

 

Point O in Fig.4-43 is the original main crack tip. After one time step the real crack 

propagation path is represented by Curve OA. The real crack propagates in a real-time 

pattern so that a pure Mode I condition is satisfied for any infinitesimal time span 

within this time step. The simulation of this process is done by replacing Curve OA 

by the straight red line OA with its orientation in accordance with the pure Mode I 

condition of this time step (Fig. 4-43 (a)). Local stress intensity factor KA is then 

calculated using the length OA and its orientation. Within the next time step the real 

crack path (Curve AB) is replaced by straight dashed red line AB. Point B becomes 

the current wing crack tip. Then, Point O and Point B are connected (solid red line OB) 

as the simplified wing crack substituting real wing crack (Curve OAB) in this step 

(Fig. 4-43 (b)). With the length of line OB and its own orientation the local stress 

intensity factor KB is calculated for the next time step. Using KB, the wing crack 

propagates along the curve BC in the next step, which was simplified by the dashed 

red line BC. Connecting Point O and Point C, the straight solid red line OC represents 

the wing crack (Curve OBC) at this step (Fig. 4-43 (c)). This process goes on until the 

crack propagation halts or the zone containing the crack fails. 

 

4.5.3 Stress intensity factor calculation  

Baud et al. (1996) proposed a superposition method for the stress intensity factor 

calculation for the simplified straight wing crack. The stress intensity factor is studied 

for the case where the normal stress on the crack is compressive. It is assumed that the 

stress intensity factor is composed of two parts: a component KISO for the two straight 

wing cracks on both ends of the main crack, and a component KSLI for the main crack 

subjected to the same stress conditions. This superposition method is illustrated for 

biaxial compression in Fig. 4-44. 
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Figure 4-44 Superposition method for K value under biaxial compression (Baud et al. 1996) 

 

Assuming the length of each wing crack is l, they are regarded as a single straight 

crack of length 2l. The main crack orientation is β related to the horizontal direction. 

The angle between the main crack and the wing crack is θ, as shown in Fig. 4-44. 

Assuming the major principal stress is σV and the minor principal stress is σH, the 

component KISO is given as: 
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For the calculation of KSLI, the initial system of the main crack with a wing crack pair 

is substituted by an equivalent straight crack of the length 2 (a + leq) with the same 

orientation as the initial main crack (Fig. 4-44). This equivalent crack consists of a 

central part with length 2a and two equivalent wing lengths leq on both ends. But since 

only the shear stress contributes to the K value at the wing crack tip (main crack is 

closed under compressive normal stress) and wing crack propagates under pure Mode 

I condition (no shear stress), only the central part with length equal to the initial crack 

length is subjected to the same effective shear stress. Thus the stress intensity factor 

of the equivalent crack is written as (Sih and Liebowitz 1968): 
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where σeff is the effective shear stress on the main crack (|σeff| = |σT| - μ|σN|, consulting 

Eq. 4-9 and Eq. 4-10 for σT and σN). By implementing this K value into the 

transformed stress intensity factor for wing crack initiation (Equation 4-25), the 

component KSLI is given as (Baud et al. 1996) 
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To determine the value of leq, Horii and Nemat-Nasser (1986) introduced a pair of 

collinear splitting forces F = 2a σeff to represent the shear effect of the main crack on 

the wing crack. The angle between the forces and the wing crack is θ due to its 

orientation. In this case the KI value for a long wing crack with a length l is: 
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Considering the expressions of KSLI and KI (Equation 4-28 and 4-29), the wing crack 

equivalent length leq is deduced: 
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Zhao and Wang (2011) have proposed a new scheme to obtain leq, where an effective 

crack length l
*
 has been applied to equation 4-29 for the case of crack initiation when 

wing crack length l is rather small: 
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This expression is equal to the stress intensity factor at initiation of the original crack 

under pure shear loading (maximum θ = 0.392π): 
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An effective crack length of l
*
 = 0.27a can be obtained by identifying Equation 4-31 

and 4-32 at θ = 0.392π and l = 0. By substituting l
*
 = 0.27a into Equation 4-31, 

equaling it to Equation 4-28 and letting l → 0, leq for the case of a rather short wing 

crack length is obtained: 
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A general expression of leq supposed to satisfy both long and short wing crack length 

conditions was given (Zhao and Wang 2011): 
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With leq obtained, by adding KSLI and KISO, the Mode I stress intensity factor at the 

wing crack tip is: 
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The expression of K at wing crack tip is different if the main crack is subjected to 

tensile normal stress rather than compressive. In this case the crack is considered open, 

so both shearing and tensile load from the main crack should contribute to the K value 

at the wing crack tip. Thus, a KTEN as the tensile contribution from the main crack 

should also be included in the K expression for the wing crack tip, while the KISO and 

KSLI component remain the same. With the major principal stress σV being 

compressive and minor principal stress σH tensile, the superposition is shown in Fig. 

4-45. 
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Figure 4-45 The superposition method for K value with tensile normal stress on the main crack 

 

Using the kink model at the crack initiation and kink direction θ of the wing crack, 

KTEN is given as: 
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where σN is the normal tensile stress on the main crack. By adding KSLI, KISO and 

KTEN, the Mode I stress intensity factor at the wing crack tip is obtained:  
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where the expression of leq remains the same. Thus K value expressions at the wing 

crack tip of both cases have been given: Equation 4-35 for main crack under 

compressive normal stress (closed crack), and Equation 4-37 for main crack under 
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tensile normal stress (open crack). The calculation program is designed to choose one 

of the two K calculating procedures according to the normal stress state on the main 

crack.  

 

4.5.4 K value verification for wing crack model 

For the wing crack model, the superposition method of stress intensity factor 

calculation is tested in this subsection. A square shaped single-element model with the 

size of 0.04 × 0.04 m was built for the verification. The initial crack length is set to 

0.004 m; orientation is set to 45º from the horizontal direction and coefficient of 

friction μ = 0.3. Other material parameters remain unchanged as given in Table 4-1. 

 

For the cases where the initial main crack is subjected to compressive normal stress, 

biaxial and uniaxial tests have been performed. The normalized stress intensity factors 

(KI / (|σV| (πa)
1/2

), where a denotes the half initial crack length) for different horizontal 

and vertical stress ratios are illustrated in Fig. 4-46. 

 

 
Figure 4-46 Comparison of normalized K values between numerical model and results from 

Baud et al. (1996) (l: wing crack length; a: half initial crack length) 

 

It can be seen from Fig. 4-46 that the numerical results are in good agreement with 

those of Baud et al. (1996) in each loading case, which documents the applicability of 

the superposition method implemented into FLAC. The slight difference in the results 

is caused by the further simplification in the numerical model that for each time step, 

the propagation is also considered to be straight rather than curved as described in 

Subsection 3.1.4. 
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The equivalent wing crack scheme proposed by Zhao and Wang (2011) (Eq. 4-34) has 

also been applied to the superposition method. A comparison between this scheme 

and the numerical results using Baud et al. (1996) (Eq. 4-30) is given in Fig. 4-47: 

 

 

Figure 4-47 Normalized K values with different eql  schemes compared to exact solution (Horii and 

Nemat-Nasser 1985) 

 

Both numerical results have shown reasonable agreement with the exact solution 

(Horii and Nemat-Nasser 1985), especially in the uniaxial test (σH / σV = 0) and 

biaxial compressive test (σH / σV = 0.04). The K values from two different leq schemes 

agree well when the wing crack length is comparatively long. Although Zhao and 

Wang’s scheme has led a slightly better result when the wing crack length l is very 

small, the scheme of Baud et al. (1996) results in a better agreement with the exact 

solution in general. So the leq scheme introduced by Baud et al. (1996) has been 

adopted in this research. 

 

4.5.5 Life time prediction for wing crack model (single zone) 

(1) Life time prediction scheme 

In the wing crack model, the crack propagation velocity is defined by stress intensity 

factor at the wing crack tip through Charles equation: 

 

n
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It is assumed in wing crack model that the crack only propagates in Mode I condition. 

For simplicity, the stress intensity factor at the wing crack tip is also expressed as KI 

in this study. Considering a single zone containing an initial crack under constant 

stress, with length of each wing crack l, the life time can be calculated by: 
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where C is a rock-specific parameter as introduced in Subsection 2.3.2. n is the stress 

corrosion index. If the crack is under a compressive normal stress with 

leq = (9 / 4) l cos
2
(θ / 2), the KI is obtained by Equation 4-35. So the crack propagation 

velocity in this case is expressed as: 
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If the crack is under tensile normal stress, KI is obtained by Equation 4-37. The crack 

propagation velocity in this case is expressed as: 
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Due to the complexity of the expression of υ(l), the life time of the zone tzone can only 

be obtained through numerical integration. The composite trapezoidal rule is used to 

solve these equations. With the integrating domain [0 lc] is divided into “N” equally 

spaced panels, the approximation can be expressed as: 
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where f(l) = 2 / (CKI
n
) denotes the reciprocal of the crack propagation velocity for one 

side of the wing crack. Measures have been taken to make the approximation result 

precise. The code is programmed in such a way that after one approximation the 

integrating domain is subdivided into “N” equally spaced panels, another one with 

“2N” divisions is also conducted. The approximation is considered acceptable if the 

percentage of the error of these two consecutive calculations is below a certain value 

which is set for the specific precision requirements of the model (0.01 % in this study). 

Otherwise, another approximation will be performed (two times the former divisions). 

This process is repeated until the error is below this limit. 

 

The critical wing crack length lc is determined by the minimum of two limiting values: 

the critical length determined by KIC and the critical length determined by the 

dimension of the zone dzone (Fig. 4-48).  

 

 
Figure 4-48 Cases of the critical wing crack length in single zone models (major principal stress: σV; 

minor principal stress: σH; β = 45º) 
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If the main crack is under compressive stress (Fig. 4-48 (c)), according to Equation 4-

35, the critical wing crack length lc determined by KIC is obtained by solving the 

equation: 
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If the main crack is under the tensile stress (Fig. 4-48 (a)), according to Equation 4-37, 

the critical wing crack length lc determined by KIC is obtained by solving the equation: 
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The Newton’s method is applied to obtain the approximation of the root lc of Equation 

4-43 and 4-44. In the single zone model, the major principal stress is set vertical. So 

for the compressive case, the wing crack propagates vertically. In this case, 

θ + β = π / 2, and the KISO component in the wing crack KI is expressed as 

KISO = σH (πl)
1/2

. Letting x = a / (a + leq) (satisfying  10x ) and 

l = 4leq / (9cos
2
(θ / 2)) derived from Equation 4-30, the function of x is expressed: 
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The derivative of the function f(x) is: 
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As the major principal stress is set vertical, for the tensile case, the wing crack 

propagates horizontally, which means θ + β = 0. In this case, the KISO component in 

the wing crack KI is expressed as KISO = σV (πl)
1/2

. The function of x is expressed: 
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The derivative of f (x) is: 
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Giving a start value for xo, with the expressions of f(x) and f'(x), a better 

approximation x1 is obtained: 
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The calculation is repeated until a sufficiently precise approximation is reached: 
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In this study, the approximation is considered acceptable if the percentage of the error 

between xk+1 and xk is below 0.01 %. This limiting value could also be changed 

depending on the precision requirement of each specific model. When an acceptable 

xk+1 value is reached, the approximation of the critical wing crack length lc is obtained 

by: 
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The critical wing crack length determined by the dimension of the zone dzone is 

expressed as: 
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where dzone denotes the length of the zone in this case and 2a denotes the length of the 

initial main crack. Especially, if the wing crack propagates horizontally (Fig.4-48 (b)), 

the critical wing crack length is obtained: 
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If the wing crack propagates vertically (Fig.4-48 (d)), the critical wing crack length is 

obtained: 
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The minimum of the three lc values (Eq. 4-51 and Eq. 4-52) is considered to be the 

critical wing crack length, and used as the upper limit of the integrating domain in 

Equation 4-42. 

 

(2) Application of the lifetime prediction scheme 

The lifetime prediction scheme for wing crack model has been tested. A square 

shaped single zone with the size of 0.04 × 0.04 m
2
 (the same size as a single zone in 

the former models) containing an initial crack was used in the tests. The material 

parameters follow Table 4-1. Both uniaxial and biaxial tests have been studied.  

 

In the uniaxial tensile tests, both failure modes have been detected: failure by KI value 

reaching the critical value KIC (Fig. 4-49 (a)), and failure by crack propagation 

reaching the zone boundary (Fig. 4-49 (b)). For the uniaxial compressive test, only 

failure by crack propagation reaching the zone boundary has been detected (Fig. 4-49 

(c)). The fact that no failure has occurred by KI ≥ KIC in the uniaxial compressive test 

agrees with the KI calculation scheme. As can be seen in Fig. 4-48, for the uniaxial 

compressive loading case, the KI descends as the crack propagates. So if the model 

didn’t fail by KI ≥ KIC at the wing crack initiation stage, it is no likely to fail in this 

way when the wing crack propagates even further. The lifetime results of the model 

under uniaxial loads corresponding to Fig. 4-49 are shown in Table 4-19. As can be 

seen in the table, the numerical predicted lifetimes showed good agreement with the 

analytical solutions (Eq. 4-39) in all cases (deviations equal to or smaller than 0.37 %). 
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The error between the numerical calculation and analytical solution is kept to a very 

low range also for other important parameters related to the lifetime: the deviations of 

stress intensity factor at failure are no bigger than 0.006 %; the deviations of critical 

half wing crack propagation length are no bigger than 0.05 %. In addition, correct 

failure mode of the zone was predicted for every case.  

 

  
Uniaxial tensile load: 12 MPa;  

initial crack length: 0.013 m; 

failure mode: KI > KIC 

(a) 

Uniaxial tensile load: 5.5 MPa; 

initial crack length: 0.035 m; 

failure mode: crack length > zone size 

 (b) 
  

 

Uniaxial compressive load: -22 MPa;  

initial crack length: 0.035 m;  

failure mode: crack length > zone size 

(c) 
 

Figure 4-49 Crack condition at failure under uniaxial loads (initial crack orientation: 45º) 

 

Table 4-19 Calculation results under uniaxial loads (corresponding to Fig. 4-49) 

(a) Uniaxial tensile load of 12 MPa 

 Analytical results Numerical results Error 

KI 1.7900e6 1.7901e6 0.006 % 

Half crack propagation (m) 6.1427e-4 6.1458e-4 0.05 % 

Life time (s) 3.7131 3.7270 0.37 % 

Failure mode KI > KIC KI > KIC 0 

(b) Uniaxial tensile load of 5.5 MPa 

 Analytical results Numerical results Error 

KI 1.6736e6 1.6737e6 0.006 % 

Half crack propagation (m) 7.6256e-3 7.6265e-3 0.01 % 

Life time (s) 
1.5180e5 

(1 d, 18 h, 9 min.) 

1.5236e5 

(1 d, 18 h, 19 min.) 
0.37 % 

Failure mode Crack length > zone size Crack length > zone size 0 
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(c) Uniaxial compressive load of 22 MPa 

 Analytical results Numerical results Error 

KI 8.7878e5 8.7875e5 0.003 % 

Half crack propagation (m) 7.6256e-3 7.6265e-3 0.01 % 

Life time (s) 
5.9352e9 

(188 y, 74 d, 13 h, 38 min.) 

5.9386e9 

(188 y, 113 d, 5 h, 24 min.) 
0.06 % 

Failure mode Crack length > zone size Crack length > zone size 0 

 

The lifetime prediction scheme has been further tested on a single zone for biaxial 

loading conditions (major principal stress is applied vertically). The crack pattern of 

the model at failure in each case is shown in Fig. 4-50 and the calculation results are 

listed in Table 4-20. It is seen in Fig. 4-50 that both zone failure modes: failure by 

KI ≥ KIC and failure by crack reaching the zone boundary, have been observed under 

biaxial tensile loads (Fig. 4-50 (a), (b)), under major tensile load and minor 

compressive load (Fig. 4-50 (c), (d)), and under major compressive load and minor 

tensile load (Fig. 4-50 (e), (f)) with different load magnitudes and crack conditions. 

