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Introduction

1 Introduction

There is a wide range of applications for magnetic materials nowadays. They are

present in motors, generators, sensors, used for data storage and signal transfer.

However, all these applications require bulk materials in more or less large quanti-

ties whereas the trend goes to smaller and smaller devices, especially in the field of

data storage. In order to keep pace with these developments it is necessary to reduce

the amount of space used to store one bit of information steadily. This naturally

leads to a miniaturization. According to Moore’s Law144 the number of transistors

per integrated circuit doubles every 18 month. This statement is still valid for the

transistor density and can be extended to several other properties such as size, cost,

speed of components and the storage density. But there are physical limits to the

downsizing and miniaturization. Especially for the storage density which is up to

now based nearly exclusively on magnetic recording (except for solid-state drives).

Below a critical size of the magnetic domains the superparamagnetic limit is ap-

proached. Beneath this critical size thermal excitations can flip the orientation of

the magnetic moment resulting in data loss.

Given the current rate of minimization it is unavoidable to reach the superparam-

agnetic limit within the next few years. Hence, new concepts for data storage are

needed. One promising approach is the use of single-molecule magnets (SMMs)103.

Single molecule magnets are characterized by a large ground state S and a large

easy axis magnetic anisotropy D. A widely known representative of single molecule

magnets is Mn12-acetat which was already known since 1980123. However, it took 11

more years until the magnetic properties of the complex were studied. As shown by

Sessoli and co-workers185 there exists a magnetic hysteresis which is due to a energy

barrier between the bistable ground states of the molecule. This results in a slow-

ing of the relaxation (months at 2K) of the spins and hence in the experimentally

observed hysteresis. In contrast to usual magnets the hysteresis is not due to long

range order effects but a unique feature of the molecule itself. Therefore, each of

these magnetic molecules is in principle capable to store one bit of information.

Since we deal now with molecules which are much smaller than the bulk material

usually used for storage purposes, we have to take into account quantum mechanics

to characterize the SMMs. In order to apply SMMs to high-density information
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storage it is necessary to understand the mechanisms that lead to the desired single

molecule magnet properties: a high spin ground state as well as an easy axis for

the magnetic anisotropy. Given that both criteria are fulfilled the energy barrier U

between the bistable ground states | ± S > is given by U = S2|D| as explained in

more detail in section 2.4.4. For a possible application in the field of data storage an

as large as possible barrier U is desired. Accordingly a simultaneous optimization

of both quantities (S and D) would be preferred.

A high spin ground state can be realized by an overall ferromagnetic coupling of

the magnetic centers. As shown in section 2.4.2 there are several possibilities to

realize a ferromagnetic coupling and the underlying mechanisms are rather well un-

derstood. The well-known Goodenough-Kanamori rules75, 76, 104 relate the strength

and type (i.e. ferromagnetic or antiferromagnetic) of the coupling to the overlap of

the involved magnetic orbitals. A more quantitative approach to the explanation

and prediction of the magnetic coupling within weakly coupled transition metal sys-

tems is given within the Hay-Thibeault-Hoffmann model90. However, no such easily

applicable rules to predict the magnetic anisotropy exist. As shown in section 2.4.4

there are attempts to relate the strength and sign of the magnetic anisotropy to

structural parameters as well as the single-ion anisotropies of the given system (see

for example19, 191). Ruiz and co-worker200 on the other hand suggested that “the

zero-field splitting parameter” which is closely related to the magnetic anisotropy D

“depends mostly on the ground state rather than on structural details“. It has also

been shown clearly that there is a connection between the ligands surrounding the

metal center and the strength of the magnetic anisotropy18, 19, 77. Despite all these

interesting approaches there is up to now no way to predict the magnetic anisotropy

in a steady way. Therefore, it is consequently not possible to optimize the energy

barrier U in a reliable way as there is no certain control of one of the two param-

eters involved. Moreover, as already indicated by Ruiz et al.200 and stated more

clearly by Neese and coworkers150 (“the hidden dependence of the zero-field split-

ting parameter D to the spin quantum number implies that maximizing the total

S through construction of polynuclear entities may not be needed to make better

single-molecule magnets.”) it is well possible that a simultaneous optimization of

the magnetic anisotropy and the total ground state spin S of a given system is not

possible at all.
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The present work will address this issue of a dual optimization of the magnetic

anisotropy D and the ground state S in more detail. All results are based on den-

sity functional theory (DFT)93, 111 within the generalized gradient approximation

(GGA) using mainly the PBE168 functional. It is well known that ground state

properties such as the total energy170, charge densities or structural energy differ-

ences84–86, 174, 232 are described quite accurate within DFT. However, there are some

problems when it comes to the description of excited states, orbital energies, strongly

correlated systems14, 15, long range interactions (for example hydrogen bonds or Van

der Waals forces), localized d- and f -electrons and band gaps in semiconductors and

insulators167, 208. The problem of the localized d-electrons is well known and leads

usually to an overestimation of the calculated exchange coupling with respect to

experimental results83, 114. However, this is a systematic error and trends in the

exchange coupling are usually well reproduced. The same applies to the band gap

problem. Within DFT calculations the band gap is usually calculated too small

in comparison to experiment or high level quantum mechanical methods. Despite

all these problems DFT provides a fast and parameter-free first principle method

for the computation of material properties such as electronic structure, total mag-

netic moments, exchange coupling constants and magnetic anisotropy energies. A

short overview of the basics of density functional theory can be found in section

2.3, whereas the mechanism and basic principles for the magnetic interactions are

described in more detail in section 2.4. Chapter 3 finally gives a short introduction

on the software packages used for the calculations, visualization and analysis done

in the present work.

Within chapter 4.1 various Robson-type hexamine-dithiophenolate macrocycles are

studied with respect to their electronic and magnetic properties (exchange coupling

and magnetic anisotropy). After a detailed discussion of the influence of different ex-

change correlation functionals on the computation of the magnetic anisotropy we will

focus on the electronic and magnetic description of various third row transition metal

complexes of the general structure [MII
2 (L6)(OAc)]+ (L=polyamine-dithiophenolate

ligand (C38H64N6S2)). We will see that only Ni-dimers show the desired ferromag-

netic coupling of the transition metal centers. Consequently, a detailed discussion

of the electronic and magnetic properties of various bridged Robson-type hexamine-

dithiophenolate macrocycles follows. It can be shown that trends in the magnetic
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coupling can be explained in terms of the Goodenough-Kanamori rules75, 76, 104

and within the Hay-Thibeault-Hoffmann90 model whereas trends in the magnetic

anisotropy can be related to geometric distortions and the gap between the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO). Furthermore, we will see that the size and charge of the third bridging

ligand does not influence the magnetic coupling. However, weak ligands should be

preferred as they open new ferromagnetic pathways across the third bridging lig-

and that enhance the ferromagnetic coupling. Another interesting finding is that

a strong ferromagnetic coupling is related to a small magnetic anisotropy and vice

versa.

In chapter 4.2 we will focus on the question whether or not it is possible to combine

a large spin ground state S and a high magnetic anisotropy. As already discussed

would be preferred in order to build single molecule magnets with a large barrier

of magnetization U which is given by U = S2|D| (see also section 2.4.4). In order

to get comparable results we restricted ourselves to octahedral coordinated, azido-

bridged copper(II), nickel(II) and manganese(II) dimers. We would of course expect

the highest barrier for the manganese complexes as those show the largest total spin

(S = 5). Surprisingly, this is not the case. Instead, the largest barrier U is observed

for the copper(II) (S = 1) complexes. Upon the discussion of these – at first glance

unexpected – findings we will see that a high spin ground state S does not necessarily

result in a large barrier. This is mainly due to the fact that the magnetic anisotropy

can be related to the free ion single electron spin-orbit coupling parameter ζ (which

increases from manganese to copper).

Finall, we will focus our studies on a family of polynuclear Mn6 complexes. Here we

will rule out the influence of the free ion single electron spin-orbit coupling param-

eter ζ as we focus only on Mn3+ ions. Instead, we will discuss the influence of the

ligand and the ground state of a given molecule on the magnetic anisotropy. Our

results reveal that the influence of the different ligands is rather small compared

to the impact of the ground state. The differences in the barrier U for one given

ground state S among the different complexes under investigation is much smaller

than the difference in the barrier U for various ground states S of a given complex.

This indicates that it is not possible to maximize the magnetic anisotropy D and

the ground state S of a given system together.
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Theoretical background

2 Theoretical background

2.1 Classical and quantum mechanical Hamiltonian

As known from classical physics the total energy of any system is given by the sum

over the kinetic energy T and the potential energy U :

E = T + U

=
~p 2

2m
+ U(~r) (2.1)

This is also a common expression for the Hamilton H(~r, ~p) in classical mechanics.

Due to the correspondence principle33 it is possible to obtain the respective quan-

tum mechanical expression by replacing the classical quantities with the respective

quantum mechanical operators:

E → Ê = i~
∂

∂t

p → p̂ = −~
i
∇

~r → r̂ = ~r

U → Û = Coulomb interaction

H(~r, ~p) → Ĥ(r̂, p̂). (2.2)

Therefore the classical Hamiltonian can be rewritten in the following form:

Ê = T̂ + Û

i~
∂

∂t
= − ~2

2m
4+ Û(~r). (2.3)

The application of the quantum mechanical Hamiltonian to the unknown wave func-

tion Ψ yields the fully time dependent Schrödinger Equation

ĤΨ = ÊΨ (2.4)

2.2 Transition to electronic structure theory

The solution of the above described time dependent Schrödinger Equation is rather

complex and for many applications it is not necessary to deal with an explicit time
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dependence. Therefore it is possible to replace the energy operator Ê by the energy

eigenvalue E for the time independent case.

ĤΨ = EΨ (2.5)

This is called the stationary Schrödinger equation206, 207, which is appropriate to

describe stable, stationary states with a fixed energy E. Despite these simplification

the stationary Schrödinger equation is still very difficult to solve for many electron

systems. For example the Hamiltonian for electrons and nuclei interacting through

the coulomb potential is given by:

Ĥ = T̂ + Û . (2.6)

Here we get for the kinetic energy operator T̂

T̂ = − ~2

2m

N∑
i

∇2
i −

~2

2M

M∑
K

∇2
K (2.7)

describing the kinetic energy of the electrons i and the nuclei K. The operator Û

on the other hand is given by the coulomb interaction:

Û = − e2

4πε0

N∑
i

M∑
K

ZK

|~RK − ~rj|
+

e2

8πε0

M∑
L6=K

ZKZL

|~RK − ~RL|
+

e2

8πε0

N∑
j 6=i

1

|~ri − ~rj|
. (2.8)

including an attractive interaction is given between electrons and nuclei as well as

the nucleus-nucleus and electron-electron repulsion.

A further simplification of the Schrödinger Equation is given within the so-called

Born-Oppenheimer approximation34. It is based on the fact that the nuclei are much

heavier (∼ 1836 times) than the electrons. Thus, the movement of the electrons is

very fast compared to the movement of the nuclei. Hence, in the system of nuclei

and electrons the electrons are always in their ground state with respect to the

instantaneous position of the nuclei. In other words it is possible to think about the

electrons moving in a lattice defined by the nuclei. Thus, it is possible to separate

the motion of the electrons from the nuclei. Consequently the presumption that

coulomb interaction Û depends only parametrically on the nucleus coordinates ~RK

is made:

Û = Û(r̂j; ~RK) (2.9)
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This assumption fails only in rare cases60 and is therefore used widely nowadays.

Within this approximation the kinetic energy operator T̂ given in equation (2.7)

reduces to:

T̂ = − ~2

2m

N∑
i

∇2
i (2.10)

since we can presume that

~2

2M

M∑
K

∇2
K = 0 (2.11)

due to the assumption that the electrons move in a lattice defined by the nuclei. In

this case the nuclei are at the nodes of the lattice and therefore they have no kinetic

energy. Due to the same assumption it is possible to disregard the nucleus-nucleus

repulsion. Therefore Û reduces to:

Û = − e2

4πε0

N∑
i

M∑
K

ZK

|~RK − ~rj|
+

e2

8πε0

N∑
j 6=i

1

|~ri − ~rj|
. (2.12)

Within this approach we now define that the electrons move in the external field

Vext created by the positions of the nuclei. Therefore, the Schrödinger Equation can

be now described in terms of T̂ , Û (electron-electron repulsion) and ˆVext

Ĥ = T̂ + Û + ˆVext (2.13)

= − ~2

2m

N∑
i

∇2
i +

e2

8πε0

N∑
i

N∑
j 6=i

1

|~ri − ~rj|
− e2

4πε0

N∑
i

M∑
K

ZK

|~RK − ~rj|
.

It should be noted that in principle every observable O is given by the eigenvalue

problem:

O[Ψ] =< Ψ|Ĥ|Ψ > (2.14)

This includes of course the energy E. According to the Rayleigh-Ritz principle193 it

is now possible to minimize the eigenvalue problem:

E0 = min
Ψ→Ψ0

< Ψ|Ĥ|Ψ > (2.15)

in an iterative way. All wave functions yield an energy that is larger or in the case

of Ψ0 equal to the ground state energy E0.
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However, the problem is still not solvable which is mainly due to the electron-electron

interaction Û . Note that Û is a two-particle operator, hence the many-body effects

have to be considered. These are namely exchange and correlation. Especially

correlation (i.e. the instantaneous reaction of a given electronic system to a change

at one localized position) is very hard to describe accurately. The core of the problem

is that the whole system is more than the sum of its parts13.

As already discussed above, every feature of a system is given by the exact solution

of the Schrödinger Equation

T̂Ψ + ÛΨ + V̂extΨ = i~
∂

∂t
Ψ, (2.16)

which is given in the stationary state and within the Born-Oppenheimer approxima-

tion by equation (2.13). But there is one fundamental drawback: An exact solution

of the Schrödinger Equation is only possible for very simple cases. And even then the

solution includes a many-body wave function Ψ(~r1, ~r2, ..., ~rN) containing 3N spatial

coordinates. Since the number of electrons N increases very fast for real systems it

is necessary to introduce approximations.

An straightforward approach to solve equation 2.13 is given in the Hartee-Fock the-

ory70, 87. It is a variational method based on the Rayleigh-Ritz principle using a

single Slater determinant to describe the many body wave function Ψ of a given

system. By construction the method includes the exchange energy of the system.

However, the correlation is completely missing3. This is to be expected as Û is a two-

particle operator. Therefore Ψ can not be described by a single Slater determinant.

In other words, within the mean field approximation the instantaneous reaction of

a given electronic system to a change at one localized position is approximated by a

single averaged effect. This reduces the many-body problem to an one-body prob-

lem where correlation is missing by construction. However, correlation effects are

extremely important, especially in chemistry. For example the flourine molecule F2

would not be stable without taking correlation187 into account. There are several

post-Hartree-Fock methods that try to account for this weakness for example:

• the configuration interaction (CI) method209,

• the multiconfiguration approach (MCHF/MCSCF)69,
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• coupled-cluster (CC) theories96 all of which expand the true multi-electron

wave function in terms of a linear combination of Slater determinants.

• the generator coordinate approach (GC)81, 92, where the total Hamiltonian is

diagonalized in a basis defined by mean-field wave functions. These wave func-

tions are generated by a constraint on a collective variable, like the quadrupole

moment of a nucleus.

• variational quantum Monte-Carlo45, 137, where the Hartee-Fock wave function

is modified by a correlation function (”Jastrow” factor) that is a function of

multiple electrons.

• the many-body perturbation theory (MBPT), for example Møller-Plesset per-

turbation theory143 which treats correlation as a perturbation of the Fock

operator.

• the random phase approximation (RPA)31, 32, 176 which has been developed

to describe collective excitations that are a coherent superposition of single

particle excitations.

• density functional theory (DFT) which treats exchange and correlation ener-

gies in an approximate way.

Out of the above mentioned methods DFT provides a fast and reliable method for

the computation of ground state properties. Therefore, the next section will give a

more detailed description of density functional theory.

2.3 Density Functional Theory

As the name “density functional theory” already suggests we will now try to replace

the many-body wave function Ψ(~r1, ~r2, ..., ~rN) by a wave function that depends only

on the density n(~r). This results in a tremendous reduction of the problem as we now

consider a function of 3 instead of 3N spatial coordinates. Furthermore, suitable

expressions for T̂ , Û and ˆVext are needed in order to keep the problem solvable. This

is rather straightforward for the external potential v(~r):

Vext[n] =

∫
n(~r)v(~r)~r, (2.17)
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and a bit more sophisticated for the potential and kinetic energy.

2.3.1 Thomas-Fermi model

The very first approximation to the potential and kinetic energy was proposed in

1927 by Thomas and Fermi68, 216. They suggested the use of a local system of non-

interacting electrons instead of the complicated system of interacting electrons. In

order to do that it is necessary to connect the electron density n(~r) and the kinetic

energy T . The starting point is the kinetic energy T of the free electron gas given

by the average of the kinetic energy of all electrons N within the system:

T =
3

5
NEf (2.18)

The Fermi energy Ef is given by the dispersion relation

Ef =
~2

2m
k2
f (2.19)

including the mass m of an electron and the radius of the Fermi sphere kf . Now it

is possible to define the kinetic energy density t[n(~r)] as the kinetic energy T per

volume V in terms of the density n = N
V

= 1
3π2k

3
f :

t[n(~r)] =
3

5
(3π)

2
3
~2

2m
n

5
3 (~r) (2.20)

Therefore, the kinetic energy T becomes a functional of the electron density n(~r) of

the free electron gas:

T [n(~r)] =
3

5
(3π)

2
3
~2

2m

∫
n

5
3 (~r)d3r (2.21)

Furthermore, the pair density of the electrons n2(~ri, ~rj) within the term for the

potential energy Û is replaced by the product of the single densities n(~ri) and n(~rj):

U [n(~r)] =
e2

8πε0

∫ ∫
n(~ri)n(~rj)

|~ri − ~rj|
d~rid~rj, (2.22)

which reduces the many-body problem to a single-particle problem. This results of

course in a neglect of the exchange and correlation effects because these are many-

body effects.
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The Thomas-Fermi model was the first approach to solve the Schrödinger equation

within the framework of a density n(~r). However, due to the crude approximation

of the kinetic energy T and the neglect of exchange and correlation effects it often

fails. The shell structure of atoms is not reproduced, atoms are smaller and more

charged than in reality and molecular binding is not described28.