However, only failure by crack length reaching the zone boundary has been observed 

under biaxial compressive loads (Fig. 4-50 (g)). This phenomenon is supported by Fig. 

4-46 for the biaxial compressive loading case, where the KI descends as the crack 

propagates. If KI of the wing crack tip did not reach KIC at wing crack’s initiation, it is 

not possible to reach KIC when the wing crack propagates even further. The numerical 

predicted lifetimes have shown accordance with the analytical solutions in all cases: 

the deviations between the numerical predicted lifetime and the analytical solution 

range from 0.003 % to 1.7 % (Table 4-20). For the stress intensity factor at failure, the 

deviations between the numerical calculation and analytical result has been less than 

0.05 %; the deviations of the half crack propagation length between the numerical 

calculation and analytical result has been no bigger than 0.01 % in all cases. In 

addition, the correct failure mode for the zone was predicted in all cases. 

 

The wing crack model has been studied exhaustively under both uniaxial and biaxial 

loads, where all possible loading configurations have been applied and all possible 

failure modes have been observed. The lifetime prediction scheme for wing crack 

models is thus verified by the well agreement between the numerical results and the 

analytical solutions, which also proved the applicability of the lifetime prediction 

scheme for wing crack model to more complex stress conditions (multi-zone model). 
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Principal stresses: 12 MPa , 6 MPa;  

initial crack length: 0.013 m; 

failure mode: KI > KIC 

(a) 

 Principal stresses: 5 MPa, 4 MPa;  

initial crack length: 0.035 m; 

failure mode: crack length > zone size 

(b) 
   

Loading case I: major principal stress (vertical): tensile;  

minor principal stress (horizontal): tensile 

 

 

 

 
Principal stresses: 12 MPa, -6 MPa;  

initial crack length: 0.013 m; 

failure mode: KI > KIC 

(c) 

 Principal stresses: 5 Mpa, -4 MPa;  

initial crack length: 0.035 m; 

failure mode: crack length > zone size 

(d) 
   

Loading case II: major principal stress (vertical): tensile;  

minor principal stress (horizontal): compressive 

 

 

 

 
Principal stresses: -12 MPa, 6 MPa;  

initial crack length: 0.013 m; 

failure mode: crack length > zone size 

 (e) 

 Principal stresses: -12 MPa, 8 MPa;  

initial crack length: 0.013 m; 

failure mode: KI > KIC 

(f) 
   

Loading case III: major principal stress (vertical): compressive;  

minor principal stress (horizontal): tensile 
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Principal stresses: -22 MPa, -0.12 MPa;  

initial crack length: 0.035 m; 

failure mode: crack length > zone size 

 (g) 
 

Loading case IV: major principal stress (vertical): compressive; 

minor principal stress(horizontal): compressive 

 

Figure 4-50 Crack pattern at failure for the biaxial test (initial crack orientation: 45º) 

 

 

 

Table 4-20 Calculation results for the biaxial tests (corresponding to Fig. 4-50) 

Loading case I 

(a) 

 Analytical results Numerical results Error 

KI 1.7900e6 1.7901e6 0.006 % 

Half crack propagation (m) 4.9255e-4 4.9270e-4 0.03 % 

Life time (s) 9.1 9.2 1 % 

Failure mode KI > KIC KI > KIC 0 

(b) 

 Analytical results Numerical results Error 

KI 1.6630e6 1.6631e6 0.006 % 

Half crack propagation (m) 7.6256e-3 7.6265e-3 0.01 % 

Life time (s) 
1.8184e7 (s) 

(210 d, 11 h, 3 min.) 

1.8494e7 (s) 

(214 d, 1 h, 20 min.) 
1.7 % 

Failure mode Crack length > zone size Crack length > zone size 0 

Loading case II 

(c) 

 Analytical results Numerical results Error 

KI 1.7900e6 1.7900e6 < 0.05 % 

Half crack propagation (m) 8.5410e-4 8.5410e-4 < 0.001 % 

Life time (s) 2.3 2.3 0.09 % 

Failure mode KI > KIC KI > KIC 0 

(d) 

 Analytical results Numerical results Error 

KI 1.3799e6 1.3799e6 < 0.006 % 

Half crack propagation (m) 7.6256e-3 7.6265e-3 0.01 % 

Life time (s) 
2.3837e6 

(27 d, 14 h, 7 min.) 

2.3846e6 

(27 d, 14 h, 22 min.) 
0.04 % 

Failure mode Crack length > zone size Crack length > zone size 0 
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Factors influencing lifetime have been investigated. Lifetime results of the zone under 

different constant loads, initial crack lengths and initial crack orientations have been 

investigated. The results are seen in Table 4-21, 4-22 and 4-23. The corresponding 

lifetime results obtained by FLAC are also seen in Fig. 4-51, 4-52 and 4-53.  

 

 

 

Table 4-21 Uniaxial tests with different constant loads (corresponding to Fig. 4-51) 

(a) Under tensile loads 

Load (MPa) 
Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

6 
5.3638e10 

(1,700 y, 314 d, 19 h, 22 min.) 

5.3829e10 

(1,706 y, 336 d, 8 h, 52 min.) 
KI > KIC 

8 
3.2815e6 

(37 d, 23 h, 31 min.) 

3.2935e6 

(38 d, 2 h, 52 min.) 
KI > KIC 

9 
6.1808e4 

(17 h, 10 min.) 

6.2033e4 

(17 h, 13 min.) 
KI > KIC 

10 
1,769 

(29 min., 29 s) 

1,776 

(29 min., 36 s) 
KI > KIC 

11 
71.0320 

(1 min., 11 s) 

71.2930 

(1 min., 11 s) 
KI > KIC 

12 3.7 3.7 KI > KIC 

Loading case III 

(e) 

 Analytical results Numerical results Error 

KI 1.6281e6 1.6281e6 < 0.006 % 

Half crack propagation (m) 1.5404e-2 1.5404e-2 < 0.006 % 

Life time 
2.6513e7 (s) 

(306 d, 20 h, 39 min.) 

2.6514e7 (s) 

(306 d, 20 h, 53 min.) 
0.003 % 

Failure mode Crack length > zone size Crack length > zone size 0 

(f) 

 Analytical results Numerical results Error 

KI 1.7900e6 1.7900e6 < 0.005 % 

Half crack propagation (m) 9.0195e-3 9.0197e-3 0.002 % 

Life time (s) 
4.2916e4 

(11 h, 55 min.) 

4.2919e4 

(11 h, 55 min.) 
0.007 % 

Failure mode KI > KIC KI > KIC 0 

Loading case IV 

(g) 

 Analytical results Numerical results Error 

KI 8.6987e5 8.6985e5 0.002 % 

Half crack propagation (m) 7.6256e-3 7.6265e-3 0.01 % 

Life time 
8.3667e9 (s) 

(265 y, 111 d, 16 h, 14 min.) 

8.3714e9 (s) 

(265 y, 166 d, 4 h, 6 min.) 
0.06 % 

Failure mode Crack length > zone size Crack length > zone size 0 
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(b) Under compressive loads 

Load (MPa) 
Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

20 
1.4769e11 

(4,683 y, 29 d, 8 h, 6 min.) 

1.4777e11 

(4,685 y, 261 d, 5 h, 51 min.) 
Crack length > zone size 

20.5 
6.4223e10 

(2,036 y, 185 d, 21 h, 57 min.) 

6.4260e10 

(2,037 y, 239 d, 5 h, 9 min.) 
Crack length > zone size 

21 
2.8495e10 

(903 y, 203 d, 22 h, 47 min.) 

2.8511e10 

(904 y, 24 d, 12 h, 58 min.) 
Crack length > zone size 

21.5 
1.2887e10 

(408 y, 230 d, 8 h, 22 min.) 

1.2894e10 

(408 y, 314 d, 6 h, 45 min.) 
Crack length > zone size 

22 
5.9352e9 

(188 y, 74 d, 13 h, 38 min.) 

5.9386e9 

(188 y, 113 d, 5 h, 24 min.) 
Crack length > zone size 

 

Table 4-22 Uniaxial tests with different initial crack lengths (corresponding to Fig. 4-52) 

(a) Under tensile load of 12 MPa 

Initial crack length 

(m) 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

0.006 
8.0151e5 

(9 d, 6 h, 38 min.) 

8.0445e5 

(9 d, 7 h, 27 min.) 
KI > KIC 

0.008 
8,359 

(2 h, 19 min.) 

8,389 

(2 h, 19 min.) 
KI > KIC 

0.01 
242 

(4 min., 2 s) 

243 

(4 min., 3 s) 
KI > KIC 

0.013 3.7 3.7 KI > KIC 

0.015 0.3 0.3 KI > KIC 

(b) Under compressive load of 22 MPa 

Initial crack length 

(m) 

Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

0.0338 

2.6248e10 

(832 y, 115 d, 15 h, 6 

min.) 

2.6247e10 

(832 y, 107 d, 5 h, 44 

min.) 

Crack length > zone size 

0.034 

2.0451e10 

(648 y, 180 d, 4 h, 37 

min.) 

2.0456e10 

(648 y, 234 d, 6 h, 59 

min.) 

Crack length > zone size 

0.0345 

1.0994e10 

(348 y, 220 d, 12 h, 30 

min.) 

1.0996e10 

(348 y, 251 d, 9 h, 42 

min.) 

Crack length > zone size 

0.035 

5.9352e9 

(188 y, 74 d, 13 h, 38 

min.) 

5.9386e9 

(188 y, 113 d, 5 h, 24 

min.) 

Crack length > zone size 

0.0355 

3.2171e9 

(102 y, 5 d, 10 h, 40 

min.) 

3.2187e9 

(102 y, 23 d, 21 h, 33 

min.) 

Crack length > zone size 

0.0358 
2.2319e9 

(70 y, 281 d, 20 h, 56 min.) 

2.2326e9 

(70 y, 289 d, 20 h, 33 min.) 
Crack length > zone size 
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Table 4-23 Uniaxial tests with different initial crack orientations (corresponding to Fig. 4-53) 

(a) Under tensile load of 12 MPa 

Crack orientation 
Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

0º 0.0066 0.0068 KI > KIC 

10º 0.0061 0.0063 KI > KIC 

20º 0.0073 0.0075 KI > KIC 

30º 0.0309 0.0312 KI > KIC 

40º 0.5305 0.5328 KI > KIC 

45º 3.7131 3.7270 KI > KIC 

50º 44.1 44.3 KI > KIC 

60º 
6.2805e4 

(17 h, 26 min.) 

6.3274e4 

(17 h, 34 min.) 
KI > KIC 

(b) Under compressive load of 22 MPa 

Crack orientation 
Lifetime (s) 

(Analytical solution) 

Lifetime (s) 

(Numerical calculation) 
Failure mode 

42º 
1.9433e10 

(616 y, 82 d, 19 h, 3 min.) 

1.9432e10 

(616 y, 69 d, 17 h, 46 min.) 
Crack length>zone size 

45º 
5.9352e9 

(188 y, 74 d, 13 h, 38 min.) 

5.9386e9 

(188 y, 113 d, 5 h, 24 min.) 
Crack length>zone size 

46º 
4.7612e9 

(150 y, 355 d, 23 h, 9 min.) 

4.7619e9 

(150 y, 364 d, 23 h, 49 min.) 
Crack length>zone size 

48º 
3.9522e9 

(125 y, 117 d, 22 h, 28 min.) 

3.9534e9 

(125 y, 131 d, 16 h, 48 min.) 
Crack length>zone size 

50º 
4.5910e9 

(145 y, 211 d, 14 h, 49 min.) 

4.5924e9 

(145 y, 227 d, 21 h, 45 min.) 
Crack length>zone size 

52º 
7.4697e9 

(236 y, 314 d, 18 h, 4 min.) 

7.4651e9 

(236 y, 261 d, 14 h, 46 min.) 
Crack length>zone size 

 

It is seen in Table 4-21 that with an initial crack length of 0.013 m and initial crack 

orientation of 45º the zones failed all by KI ≥ KIC under the tensile load ranging from 

6 MPa to 12 MPa. With an initial crack length of 0.035 m and initial crack orientation 

of 45º the zones failed all by crack reaching the zone boundary under the compressive 

load ranging from 20 MPa to 22 MPa. It is seen in Table 4-22 that with an initial 

crack orientation of 45º, the zone failed by KI ≥ KIC under the tensile load of 12 MPa 

with an initial crack length ranging from 0.006 m to 0.015 m. The zones failed by 

crack reaching the zone boundary under the compressive load of 22 MPa with an 

initial crack length ranging from 0.0338 m to 0.0358 m. It is seen in Table 4-23 that 

with an initial crack length of 0.013 m under tensile load of 12 MPa, all zones failed 

by KI ≥ KIC with an initial crack orientation ranging from 0º to 60º. With an initial 

crack length of 0.035 m under compressive load of 22 MPa, all zones failed by crack 

reaching the zone boundary with an initial crack orientation ranging from 42º to 52º. 

The numerical predicted lifetimes have shown good agreement with the analytical 

solutions. Similar to the fixed orientation model, the lifetime of the zone is shorter 

with a bigger load under both tensile and compressive regime (Fig. 4-51). The 
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lifetime is also shorter with a longer initial crack length with other factors remaining 

unchanged (Fig. 4-52). It is seen in Fig. 4-53 that under a constant tensile load, the 

lifetime is longer if the initial crack orientation is bigger. Under a constant 

compressive load the shortest lifetime is obtained for an initial crack orientation of 

app. 48º, and the lifetime becomes longer with a bigger or smaller orientation than 

app. 48º. 

 

  
(a) Initial crack length: 0.013 m; 

Initial crack orientation: 45º 

(Uniaxial tensile loads) 

(b) Initial crack length: 0.035 m; 

Initial crack orientation: 45º 

(Uniaxial compressive loads) 

Figure 4-51 Natural logarithm of lifetime (seconds) with different constant loads 

 

  
(a) Uniaxial tensile load: 12 MPa; 

Initial crack orientation: 45º 
(b) Uniaxial compressive load: 22 MPa; 

Initial crack orientation: 45º 

Figure 4-52 Natural logarithm of lifetime (seconds) with different initial crack lengths 

 

  
(a) Uniaxial tensile load: 12MPa; 

Initial crack length: 0.013 m 
(b) Uniaxial compressive load: 22 MPa 

Initial crack length: 0.035 m 

Figure 4-53 Natural logarithm of lifetime (seconds) with different initial crack orientations 
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4.5.6 Study on the multi-zone wing crack model 

In this subsection, the lifetime prediction scheme has been applied to the multi-zone 

wing crack model with its corresponding K superposition calculation scheme under 

different loading conditions. Models with the same geometry as used in former 

subsections and parameters as given in Table 4-1 have been studied. (It can be seen 

from former subsections that models with normal and lognormal distribution of initial 

crack lengths have rendered very similar results with respect to both macroscopic 

fracture pattern and lifetime. For simplicity, only normal distribution of initial crack 

lengths has been applied in this subsection.) The initial crack lengths of the models 

follow the normal distribution with a mean length of 0.035 m and standard deviation 

of 0.0001 m. For the Initial crack orientation, two distributions have been applied: 

uniform distribution, and normal distribution with a mean value of 45º from the 

horizontal direction and a standard deviation of 1º. Both uniaxial and biaxial tests 

have been studied. 