2.3.2 Hohenberg-Kohn theorem

Another approach was proposed in 1964 by Hohenberg and Kohn93. First of all they

proved that the initial idea - namely the treatment of a quantum mechanical problem

in terms of the density n(~r) - is appropriate given that
∫
n(~r)d~r = N . It turns out

that the electron density is indeed a suitable variable that contains all information

about a system in its ground state. They proved the ground state density n0(~r) to

be an unique functional of the external potential. To state this more clearly: it is

not possible that two different external potentials v1(~r) and v2(~r) exist that yield

the same ground state density n0(~r).

Since all other parts of the Hamiltonian given in equation (2.13) are universal it can

be concluded that the whole Hamiltonian is fully determined by the ground state

density n0(~r). Consequently, the ground state wave function is also a functional

uniquely determined by the ground state density

Ψ(~r1, ~r2, ..., ~rN) = Ψ[n(~r)]. (2.23)

This leads directly to the conclusion that every observable O (i.e. every expectation

value 〈Ψ|Ô|Ψ〉) is a functional of the ground state density. For example the ground

state energy E0 is given by:

E0 = E0[n(~r)], (2.24)

Furthermore they showed that there is a variational principle in terms of the density

E[n(~r)] ≥ E0[n0(~r)] (2.25)

where we get E[n] = E0[n] for degenerate ground states. Therefore it is not possible

to find an initial density that leads to an energy smaller than the ground state energy

E0.
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Finally, Levi120 proved that it is possible to obtain the energy functional E[n(~r)] as

a minimum of all wave functions resulting to the electron density n(~r). Hence

E[n(~r)] = min
n→n0

〈Ψ|T̂ + Û + V̂ext|Ψ〉 ≥ E0, (2.26)

The evaluation of this term gives:

E[n(~r)] = F [n(~r)] +

∫
n(~r)v(~r)d~r (2.27)

including the universal functional (i.e. independent of Vext)

F [n(~r)] = min
Ψ→n
〈Ψ|T̂ + Û |Ψ〉. (2.28)

It is straightforward that the application of the ground state wave functions to

equation (2.26) results in the computation of the ground state energy E0

E[n0(~r)] = 〈Ψ0|T̂ + Û + V̂ext|Ψ0〉 = E0. (2.29)

Given all these information it is possible to create a minimization algorithm in order

to obtain the ground state energy:

E0 = min
n
E[n(~r)] (2.30)

Within this algorithm minimization is carried out via all the electron densities orig-

inating from antisymmetric wave functions of all the electrons N . Therefore it is

possible to evaluate the ground state density n0(~r). Provided the functional F [n(~r)]

is known it is also feasible to obtain the ground state energy E0. Since we do not

know the functional F [n(~r)], it is necessary to find suitable approximations.

2.3.3 Kohn-Sham equations

At this point the Kohn-Sham111 equations can be applied order to transform DFT

into a practical useful tool. They introduced a virtual auxiliary system consisting

of non-interacting electrons that generates the same density as any given system of

interacting particles. These electrons create an effective potential veff . Applying the
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Hohenberg-Kohn theorem ensures that the density equals the potential. Assuming

(U ≡ 0) equation (2.27) changes for a system of non-interacting electrons:

Es[n(~r)] = Ts[n(~r)] +

∫
n(~r)veff(~r)d~r (2.31)

including the kinetic energy Ts and the energy Es of the system of non-interacting

electrons. Equation (2.30) therefore leads directly to the Euler-Lagrange equation:

∂

∂n(~r)
{Es[n(~r)] + µ[N −

∫
n(~r)d~r]} =

∂Ts[n(~r)]

∂n(~r)
+ veff(~r)− µ = 0. (2.32)

The Lagrange parameter µ is introduced in order to ensure the conservation of the

number of electrons N within a given system and corresponds to the electrochemical

potential. For T = 0 it equals the Fermi energy EF . Since it is possible to express

the functional Ts[n(~r)] of non-interacting electrons using the single particle wave

functions ϕi(~r)

Ts[n(~r)] =
occ∑
i

∫
ϕ∗i (~r)

(
− ~2

2m
∇2

)
ϕi(~r)d~r, (2.33)

it is manageable to obtain the ground state energy given that the effective potential

is known. Within this framework the density n(~r) of the interacting system can be

obtained by summation over all occupied orbitals:

n(~r) =
occ∑
i

|ϕi(~r)|2. (2.34)

Variation of E[n(~r)] with respect to the one particle wave function results in:[
− ~2

2m
∇2 + veff(~r)− µ

]
ϕi(~r) = εiϕi(~r). (2.35)

In order to maintain (ϕi, ϕi) = 1 the Kohn-Sham eigenvalue εi is introduced. How-

ever, this algorithm depends on a suitable choice of veff . Therefore, Kohn and Sham

reformulated equation (2.27)

E[n(~r)] = Ts[n(~r)] +

∫
n(~r)vext(~r)d~r+

e2

8πε0

∫
n(~ri)n(~rj)

|~ri − ~rj|
d~rid~rj +Exc[n(~r)] (2.36)

They included the so called exchange-correlation energy Exc[n(~r)]:

Exc[n(~r)] = F [n(~r)]− Ts[n(~r)]− e2

8πε0

∫
n(~ri)n(~rj)

|~ri − ~rj|
d~rid~rj

′
. (2.37)
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Applying the variational principle results in

∂Ts[n(~r)]

∂n(~r)
+ vext(~r) +

e2

8πε0

∫
n(~rj)

|~ri − ~rj|
d~rj +

∂Exc[n(~r)]

∂n(~r)
− µ = 0. (2.38)

In order to get an analytical expression for the effective potential veff it is necessary

to compare equation (2.31) and (2.38). Hence the effective potential can be written

as:

veff(~r) = v(~r) +
e2

8πε0

∫
n(~rj)

|~ri − ~rj|
d~rj + vxc[n(~r)](~r) (2.39)

including the exchange-correlation potential vxc[n(~r)](~r)

vxc[n(~r)](~r) =
∂Exc[n(~r)]

∂n(~r)
. (2.40)

Note that the Kohn-Sham wave function is a single Slater determinant since the

particles in the Kohn-Sham system are non-interacting. All interactions of the

many-body system are covered by the exchange-correlation potential.

As shown in Figure 2.1 the self consistent solution of equations (2.39), (2.35) and

(2.34) finally yields the ground state electron density.

A typical self consistent field (SCF) cycle would start with the guess of an initial

density n1(~r). Using this initial density it is possible to calculate the effective po-

tential veff . Now it is feasible to solve the Kohn-Sham equations which yield the

single particle wave functions ϕi(~r). Based on equation (2.34) we get now a new

density n2(~r). Now we compare both densities n1(~r) and n2(~r) and if the difference

between those two is smaller than the chosen convergence criterion ε the SCF cycle

is converged and we can extract the desired properties. Otherwise the new density

n2(~r) is plugged in again into the cycle. This will continue until the convergence

criterion is met.
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guess n1(~r)

calculate effective potential:
veff (~r) = v(~r) + e2

8πε0

∫ n1(~rj)

|~ri−~rj |d~rj + vxc[n1(~r)](~r)

solve Kohn-Sham equations:[
− ~2

2m
∇2 + veff (~r)− µ

]
ϕi(~r) = εiϕi(~r)

evaluate the electron density:
n2(~r) =

∑occ
i |ϕi(~r)|2

|n1 − n2| ≤ ε

converged;
calculate properties

yes

n1 = n2

no

Figure 2.1: Flowchart of the iteration scheme used within density functional calculations.

The convergence criterion ε is chosen depending on the actual problem.

2.3.4 Approximations of the exchange-correlation functional

The algorithm shown in Figure 2.1 is capable to compute the ground state density

n0(~r). Yet the functional Exc[n(~r)] is still unknown. Up to now the exact form

of the exchange-correlation functional is not known (except for the free electron

gas) and therefore approximations are needed. The most simple approach is the

local density approximation (LDA)111. Within the LDA it is assumed that the local

density at given point ~r can be treated as an uniform electron gas. Therefore, the

exchange-correlation energy is treated locally.

ELDA
xc [n(~r)] =

∫
εLDA

xc n(~r)d~r, (2.41)
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including the εLDA
xc n(~r) per-volume exchange-correlation energy of the uniform elec-

tron gas. The exchange part εxn(~r) is exactly known from quantum mechanics40

εxn(~r) = −3

4
e2(

3

π
)
1
3n

4
3 . (2.42)

It is simply the exchange energy per particle in each spatial point taken from a uni-

form electron gas with a density equal to the density at that point. Unfortunately no

exact formulation of the correlation energy εc is known and further approximations

are needed. Originally the approximation of Wigner223, 224 was used. All modern cor-

relation energies such as VWN222, PZ173 and PW172 go back to the parametrizations

of Ceperley and Alder46 who did very accurate Quantum Monte Carlo calculations.

LDA functionals are still widely used nowadays. However, there are some shortcom-

ings. As long as systems with slowly varying electron density are considered, LDA

gives reasonable good results. In the case of the homogeneous electron gas it is even

the correct solution. But LDA may fail for systems with strongly inhomogeneous

electron density distribution. An other problem is the overbinding which often leads

to a shortening of bonds by about 1-2 %. Despite all these drawbacks geometries

are usually predicted with this accuracy66.