 

(1) A tensile load of 5.5 MPa is applied to the model in the uniaxial tensile test. The 

failure process of the model is shown in Fig. 4-54. Corresponding to the two cases 

with different initial crack orientations, Fig. 4-55 and Fig. 4-56 shows the microscopic 

crack conditions at failure with a zoomed in area of the macroscopic fractures. It is 

seen that macroscopic fracture was formed perpendicular to the applied load for the 

case with normally distributed initial crack orientation; while multiple macroscopic 

fractures formed in the case with uniformly distributed initial crack orientation have 

shown a more uneven pattern, but it is also clearly seen that the trend is still 

perpendicular to the applied load (Fig. 4-54). It is also observed from the failure 

process (Fig. 4-54) that for the case where the initial crack orientation follows normal 

distribution, it took about 7 hours 35 minutes for the first zone to fail, while only after 

less than 1 minutes the macroscopic fracture has penetrated the whole model (at about 

7 hours 36 minutes). While for the case where the initial crack orientation follows 

uniform distribution, the first zone failed in a much shorter time (10 minutes 

1 second), and after farther 5 minutes (at 15 minutes 51 seconds), which was longer 

than the case with a normal distribution, macroscopic fractures have formed 

massively. It is worth noticing that afterwards, the macroscopic fractures have been 

halted and the progress has been very slow: after more than 23 days and 21 hours the 

appearance of the macroscopic fractures has not changed much and a penetration 

through the model still did not occur. The influence of the initial crack orientation on 

the macroscopic fractures is clearly seen by the comparison of the two cases: if the 

initial crack orientation follows uniform distribution (Case 1), the model contains 

more zones with more favorable initial crack orientation for a short failure time than 

an orientation of about 45º (for example, 20º, 10º and 0º etc., consulting Fig. 4-53 (a)), 

which is the mean angle for the case with a normal distribution (Case 2). So it takes 
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much shorter time for some zones to fail and form macroscopic fractures in Case1 

than Case 2, but at the same time Case 1 also contains more zones with less favorable 

initial crack orientation than those in case 2 (for example, 50º, 60º and 70º etc., 

consulting Fig. 4-53 (a)). When the macroscopic fracture in Case 1 reaches a zone 

with an unfavorable initial crack orientation, the progress of the macroscopic fracture 

growth is stopped and eventually a longer lifetime is obtained for Case 1. According 

to lifetime results shown in Table 4-24, the numerical predicted first zone failure time 

has shown good agreement with the analytical solution (Eq. 4-39), and numerical 

results of the failure mode and the position of the first failure zone also match the 

analytical solution. 

 

 
5.5 MPa 

 

   
 10 min. 15 min. 23 d, 21 h, 53 min. 

 Initial crack lengths: normal distribution, mean= 0.035 m, STD= 0.0001 m 

Initial crack orientation: uniform distribution 
 

 
5.5 MPa 

 

   
 7 h 35 min. 21 s 7 h 35 min. 46 s 7 h 36 min. 1 s 

 Initial crack lengths: normal distribution, mean= 0.035 m, STD= 0.0001 m 

Initial crack orientation: normal distribution, mean= 45º, STD= 1º 
 

Figure 4-54 Uniaxial tensile test of the wing crack model (zones in green: tensile failure; zones in gray: 

failed in the past) 

 
Table 4-24 Lifetime results of uniaxial tensile test  

Analytical results Numerical results 

First failure 

zone 

First failure time 

(s) 

First failure 

zone 

First failure time 

(s) 

Lifetime (s) 

Initial crack orientation: uniform distribution 

(2, 22) 578 

(9 min., 38 s) 

(2, 22) 601 

(10 min., 1 s) 

2.0660e6 /NA 

(23 d, 21 h, 53 

min.) 

Initial crack orientation: normal distribution (mean= 45º, STD= 1º) 

(23, 24) 2.7266e4 

(7 h, 34 min.) 

(23, 24) 2.7321e4 

(7 h, 35 min.) 

2.7361e4 

(7 h, 36 min.) 
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The analysis of the microcrack characteristics has revealed that in most of the tension 

failure zones forming the macroscopic fractures the microcracks inside have not 

reached the zone boundary, which means these zones fail by KI ≥ KIC. Especially, in 

the case where initial crack orientation follows normal distribution, as can be seen 

from Fig. 4-56, the first failure zone (Zone (23, 24), consulting Table 4-24) failed by 

crack reaching the zone boundary (the middle zone of the 5 failed zones), and other 

zones failed afterwards by KI ≥ KIC. This is explained by the comparative longer time 

before Zone (23, 24) failed (7 hours 35 minutes 21 seconds), as the microcrack in this 

zone was in the subcritical crack grow phase, and afterwards sudden failure occurred 

for the other zones which leads to a comparative short time span (less than 1 minutes 

from 7 hours 35 minutes to 7 hours 36 mintues, consulting Table 4-24). 

 

 
Figure 4-55 Crack characteristics after 23 days in the uniaxial tensile test (zones in green: tensile failure; 

zones in gray: failed in the past; initial crack lengths: normal distribution, mean = 0.035 m, 

STD = 0.0001 m; initial crack orientation: uniform distribution) 

 

 
Figure 4-56 Crack characteristics at failure in the uniaxial tensile test (zones in green: tensile failure; 

initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m; initial crack orientation: 

normal distribution, mean = 45º, STD = 1º) 

 

To study the influence of the crack orientation on the lifetime, tests have also been 

done on models with different initial crack orientations under uniaxial tension. The 

same tensile load of 5.5 MPa was applied. The calculation results using different 
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mean initial crack orientations are listed in Table 4-25. It is seen that the numerical 

predicted first zone failure time showed great precision as compared with the 

analytical solution (Eq. 4-39) for all mean orientations tested. The first zone failure 

time is shorter with a smaller mean initial crack orientation. The numerical prediction 

of the position of the first failure zone also matches the analytical solution for all 

cases. With the mean orientation ranging from 20º to 60º, the lifetime of the model 

ranges from about 11 minutes to more than 1 year. Especially, the time span between 

the first zone failure to the failure of the model becomes longer with a bigger mean 

orientation: the time span is only 3 seconds (from 11 minutes 19 seconds to 

11 minutes 22 seconds) if the mean orientation is 20º, and becomes more than 1 day 

(from 1 year 322 days 1 hour to 1 year 323 days 23 hours) if the mean orientation is 

60º. The numerical predicted lifetime results are shown in Fig. 4-57. The pattern is 

similar to the single zone study (Fig. 4-53 (a)): the lifetime becomes longer if the 

mean initial crack orientation becomes bigger. 

 

Table 4-25 Lifetime results of unaxial tensile test (tensile load of 5.5 MPa) with different mean initial 

crack orientations 

 Analytical results Numerical results 

Mean  

orientation 

First  

failure 

zone 

First failure time 

(s) 

First  

failure 

zone 

First failure time 

(s) 

Lifetime  

(s) 

20º (4, 32) 
676 

(11 min., 16 s) 
(4, 32) 

679 

(11 min., 19 s) 

682 

(11 min., 22 s) 

30º (48, 24) 
1,219 

(20 min., 19 s) 
(48, 24) 

1,224 

(20 min., 24 s) 

1,253 

(20 min., 53 s) 

40º (48, 24) 

6,379 

(1 h, 46 min., 19 

s) 

(48, 24) 
6,406 

(1 h, 46 min.) 

6,448 

(1 h, 47 min.) 

45º (23, 24) 

2.7266e4 

(7 h, 34 min., 26 

s) 

(23, 24) 
2.7321e4 

(7 h, 35 min.) 

2.7361e4 

(7 h, 36 min.) 

50º (48, 24) 
1.8147e5 

(2 d, 2 h, 24 min.) 
(48, 24) 

1.8211e5 

(2 d, 2 h, 35 min.) 

1.8228e5 

(2 d, 2 h, 37 min.) 

60º (48, 24) 

5.9035e7 

(1 y, 318 d, 6 h, 

43 min.) 

(48, 24) 

5.9361e7 

(1 y, 322 d, 1 h, 

11 min.) 

5.9529e7 

(1 y, 323 d, 23 h, 

47 min.) 
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Figure 4-57 Natural logarithm of lifetime (seconds) in tensile test (tensile load of 5.5 MPa) with 

different mean initial crack orientations (initial crack lengths: normal distribution, mean = 0.035 m, 

STD = 0.0001 m) 

  

(2) For the uniaxial compressive test, a compressive load of 22 MPa is applied to the 

model. The macroscopic failure stages of the model are shown in Fig. 4-58. It is seen 

that shear band was formed at an inclination of 65º to the direction of the applied load 

if the initial crack orientation follows uniform distribution. In the failed zones forming 

the shear band (upper in Fig. 4-58), more zones under tensile failure have been found 

than in the models mentioned above. If the initial crack orientation follows normal 

distribution, instead of a shear band, the straight macroscopic fracture was formed 

following the direction of the applied compressive load (Fig. 4-58). As for the first 

zone failure time, the numerical result is in good agreement with the analytical 

solution for both cases. Also, the numerical calculation has predicted the same 

position of the first failure zone as the analytical solution in each case (Table 4-26). It 

is also seen from Table 4-26 that, the time span between the first failure zone and 

final failure of the model is about 1 year (from 90 years 33 days to 91 years 34 days) 

if the initial crack orientation follows uniform distribution, while with normal 

distribution, the time span is only about 68 days (from 94 years 29 days to 94 years 

97 days). 
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 

22 MPa 

 

   
 90 years 33 days 90 years 330 days 91 years 34 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: uniform distribution 

 

 

22 MPa 

 

   
 94 years 29 days 94 years 64 days 94 years 97 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD= 0.0001 m  

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 4-58 Uniaxial compressive test of the wing crack model (zones in green: tensile failure; zones in 

red: shear failure; zones in gray: failed in the past) 

 

Table 4-26 Lifetime results of uniaxial compressive test  

Analytical results Numerical results 

First  

failure 

zone 

First failure time (s) 

First  

failure 

zone 

First failure time (s) Lifetime (s) 

Initial crack orientation: uniform distribution 

(31, 40) 

2.8427e9 (s) 

(90 y, 51 d, 20 h, 9 

min.) 

(31, 40) 

2.8412e9 (s) 

(90 y, 33 d, 18 h, 51 

min.) 

2.8727e9 (s) 

(91 y, 34 d, 6 h, 7 

min.) 

Initial crack orientation: normal distribution (mean= 45º, STD= 1º) 

(21, 32) 
2.9685e9 

(94 y, 48 d, 34 min.) 
(21, 32) 

2.9670e9 

(94 y, 29 d, 18 h, 51 

min.) 

2.9728e9 

(94 y, 97 d, 1 h, 12 

min.) 

 

Fig. 4-59 and Fig. 4-60 show the fracture pattern with a zoomed in area, 

corresponding to the failure stages of the model with two different distributions of 

initial crack orientation shown in Fig. 4-58. It is seen that for both the initial crack 

orientations following uniform and normal distribution, the microcracks inside most 

of the failed zones forming the macroscopic fracture have reached the zone 

boundaries, which denotes that zones failed in the subcritical crack propagation phase. 
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Figure 4-59 Crack characteristics at failure in the uniaxial compressive test (zones in green: tensile 

failure; zones in red: shear failure; zones in gray: failed in the past; initial crack lengths: normal 

distribution, mean = 0.035 m, STD = 0.0001 m; initial crack orientation: uniform distribution) 

 

 
Figure 4-60 Crack characteristics at failure in the uniaxial compressive test (zones in green: tensile 

failure; zones in red: shear failure; zones in gray: failed in the past; initial crack lengths: normal 

distribution, mean = 0.035 m, STD = 0.0001 m; initial crack orientation: normal distribution, 

mean = 45º, STD = 1º) 

 

Influence of mean initial crack orientation on the lifetime under uniaxial compressive 

load has been studied. The same compressive load of 22 MPa was applied. With 

respect to the first failure zone, the numerical calculation has predicted the same zone 

position for each mean orientation value, and the first zone failure time has been in 

good agreement with the analytical solution in all cases (Table 4-27). The time span 

between the first zone failure and final failure of the model has been about 239 days, 

68 days, 51 days, 1 year 240 days and 4 years 135 days for mean initial crack 

orientation of 40º, 45º, 50º, 55º and 58º, respectively (Table 4-27). This means the 

shortest time span within the mean orientation range is found with 50º. The numerical 

predicted lifetime results are also shown in Fig. 4-61. It is seen that similar to the 

single zone case shown in Fig. 4-53 (b), the lifetimes have a U-shaped curve with 

ascending mean initial crack orientation. The shortest lifetime is found with a mean 

orientation of app. 50º (same value with the shortest time span). Longer lifetime is 

obtained if mean orientation is smaller or bigger than this angle. 
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Table 4-27 Lifetime results of unaxial compressive test (compressive load of 22 MPa) with different 

mean orientations 

 Analytical results Numerical results 

Mean 

orientation 

First 

failure 

zone 

First failure 

time (s) 

First 

failure 

zone 

First failure 

time (s) 

Lifetime  

(s) 

40º (22, 37) 

8.5274e9 

(270 y, 146 d, 10 

h, 27 min.) 

(22, 37) 

8.5214e9 

(270 y, 76 d, 20 

h, 45 min.) 

8.5420e9 

(270 y, 315 d, 19 

h, 3 min.) 

45º (21, 32) 

2.9685e9 

(94 y, 48 d, 34 

min.) 

(21, 32) 

2.9670e9 

(94 y, 29d, 18 h, 

51 min.) 

2.9728e9 

(94 y, 97 d, 1 h, 

12 min.) 

50º (37, 35) 

2.6704e9 

(84 y, 247 d, 3 h, 

27 min.) 

(37, 35) 

2.6689e9 

(84 y, 230 d, 4 h, 

11 min.) 

2.6733e9 

(84 y, 281 d, 5 h, 

56 min.) 

55º (48, 24) 

4.4195e9 

(140 y, 52 d, 23 

min.) 

(48, 24) 

4.4177e9 

(140 y, 30 d, 21 

h, 58 min.) 

4.4700e9 

(141 y, 270 d, 22 

h, 48 min.) 

58º (48, 24) 

1.1817e10 

(374 y, 262 d, 23 

h, 23 min.) 

(48, 24) 

1.1809e10 

(374 y, 169 d, 12 

h, 38 min.) 

1.1947e10 

(378 y, 304 d, 7 

h, 55 min.) 

 

 
Figure 4-61 Natural logarithm of lifetime (seconds) in compressive test (compressive load of 22 MPa) 

with different mean initial crack orientations (initial crack lengths: normal distribution, 

mean = 0.035 m, STD = 0.0001 m; initial crack orientation: normal distribution, mean = 45º, STD = 1º) 

 

(3) Models under biaxial compressive loads have also been studied. The model is 

under a major principal load of 22 MPa applied vertically and a minor principal load 

of 0.5 MPa applied horizontally. It is seen from Fig. 4-62 that shear band has formed 

for both uniform and normal distribution of initial crack orientation. The shear band 

has an inclination of 65º to the applied major compressive load. Especially, 

macroscopic fractures following the direction of the applied major compressive load 
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have been observed for the case with normal distribution of initial crack orientation as 

well. The first zone failed at about 375 years 233 days for the case where initial crack 

orientation follows uniform distribution, and after about 24 years (at about 399 years 

229 days) the shear band has connected two boundaries of the model (upper Fig. 4-

62). While if the initial crack orientation follows normal distribution, the first zone 

failed at about 398 years 28 days (later than the first case), and only after about 1 year 

(at about 399 years 129 days), the shear band has caused the final failure for the 

model (time span much shorter than the first case). The shorter first zone failure time 

for the case of uniformly distributed initial crack orientation is explained by more 

zones containing initial cracks with a more favorable orientation (for example 48º, 50º 

etc., consulting Fig. 4-53 (b), Fig. 4-61) than the case with the normally distributed 

initial crack orientation where the mean angle is 45º, so under the same loads, there 

would be zones failed earlier in the first case than the second case. The longer time 

span for failure for the first case is explained by the fact that it also contains more 

zones with a less favorable orientation than the second case, which prevent a faster 

formation of the shear band. As can been seen from the lifetime results shown in 

Table 4-28, the numerical calculation has given precise first zone failure time 

compared with the analytical solution (Eq. 4-38) for all cases. Besides, numerical 

predicted position of the first failure zone has been the same as the analytical solution 

for each case. The microcrack characteristics at failure of the models are shown in Fig. 