In order to overcome these issues another approximation - including not only the

electron density distribution but also its gradient - can be used. These functionals

are called generalized gradient approximation (GGA)

EGGA
xc [n(~r)] =

∫
f(n,∇n)n(~r)d~r. (2.43)

In contrast to LDA the function f(n,∇n)n(~r) for GGA is not unique. A number

of approaches exists to solve this problem. Well known is for example the GGA

functional proposed by Perdew and Wang (PW91)169 or the functional suggested

by Perdew, Burke and Enzerhof (PBE)168, but there are several more function-

als known (see for example Neese149 and references therein for a more detailed

overview). Using GGA functionals instead of the LDA approximation results in

more accurate total energies170 and atomization energies24, 170, 183. GGA functionals

are also more precise in the calculation of energy barriers as well as structural en-

ergy differences84–86, 174, 232. Furthermore the overbinding of the LDA functional is

corrected. However it is over corrected by about 1-2 % giving rise to longer bonds
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than observed in nature. Yet there are still certain system that can not be described

accurately using the above mentioned approaches and further improvement was nec-

essary. One example are meta-GGAs, which include orbital dependent quantities

such as the kinetic energy density214. For further reading see for example28, 118.

Another approach to enhance the accuracy are hybrid functionals introduced by

Becke25, 26, 212. These functionals include a certain portion of exact Hartree-Fock

exchange into the functional and are also referred to as hyper-GGA’s. A very promi-

nent example is the so-called B3LYP hybrid functional with the following definition:

EB3LYP
xc = ELDA

xc + a0(EHF
x −ELDA

x ) + ax(E
GGA
x −ELDA

x ) + ac(E
GGA
c −ELDA

c ) (2.44)

The three empirical parameters a0, ax and ac are determined via fitting of the pre-

dicted values of a set of atomization energies, ionization potentials, proton affinities,

and total atomic energies25. The best fit was obtained with a0 = 0.20, ax = 0.72

and ac = 0.81. Within the definition of the B3LYP potential the Becke 88 exchange

functional (EGGA
x )23 and the correlation functional of Lee,Yang and Parr (EGGA

c )119

are used (hence the name B3LYP=Becke, three parameters, Lee, Yang and Parr) as

well as the LDA exchange and correlation potential and the Hartree-Fock exchange

EHF
x which is given by:

EHF
x =

1

2

∑
i,j

∫ ∫
ϕ∗i (r1)ϕ∗j(r1)

1

r12

ϕi(r2)ϕj(r2)dr1dr2. (2.45)

The use of hybrid functionals usually improves molecular properties such as atom-

ization energies, bond lengths and vibration frequencies compared to the results

obtained by LDA or GGA calculations. However it is important to remember that

these hybrid functionals mix different approaches (Hartree-Fock vs. DFT). There

are also recent studies that suggest that B3LYP becomes increasingly erroneous for

larger systems82.

It is also possible to include the spin in the LDA and GGA functionals. Concerning

the LDA functional this process is quite straightforward and results in a so-called

local-spin density approximation LSDA.

ELSDA
xc [n(~r)] =

∫
f(n↑, n↓)n(~r)d~r (2.46)

24



Theoretical background

Applying this ansatz to GGA leads therefore consequently to:

EGGA
xc [n(~r)] =

∫
f(n↑, n↓,∇n↑,∇n↓)n(~r))d~r (2.47)

However the local approach is not always sufficient. In order to improve the sit-

uation non-local density functionals came recently into focus such as the average

density approximation (AVA) where the density at a given point ~r is influenced by

the density everywhere else. For further reading see for example131.

A very nice overview of various approximations for the exchange-correlation func-

tional is for example given by Perdew et al.171 or by Kümmel and Kronik118.

2.3.5 Self-interaction

The above described approximations of the exchange-correlation functional have

been successfully applied to many problems over the years. However, it is important

to mention that there are still problems using these functionals. The most important

one is the self-interaction. Due to the construction of the potentials an electron in an

occupied orbital interacts with allN electrons of the system instead ofN−1. In other

words there is an interaction of the electron with itself. The self-interaction leads

to a delocalization of orbitals due to a reduced binding energy. This is especially

important for localized states such as d- and f-shells. There are several approaches to

solve the problem. One is the so-called self-interaction correction (SIC) proposed by

Perdew and Zunger173 which subtracts orbital-wise the contribution the exchange-

correlation functional would make if there was only one electron in the system. The

use of SIC results in an improvement of the total energy, more accurate binding, more

precise electron densities and an overall improvement of the long range behaviors

of potential and density (see Perdew et al.171 and references therein). However, the

SIC does not always work properly58, 79, 80, 128, 178, 201 and it is sometimes argued that

the self-interaction actually simulates longe-range correlation effects (see Neese149

and references therein).

2.3.6 Basis sets

After introducing the theoretical basics of density functional theory and some of its

problems this section will focus on the actual computation of the electronic density.
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Usually the wave functions Ψ are expanded in terms of basis functions φj:

Ψ =
∞∑
i=1

cjφj, (2.48)

including suitable constants cj. There are two commonly applied classes of functions

φ: non-localized basis functions like plane waves (PWs) on the one hand and local-

ized atomic-like orbitals (AOs) on the other hand. Plane wave basis sets are typically

applied in combination with pseudopotentials for the computation of systems with

periodic boundary conditions41 and are given by.

φj = ei
~kj~r (2.49)

The advantage of PW basis sets is the easy computational handling and the good

convergence of the calculated properties with respect to the basis-set size. However,

there is one big drawback. In order to describe localized states accurately many

basis functions are needed and the basis sets may get very large. This results in high

computational costs. Therefore, localized atomic-like orbitals are the better choice

to describe the wave functions of single molecules. There exist several types of AOs.

Commonly used are augmented plane waves (APW)225 (these are actually a mix

of plane waves and localized atomic-like orbitals), linearized muffin-tin orbitals11,

Slater-type orbitals (STOs)210 and Gaussian-type orbitals (GTOs), introduced by

Boyc35. The general form of STOs and GTOs is described by:

φ = Y ∗R (2.50)

The angular part Y of the wave function is in both cases the same and are given by

spacial harmonics. The main difference between STOs and GTOs is the different

distance dependency in the radial part R of the wave function. Slater-type orbitals

have the general form

R(r) = Arn−1e−αr. (2.51)

and show an e−r dependency in the radial part of the wave function. The constant

A is simply a scaling factor, n is the main quantum number and α is a constant that

determines the radius of the orbit. Gaussian-type orbitals on the other hand show

a e−r
2

dependency:

R(r) = Ar2n−2−le−αr
2

(2.52)
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Additionally to the main quantum number n the angular quantum number l is

included. Slater-type orbitals are basically preferable, because they describe the

properties of the atomic wave functions more accurately than Gaussian-type orbitals.

This is due to the fact that the STOs have an advanced shape near to and far

away from the nucleus. Therefore more GTOs than STOs are necessary in order

to achieve a certain convergence. However, it is computationally not easy to use

Slater-type orbitals. This is why usually Gaussian-type orbital are used to compute

the basis functions since the computational handling of GTOs is much easier. The

so-called “Gaussian Product Theorem” guarantees that the product of two gaussians

is always a gaussian. Therefore, it is possible to reduce the product of two gaussians

at different centers of a molecule (i.e. a multi-center integral) to one gaussian with a

shifted center (i.e. an one-center integral). This results in a general speedup of the

calculation by a factor of 4-5 compared to STOs. Hence the use of gaussian type

orbitals results in less computational cost compared to the use of slater type orbitals

despite the fact that more GTOs than STOs are needed to describe the system.

It is also possible to combine the good properties of gaussian type orbitals and slater

type orbtials by a linear combination of GTOs in order to resemble the shape of one

STO. These basis functions are called contracted gaussian type orbitals (CGTOs).

φCGTO =
∞∑
j=1

djφ
GTO
j (2.53)

Nowadays many DFT codes use contracted gaussian type orbitals to describe the

wave functions.

27



Theoretical background

2.4 Magnetic interactions - theoretical aspects

After a short introduction to density functional theory this work shall now deal with

a detailed discussion of the magnetic interactions. Beginning with the Spin Hamilton

formalism we will than elaborate on different possible exchange mechanisms.

2.4.1 Spin Hamilton formalism

The spin Hamiltonian is a model Hamiltonian containing only spin operators. Model

Hamiltonians are used whenever a system is too complex to evaluate the appropriate

Hamiltonian. Therefore, approximations and simplifications are introduced in order

to describe the system. In the case of the spin Hamiltonian all orbital coordinates

are integrated out keeping only the spin. Furthermore, it is supposed that the

spins are independent of each other73. With respect to all these restrictions the

Heisenberg(-Dirac)64, 91 spin Hamiltonian can be written as:

H = −2
∑
i>j

JijŜ
i · Ŝj. (2.54)

Within this framework Ŝi,j are spin operators acting on the ith and jth magnetic

center. The matrix element of the interaction between spin i and j is represented

by the magnetic exchange coupling parameter Jij. This parameter yields the sign

(ferromagnetic or antiferromagnetic coupling) and strength of the magnetic cou-

pling. As shown nicely by Calzado and co-workers37–39 Jij arises from the quantum

mechanical requirement of antisymmetry. This leads to an mixing of the spin-part

and the space-part of the many-body wave function in such a way that electrostatic

interactions in real space can impose requirements on the spin state175. With respect

to these considerations the interaction can be understood as a competition of the

exchange interaction (favoring Jij > 0 = alignment of Ŝi and Ŝj) and correlation

effects (favoring Jij < 0 = anti-alignment of Ŝi and Ŝj). Note that each pair Ŝi, Ŝj

is considered once (no double counting). Since only the relative orientation of the

spins with respect to each other is relevant, this representation of the model Hamil-

tonian covers just isotropic media. This assumption enables the use of symmetry

operations of the system, which may results in a significant reduction of the problem

(depending on the symmetry present).
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In order to include anisotropy the alignment of the spins must be taken into account.