4-63 and Fig. 4-64, corresponding to the final failure stage of the model in Fig. 4-62. 

Similar to the uniaxial compressive loading case, the microcracks inside most of the 

failed zones forming the shear bands have reached the zone boundaries, denoting the 

zones failed during the subcritical crack propagation. In addition, the lifetimes under 

biaxial compressive load have been considerably longer than under uniaxial 

compressive load when other parameters were kept unchanged. It is seen from Table 

4-28 that the lifetimes have a magnitude of about 400 years under biaxial compressive 

load for both initial crack orientation distributions, while under uniaxial compressive 

load, the lifetimes have a magnitude of only about 90 years. 

 

Table 4-28 Lifetime results of biaxial compressive test  

Analytical results Numerical results 

First failure 

zone 

First failure time (s) First failure 

zone 

First failure time (s) Lifetime (s) 

Initial crack orientation: uniform distribution 

(31, 40) 1.1850e10 

(375 y, 274 d, 10 h, 

42 min.) 

(31, 40) 1.1846e10 

(375 y, 233 d, 18 h, 

51 min.) 

1.2603e10 

(399 y, 229 d, 20 h, 

51 min.) 

Initial crack orientation: normal distribution (mean= 45º, STD= 1º) 

(21, 32) 1.2558e10 

 (398 y, 76 d, 23 h, 

55 min.) 

(21, 32) 1.2554e10 

 (398 y, 28 d, 18 h, 

51 min.) 

1.2594e10  

(399 y, 129 d, 10 h, 

27 min.) 
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 
→← 

 

   
 375 years 233 days 398 years 156 days 399 years 229 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: uniform distribution 

 

 
→← 

 

   
  398 years 28 days  399 years 113 days  399 years 129 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 4-62 Biaxial compressive test of the wing crack model (major compressive load of 22 MPa 

applied vertically; minor compressive load of 0.5 MPa applied horizontally; zones in green: tensile 

failure; zones in red: shear failure; zones in gray: failed in the past) 

 

 
Figure 4-63 Crack characteristics at failure in the biaxial compressive test (major compressive load of 

22 MPa applied vertically; minor compressive load of 0.5 MPa applied horizontally; zones in green: 

tensile failure; zones in red: shear failure; zones in gray: failed in the past; initial crack lengths: normal 

distribution, mean = 0.035 m, STD = 0.0001 m; initial crack orientation: uniform distribution) 
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Figure 4-64 Crack characteristics at failure in the biaxial compressive test (major compressive load of 

22 MPa applied vertically; minor compressive load of 0.5 MPa applied horizontally; zones in green: 

tensile failure; zones in red: shear failure; zones in gray: failed in the past; initial crack lengths: normal 

distribution, mean = 0.035 m, STD = 0.0001 m; initial crack orientation: normal distribution, 

mean = 45º, STD = 1º) 

 

4.5.7 Conclusions 

Simulation techniques for the wing crack propagation have been developed and 

implemented into the numerical models. A superposition method for calculating the 

stress intensity factor has been incorporated into the program. The numerical 

calculations have been compared with the exact solutions. Acceptable results have 

been obtained. The lifetime prediction scheme for wing crack model has been 

proposed and studied in this section. The application of the scheme has shown precise 

results with very low deviations from the analytical results for both single zone and 

multi-zone models. In the single zone study, the lifetime prediction scheme is 

investigated exhaustively with all possible loading configurations, and all possible 

zone failure modes have been observed and results tested. The numerical results have 

shown excellent agreement with the analytical solutions in all cases. The influences of 

load magnitude, initial crack length and initial crack orientation on the lifetime have 

been investigated through a single zone containing an initial crack. Similar to the 

fixed orientation model, the result shows that lifetime is shorter if the load becomes 

bigger or the initial crack is longer for both tensile and compressive loads. Under 

tensile load, the lifetime is longer if the axis of the crack is more perpendicular to the 

direction of the applied tensile load. Under compressive load, the lifetime value 

descends first and then ascends with ascending crack orientation, the shortest lifetime 

is found at an initial crack orientation of app. 48º. The lifetime prediction scheme was 

also applied to the multi-zone wing crack model. Uniaxial tensile tests, uniaxial 

compressive tests and biaxial compressive tests have been studied. The numerical 

results have shown good agreement with the analytical solutions with respect to the 

first zone failure time and position. If the initial crack orientation follows uniform 

instead of normal distribution, the first zone failure happens earlier, but the time span 

from first zone failure to final failure of the model is much longer. In addition, the 
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considerable prolonged lifetime under biaxial compressive load (with horizontal 

compressive load of only 0.5 MPa) compared to uniaxial compressive load indicates 

the resistance of the wing crack propagation under compression. The influence of 

mean initial crack orientation on lifetime has been investigated. The lifetime has 

shown similar pattern as in the single zone study. Under tensile load, both the first 

zone failure time and the lifetime of the model is shorter when the mean initial crack 

orientation is smaller, and under compressive load, the lifetimes have a U-shaped 

curve with the shortest lifetime found at a mean initial crack orientation of app. 50º. 

 

4.6 Combined ubiquitous-joint model 

In the fixed orientation model scheme and wing crack model scheme the initial crack 

orientation is known and crack propagation pattern is programmed. However, when 

the crack has reached the critical condition, the whole zone is considered as failed by 

assigning the residual strengths to the zone. Based on these two model schemes, two 

new model schemes are proposed to include anisotropy into the models on the zone 

level. This improvement is accomplished by incorporating into the model scheme the 

anisotropic elasto-plastic constitutive law with softening, which contains both the 

elasto-plastic matrix for the solid and an elasto-plastic line element (weak plane) with 

softening. The ubiquitous-joint constitutive model in FLAC is utilized for this 

purpose, which includes the presence of weakness of a certain orientation in a Mohr-

Coulomb zone. Yield may occur in either the solid or alone the weak plane, or both, 

depending on the stress state, the orientation of the weak plane, and material 

properties of the solid and weak plane (Itasca Consulting Group 2005). The combined 

ubiquitous-joint model scheme is introduced in subsection 4.6.1. Applications of fixed 

orientation combined ubiquitous-joint model and wing crack combined ubiquitous-

joint model are given in subsections 4.6.2 and 4.6.3, respectively. 

 

4.6.1 Modeling scheme 

The modeling scheme of the combined ubiquitous-joint model is programmed such 

that when the stress intensity factor of the crack inside a zone has reached the critical 

value (K ≥ KC) or the crack has reached the zone dimension, the FLAC ubiquitous-

joint constitutive model will be assigned to this zone, substituting the previous Mohr-

Coulomb constitutive model. Rather than assigning the residual strength values to the 

whole zone of Mohr-Coulomb constitutive model, the joint residual strength values 

will be assigned on the joint (weak plane) only (Fig. 4-65 and Fig.4-66). The joint 

angle is obtained by consulting the crack’s final propagation condition, which is 

known from the calculation scheme of the fixed orientation model (Section 4.4) or 

wing crack model (Section 4.5). The simulation schemes for the weak plane are 

shown in Fig. 4-65 and Fig. 4-66, where the solid line denotes the real crack condition. 

The dashed line on the left of each figure is the auxiliary line; the dashed line on the 
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right of each figure denotes the weak plane. For the fixed orientation model, since the 

crack propagates along its own orientation, the joint angle θ for the ubiquitous-joint 

constitutive model is the same as the crack’s angle (Fig. 4-65), regardless whether the 

zone fails by crack stress intensity factor reaching fracture toughness (Fig. 4-65 (a)), 

or the crack reaching the zone boundary (Fig. 4-65 (b)). For the wing crack model, if 

the crack has reached the zone dimension, the weak plane is defined by connecting 

the two wing crack tips (Fig. 4-66 (b)); while if the crack’s intensity factor has 

reached the critical value, and crack propagates with ultrasonic velocity. The weak 

plane is defined by connecting the anticipated location of crack tips at the zone 

boundary (Fig. 4-66 (a)). The joint angle θ is thus obtained for each case. 

 

 
(a) K ≥ Kc (KI ≥ KIC or KII ≥ KIIC) 

 
(b) Crack reaching the zone dimension 

Figure 4-65 Model scheme for fixed orientation combined ubiquitous-joint model (the solid line in the 

zone is the actual crack) 
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(a) KI ≥ KIC 

 
(b) Crack reaching the zone dimension 

Figure 4-66 Model scheme for wing crack combined ubiquitous-joint model (the solid line in the zone 

is the actual crack) 

 

4.6.2 Fixed orientation combined ubiquitous-joint model 

Based on the calculation schemes of fixed orientation model introduced in Section 4.4, 

and incorporating the combined ubiquitous-joint constitutive model scheme described 

in Subsection 4.6.1, tests have been made on multi-zone models under both tensile 

and compressive loads. The geometry, parameters and magnitudes of the loads are the 

same as in the fixed orientation models (Section 4.4) for the convenience of 

comparison. The same initial crack characteristics as for Model A (Subsection 4.4.3) 

were used.  

 

As can been seen from the macroscopic failure processes of the model under tensile 

load of 12 MPa and under constant compressive load of 18 MPa (Fig. 4-67 and Fig. 4-

68), the fixed orientation combined ubiquitous-joint model has the same first zone 

failure location and first failure time as the corresponding fixed orientation model 

(Fig. 4-29 and Fig. 4-34) due to the same constitutive model applied before any zone 

fails. The lifetime of the fixed orientation combined ubiquitous-joint model under 

tension load is 0.4316 seconds if the initial crack orientation follow uniform 

distribution, and 0.4874 seconeds for normal distribution (Fig. 4-67), slightly longer 

than the corresponding case in fixed orientation model (0.36 seconds and 

0.4826 seconds, respectively, consulting Fig. 4-27 or Table 4-15). Under compressive 
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load, if the initial crack orientation follows uniform distribution, the lifetime is about 

9 years 237 days (Fig. 4-68), longer than the corresponding case in fixed orientation 

model (7 years 230 days, consulting Fig. 4-34 or Table 4-17), while for the case with 

normal distribution of orientation, the lifetime is about 11 years 54 days (Fig. 4-68), 

slightly lower than the corresponding case in fixed orientation model (11 years 

68 days, consulting Fig. 4-34 or Table 4-17).  

 

 

12 MPa 

 
   

 0.2864 second 0.3316 second 0.4316 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 

 

 

12 MPa 

 
   

 0.4704 second 0.4745 second 0.4874 second 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 10º, STD = 1º 

 

Figure 4-67 Uniaxial tensile test of model A (zones in red: slip along ubiquitous joint; zones in green: 

tensile failure on ubiquitous joint; zones in yellow: zone failed in tension; zones in black: failed in past 

(elastic); zones in gray: ubiquitous joint failed in the past) 

 

As for the macroscopic fracture, the combined ubiquitous-joint model has shown 

similar fracture pattern for the fixed orientation model (consulting Fig. 4-27 and Fig. 

4-34). Under tensile load, the macroscopic fracture was formed perpendicular to the 

applied load, while under compressive load, shear band has been formed with an 

inclination of 60º to the applied load. It is noticed that the shear band is inclined to an 

opposite direction compared with the fixed orientation model (lower Fig. 4-68 

compared with middle Fig. 4-34). If the initial crack lengths follow uniform 

distribution, the fracture patterns seem to be more scattered in combined ubiquitous-

joint model than in fixed orientation model under both tensile load and compressive 

load.  
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 
18 MPa 

 
   

 4 years 232 days 5 years 316 days 9 years 237 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: uniform distribution 

 

 
18 MPa 

 
   

 9 years 346 days 11 years 30 days 11 years 54 days 

 Initial crack lengths: normal distribution, mean = 0.013 m, STD = 0.0001 m 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 4-68 Uniaxial compressive test of model A (zones in red: slip along ubiquitous joint; zones in 

green: tensile failure on ubiquitous joint; zones in yellow: zone failed in tension; zones in black: failed 

in past (elastic); zones in gray: ubiquitous joint failed in the past) 

 

4.6.3 Wing crack combined ubiquitous-joint model 

The wing crack combined ubiquitous-joint model is studied under different loading 

configurations. The multi-zone models with the same initial crack conditions and 

loadings as in the wing crack models described in Subsection 4.5.6 have been used 

here, where the initial crack lengths follow the normal distribution with a mean length 

of 0.035 m and standard deviation of 0.0001 m. The initial crack orientation follows 

uniform and normal distributions with a mean value of 45º from the horizontal 

direction and a standard deviation of 1º.  

 

It is seen in Fig. 4-69 that, under a constant tensile load of 5.5 MPa the macroscopic 

fracture in combined ubiquitous-joint model shows a similar pattern as the wing crack 

model in both initial crack configurations (Fig. 4-54). Macroscopic fracture was 

formed perpendicular to the applied load, and a more uneven pattern of the fracture is 

observed if the initial crack orientation follows the uniform distribution. Similar to the 

wing crack model with uniformly distributed initial crack orientation, the penetration 

of the macroscopic fracture is also not observed (after 17 days 21 hours), while with 

normally distributed initial crack orientation, the lifetime is about 7 hours 36 minutes 

37 seconds (Fig. 4-69), slightly longer than in wing crack model (7 hours 36 minutes 
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1 second, consulting Fig. 4-55 or Table 4-24). Under a compressive load of 22 MPa, 

shear band was formed at an inclination of about 70º to the direction of the applied 

compressive load if the initial crack orientation follows uniform distribution (upper 

Fig. 4-70). If the initial crack orientation follows normal distribution, straight 

macroscopic fractures were formed following the direction of the applied compressive 

load (lower Fig. 4-70). Both fracture patterns are similar to the wing crack model (Fig. 

4-58). The lifetime of combined ubiquitous-joint model is slightly longer than that of 

the wing crack model for both cases: for uniformly and normally distributed 

orientation, the model failed after about 91 years 340 days and 94 years 102 days (Fig. 

4-70), respectively, both are longer than the corresponding wing crack models 

(91 years 34 days and 94 years 97 days, consulting Fig. 4-58 or Table 4-26). 

 

 
5.5 MPa 

 

   
 10 minutes 16 minutes 17 days 21 hours 11 minutes 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: uniform distribution 

 

 
5.5 MPa 

 

   
 7 hours 35 minutes 21 

seconds 

7 hours 35 minutes 59 

seconds 

7 hours 36 minutes 37 

seconds 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 4-69 Uniaxial tensile test of the wing crack combined ubiquitous-joint model (zones in red: slip 

along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; zones in yellow: zone failed 

in tension; zones in black: failed in past (elastic); zones in gray: ubiquitous joint failed in the past) 
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 

22 MPa 

 

   
 90 years 33 days 91 years 228 days 91 years 340 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: uniform distribution 

 

 

22 MPa 

 

   
 94 years 29 days 94 years 64 days 94 years 102 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 4-70 Uniaxial compressive test of the wing crack combined ubiquitous-joint model (zones in red: 

slip along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; zones in yellow: zone 

failed in tension; zones in black: failed in past (elastic); zones in gray: ubiquitous joint failed in the past) 

 

Under the major vertical principal compressive stress of 22 MPa and the minor 

horizontal principal stress of 0.5 MPa, shear band was formed with an inclination of 

70º to the major principal stress if the initial crack orientation follows uniform 

distribution (upper Fig. 4-71), similar to the wing crack model. While if the initial 

crack orientation follows normal distribution, macroscopic fracture was formed with 

the same direction as the major principal stress (lower Fig. 4-71). The combined 

ubiquitous-joints model fails after about 393 year 340 days for uniformly distributed 

initial crack orientation, which is shorter than for the corresponding wing crack model 

(about 399 years 299 days, consulting Fig. 4-62 or Table 4-28). It takes about 

399 years 186 days for normally distributed initial crack orientation (Fig. 4-71) and 

slightly longer for the corresponding wing crack model (399 years 129 days, 

consulting Fig. 4-62 or Table 4-28) to fail. 