H = −2
∑
i>j

Jij[S
i
zS

j
z + γ(SixS

j
x + SiyS

j
y)]. (2.55)

At this point it is important to notice that there exist some slight differences in the

definition of the Heisenberg Hamiltonian. It is also possible to include the negative

algebraic sign and/or the pre-factor 2 in the coupling constant J . Within this

definition positive J values always indicate ferromagnetic coupling. Respectively,

J < 0 states antiferromagnetic coupling.

By taking a closer look at the Heisenberg Hamiltonian it can be seen that there

is another parameter involved. Changing the value of γ leads to the occurrence

of different models. In the case of γ = 0 the Ising model can be obtained. The

Heisenberg model corresponds to γ = 1 and γ � 1 results in two-dimensional

interaction.

In order to explain the differences between the Ising model and the Heisenberg model

the easiest system, two interacting spins S1 = S2 = 1
2
, will be discussed in detail.

The Ising model yields the following spin Hamiltonian:

H = −2J12S
1
zS

2
z (2.56)

The eigenvalues of Sz are known as SzΨ = ±1
2
Ψ (assuming ~ = 1). This results in

the spin Hamiltonian H

H =


−J

2
0 0 0

0 J
2

0 0

0 0 J
2

0

0 0 0 −J
2

 (2.57)

with respect to the basis Ψ = (↑↑, ↑↓, ↓↑, ↓↓). The energy eigenvalues of the matrix

are given by E1,2 = ±J
2
. Therefore, an energy difference of J between the ferro-

magnetic and the antiferromagnetic state of the system is calculated. For a detailed

treatment see Appendix A.

For the Heisenberg model it is assumed that the spin operator ~S contains compo-

nents in the z direction as well as in the x and y direction resulting in:

H = −2J12(S1
xS

2
x + S1

yS
2
y + S1

zS
2
z ). (2.58)
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Since Sz commutes with ~S2 but not with Sx or Sy it is necessary to rewrite the

Hamiltonian. For this purpose the generation and annihilation operator S+ and S−

are defined.

S+ = Sx + iSy (2.59)

S− = Sx − iSy. (2.60)

The effect of these operators on a given state can be described by

S±|S, Sz〉 =
√
S(S + 1)− Sz(Sz ± 1)|S, Sz ± 1〉 (2.61)

The anticommutator of the generation operator and the annihilation operator yields

S1
+S

2
− + S1

−S
2
+ = 2S1

xS
2
x + 2S1

yS
2
y . (2.62)

Rearrangement of equation (2.62) and insertion into equation (2.58) results in

H = −2J12(
S−+S

2
− + S1

−S
2
+

2
+ S1

zS
2
z ). (2.63)

Solving this Hamiltonian returns the interaction matrix

H =


−J

2
0 0 0

0 J
2
−J 0

0 −J J
2

0

0 0 0 −J
2

 (2.64)

with respect to the basis Ψ = (↑↑, ↑↓, ↓↑, ↓↓). Unlike the interaction matrix given

by the Ising model non-diagonal entries appear. The computation of the energy

eigenvalues shows a singlet state with E1 = 3
2
J (S = 0, antiferromagnetic) and a

triplet state (S = 1, ferromagnetic) including E2 = E3 = E4 = −J
2
. The energy

difference between the ferromagnetic and antiferromagnetic solution amounts to 2J .

In conjunction with the eigenvectors the following eigenstates can be found:

ψ =
|↓↑〉 − |↑↓〉√

2
→ ms = 0 s = 0

ψ = | ↓↓〉 → ms = −1

ψ =
| ↑↓〉 + | ↓↑〉√

2
→ ms = 0

ψ = | ↑↑〉 → ms = 1

s = 1
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Even in this simple case the Ising model and the Hamilton model return different

solutions for the same problem. The advantage of the Ising model is its simplicity.

On the other hand it fails to describe the correct splitting of the levels. Therefore

the Heisenberg model will be used in all further considerations.

2.4.2 Exchange mechanism

Taking only a look at the spin Hamiltonian yields a priori no information about the

mechanism of coupling (ferromagnetic or antiferromagnetic). In order to specify the

exchange coupling in more detail different models can be applied.

a) direct exchange

The most intuitive model is the direct exchange. Whenever two magnetic parti-

cles are close together they have a sufficient overlap of their wave functions. This

results in a strong coupling of short range which is rapidly decreasing as soon as the

particles are separated. Taking a closer look at a simplified model (two magnetic

particles with one electron each) shows that two different cases of direct exchange

exist. In the first case both particles are close together as shown in Figure 2.2.

Here it is favorable for the electrons to be in between the two particles in order

BA

Figure 2.2: Two magnetic particles with one electron each, short distance

to minimize the coulomb interaction. The two electrons are reqiured to be at the

same place in space and time. This is only possible if they are antiferromagnetically

aligned. Otherwise Paulis exclusion principle would be violated.

The situation changes if the magnetic particles are far apart from each other as

shown in Figure 2.3. Now the electrons spend most of their time far away from

each other in order to minimize the electron repulsion. This results in a parallel

alignment of the electron spin, i.e. ferromagnetic coupling is observed.

As shown in the example above the nature of the observed coupling is governed by

the interplay of the atomic distance and the coulomb interaction/electron repulsion.
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BA

Figure 2.3: Two magnetic particles with one electron each, large distance

Direct exchange occurs typically in metals. It is also infrequently observed in organic

molecules containing transition metal centers where it is called spin polarization.

b) indirect exchange

As already mentioned direct exchange is rarely observed in organic molecules con-

taining transition metal centers. Within these class of molecules the magnetic ex-

change is often mediated by a non-magnetic bridging atom. Therefore, this kind of

exchange coupling is called indirect exchange or superexchange.

The superexchange mechanism was first described by Anderson12. The observed

magnetic center 1 magnetic center 2

non-magnetic ion
hopping

after

magnetic center 2magnetic center 1

non-magnetic ion

Figure 2.4: Superexchange expected for a d9 occupation of the magnetic orbitals. Note

that the non-magnetic p-orbitals are energetically lower than the d-orbitals of

the magnetic center. They are drawn above them for reasons of clarity.

coupling is usually antiferromagnetic. Superexchange only occurs if the involved

transition metal ions exhibit a partial empty d-shell. As soon as the d-shell is fully

occupied, no magnetism is observed. Assuming a d9 occupation of the involved

d-orbitals at the transition metal ions superexchange as shown in Figure 2.4 is ex-

pected. In order to observe a superexchange it is vital that the magnetic orbitals

(i.e. the d-orbitals of the transition metals) and the p-orbitals of the non-magnetic

bridging ion are energetically close together. It is also important that the distance

32



Theoretical background

between the metal ion and the bridging ion is not too large to get significant overlap

of the involved orbitals. Given that all these requirements are met one electron of

the filled p-orbital can hop to a half-filled d-orbital of magnetic center 2, provided

it exhibits the right spin state. Now the p-orbital is half-filled. In order to min-

imize the energy the electron from metal center 1 hops over. The whole process

only takes place if the spin states at the magnetic centers are different from each

other. Otherwise Paulis exclusion principle would be violated. Therefore, this kind

of superexchange coupling is always antiferromagnetic. The superexchange is ener-

getically favored, because the electrons of the d-shell are strongly delocalized across

the molecular orbitals. However, the situation may change for different occupations

magnetic center 1 magnetic center 2

non-magnetic
ion hopping

after

a)

magnetic center 2magnetic center 1

non-magnetic
ion

magnetic center 1 magnetic center 2

non-magnetic
ion hopping

after

b)

magnetic center 2magnetic center 1

non-magnetic
ion

Figure 2.5: Superexchange expected for a d1 - d8 occupation of the magnetic orbitals; 2.5a)

antiferromagnetic coupling; 2.5b) ferromagnetic coupling. Note that the non-

magnetic p-orbitals are energetically lower than the d-orbitals of the magnetic

center. They are drawn above them for reasons of clarity.

of the d-shell. In the case of d1-d8 occupation antiferromagnetic exchange is possi-

ble if the two electrons at the magnetic centers possess different spin states. The

process of antiferromagnetic exchange coupling is similar to the already discussed

process in the d9 case and shown in Figure 2.5a. Given that both electrons exhibit

the same spin state it is now also possible to observe ferromagnetic coupling due
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to the existence of other empty, low lying d-orbitals. As shown in Figure 2.5b the

electron of the magnetic center 1 can hop via the non-magnetic ion to another empty

d-orbital located at the magnetic center 2. In the ideal case this empty d-orbital

is degenerated in comparison to the already half-filled one at the magnetic center

2. However, this is usually not true because of the local crystal field which induces

a level splitting of the d-orbitals. The ferromagnetic exchange can nevertheless oc-

cur as long as the energy difference between the two d-orbitals is small. Besides

t2g

eg

magnetic center 1

non-magnetic
ion

t2g

eg

magnetic center 2

hopping

after

a)

t2g

eg

magnetic center 2

non-magnetic
ion

t2g

eg

magnetic center 1

t2g

eg

magnetic center 1

non-magnetic
ion

t2g

eg

magnetic center 2

hopping

no

b)

t2g

eg

magnetic center 2

non-magnetic
ion

t2g

eg

magnetic center 1

Figure 2.6: Ferromagnetic double-exchange mechanism in an octahedral crystal field; 2.6a)

ferromagnetic coupling allowed; 2.6b) no coupling possible due to Paulis exclu-

sion principle. Note that the non-magnetic p-orbitals are energetically lower

than the d-orbitals of the magnetic center. They are drawn above them for

reasons of clarity.

the already discussed cases it is also possible that the two magnetic centers show a

mixed valence (i.e. different oxidation states or different species at magnetic center
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one and two). The resulting exchange is called double-exchange. The double-

exchange mechanism is very similar to the superexchange and was first proposed by

Zener230. As shown in Figure 2.6a double-exchange can only occur if the electrons

at both magnetic centers are parallel aligned. Otherwise the transition is forbidden

due to Paulis exclusion principle (see Figure 2.6b). Given that all the involved spins

are parallel aligned an electron of the p-orbital at the non-magnetic bridging ion

can hop to an unoccupied eg-orbital at the magnetic center 2. Now an electron of

the eg-orbital at the magnetic center 1 can hop to the half-filled p-orbital in order

to minimize the total energy of the system. Again the ferromagnetic coupling is fa-

vored because of the energy gain due to the strong delocalization of the eg-electron

across molecular orbitals.

All of the above discussed exchange mechanisms are based on transitions between

identical orbitals. But the coupling is not limited to these cases. As shown by

Hotzelmann et al.94 it is also possible to get coupling between different orbitals

and/or excited states. This leads to the occurrence of many possible exchange path-

ways. Depending on the overlap of the involved orbitals there can be ferromagnetic

and antiferromagnetic coupling within one exchange pathway. The sum over all

these exchange pathways marks the resulting exchange interaction. This kind of

exchange mechanism is called crossed interaction.

Another possible exchange interaction is the so-called Dzyaloshinsky-Moriya in-

teraction. Here the coupling occurs via exited states introduced by the spin-orbit

coupling. The Dzyaloshinsky-Moriya interaction gives rise to a weak ferromagnetic

coupling.

It is possible to generalize the discussed exchange mechanisms since all of them

depend strongly on the overlap of the involved orbitals. Therefore the exchange

coupling can be described by the application of the Goodenough-Kanamori

rules75, 76, 104:

1. If the magnetic orbitals of two ions have a reasonably large overlap integral,

the resulting exchange is antiferromagnetic.

2. If the orbitals are expected to be in contact but have no overlap integral, the

interaction is ferromagnetic.
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3. A magnetic orbital overlapping an empty one leads to ferromagnetic exchange.

All the discussed exchange mechanisms can be noticed in magnetic molecules. How-

ever the mapping of the involved orbitals is not always straightforward, since a

degeneracy of levels can no longer be observed. Within the molecular orbitals a

huge splitting of levels occurs resulting in a large number of possible exchange path-

ways. So in order to understand the experimentally observed coupling it is very

useful to compute the energy levels of the magnetic molecules for example by means

of DFT.

2.4.3 Hay-Thibeault-Hoffmann model

The Hay-Thibeault-Hoffmann (HTH) model is a quantitative model to explain the

exchange coupling of weakly interacting metal centers. The original paper90 deals

with d9 transition metal complexes as well as the general dn-case. For reasons of

simplicity only the d9-case will be considered here in more detail. In the d9-case

the unpaired electron occupies a d-orbital at the transition metal center. Without

strong metal-metal bonds (i.e. no direct overlap of the d-orbitals) the interaction

diagram of the two half-filled d-orbitals located at the transition metal centers A

and B can be described as shown in Figure 2.7a. The resulting molecular orbitals

center A

φ2

φ1

molecular orbitals

center B

(a) molecular orbital scheme

T S1 S2

φ2

S3

φ1

(b) possible many-electron configurations

Figure 2.7: 2.7a) Interaction diagram of the two half-filled d-orbitals for two d9 transition

metal centers A and B; 2.7b) Possible many-electron configurations of the d9

HTH model with respect to the molecular orbitals φ1 and φ2; T : triplet state,

Si: different singlet states.
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φ1 and φ2 are linear combinations of the half-filled d-orbitals:

φ1 ∼ dA + dB

φ2 ∼ dA − dB (2.65)

The possible many-electron configurations arising from these orbitals are shown in

Figure 2.7b. The different possible states with respect to the different spins α and

β can be derived as shown in equation 2.66

T : |φ1αφ2α| (2.66)

S1 : |φ1αφ1β|
S2 : |φ2αφ2β|

S3 :
1√
2

(|φ1αφ2β| − |φ1βφ2α|)

The lowest singlet state of the system ψS will be an approximately equal mixture of

S1 and S2

ψS = λ1φ1 + λ2φ2. (2.67)

Note that |λ1| equals |λ2| in the case of non-interacting metal atoms. The singlet

state S3 corresponds to an excited state of much higher energy and is therefore

neglected in the further discussion.

Diagonalization of the 2 × 2 matrix involving S1 and S2 yields the energies of the

singlet (ES) and triplet (ET ) state:

ET = h1 + h2 + J12 −K12 (2.68)

ES = h1 + h2 +
1

2
(J11 − J22)− 1

2
[(2h1 + J11 − 2h2 − J22)2 + 4K2

12]
1
2

with

hi =

∫
φ∗i (1)ĥ(1)φi(1)dr1 (2.69)

Jij =

∫
φ∗i (1)φ∗j(2)

1

r12

φi(1)φj(2)dr1dr2

Kij =

∫
φ∗i (1)φ∗j(2)

1

r12

φj(1)φi(2)dr1dr2
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ĥ represents the core operator consisting of the kinetic energy, nuclear attraction

and all electron repulsion terms. Therefore, the singlet-triplet splitting becomes

ET − ES = −2J (2.70)

= J12 −K12 −
1

2
(J11 + J22) +

1

2
[(2h1 + J11 − 2h2 − J22)2 + 4K2

12 + 4K2
12]

1
2 .

To simplify the above equation the orthogonal localized molecular orbitals (LMO’s)

φa and φb are introduced as follows:

φa =
1√
2

(φ1 + φ2) (2.71)

φb =
1√
2

(φ1 − φ2)

0 = < φa|φb > .

As shown in Figure 2.8 φa contains both metal and ligand character but will be

essentially a d-orbital located on metal A and φb will be the mirror image located

at metal center B. In terms of these orbitals the following identities arise:

A B φa

A B φb

Figure 2.8: Orthogonal localized orbitals φa and φb of the HTH model

J11 =
1

2
(Jaa + Jab) +Kab + 2 < aa|ab > (2.72)

J22 =
1

2
(Jaa + Jab) +Kab − 2 < aa|ab >

J12 =
1

2
(Jaa + Jab)−Kab

K12 =
1

2
(Jaa − Jab)
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with the dominant one-center and two-center coulomb repulsion integrals Jaa and

Jab, respectively. Given that the splitting between h1 and h2 is small compared to

K12 (∼ 2.5eV ) equation (2.70) becomes:

ET − ES = J12 −
1

2
(J11 + J22) +

(h1 − h2)2

2K12

(2.73)

Finally, a relation between h1 and h2 and the orbital energies ε1 and ε2 is needed.

As shown above, neither S1 nor S2 is an adequate description of the singlet state,

therefore the Hartree-Fock operator for the triplet state orbitals is considered.

ε1 = h1 + J12 −K12 (2.74)

ε2 = h2 + J12 −K12

and hence

h1 − h2 = ε1 − ε2. (2.75)

Consequently, this yields

ET − ES = J12 −
1

2
(J11 + J22) +

(ε1 − ε2)2

2K12

(2.76)

= −Kab +
(ε1 − ε2)2

Jaa − Jab
.

For the degenerated case ε1 = ε2, the triplet state is the ground state, while a

significant splitting between the molecular orbitals φ1 and φ2 yields a singlet ground

state. The denominator Jaa − Jab usually is a fairly slow varying quantity as a

function of distortions or substituent effects. The same considerations apply to Kab

which is usually small. Thus. the difference of the orbital energies ε1 − ε2 becomes

a measure of the singlet-triplet splitting.

As already mentioned it is possible to expand the HTH model to the general dn case

with m unpaired electrons. The general ferromagnetic (JFM) and antiferromagnetic

(JAFM) contributions can be written:

JFM =
1

m2

∑
i∈A

∑
j∈B

Kij (2.77)

JAFM = − 1

m2

m∑
i=1

1
2
(ε2i − ε2i−1)2

Jai,ai − Jai,bi
.
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Note that the second sum is over distinct pairs of molecular orbitals. In the specific

case of two high spin d8 monomers the singlet-triplet splitting is therefore propor-

tional to the splitting of the orbital energies.

ET − ES ∼ (ε1 − ε2)2 + (ε3 − ε4)2 (2.78)

2.4.4 Magnetic anisotropy D

Taking a closer look at the interaction of a system containing unpaired electrons

with an applied external field it becomes obvious that the whole system can be

described as a quasiparticle with spin S in an energy window well below electronic

excitations220. Thus, the following phenomenological spin Hamiltonian can be ap-

plied:

Ĥ =
∑
α,β

Dα,βŜαŜβ − geµB
∑
α

BαŜα, (2.79)

considering the zero-field-splitting (ZFS) and the Zeeman interaction. Here α and β

run over the cartesian coordinates x, y, z; ge is the electron g value; µB is the Bohr

magneton and ~B = (Bx, By, Bz) is the external magnetic field which is assumed to

be homogeneous. The field strength B is given by B = | ~B|. The ZFS tensor D is

finally given by Dα,β.