 



Chapter 4 Numerical cellular automate for lifetime prediction 

 

122 

 

 

 

   
→← 

   

 

   
 375 years 233 days 393 years 306 days 393 years 340 days 

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: uniform distribution 

 

 

 

   
→← 

   

 

   
 398 years 28 days 398 years 74 days 399 years 186 days  

 Initial crack lengths: normal distribution, mean = 0.035 m, STD = 0.0001 m  

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 4-71 Biaxial compressive test of the wing crack combined ubiquitous-joint model (major 

compressive load of 22 MPa applied vertically; minor compressive load of 0.5 MPa applied 

horizontally; zones in red: slip along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; 

zones in yellow: zone failed in tension; zones in gray: ubiquitous joint failed in the past) 

 

4.6.4 Conclusions 

A combined ubiquitous-joint model has been proposed based on the fixed orientation 

model and wing crack model described in the last two sections, incorporating the 

ubiquitous-joint constitutive model provided by FLAC (Itasca Consulting Group 

2005). The simulation scheme for the combined ubiquitous-joint model was also 

introduced and applied to the multi-zone numerical models under different loading 

conditions. Macroscopic fracture pattern and lifetime have been studied. It is 

concluded that in general, the macroscopic fracture pattern of the combined 

ubiquitous-joint model is similar to that of the corresponding fixed orientation model 

or wing crack model. The lifetime results have shown only slight differences: in most 

cases, the combined ubiquitous-joint model has a longer lifetime than the 

corresponding fixed orientation model or wing crack model. It is believed that this 

phenomenon is correct even though two cases were observed where the combined 

ubiquitous-joint model has a shorter lifetime (fixed orientation combined ubiquitous-

joint model under compressive load, initial crack orientation follows normal 

distribution (lower Fig. 4-68); wing crack combined ubiquitous-joint model under 

biaxial compressive loads, initial crack orientation following uniform distribution 
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(upper Fig. 4-71)). The irregularity of these two cases can be explained by differences 

in the macroscopic fracture pattern.  

 

4.7 Comparison between different model concepts 

The comparison of the different numerical models revealed that the basic model 

predicted the most conservative lifetime results (shortest lifetime), while the wing 

crack model and wing crack combined ubiquitous-joint model predicted the longest 

lifetimes. The factors influencing the lifetime predictions are similar in different 

models. It is understood that bigger loads or longer initial crack lengths would cause a 

shorter lifetime in both fixed orientation and wing crack models. The influence of 

initial crack orientation on lifetime is also similar for both models: if the model is 

under tensile load, the lifetime is longer the more the crack axis is perpendicular to the 

applied load, while if the model is under compressive load, the lifetimes showed a U-

shaped curve with ascending crack orientation, with the shortest lifetime found at 

slightly different crack orientation. Influence of crack orientation on lifetime can not 

be studied on basic model since it is not defined, but the influence of the load on the 

lifetime is clearly the same as the other models. As the combined ubiquitous-joint 

model is based on the former models, the influence of these factors on the lifetime is 

also the same. 

 

The macroscopic fracture has shown similar pattern for different models under tensile 

load. That means, the macroscopic fracture was formed perpendicular to the applied 

tensile load. While under the compressive load, the macroscopic fracture has shown 

much difference: in basic model, shear band was formed about 45º to the direction of 

the applied load, which coincides with the maximal shear stress direction; in the fixed 

orientation model and fixed orientation combined ubiquitous-joint model, shear band 

was formed about 30º to the direction of the applied load (60º to the horizontal 

direction), which confirms Mohr-Coulomb theory; in the wing crack model and wing 

crack combined ubiquitous-joint model, the macroscopic fracture has the trend of 

following the direction of the applied compressive load, which agrees with the 

characteristic of the wing crack propagation (propagation in a pure Mode I case). It is 

also a common feature in all the models including initial crack orientation that, the 

macroscopic tensile fracture has an uneven pattern and the shear band was formed by 

a more scatter group of failed zones if the initial crack orientation follows uniform 

distribution instead of normal distribution. 



Chapter 4 Numerical cellular automate for lifetime prediction 

 

124 

 

 



Chapter 5 Application of the numerical models 

 

125 

 

5 Application of the numerical models 

In this chapter, possible applications have been investigated by using the 5 distinct 

numerical models introduced in the former chapters. The applications focus on the 

following topics: 

     • propagation and coalescence of cracks / weak planes 

     • long-term behavior of underground openings 

     • long-term stability of pillars 

 

5.1 Existing weak plane problems 

In this section, propagation and coalescence of microscopic cracks in models with 

existing initial macroscopic fracture (weak plane) has been studied. Different model 

schemes have been applied to the simulation for comparison. The lifetime results are 

obtained and the macroscopic fracture patterns are investigated. 

 

5.1.1 Single weak plane simulation  

A square shaped numerical model was built with the size of 4 × 4 m
2
, and was divided 

by a 100 by 100 element mesh, each zone with the size of 0.04 × 0.04 m
2
. The initial 

microscopic crack lengths follow normal distribution with a mean length of 0.02 m 

and standard deviation of 0.005 m. The initial crack orientation follows normal 

distribution. For the fixed orientation model, fixed orientation combined ubiquitous-

joint model, wing crack model and wing crack combined ubiquitous-joint model, both 

the mean angle of 45º and 135º have been applied, and standard deviation was 1º. A 

‘weak plane’ was created at the middle of the model by some failed zones to which 

residual strength values were assigned. This ‘weak plane’ has an inclination of 45º 

from the horizontal direction. A compressive load with the same magnitude of 

12 MPa was applied uniaxially for each model for the convenience of comparison. 

The geometry of the model is seen in Fig. 5-1, and the simulation results are shown in 

Fig. 5-2.  

 

It is seen that under same loading condition, the basic model had the shortest lifetime 

(about 2 and a half hours). It took the fixed orientation model and the fixed orientation 

combined ubiquitous-joint model more than 16 years and 28 years to fail, respectively. 

The wing crack model and the wing crack combined ubiquitous-joint model had the 

longest lifetime with 1.3391e19 seconds and 4.0919e20 seconds, respectively (Fig. 5-

2). The macroscopic fracture pattern is characterized by failed zones forming a shear 

band with inclination of about 45º from the tip of the macroscopic fracture and 

penetrates the basic model. In the fixed orientation model, shear bands were also 

formed from the tip of the macroscopic fracture with a curved shape and with 

inclination of about 60º to the horizontal direction. In the fixed orientation combined 

ubiquitous-joint model, the inclination of the shear band is about 60º. In the wing 
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crack model, failed zones have also formed tensile fractures in addition to the shear 

bands. The tensile fractures follow the direction of the applied compressive load. In 

the wing crack combined ubiquitous-joint model, tensile fractures are observed 

having an inclination of 20º ~ 25º from the direction of the applied load. The failed 

zones have formed longer tensile fractures at the tip of the original macroscopic 

fracture than in the middle of the macroscopic fracture. It is also noticed that, 

changing the mean angle of the initial microcrack orientation does not influence the 

fracture pattern for the fixed orientation and wing crack models (Fig. 5-2 (b) and (d)). 

While in the corresponding model with anisotropy, the fracture pattern changes with 

the different mean initial microcrack orientation. For the fixed orientation combined 

ubiquitous-joint model, although the inclination of the shear band is the same (about 

60º), the shear band was ‘thicker’ in case of mean initial microcracks’ orientation 

being 45º instead of 135º (Fig. 5-2 (c)). For the wing crack combined ubiquitous-joint 

model, the fractures are inclined to the left of the applied load for the case where the 

mean initial microcrack orientation is 45º and inclined to the right of the applied load 

for the case where the mean initial microcrack orientation is 135º (Fig. 5-2 (e)). 

 

 
Figure 5-1 Weak plane inside the model (Zones in red: failed zones forming the weak plane with 

inclination of 45º to the horizontal direction) 
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9,003 (s) 

(2 hours 30 minutes) 

(a) Basic model 

 

  
5.1323e8 (s) 

(16 years 100 days) 

9.4618e8 (s) 

(30 years 1 day) 

Initial crack orientation: normal distribution; 

mean = 45º, STD = 1º 

Initial crack orientation: normal distribution; 

mean = 135º, STD = 1º 

(b) Fixed orientation model 

 

  
9.0961e8 (s) 

(28 years 307 days) 

1.2436e9 (s) 

(39 years 158 days) 

Initial crack orientation: normal distribution; 

mean = 45º, STD = 1º 

Initial crack orientation: normal distribution; 

mean = 135º, STD = 1º 

(c) Fixed orientation combined ubiquitous-joint model 
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1.3391e19 (s) 

(exceeds 1,000 years) 

7.1485e18 (s) 

(exceeds 1,000 years) 

Initial crack orientation: normal distribution;  

mean = 45º, STD = 1º 

Initial crack orientation: normal distribution;  

mean = 135º, STD = 1º 

(d) Wing crack model 

 

  
4.0919e20 (s) 

(exceeds 1,000 years) 

3.4813e19 (s) 

(exceeds 1,000 years) 

Initial crack orientation: normal distribution;  

mean = 45º, STD = 1º 

Initial crack orientation: normal distribution;  

mean = 135º, STD = 1º 

(e) Wing crack combined ubiquitous-joint model 

 

Figure 5-2 Failure of the model with different modeling schemes under compressive load of 12 MPa 

(initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m) (Zones in red: shear failure 

of the zone/slip along ubiquitous joint; zones in green: tensile failure of the zone/tensile failure on 

ubiquitous joint; zones in gray: zone failed in the past/ubiquitous joint failed in the past) 

 

5.1.2 Two weak planes simulation 

With the same model size and microcrack characteristics, and under the same uniaxial 

compressive load of 12 MPa, simulations have been made with two existing weak 

planes. The ‘weak planes’ have an inclination of 45º but are placed at different 

positions as shown in Fig. 5-3.  
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(a) Position 1 (b) Position 2 

  

Figure 5-3 Weak planes inside the model (Inclination: 45º) 

 

It is seen from Fig. 5-4 to Fig. 5-8 that with the same geometry, initial crack 

characteristics and loading condition, the lifetime for the basic model is the shortest, 

and the lifetime for the fixed orientation model and fixed orientation combined 

ubiquitous-joint model is longer, while the wing crack model and wing crack 

combined ubiquitous-joint model have the longest lifetime. The macroscopic fractures 

also showed distinct features. For the basic model, the shear bands have been formed 

from the tips of the existing macroscopic fractures. For the case where the weak 

planes were arranged according to Position 1, the shear band (inclination of about 45º 

to horizontal direction) from the upper plane finally reached the model boundary, 

while the formation of a massive shear band from the lower fracture has somehow 

stopped (Fig. 5-4 (a)). For the case where the weak planes were arranged according to 

Position 2, shear bands were formed from the tips of both existing fractures, and the 

shear bands were parallel with each other (5-4 (b)).  

 

  
1.4537e4 (s) 

(4 hours 2 minutes) 

(a) Position 1 

1.3059e4 (s) 

(3 hours 37 minutes) 

(b) Position 2 

  

Figure 5-4 Failure of basic model under compressive load of 12 MPa (Zones in red: shear failure of the 

zone; zones in green: tensile failure of the zone; zones in gray: zone failed in the past) 

 

For the fixed orientation model, shear bands were formed from the ‘outside’ tips of 

the existing macroscopic fractures and reached the boundary of the model (inclination 

of about 60º to horizontal direction), while the fractures formed from the ‘inside’ tips 

curved towards each other and show a trend of connecting each other (Fig. 5-5). As 

the orientation of the initial microcracks follows a normal distribution, the 
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macroscopic fracture patterns are similar for the case with a mean orientation of 45º 

and 135º.  

 

  
8.6581e8 (s) 

(27 years 165 days) 

(a) Position 1 

6.0871e8 (s) 

(19 years 110 days) 

(b) Position 2 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

  
1.3136e9 (s) 

(41 years 239 days) 

(c) Position 1 

1.0719e9 (s) 

(33 years 361 days) 

(d) Position 2 

Initial crack orientation: normal distribution, mean = 135º, STD = 1º 

 

Figure 5-5 Failure of fixed orientation model under compressive load of 12 MPa (Zones in red: shear 

failure of the zone; zones in green: tensile failure of the zone; zones in gray: zone failed in the past) 

 

Anisotropy has shown its influences in the fixed orientation combined ubiquitous-

joint model. As is seen in Fig. 5-6, the shear bands formed from the tips of the 

macroscopic fractures were parallel to each other if the mean orientation of the initial 

microcracks is 45º (Fig. 5-6 (a), (b)), while the fractures formed from the ‘inside’ tips 

of the existing macroscopic fractures curved towards each other if the mean 

orientation is 135º (Fig. 5-6 (c), (d)). It is also interesting to notice that if the mean 

orientation of the initial microcracks is 45º, the shear bands formed from the tips of 

the macroscopic fractures (inclination close to 45º) are much ‘thicker’ than those 

formed in other parts of the model (Fig. 5-6 (a), (b)), while it is opposite if the mean 

orientation of the initial microcracks is 135º (Fig. 5-6 (c), (d)).  
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9.3463e10 (s) 

(2,963 years 247 days) 

(a) Position 1 

9.9946e9 (s) 

(316 years 338 days) 

(b) Position 2 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

  
5.3221e9 (s) 

(168 years 278 days) 

(c) Position 1 

7.6826e10 (s) 

(2436 years 53 days) 

(d) Position 2 

Initial crack orientation: normal distribution, mean = 135º, STD = 1º 

 

Figure 5-6 Failure of fixed orientation combined ubiquitous-joint model under compressive load of 

12 MPa (Zones in red: slip along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; 

zones in yellow: zone failed in tension; zones in gray: ubiquitous joint failed in the past) 

 

In the wing crack model, for the case where the weak planes were arranged according 

to Position 1, tensile fractures are formed from the ‘inside’ tips of the existing 

macroscopic fractures and connection of these two tips is observed (Fig. 5-7 (a), (c)). 

For the case where the weak planes were arranged according to Position 2, tensile 

fractures formed from the ‘inside’ tips of the existing macroscopic fractures 

propagated farther and reached each other (Fig. 5-7 (b), (d)). Macroscopic tensile 

fractures were formed in the direction of the applied compressive load. The fracture 

patterns are similar for mean initial microcrack orientation of 45º and 135º.  

 

  
1.0083e19 (s) 

(exceeds 1,000 years) 

(a) Position 1 

1.3739e19 (s) 

(exceeds 1,000 years) 

(b) Position 2 

Initial crack orientation: normal distribution, mean=45º, STD=1º 



Chapter 5 Application of the numerical models 

 

132 

 

 

  
1.4756e19 (s) 

(exceeds 1,000 years) 

(c) Position 1 

2.0268e19 (s) 

(exceeds 1,000 years) 

(d) Position 2 

Initial crack orientation: normal distribution, mean = 135º, STD = 1º 

 

Figure 5-7 Failure of wing crack model under compressive load of 12 MPa (Zones in red: shear failure 

of the zone; zones in green: tensile failure of the zone; zones in gray: zone failed in the past) 

 

  
7.2179e19 (s) 

(exceeds 1,000 years) 

(a) Position 1 

1.6599e22 (s) 

(exceeds 1,000 years) 

(b) Position 2 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

  
2.4431e20 (s) 

(exceeds 1,000 years) 

(c) Position 1 

2.2030e21 (s) 

(exceeds 1,000 years) 

(d) Position 2 

Initial crack orientation: normal distribution, mean = 135º, STD = 1º 

 

Figure 5-8 Failure of wing crack combined ubiquitous-joint model under compressive load of 12 MPa 

(zones in red: slip along ubiquitous joint; zones in green: tensile failure on ubiquitous joint;  

zones in yellow: zone failed in tension; zones in black: failed in past (elastic);  

zones in gray: ubiquitous joint failed in the past) 

 

The effects of the anisotropy are also clear in wing crack combined ubiquitous-joint 

model. It is seen in Fig. 5-8 (a) (b) that with a mean initial microcrack orientation of 

45º, the tensile fractures are inclined to the left of the applied load, so that fractures 
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formed from the tips of the existing fractures do not connect (Fig. 5-8 (a)). While for 

the case where the mean orientation of the initial microcracks is 135º, the tensile 

fractures are inclined to the right of the applied load. In this case the fractures formed 

from the tips of the existing fractures connect to each other for both position 

arrangements (Fig. 5-8 (c) (d)). 