The easiest situation is given by D = B = 0. Then we get 2S + 1 degenerate

eigenfunctions of Ĥ. In the case of D = 0 and B 6= 0 the energy of the ground

state is given by the Zeeman interaction −geµBBS thus depending only on the field

strength but not on the field direction. Consequently non of the 2S + 1 energy

levels are changed. For D 6= 0 and B = 0 on the other hand the 2S + 1 degeneracy

is lifted without an applied magnetic field (B = 0!). Hence the name zero-field

splitting parameter. As a consequence of D 6= 0 the ground state energy depends

on the direction of the magnetic field for B 6= 0. This directional dependence is

called magnetic anisotropy. Note that neither the ZFS nor the Zeeman term alone

can bring forth magnetic anisotropy. Only the interaction between both terms leads

to magnetic anisotropy. However, the magnetic anisotropy and the ZFS are closely

related and differ only by a constant as explained nicely by van Wüllen220.

As shown in Figure 2.9 there are basically two different cases for the magnetic

anisotropy. For an easy plane system (D > 0) the magnetization is aligned
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D > 0

a) easy plane

MS=S

MS=S-1

D < 0

b) easy axis

MS=S MS=-S

MS=S-1 MS=S+1

QT

magnetic
anisotropy

z

magnetization

x

y

energy

landscape

Figure 2.9: Magnetic anisotropy of a ferromagnetic system; a) magnetization aligned in a

plane; b) orientation of magnetization along an axis

within a plane as shown in Figure 2.9a. The magnetization can rotate freely within

this plane and the energy landscape exhibits only one ground state, hence there is

no difference between the spin state +S and −S. States that are higher in energy

(for example spin state MS=S-1) can be populated for instance via thermal excita-

tion (black arrows in Figure 2.9a. For an easy axis system (D < 0) the situation

is somewhat more complex. Here we observe an alignment of the magnetization

along a distinguished axis as shown in Figure 2.9a. This gives rise to a bistable

ground state where +S and −S states are each in a potential well separated by a

significant energy barrier. Without a magnetic field the two wells are equally pop-

ulated as shown in the energy landscape of Figure 2.9b. Applying a magnetic field

to this system will result in the selective population of one of the wells emptying

the other one. For example, we could end up with a fully populated +S state and

an empty −S state (or the other way around depending on the applied magnetic

field). After the removal of the magnetic field all states are trapped at +S. This
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state is very stable at sufficient low temperatures resulting in the experimentally

observed hysteresis. More precisely without the application of an external field the

state is stable for temperatures below a given blocking temperature. A measure of

the blocking temperature is the barrier U which is given by U = S2|D| for integer

spin (U = (S2 − 1
4
)|D| for molecules with half integer spin72). For energies above

the barrier U the equilibrium is re-established through a series of steps by ther-

mal excitation indicated by the black arrows in Figure 2.9b. Another interesting

feature that can be observed during the relaxation of the system is quantum tun-

neling (QT). Whenever the energy levels of the right and the left potential well are

aligned, it is possible for the electrons to tunnel through the barrier as indicated by

the dashed blue arrows in Figure 2.9b. Note that the tunneling does not necessarily

occur between the same spin states as indicated in the Figure. Only the alignment

of the energetic levels is important. The quantum tunneling can also be observed

experimentally as is leads to steps in the hysteresis71, 161, 215.

Today many magnetic molecules are known, some of them exhibiting SMM behavior,

others not. Although the well understood Goodenough-Kanamori rules75, 76, 104 pre-

dict the magnetic exchange coupling of the metal centers within a magnetic molecule

there is still a lack of such easy to understand and easy to apply rules for the mag-

netic anisotropy. However, there have been several attempts to gain some insight

into the topic. For example it was shown by Collison et al.51 that “the relative ori-

entations of the local and cluster magnetic axes can lead to a cluster ZFS opposite

in sign to the single ion, even when this is the only significant contribution. This

implies that SMM research need not to be restricted to the use of metal ions that

give rise to negative ZFSs.”. Goswani and Misra77 relate an increasing magnetic

anisotropy to a decreasing HOMO-LUMO gap and showed the influence of π-donor

and π-acceptor ligands on the magnetic anisotropy. Ribas-Arino et al.192 studied

“the variation of the D value as a function of several geometrical parameters“. It

is also know from calculations191 as well as experimental results72 “that the sources

of the anisotropy of a molecular cluster [...] are twofold: the single-ion anisotropies

and the geometry of the whole structure”191. Cirera et al.50 also confirmed the influ-

ence of the local geometry on the strength and the sign of the magnetic anisotropy

for octahedral coordinated complexes. Maurice et al.134 did a systematic study of

the magnetic anisotropy as a function of symmetry lowering in a model monatomic
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MnIII complex. Starting point is the octahedral conformation and the symmetry

is lowered successive. They showed that axial distortion has nearly no influence on

the magnetic anisotropy whereas rhombic distortion leads to a slight decrease of the

magnetic anisotropy and a noticeable increase of the biaxial anisotropy E. Angular

distortions on the other hand increase the magnetic anisotropy and introduce a small

biaxial anisotropy. On the other hand Ruiz and coworkers200 demonstrated that “the

zero-field splitting parameter depends mostly on the ground state rather than on

structural details“. A similar conclusion is reached by Neese and coworkers150 who

stated that “the hidden dependence of the zero-field splitting parameter D to the

spin quantum number implies that maximizing the total S through construction of

polynuclear entities may not be needed to make better single-molecule magnets.”

Of course, there are several more studies available in literature. The references cited

here shall just provide the interested reader with an informative basis about the

topic and show that there is still no consensus about simple and intuitive rules for

the prediction of the sign and size of the magnetic anisotropy of a given system.

While a number of experimental techniques (like electron spin resonance/electron

paramagnetic resonance (ESR/EPR) measurements or superconducting quantum in-

terference device (SQUID) measurements) exist to obtain the magnetic anisotropy,

it is far from trivial to compute it. A detailed discussion of this topic can be found

in section 2.5.3.

2.5 Magnetic interactions - computational aspects

2.5.1 Computation of the exchange coupling constant J

In order to obtain the exchange coupling constant J a ferromagnetic (FM) and an

antiferromagnetic (AFM) solution for the coupling of spins was computed. The

solution with the lowest energy is the stable one. Therefore, it can immediately be

seen whether the electrons of the transition metal will couple in a ferromagnetic

or antiferromagnetic way. However, to get information about the strength of the

coupling (i.e. the coupling constant J) some further considerations are needed. As

discussed in section 2.4.1 the Heisenberg Hamiltonian will be used in order to obtain
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the exchange coupling constant J :

H = −2JŜ1 · Ŝ2. (2.80)

Possible solutions for the Hamiltonian are a ferromagnetic solution (HFM) and an

antiferromagnetic solution (HAFM) of the given dimer. Since we get two different

energies for the two solutions, the energy difference ∆E can be defined as:

∆E = EFM − EAFM
= −2J [(Ŝ1 · Ŝ2)FM − (Ŝ1 · Ŝ2)AFM ]. (2.81)

Therefore, the exchange coupling constant J is given by:

J =
−∆E

2[(Ŝ1 · Ŝ2)FM − (Ŝ1 · Ŝ2)AFM ]
. (2.82)

Ferromagnetic coupling is obtained for J > 0 and J < 0 relates to antiferromagnetic

coupling of the spins.

However, it is not possible to evaluate Ŝ1 · Ŝ2 directly since the eigenvalues of this

expression are unknown. Therefore, the total spin Ŝt is introduced:

Ŝt = Ŝ1 + Ŝ2. (2.83)

This is sufficient as we assumed in section 2.4.1 that the spins are independent of

each other. The square of the total spin Ŝt yields:

Ŝ2
t = (Ŝ1 + Ŝ2)2

= Ŝ2
1 + 2Ŝ1 · Ŝ2 + Ŝ2

2 . (2.84)

Hence Ŝ1 · Ŝ2 is given by:

Ŝ1 · Ŝ2 =
Ŝ2
t − Ŝ2

1 − Ŝ2
2

2
. (2.85)

The eigenvalues of Ŝ2 are well known:

Ŝ2 → S(S + 1) (2.86)
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In the case of a Ni+2 dimer S1 = S2 = 1. The ferromagnetic solution results in a

total spin St = 2 and therefore Ŝ1 · Ŝ2 = 1. For the antiferromagnetic solution the

total spin equals St = 0 resulting in Ŝ1 · Ŝ2 = −2. Consequently, J is given by

J = −∆E

6
(2.87)

= − ∆E

St(St + 1)
.