 

5.1.3 Conclusions 

Numerical models with existing macroscopic fracture(s) have been investigated. 

Single existing weak plane and two existing weak planes (different positions) have 

been modeled. The lifetime and macroscopic fracture pattern have been studied. The 

most conservative lifetime result was obtained by the basic model, while the wing 

crack combined ubiquitous-joint model has predicted the longest lifetime. Following 

the ascending order of the predicted lifetime, the model schemes are: basic model, 

fixed orientation model, fixed orientation combined ubiquitous-joint model, wing 

crack model and wing crack combined ubiquitous-joint model. As for the 

macroscopic fracture, in both cases (single and two weak planes), shear band was 

formed (about 45º) from the tips of the weak model in basic model, fixed orientation 

model and fixed orientation combined ubiquitous-joint model. Macroscopic tensile 

fractures were formed following the direction of applied load in wing crack model. 

Inclined macroscopic fractures were formed in wing crack combined ubiquitous-joint 

model, where if the mean initial crack orientation is 45º, the macroscopic fracture is 

inclined to the left of the direction of the applied load; if the mean initial crack 

orientation is 135º, the macroscopic fracture is inclined to the right of the direction of 

the applied load . Especially, if two weak planes exist, the macroscopic fractures 

propagate inclining towards each other and finally joint each other except the basic 

model, where the shear band develops with its own inclination. In addition, it is also 

found that anisotropy (including the ubiquitous-joint model) can influence the 

inclination of the macroscopic fracture, thus preventing the connecting of the fractures 

(Fig. 5-8 (a) and Fig. 5-6 (a), (b)). 

 

5.2 Underground opening problems 

The safety of underground openings, such as tunnels, underground storages, natural 

openings and underground pipe networks has always been an important issue in civil 

engineering. The proposed model schemes have been applied to such geometries and 

numerical models, respectively, in a simplified manner. With the proposed numerical 

modeling schemes, the service life of such structures can be predicted through crack 

propagation simulation. This section focus on using different numerical model 

schemes to study underground opening problems. Discussions and suggestions are 

made for the applicability of different models. 

 



Chapter 5 Application of the numerical models 

 

134 

 

5.2.1 Numerical implementation and initial simulation results 

The numerical model has a size of 2 × 2 m
2
 and was divided by a 50 by 50 element 

mesh, same as in the former chapters. The simulation of underground excavation or 

opening situation is realized by creating a hollow area inside the numerical model. Fig. 

5-9 shows an example of a square shaped opening formed by “null zones” (Itasca 

Consulting Group 2005) at the middle of the numerical model. Each zone of the 

model contains an initial crack with normal distribution (mean length of 0.02 m and 

standard deviation of 0.005 m). For the fixed orientation model, fixed orientation 

combined ubiquitous-joint model, wing crack model and wing crack combined 

ubiquitous-joint model, the initial crack orientation follows normal distribution with 

mean angle of 45º and standard deviation of 1º. Biaxial compressive loading has been 

applied to the numerical model to represent the underground stress field, where a 

constant compressive load of 8 MPa is applied vertically and a constant compressive 

load of 2 MPa is applied horizontally. It is seen from the stress distributions shown in 

Fig. 5-10 that the maximum compressive stresses concentrate at the corners of the 

opening. Tensile stresses develop along the top and the bottom of the opening.  

 

 
Figure 5-9 Geometry of numerical models for underground opening problems (Model size: 2 × 2 m

2
; 

opening size: 0.4 × 0.4 m
2
) 
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Figure 5-10 Initial principal stress vectors of the numerical model (red vector: tensile stress; blue vector: 

compressive stress) 

 

As is seen from the failure stages of the numerical models (Fig. 5-11), shear bands are 

formed in each model. The macroscopic fractures formed by the coalescence 

microscopic cracks also show some differences for different models. The first failure 

zone appeared at the corners of the opening in the basic model, fixed orientation 

model and fixed orientation combined ubiquitous-joint model, and shear bands were 

formed initiating from here with an inclination of 45º to 65º to the applied major 

compressive load (Fig. 5-11 (a), (b) and (c)). Most of the failed zones forming the 

shear band failed in shear. In wing crack model and wing crack combined ubiquitous-

joint model, the first failure zone appeared at the top of the opening, where tensile 

stresses appear (see Fig. 5-10), and macroscopic fracture has been formed initiating 

from here and from the bottom side of the opening (Fig. 5-11 (d), (e)). Some 

macroscopic tensile fractures following the direction of the applied major 

compressive load (vertical), developed but were finally arrested. In addition, shear 

bands with an inclination of about 60º to the applied major compressive stress 
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developed along the side walls of the opening and penetrate the models (Fig. 5-11 (d), 

(e)). The predicted lifetimes have shown great difference for different model schemes. 

It is seen in Fig. 5-11 that under the same loads, the basic model failed after 6 minutes 

and the first failed zone is found after only 2 seconds. The fixed orientation model 

failed after 362 days and the fixed orientation combined ubiquitous-joint model failed 

after 6,265 years and the first failed zone is found after 11 days for both of these two 

cases. The lifetime is 4e23 seconds for the wing crack model and 9e26 seconds for the 

wing crack combined ubiquitous-joint model. The first failed zone is found after 1e16 

seconds for these 2 models. 

 

To give a more detailed view of the microcrack pattern at failure, a zoomed in area 

with microcracks presented in each model (except the basic model) is shown in Fig. 

5-12 to Fig. 5-15. It is seen that for most of the failed zones, the microcrack inside has 

reached the zone boundary, which confirmed failure in the subcritical crack 

propagation phase. In the wing crack model and wing crack combined ubiquitous-

joint model, the wing cracks in each zone follow the direction of the major 

compressive stress in the zone (Fig. 5-14 and Fig.5-15).  

 

 

 

   
→← 

   

 

   
 2.5 seconds 2 minutes 41 seconds 6 minutes 4 seconds 

 (a) Basic model 

  

 

 

   
→← 

   

 

   
 11 days 19 hours 230 days 3 hours 362 days 37 minutes 

 (b) Fixed orientation model 
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   
→← 

   

 

   
 11 days 19 hours 288 years 201 days 6,265 years 167 days 

 (c) Fixed orientation combined ubiquitous-joint model 

  

 

 

   
→← 

   

 

   
 1.2311e16 (s) 3.4319e23 (s) 4.1748e23 (s) 

 (exceeds 10,000 years) 

 (d) Wing crack model 

  

 

 

   
→← 

   

 

   
 1.2311e16 (s) 2.3906e26 (s) 9.3315e26 (s) 

 (exceeds 10,000 years) 

 (e) Wing crack combined ubiquitous-joint model 

  

Figure 5-11 Failure of the numerical models under biaxial loading conditions (compressive load: 

8 MPa (vertical), 2 MPa (horizontal); zones in red: shear failure of the zone/slip along ubiquitous joint; 

zones in green: tensile failure of the zone/tensile failure on ubiquitous joint; zones in gray: zone failed 

in the past/ubiquitous joint failed in the past) 
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Figure 5-12 A zoomed in area in fixed orientation model at failure (corresponding to Fig. 5-11 (b); 

zones in red: shear failure of the zone; zones in green: tensile failure of the zone; zones in gray: zone 

failed in the past) 

 

 
Figure 5-13 A zoomed in area in fixed orientation combined ubiquitous-joint model at failure 

(corresponding to Fig. 5-11 (c); zones in red: slip along ubiquitous joint; zones in gray: ubiquitous joint 

failed in the past) 

 



Chapter 5 Application of the numerical models 

 

139 

 

 
Figure 5-14 A zoomed in area in wing crack model at failure (corresponding to Fig. 5-11 (d); zones in 

red: shear failure of the zone; zones in green: tensile failure of the zone; zones in gray: zone failed in 

the past) 

 

 
Figure 5-15 A zoomed in area in wing crack combined ubiquitous-joint model at failure (corresponding 

to Fig. 5-11 (e); zones in red: slip along ubiquitous joint; zones in gray: ubiquitous joint failed in the 

past) 

 

5.2.2 Simulation of underground openings with different shape 

Different shapes (cross sections) of the opening have been studied in models of larger 

scale (Fig. 5-16). The size of the new model is 10 × 10 m
2
 with 62500 zones 

(500 × 500 zones). Length of each zone is still 0.04 m. The size of the opening is 

2 × 2 m
2
 for the quadratic opening (Fig. 5-16 (a)), 2 + π/2 m

2 
for the opening with an 

arched roof and flat floor (Fig. 5-16 (b)), and π m
2
 for the circular opening (radius of 

1 m) (Fig. 5-16 (c)). The numerical simulation is performed under the same biaxial 

loading condition for different modeling schemes: a constant compressive load of 
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8 MPa is applied vertically and a constant compressive load of 2 MPa is applied 

horizontally. Initial crack lengths follow normal distribution with the mean value of 

0.02 m and standard deviation of 0.005 m. The crack orientation follows normal 

distribution with mean value of 45º and standard deviation of 1º.  

 

A zoomed in area of the models is shown in Fig. 5-17, 5-18 and 5-19, respectively, to 

show the stress condition at the periphery of the openings. It is seen in Fig. 5-17 that 

the compressive stresses concentrate at the corners of the opening, and these 

maximum principal stresses have certain inclination from the vertically applied major 

compressive stress. Compressive stresses act along the side walls of the opening with 

same direction as the vertically applied major compressive stress. Tensile stresses 

occur symmetrically along the roof and floor of the opening. The tensile stress 

becomes bigger at a position closer to the middle of the roof or floor of the opening. 

For the arch-shaped opening (Fig. 5-18), the stress distributions are similar to the 

square opening along the side walls and floor. But along the arched roof, the 

directions of major stresses are the same as the directions of the tangent lines of the 

arch. For the circular opening (Fig. 5-19), the compressive stresses are the biggest at 

the left and right boundary and the tensile stresses are found at the roof and floor of 

the opening. The directions of the major stresses follow the surface of the opening. 

 

   
(a) (b) (c) 

   

Figure 5-16 Geometry of the numerical models 
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Figure 5-17 Stress condition at the periphery of the square opening (compressive load: 8 MPa (vertical), 

2 MPa (horizontal); red vector: tensile stress; blue vector: compressive stress, unit: Pa) 

 

 
Figure 5-18 Stress condition at the periphery of the arched opening (compressive load: 8 MPa (vertical), 

2 MPa (horizontal); red vector: tensile stress; blue vector: compressive stress, unit: Pa) 
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Figure 5-19 Stress condition at the periphery of the circular opening (compressive load: 8 MPa 

(vertical), 2 MPa (horizontal); red vector: tensile stress; blue vector: compressive stress, unit: Pa) 

 

(1) Basic model 

The failure stages of the basic model under biaxial loads are seen in Fig. 5-20. It is 

seen that for the model with the square opening, the zones failed first at the 4 corners, 

where the compressive stresses concentrate and the largest deviatonic stress is 

observed. Shear bands (55º) were formed from the corners and connected at both the 

left and right side wall. More zones failed after that and continued forming the shear 

bands (55º ~ 70º inclined to the horizontal direction) extending towards the boundary 

of the model (Fig. 5-20 (a)). The macroscopic fracture pattern around the arched 

opening is similar to the square opening, except that the zones first failed are located 

at the 2 bottom corners and at the transition from the side walls to the arched roof. 

The positions where the shear bands connect are also closer to the side walls (Fig. 5-

20 (b)). For the circular opening, the zones failed first at the left and right boundary of 

the opening, where the compressive stresses concentrate, and later on shear bands are 

formed, which finally reach the boundary of the model (Fig. 5-20 (c)). It is also seen 

that the predicted lifetime differ greatly with different opening shapes: it takes more 

than 3 years for the macroscopic fractures to reach the boundary of the model with 

square opening, more than 33 years for the model with the arched roof and more than 

78 years for the model with the circular opening. 
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1e-5 second 15 days 20 hours 3 years 237 days 

(a) 

 

   
85 days 8 hours 5 years 248 days 33 years 40 days 

(b) 

 

   
3 days 17 hours 288 days 18 hours 78 years 68 days 

(c) 

 

Figure 5-20 Failure process of the basic models (compressive load: 8 MPa (vertical), 2 MPa 

(horizontal); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º) 

 

(2) Fixed orientation model 

The failure stages of the fixed orientation model are shown in Fig. 5-21. Compared to 

the basic model, the zones failed first at similar positions, which means at the 

periphery of the opening. Later on shear bands were also formed from these initiating 

failure positions inclined 65º ~ 70º to the horizontal direction. Additional straight 

macroscopic fractures along the direction of the major compressive load have also 

been found for all opening shapes. For the square-shaped opening, the straight 

fractures started from the region near the corners of the opening, also from the shear 

bands (Fig. 5-21 (a) and Fig. 5-23). For the arched opening, the straight fractures 
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started from the transition between side walls and arched roof (Fig. 5-21 (b) and Fig. 

5-24). For the circular opening, the straight fractures start close to the left and right 

side of the opening (Fig. 5-21 (c) and Fig. 5-25).  

 

   
3.3829e9 (s) 

(107 years 99 days) 

3.2517e10 (s) 

(1,031 years 43 days) 

7.5811e13 (s) 

(exceeds 10,000 years) 

(a) 

 

   
9.1366e9 (s) 

(289 years 263 days) 

9.5326e11 (s) 

(exceeds 10,000 years) 

1.1807e14 (s) 

(exceeds 10,000 years) 

(b) 

 

   
1.9305e8 (s) 

(6 years 45 days) 

6.6493e11 (s) 

(exceeds 10,000 years) 

4.3201e14 (s) 

(exceeds 10,000 years) 

(c) 

 

Figure 5-21 Failing process of the fixed orientation models (compressive load: 8 MPa (vertical), 2 MPa 

(horizontal); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 
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(a) (b) (c) 

 

Figure 5-22 Final fracture pattern for fixed orientation models (compressive load: 8 MPa (vertical); 

2 MPa (horizontal); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial 

crack orientation: normal distribution, mean = 45º, STD = 1º) 

 

 
Figure 5-23 Microcracks around the up right corner of the square opening at failure (corresponding to 

Fig. 5-21 (a); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 
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Figure 5-24 Microcracks around the right side of the arched opening at failure (corresponding to Fig. 5-

21 (b); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 

 

 
Figure 5-25 Microcracks around the right side of the circular opening at failure (corresponding to Fig. 

5-21 (c); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 

 

The predicted lifetime also shows great difference for different shapes of openings. 

The model with the square opening, arched opening and circular opening failed at 
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7.5811e13 seconds, 1.1807e14 seconds and 4.3201e14 seconds, respectively. The 

final fracture pattern for models with different opening shapes are shown in Fig. 5-22. 

A more detailed view on the area near the openings revealed that, in most of the failed 

zones the cracks have reached the zone boundaries, which indicated the zones failed 

in the subcritical crack growth phase (Fig. 5-23, Fig. 5-24 and Fig. 5-25). 

 

(3) Fixed orientation combined ubiquitous-joint model 

With anisotropy included in the fixed orientation model, the simulation results have 

shown difference with respect to both the lifetime and fracture patterns. The lifetime 

for the model with the square opening, arched opening and circular opening is 

9.613e14 seconds, 7.2478e15 seconds and 5.4358e16 seconds, respectively, all longer 

than the corresponding case in the fixed orientation model. Shear bands have formed 

(with an inclination of about 70º to the horizontal direction) for each opening shape, 

but with less macroscopic fractures as compared to the fixed orientation model. The 

macroscopic fracture shows asymmetric features: if shear bands start from the left 

side of the openings they reach the upper boundary of the model, if shear bands start 

from the right side they reach the lower boundary of the model (Fig. 5-26). Also, 

straight macroscopic fractures following the direction of the applied major vertical 

compressive load have been formed at the left side of the openings but were arrested 

inside boundaries of the models (Fig. 5-26, Fig. 5-28, Fig. 5-29 and Fig. 5-30). Fig. 5-

27 compares the final fracture pattern for openings of different shape. A more detailed 

view on the openings is shown in Fig. 5-28, Fig. 5-29 and Fig. 5-30, respectively. It is 

also observed that in most of the failed zones forming the macroscopic fractures the 

zones failed by the crack reaching the zone boundary (subcritical crack grow phase). 

 

   
1.8699e8 (s) 

(5 years 339 days) 

2.1944e12 (s) 

(exceeds 10,000 years) 

9.6130e14 (s) 

(exceeds 10,000 years) 

(a) 
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1.5990e12 (s) 

(exceeds 10,000 years) 

3.5215e14 (s) 

(exceeds 10,000 years) 

7.2478e15 (s) 

(exceeds 10,000 years) 

(b) 

 

   
2.8274e8 (s) 

(8 years 352 days) 

2.7669e14 (s) 

(exceeds 10,000 years) 

5.4358e16 (s) 

(exceeds 10,000 years) 

(c) 

 

Figure 5-26 Failure process of the fixed orientation combined ubiquitous-joint models (compressive 

load: 8 MPa (vertical), 2 MPa (horizontal); initial crack lengths: normal distribution, mean = 0.02 m, 

STD = 0.005 m; initial crack orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip 

along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; zones in gray: ubiquitous 

joint failed in the past) 

 

   
(a) (b) (c) 

 

Figure 5-27 Final fracture pattern for fixed orientation combined ubiquitous-joint models (compressive 

load: 8 MPa (vertical), (horizontal): 2 MPa; initial crack lengths: normal distribution, mean = 0.02 m, 

STD = 0.005 m; initial crack orientation: normal distribution, mean = 45º, STD = 1º) 
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Figure 5-28 Microcracks around the up left corner of the square opening at failure (corresponding to 

Fig. 5-26 (a); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip along ubiquitous joint; zones 

in green: tensile failure on ubiquitous joint/zone failed in tension; zones in gray: ubiquitous joint failed 

in the past) 

 

 
Figure 5-29 Microcracks around the left side of the arched opening at failure (corresponding to Fig.  

5-26 (b); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip along ubiquitous joint; zones 

in green: tensile failure on ubiquitous joint/zone failed in tension; zones in gray: ubiquitous joint failed 

in the past) 
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Figure 5-30 Microcracks around the left side of the circular opening at failure (corresponding to Fig.  

5-26 (c); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip along ubiquitous joint; zones 

in green: tensile failure on ubiquitous joint/zone failed in tension; zones in gray: ubiquitous joint failed 

in the past) 

  

(4) Wing crack model 

The lifetime for the wing crack model is much longer time than that for the models 

mentioned before. The lifetime for the model with the square opening, arched opening 

and circular opening are 1.0444e26 seconds, 9.9069e26 seconds and 1.0227e29 

seconds, respectively (Fig. 5-31). The macroscopic fractures also showed distinct 

features. As shown in Fig. 17, Fig. 18 and Fig.19, macroscopic tensile fractures have 

been found at the middle of the roof and floor of the square opening, at the floor of 

the arched opening and at the roof of the circular opening (all of them are located in 

the area of tensile stress concentrations). These macroscopic tensile fractures develop 

in the same direction as the applied major compressive load, and were later arrested 

and do not reach the model boundary. The shear band (inclined about 70º to the 

horizontal direction) formed from the side walls of the openings have a ‘feather’ liked 

structure (Fig. 5-31). Especially, macroscopic fractures circling the opening have been 

found in the model with the circular opening (Fig. 5-31 (c) and Fig. 5-32 (c)). The 

wing cracks inside the failed zones forming these macroscopic fractures have the 

trend of follow the direction of the tangent line of the boundary of the opening (Fig. 

5-35). A more detailed view close to the openings is shown in Fig. 5-33, Fig. 5-34 and 

Fig. 5-35, respectively. 
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1.5207e17 (s) 5.3997e24 (s) 1.0444e26 (s) 

(exceeds 10,000 years) 

(a) 

 

   
5.8440e22 (s) 3.0776e26 (s) 9.9069e26 (s) 

(exceeds 10,000 years) 

(b) 

 

   
1.4976e24 (s) 4.0248e26 (s) 1.0227e29 (s) 

(exceeds 10,000 years) 

(c) 

 

Figure 5-31 Failure process of the wing crack models (compressive load: 8 MPa (vertical), 2 MPa 

(horizontal); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 
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(a) (b) (c) 

 

Figure 5-32 Final fracture pattern for the wing crack models (compressive load: 8 MPa (vertical), 

2 MPa (horizontal); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial 

crack orientation: normal distribution, mean = 45º, STD = 1º) 

 

 
Figure 5-33 Microcracks around the lower right corner of the square opening at failure (corresponding 

to Fig. 5-31 (a); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 
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Figure 5-34 Microcracks around the floor of the arched opening at failure (corresponding to Fig. 5-31 

(b); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack orientation: 

normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in green: 

tensile failure of the zone; zones in gray: zone failed in the past) 

 

 
Figure 5-35 Microcracks around the up right side of the circular opening at failure (corresponding to 

Fig. 5-31 (c); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m; initial crack 

orientation: normal distribution, mean = 45º, STD = 1º; zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past) 
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(5) Wing crack combined ubiquitous-joint model 

The lifetimes for the wing crack combined ubiquitous-joint model with square 

opening, arched opening and circular opening are 6.1862e32 seconds, 8.666e32 

seconds and 9.1208e32 seconds (Fig. 5-36), respectively, longer than the 

corresponding cases in wing crack model. For the model with a square opening, the 

failed zones first appeared at the corners and middle of the roof and floor boundaries 

of the opening. For the model with an arched opening, the failed zone first appeared 

around the bottom corners of the opening and at the transition between the arched roof 

and the side walls. For the model with a circular opening, the failed zones first 

appeared at the left and right sides of the opening. Shear bands (inclined about 60º to 

the horizontal direction) were later on formed starting from the sides of the openings 

and reaching the boundary of the model. Macroscopic tensile fractures also were 

formed from the middle of the roof and floor of the openings, but were arrested 

already shortly away from the boundary (Fig. 5-36). A detailed view about the final 

fracture pattern is seen in Fig. 5-38, Fig. 5-39 and Fig. 5-40. The final fracture pattern 

for models with different opening shapes are shown in Fig. 5-37. 

 

   
2.7063e17 (s) 4.7502e28 (s) 6.1862e32 (s) 

(exceeds 10,000 years) 

(a) 

 

   
4.6035e26 (s) 2.5801e28 (s) 8.6660e32 (s) 

(exceeds 10,000 years) 
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2.0607e25 (s) 1.2790e30 (s) 9.1208e32 (s) 

(exceeds 10,000 years) 

(c) 

 

Figure 5-36 Failure process of the wing crack combined ubiquitous-joint models (compressive load: 

8 MPa (vertical); 2 MPa (horizontal); initial crack lengths: normal distribution, mean = 0.02, 

STD = 0.005; initial crack orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip 

along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; zones in gray: ubiquitous 

joint failed in the past) 

 

   
(a) (b) (c) 

 

Figure 5-37 Final failure pattern of the wing crack combined ubiquitous-joint models at failure 

(compressive load: 8 MPa (vertical), 2 MPa (horizontal); initial crack lengths: normal distribution, 

mean = 0.02, STD = 0.005; initial crack orientation: normal distribution, mean = 45º, STD = 1º) 
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Figure 5-38 Microcracks around the up right corner of the square opening at failure (corresponding to 

Fig. 5-36 (a); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m;  

initial crack orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip along ubiquitous 

joint; zones in green: tensile failure on ubiquitous joint; zones in yellow: zone failed in tension;  

zones in gray: ubiquitous joint failed in the past) 

 

 
Figure 5-39 Microcracks around the up right side of the arched opening at failure (corresponding to Fig. 

5-36 (b); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m;  

initial crack orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip along ubiquitous 

joint; zones in green: tensile failure on ubiquitous joint; zones in black: failed in past (elastic);  

zones in gray: ubiquitous joint failed in the past) 
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Figure 5-40 Microcracks around the up right side of the circular opening at failure (corresponding to 

Fig. 5-36 (c); initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m;  

initial crack orientation: normal distribution, mean = 45º, STD = 1º; zones in red: slip along ubiquitous 

joint; zones in green: tensile failure on ubiquitous joint; zones in yellow: zone failed in tension;  

zones in gray: ubiquitous joint failed in the past) 

 

5.2.3 Conclusions 

Underground opening problem was simulated using the five distinct model schemes 

proposed in the former chapters. Models with different scales have been investigated. 

Also, different shapes of openings have been modeled for comparison. Lifetime and 

micro- and macroscopic fractures were studied. It is observed in each model scheme 

that with the similar sizes of the opening, the model with the square opening has the 

shortest lifetime. The lifetime of the model with the arched opening is longer and the 

model with the circular opening has the longest lifetime. In addition, by comparing 

the lifetimes between the different model schemes, it is concluded that the basic 

model gives the most conservative lifetime, while the wing crack combined 

ubiquitous joint model has predicted the longest lifetime. It is seen that following the 

ascending order of the predicted lifetime, the model schemes are: basic model, fixed 

orientation model, fixed orientation combined ubiquitous-joint model, wing crack 

model and wing crack combined ubiquitous-joint model. Shear bands have been 

observed in each model scheme. Especially, macroscopic tensile fractures have been 

formed from the roof and floor of the openings in the wing crack model and wing 

crack combined ubiquitous-joint model. In addition, the area where the microcracks 

have grown significantly longer coincides with the macroscopic fractures in each 

model. This phenomenon agrees with the laboratory observation that the macroscopic 

fractures were formed by the propagation and coalescence of the microcracks. 
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5.3 Underground pillar problems 

5.3.1 Numerical simulation 

Different numerical model schemes have been used to study the fracture pattern and 

lifetime of underground pillars under load. The height of the assumed pillar is 5 

meters. Only half of the pillar is modeled because of the symmetrical geometry, as is 

shown in Fig. 5-41. The numerical model contains 23,750 zones, with a length of each 

zone of 0.04 m. The crack length inside each zone follows normal distribution with a 

mean value of 0.02 m and standard deviation of 0.005 m. For the fixed orientation 

model, fixed orientation combined ubiquitous-joint model, wing crack model and 

wing crack combined ubiquitous-joint model the initial crack orientation follows 

uniform distribution and normal distribution for comparison. As shown in Fig. 5-42, 

under a compressive load (8 MPa), compressive stress concentrates at the corner of 

the pillar and the tensile stresses along the roof of the chamber are observed. 

 

 
Figure 5-41 Geometry of numerical models for underground pillar (Model height: 12 m; pillar height 

5 m; zone size: 0.04 × 0.04 m
2
) 
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Figure 5-42 Initial principal stress vectors at the joint of the pillar top and the ceiling (under uniaxial 

compressive load of 8 MPa) 

 

The failure stages for the basic model scheme, fixed orientation model scheme and 

fixed orientation combined ubiquitous-joint model scheme under the uniaxial 

compressive load of 8 MPa are shown in Fig. 5-43, Fig. 5-44 and Fig. 5-45, 

respectively. It is seen that under the uniaxial compressive load of the same 

magnitude (8 MPa), the basic model fails after about 18 seconds (Fig. 5-43), while the 

fixed orientation model failed after about 610 years if the initial crack orientation 

follows uniform distribution and after about 2 days if the initial crack orientation 

follow normal distribution with mean orientation of 45º and standard deviation of 1º 

(Fig. 5-44). The lifetime for the fixed orientation combined ubiquitous joint model is 

about 5.6065e11 seconds and 2.6057e5, respectively (Fig. 5-45). Under a bigger 

compressive load (12 MPa), the lifetime of the wing crack model is about 

8.0574e14 seconds if the initial crack orientation follows uniform distribution, and 

2.0657e15 seconds if the initial crack orientation follows normal distribution with 

mean orientation of 45º and standard deviation of 1º (Fig. 5-46); for the two 

orientation distributions in wing crack combined ubiquitous-joint model, the lifetime 

is about 2.0797e13 and 1.1355e16 seconds, respectively (Fig. 5-47). 
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 
8 MPa 

 

   
 1.2 second 4.3 seconds 18.7 seconds 

Initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m 

 

Figure 5-43 Failure process of the basic model (Zones in red: shear failure of the zone; zones in green: 

tensile failure of the zone; zones in gray: zone failed in the past) 
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 
8 MPa 

 

   

 
3.0108e6 (s) 

(34 days 20 hours) 

1.3808e7 (s) 

(159 days 19 hours) 

1.9256e10 (s) 

(610 years 214 days) 

Initial crack orientation: uniform distribution 

 

 

8 MPa 

 

   

 
4.6757e3 (s) 

(1 hour 17 minutes) 

2.3159e4 (s) 

(6 hours 25 minutes) 

2.2738e5 (s) 

(2 days 15 hours) 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 5-44 Failure process of the fixed orientation model (Zones in red: shear failure of the zone; 

zones in green: tensile failure of the zone; zones in gray: zone failed in the past; initial crack lengths: 

normal distribution, mean = 0.02 m, STD = 0.005 m) 
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 
8 MPa 

 

   

 
2.1287e6 (s) 

(24 days 15 hours) 

3.6715e7 (s) 

(1 years 59 days) 

5.6065e11 s 

(exceeds 10000 years) 

Initial crack orientation: uniform distribution 

 

 

8 MPa 

 

   

 
3.1461e4 (s) 

(8 hours 44 minutes) 

5.9972e4 (s) 

(16 hours 39 minutes) 

2.6057e5 (s) 

(3 days 22 minutes) 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 5-45 Failure process of the fixed orientation combined ubiquitous-joint model (Zones in red: 

slip along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; zones in gray: ubiquitous 

joint failed in the past; initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m) 
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 

12 MPa 

 

   

 
9.4353e9 (s) 

(299 years 69 days) 

5.5181e14 (s) 

(exceeds 10,000 years) 

8.0574e14 (s) 

(exceeds 10,000 years) 

Initial crack orientation: uniform distribution 

 

 

12 MPa 

 

   

 
2.5261e5 (s) 

(2 days 22 hours) 

1.0907e9 (s) 

(34 years 214 days) 

2.0657e15 (s) 

(exceeds 10,000 years) 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 5-46 Failure process of the wing crack model (Zones in red: shear failure of the zone; zones in 

green: tensile failure of the zone; zones in gray: zone failed in the past; initial crack lengths: normal 

distribution, mean = 0.02 m, STD = 0.005 m) 
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 
12 MPa 

 

   

 
2.6540e6 (s) 

(30 days 17 hours) 

1.0728e11 (s) 

(3,401 years 246 days) 

2.0797e13 (s) 

(exceeds 10,000 years) 

Initial crack orientation: uniform distribution 

 

 

12 MPa 

 

   

 
8.0674e5 (s) 

(9 days 8 hours) 

5.2152e9 (s) 

(165 years 136 days) 

1.1355e16 s 

(exceeds 10,000 years) 

Initial crack orientation: normal distribution, mean = 45º, STD = 1º 

 

Figure 5-47 Failure process of the wing crack combined ubiquitous-joint model (Zones in red: slip 

along ubiquitous joint; zones in green: tensile failure on ubiquitous joint; zones in yellow: zone failed 

in tension; zones in black: failed in past (elastic); zones in gray: ubiquitous joint failed in the past; 

initial crack lengths: normal distribution, mean = 0.02 m, STD = 0.005 m) 

 

Shear bands are observed in each of the models. In the basic model, the shear band 

has been formed inclining about 45º to the horizontal direction (Fig. 5-43). In the 
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fixed orientation model and fixed orientation combined ubiquitous-joint model, the 

inclination of the shear band is 60º ~ 70º to the horizontal direction (Fig. 5-44 and Fig. 

5-45). In the wing crack model and wing crack combined ubiquitous-joint model, the 

inclination of the shear band is 65º ~ 80º to the horizontal direction (Fig. 5-46 and Fig. 

5-47). Especially, at the corners of the pillar and the hanging wall except the basic 

model, macroscopic fracture are observed following the same direction as the applied 

load. In addition, tensile macroscopic fracturing has also been observed at the hanging 

walls (Fig. 5-46 to Fig. 5-47). It is also observed that if the initial crack orientation 

follows uniform distribution, the failed zones forming the shear band are more 

scattered than if the orientation follows normal distribution. The macroscopic fracture 

in the model with uniformly distributed initial cracks has a more uneven pattern.  

 

5.3.2 Conclusions 

Lifetime and fracture patterns of a pillar under compressive load have been 

investigated in this section. It can be concluded that, the basic model has the most 

conservative lifetime, while the wing crack combined ubiquitous-joint model has 

predicted the longest lifetime. It is also concluded that the lifetime is influenced by 

the initial crack orientation. In the fixed orientation model and fixed orientation 

combined ubiquitous-joint model, the lifetime is much longer if the initial crack 

orientation follows uniform distribution than if they follow normal distribution, while 

in the wing crack model and wing crack combined ubiquitous-joint model, the 

lifetime is shorter. Shear bands were observed in each model with distinct inclinations. 

The shear band was formed by more scattered failed zones if the initial crack 

orientation follows uniform distribution than normal distribution. Macroscopic 

fracture with the same direction as the applied compressive load has also been formed 

from the corner of the pillar and from roof of the opening. In addition, more shear 

bands have been observed in the pillar in wing crack model and wing crack combined 

ubiquitous-joint model (Fig. 5-46 and Fig. 5-47), compared to more singular shear 

bands observed in other models (Fig. 5-43 to Fig. 5-45). 

 

5.4 Comparison between numerical results and observations in situ 

So far the numerical simulation results were compared with analytical solutions of 

very simple constellations and lab test results in terms of general failure pattern. The 

question arises, if this procedure would also predict realistic fracture (failure) pattern 

for large-scale geotechnical constructions in rock masses like tunnels, pillars etc. 

Therefore, a few preliminary studies were performed to investigate if numerical 

predicted failure pattern correspond to typical failure pattern in-situ. 

 

Exemplary, the numerical simulation results are compared to observations of 

underground tunnel and pillar fracture patterns considering shape of geotechnical 



Chapter 5 Application of the numerical models 

 

166 

 

construction and stress ratios and orientations. Fig. 5-48 (b) shows the excavation 

disturbed zone around a tunnel (Bossart et al. 2002, Blümling and Konietzky 2003). 

The extensional failures in the sidewalls of the tunnel are represented by the circular 

macroscopic fractures observed in wing crack combined ubiquitous-joint model (Fig.  

5-48 (a)). Damage zones around excavated circular cavities of different scale are 

shown in Fig. 5-49. It is seen that the damage locations agree with those of the 

numerical simulation, where the mean orientation direction of initial cracks 

correspond to the bedding direction of the rock around the cavities. Macroscopic 

fracture pattern similar to typical V-shaped notches are observed in the numerical 

model (Fig. 5-50 (a)). The numerical simulation is also compared to an in situ 

observation at a Mine-by Experiment tunnel (Read 2004, Chandler 2004), as seen in 

Fig. 5-50 (b). Macroscopic fracture is also observed in agreement with classical 

fracture pattern as seen in Fig. 5-51. It is seen in Fig. 5-51 (b) that if the sidewalls of 

the opening are not stable, sliding faces with the inclination of 45º - φ/2 from the 

vertical direction are formed from the floor of the opening. Macroscopic fractures are 

observed in fixed orientation model with the inclination in agreement with the 

classical fracture pattern (Fig. 5-51 (a)). Vertical macroscopic fractures are also 

observed in Fig. 5-51 (a) in agreement with the vertical sliding faces shown in Fig. 5-

51 (c). For the case where a pressure arch can not be formed naturally, or the pressure 

arch has not enough load bearing capability, inclined sliding faces can be formed from 

the floor of the opening, with the inclination of 45º - φ/2 from the vertical direction as 

shown in Fig. 5-51(e) (Xu 1993). Similar fracture pattern is also observed in fixed 

orientation model, where the inclination of the macroscopic fracture is also in 

agreement with the classical result (Fig. 5-51 (d)). 

 

 
Figure 5-48 The excavation disturbed zone around a tunnel (a) the fracture features around the 

sidewalls in wing crack combined ubiquitous-joint model with initial crack orientation following 

normal distribution (b) at an intersection of two tunnels at Mont Terri (modified from Blümling and 

Konietzky 2003, photo B. Niederberger) 
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Figure 5-49 Damage zones around underground cavities on different scales (a) macroscopic fracture in 

wing crack model, σ1 = 8 MPa, σ2 = 2 MPa (b) slim horizontal borehole (c) gas path through host rock 

and along seal sections/ HG-A microtunnel (d) overbreak in the EZ-A tunnel of the Mont Terri 

Underground Research Laboratory, σ1 = 6.5 MPa, σ1 / σ2 = 1.5 ~ 2 (Marschall et al. 2008) (dashed line: 

(a) mean initial crack orientation; (b), (c) and (d): bedding direction) 

 

 
Figure 5-50 Tip of the V-shaped notch of the underground opening (a) macroscopic fracture pattern at 

the sidewalls at the early stage of the damage process of the opening in wing crack combined 

ubiquitous-joint model with initial crack orientation following normal distribution (b) V-shaped notch 

tip of a Mine-by Experiment Tunnel at the Underground Research Laboratory in Canada (Chandler 

2004) 
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Figure 5-51 Macroscopic fracture pattern of underground opening (a), (d) fixed orientation model,  

α = 45º - φ/2 = 30º, φ = 30º (b), (c), (e) classical fracture pattern of underground opening ((b): sidewalls 

are not stable; (c) sidewalls are stable; (e) pressure arch is not formed naturally) (modified from Xu 

1993) (P: initial vertical pressure on the rock, dashed line: presumable ground, red line: sliding face) 

 

A commonly seen hourglass shaped pillar caused by spalling at the rib structure is 

shown in Fig. 5-52 (c). This failure pattern is better represented by the simulation of 

wing crack model scheme (Fig. 5-52 (b)) and wing crack combined ubiquitous-joint 

model scheme, where failed zones formed macroscopic fractures more parallel to the 

surface of the pillar and facilitate the spalling process. However, fixed orientation 

model (Fig. 5-52 (a)) and fixed orientation combined ubiquitous-joint model where 

singular macroscopic fracture was formed may not be used to describe this type of 

failure process. 
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Figure 5-52 Spalling at the rib of the pillar (a) fracture pattern of pillar in fixed orientation model (b) 

fracture pattern of pillar in wing crack model (c) hourglass formation of a pillar because of spalling 

(Esterhuizen et al. 2011) 

 

On the basis of these studies the preliminary conclusion can be drawn, that several 

typical fracture (failure) pattern, observed in nature, are quite well reproduced by the 

proposed simulation schemes. Nevertheless, the different schemes also produce to 

some extent also different failure mechanisms. Therefore, further studies, beyond the 

scope of this work, are necessary to clarify which scheme is appropriate to be applied 

in-situ. 
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6 Summaries and conclusions 

In this thesis, lifetime prediction schemes for rocks have been proposed and were 

realized using numerical simulations. The developed simulation strategy is based on 

the assumption, that macroscopic fractures are created by coalescence of micro-cracks 

and the growth of micro-cracks is governed by the grain structure. Therefore growth 

and arrest of micro-crack growth is controlled by characteristics of grains (size, 

distribution, strength etc.). Based on linear elastic fracture mechanics, numerical 

models have been built. The subcritical crack growth of the microcracks inside the 

mode has also been modeled. The fracture growth is controlled by Charles equation. 

Different numerical models have been built and tested with the corresponding lifetime 

prediction schemes. The factors influencing the lifetime have been investigated 

through both single zone model and multi-zone model. Numerical predicted lifetime 

has been obtained and compared with analytical solutions. Macroscopic fracture 

patterns of the numerical models have been studied. The failure modes of the zone 

under different loads and initial crack characteristics have been investigated. Finally, 

the proposed numerical models have been used to simulate underground openings and 

weak plane problems. 

 

The following conclusions can be drawn: 

 

(1) Using a smaller time step, the numerical result for the lifetime comes closer to the 

analytical solution. However, a longer computing time is caused in this case. It is also 

observed that changes in time step value do not have much influence in predictions of 

the first zone failure time. In view of this, a scheme with changeable time steps is 

proposed and applied to the model. A comparatively bigger time step value is first 

used in the calculation before any zone fails to save computing time and the time step 

is reduced if the mechanical unbalanced force ratio suddenly rises, which indicates 

that zones have failed and stress-redistributions occur. The developed scheme with 

changeable time steps is efficient and guarantees an acceptable precision. 

 

(2) Based on the basic model (Konietzky et al. 2009), four new numerical model 

schemes have been proposed, namely: fixed orientation model, wing crack model, 

fixed orientation combined ubiquitous-joint model and wing crack combined 

ubiquitous-joint model. These models (including basic model) have been studied 

under different loading conditions using a single zone, and the numerical predicted 

lifetime and important parameters relating to the lifetime (stress intensity factor and 

critical crack lengths) have shown excellent agreement with the analytical solutions in 

all cases. Also, the correct failure mode of the zone in the single zone studies (or first 

failure zone in the multi zone studies) has been predicted by the numerical simulation 

in each case. 
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(3) Factors influencing the lifetime for in fixed orientation models and wing crack 

models were investigated. Some common features have been observed: The lifetime is 

shorter if the applied load becomes bigger, or the initial crack is longer in both 

uniaxial tensile and compressive loading. Under uniaxial tensile load, the lifetime is 

longer the more the crack axis is perpendicular to the applied tensile load (the same 

holds for the mean orientation in multi zone models), while under compressive load, 

the lifetimes have a U-shaped curve with ascending crack orientation (the same holds 

for the mean orientation in multi zone models). It is also observed that under the same 

amplitude of load, the time to failure under tension is much shorter than under 

compression. 

 

(4) Macroscopic fractures have been studied for all the numerical models. Under 

tensile load, macroscopic fractures were formed perpendicular to the applied load in 

all numerical models. Under compressive load, shear bands were formed with the 

inclination of about 45º to the loading direction in the basic model, and 30º in the 

fixed orientation model and in the fixed orientation combined ubiquitous-joint model, 

which confirms Mohr-Coulomb theory, while in the wing crack model and wing crack 

combined ubiquitous-joint model, the macroscopic fractures follow the direction of 

the applied compressive load (or the direction of the major compressive load under 

biaxial compressive stress). Both of the above failure modes, inclined shear bands and 

tensile fractures are also observed at the macroscopic scale in uniaxial compressive 

lab tests.  

 

(5) The wing crack propagation scheme has been programmed where the wing cracks 

extend in the direction of the maximum circumferential stress. A superposition 

method for calculating the stress intensity factor has been incorporated into the 

program. Numerical results of the superposition method were validated by 

comparison with exact analytical solutions. 

 

(6) The influence of the orientation of the initial microcracks on the macroscopic 

fractures has been investigated for all models. If the orientation of the initial 

microcracks follows uniform distribution, compared with the case of normal 

distribution, under tensile load the tensile macroscopic fracture has shown a more 

uneven pattern. Under compressive load, the shear band is formed by groups of more 

scattered distributed failed zones. In addition, the shear band is found more scattered 

and the lifetime is shorter with bigger standard deviation (5º) compared to a smaller 

standard deviation (1º) (fixed orientation model). 

 

(7) Under tensile loads, the zones forming the macroscopic tensile fractures are more 

likely to fail by KI ≥ KIC, which explains the comparatively short lifetime. This 
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phenomenon is also supported by laboratory observation which shows abrupt failure 

for rock under tensile load. In compressive tests, zones forming the shear bands often 

fail by crack lengths reaching the zone boundaries, which indicates that such zones 

failed in the subcritical crack propagation phase. 

 

(8) The numerical models have shown much higher resistance against fracturing in 

shear than in tension, like observed in nature. Especially, the wing crack model has 

shown great resistance against fracturing under biaxial loading. Even with small 

additional lateral compressive loading, the lifetime is increased significantly. 

 

(9) Underground opening problems have been simulated using the developed 

modeling schemes. It is observed that with the similar size (cross section area) of the 

opening, the model with the square opening has the shortest lifetime. The lifetime of 

the model with the arched opening is longer and the model with the circular opening 

has the longest lifetime. Shear bands have been observed in each of the models. In 

addition, macroscopic tensile fractures have been formed from the roof and floor of 

the opening in the wing crack model and wing crack combined ubiquitous-joint model. 

 

(10) The propagation and coalescence of microcracks in models with existing weak 

plane(s) have been studied. Shear bands are formed in the basic model, fixed 

orientation model and fixed orientation combined ubiquitous-joint model. 

Macroscopic tensile fractures are formed following the direction of applied load in 

wing crack model. Inclined macroscopic fractures were formed in wing crack 

combined ubiquitous-joint model.  In this case, the inclination of the macroscopic 

fractures was found greatly influenced by the mean initial crack orientation of the 

initial cracks.  

 

(11) It is concluded that with the same rock parameters, same initial crack 

conditions and under the same loading condition, the lifetime of basic model is the 

most conservative, while the wing crack combined ubiquitous-joint model predicts the 

longest lifetime. Arranged by the ascending order of the predicted lifetime: basic 

model, fixed orientation model, fixed orientation combined ubiquitous-joint model, 

wing crack model and wing crack combined ubiquitous-joint model. 

This study has been an attempt to predict the lifetime of rock under load from the 

microcrack propagation point of view. An extensive programming work has been 

performed to implement several crack propagation schemes into a numerical code. 

Reasonable results have been obtained from the numerical simulations. However, 

further improvements can be made: study on the influence of different mesh size and 

shape on the lifetime and macroscopic fractures; extending the model schemes into 3 

dimensional models, where also the out-of-plane shear fracture (Mode III) is 
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considered; extending and implementation of the lifetime prediction schemes into the 

Discrete Element Modeling technique, where discrete fracturing could be simulated; 

detailed quantitative verification of the proposed modeling schemes by comparing 

with lab tests and in situ observations.  
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7 Major contributions of this thesis 

The main contributions can be summarized as follows: 

- Development, programming and verification of five different approaches 

(improvement of the basic model developed by Konietzky et al. 2009) to 

simulate micro-mechanical fracture growth within a numerical cellular 

automata. 

- Explicit consideration of initial micro fracture length and orientation. 

- Development and verification of an automatic algorithm to adjust the 

calculation time step (optimization of calculation time). 

- Extension of the Wing-crack-model to include tensile failure. 

- Application of the developed models to simplified geomechanical problems. 

- Investigation of the influence of micro-crack characteristics and stress state on 

the formation of macroscopic fracture pattern. 
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