Depending on the spin of the transition metal ions different expressions for the

coupling constant J are possible as shown in Table 2.1

Table 2.1: Spin dependence of the denominator St(St + 1) of J = −∆E
St(St+1) , given Ŝ1 = Ŝ2

S1
1
2

1 3
2

2 5
2

St(St + 1) 2 6 12 20 30

2.5.2 Broken symmetry approach

In the last section we discussed how to relate the energies obtained by DFT cal-

culation to the magnetic exchange coupling J . But it is important to note that

especially the computation of the antiferromagnetic solution of a given system is

not straightforward. As shown in section 2.4.1 the solution of two interacting spins

S1 = S2 = 1
2

yields the following eigenstate of the antiferromagnetic solution:

ψ =
|↓↑〉 − |↑↓〉√

2
(2.88)

The exact wavefunction ψ consist of two states |↓↑〉 and |↑↓〉, i.e. the wave function

is an linear combination of the states shown in Figure 2.10. The solution of the

DFT calculation corresponds only to one of these two states. This is due to the

fact that the Kohn-Sham orbitals are build upon a single-determinant reference

wave function. (Only the high spin states for ms = ±1 have a single determinant

solution within DFT calculations, see also section 2.4.1). Therefore, the energy

difference between the high spin and the low spin state can not be obtained directly
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|ab| |ab|

Figure 2.10: The two states of the antiferromagnetic solution ψ = |↓↑〉 −|↑↓〉√
2

.

from density functional calculations. A solution for this problem for the magnetic

coupling was proposed by Noodleman155, 159. Their work goes back to the approach

of Bagus et al.20 and Ziegler et al.231. Within the broken symmetry (BS) approach

the Kohn-Sham wave functions are calculated for a single-determinant reference

function.

σ1
BS =

|ab|√
2

or σ2
BS =

|ab|√
2

(2.89)

Apparently these wave functions are no eigenfunctions of the total spin operator.

However, a suitable singlet function can be obtained as a linear combination of the

two BS determinants:

ψS=0 =
σ1
BS − σ2

BS√
2− 2 < σ1

BS|σ2
BS >

. (2.90)

As shown elsewhere36, 155 the coupling constant J depends then on the energy dif-

ference ∆E divided by the overlap integral < σ1
BS|σ2

BS >.

Note that these functions σ1
BS and σ2

BS usually break the spin symmetry. For ex-

ample, in the case of a Ni+2 dimer the antiferromagnetic DFT calculation would

correspond to a case where all unpaired spin up electrons are localized at one cen-

ter and all spin down electrons are localized at the other center. This would of

course result in an overall magnetization of S = 0. But in contrast to the exact

wave function ψ = |↓↑〉 −|↑↓〉√
2

we deal now with a single-determinant wave function

(either ψ =|↓↑〉 or ψ =|↑↓〉). Furthermore, it should be noted that the Kohn-Sham

wave functions obtained within the broken symmetry approach are not orthogonal

to each other. This is due to the fact that spin densities from different metal centers

overlap in the broken symmetry approach. This results in spin-contamination of the

broken symmetry solution. The amount of spin-contamination can vary over a large

range depending and depends crucially on the given system and DFT functional

used. As shown elsewhere194, 196 the influence of the DFT functional is mainly due
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to the self-interaction error179 (for further reading about the self-interaction error

and DFT see for example57, 78). Due to these problems there is an ongoing discus-

sion in literature4, 196, 199 how to relate the energy difference ∆E with the coupling

constant J . There is the “spin-projected” mapping

J = − ∆E

2S1S2

(2.91)

which goes back to the original proposal of Noodleman155.

Another route is taken within the “non-projected” approach196, 198. Here the cou-

pling constant J is given by by the energy difference of the high spin state and the

singlet155 (not the broken symmetry solution!):

J = − ∆E

2S1S2 + S2

; S1 ≥ S2. (2.92)

This yields for S1 = S2 and St = S1 + S2:

J = − ∆E

St(St + 1)
; (2.93)

which is the approach that will be used in the present work. Yet another approach

is the “approximate spin-projected” mapping154, 211, 227:

J = − ∆E

< Ŝ2 >HS − < Ŝ2 >BS

. (2.94)

There is no agreement on which of the three mappings should be used. The spin-

projected mapping is valid in the weakly interacting limit. Here the overlap of

the magnetic orbitals in the broken symmetry solution approaches zero. The non-

projected mapping is valid in the opposite case of strong interaction (< σ1
BS|σ2

BS >∼
1). The approximate spin-projected mapping on the other hand interpolates between

the two limits and includes both of them as special cases149. A nice review about

the three different mapping methods given by Phillips and Peralta175 and Neese149.

Regardless of the actual mapping the sign of the exchange coupling constant J is

usually well reproduced. Trends of the magnetic exchange are also in good agreement

with experimental data. However, the value of J obtained by DFT-PBE calculations

is usually too large. This is due to a general failure of DFT since the standard DFT

functionals do not localize the d-states strong enough83, 114. For further reading on

the broken symmetry approach see for example17, 36, 149, 155–159.
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2.5.3 Computation of the magnetic anisotropy D

In order to characterize the magnetic properties of a given system it is not always

enough to know the sign and strength of the magnetic coupling constant J . As

already mentioned in section 2.4.4 it is also interesting to have a closer look at the

magnetic anisotropy which can be described by the zero-field splitting parameter

D50, 98. Considering the phenomenological spin Hamiltonian introduced in section

2.4.4 (equation (2.79)) there are two limiting cases gµBB � |D| (weak-field limit)

and gµBB � |D| (strong-field limit) that are analytically solvable within first order

perturbation theory. In the weak-field limit gµBB � |D| the ground state is de-

generate for D < 0 and E = 0. This degeneracy is lifted by a weak magnetic field.

As shown elsewhere219 the magnetic anisotropy does not depend on the zero-field

splitting D for this limiting case. In the strong-field limit gµBB � |D| the spins

are aligned parallel to the applied magnetic field due to the Zeeman term. For the

limiting case of D = 0 the ground state energy can be calculated easily to be the

Zeeman energy E0 = −gµBB which is independent of the direction of the magnetic

field. As gµBB � |D| is assumed in the strong-field limit it is now possible to treat

the zero-field splitting as a perturbation to the ground state. The main microscopic

contribution to the ZFS and hence to the magnetic anisotropy come from spin-orbit

coupling42 (besides dipole spin-spin interactions). The spin-orbit contribution to

the magnetic anisotropy can be discussed in different frameworks for example in the

many electron theory29, 98, 99, an approach which shall be discussed in more detail

in the present work or within the framework of linear response theory148, 151, 152. A

detailed comparison of both methods is given by Schmitt et al205.

As already mentioned, the ZFS parameter can be considered as a perturbation within

the strong-field limit. Furthermore, the giant spin approach (S � D) is valid. Hence

it is possible to calculate the ZFS parameter within second-order perturbation the-

ory as a second-order correction to the total energy165. This correction ∆2 can be

expressed as:

∆2 =
∑
σσ′

∑
ij

Mσσ′

ij Sσσ
′

i Sσ
′σ

j (2.95)
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where σ denotes different spin degrees of freedom and i,j are coordinate labels x, y, z.

Within this framework Sσσ
′

i is defined as

Sσσ
′

i = 〈χσ | Si | χσ
′〉 (2.96)

where χσ and χσ
′

are a set of spinors. These spinors are constructed from a unitary

transformation of the Sz eigenstates. The matrix element Mσσ′
ij is given by:

Mσσ′

ij = −
∑
kl

〈ϕlσ | V̂i | ϕkσ′〉〈ϕkσ′ | V̂j | ϕlσ〉
εlσ − εkσ′

(2.97)

with the occupied and unoccupied states ϕlσ and ϕkσ′ and the respective energies

εlσ and εkσ′ . The operator V̂ is spin-orbit related. In the absence of a magnetic field

the second order perturbation energy can be rewritten in terms of the anisotropy

tensor Dij:

∆2 =
∑
ij

Dij〈Si〉〈Sj〉. (2.98)

For a diagonal form of the D tensor the following expression is obtained:∑
σσ′

∑
ij

Mσσ′

ij Sσσ
′

i Sσ
′σ

j = DxxS
2
x +DyyS

2
y +DzzS

2
z (2.99)

with the components

Dxx = −1

3
D + E

Dyy = −1

3
D − E (2.100)

Dzz =
2

3
D.

All other elements are zero. Choosing the orientation in a way that |Dzz| is the

largest diagonal element implies 0 ≤ | E
D
| ≤ 1

3
. From the components of the

tensor the usual D parameter commonly employed in the spin Hamiltonian can be

extracted:

D = Dzz −
1

2
(Dxx +Dyy) (2.101)

Note that it is appropriate to order the terms of equation 2.99 according to the

spin associated with the respective orbitals. This relates directly to four sets of
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contributions to the values of D which will be called spin channels in the following.

Diagonalization of the anisotropy tensor yields the eigenvalues Dxx, Dyy and Dzz

and consequently the ∆2 can be written as:

∆2 = 1
3

(Dxx +Dyy +Dzz)S(S + 1)

+
1

3

[
Dzz −

1

2
(Dxx +Dyy)

]
[3S2 − S(S + 1)]

+
1

2
(Dxx −Dyy)(S

2
x − S2

y) (2.102)

Parametrization of Dxx, Dyy and Dzz with the magnetic anisotropy D and the biaxial

anisotropy E results in the following simplified expression:

HZFS = D[S2
z −

1

3
S(S + 1)] + E[S2

x − S2
y ] (2.103)

The biaxial anisotropy E is usually very small compared to D. It is zero in the case

of uniaxial systems. Within the used sofware package NRLMOL (see section 3.1.1)

another Hamiltonian is used, namely:

HZFS = γ1S
2
x + γ2S

2
y + γ3S

2
z + γ0(S2

x + S2
y + S2

z ), (2.104)

with the constant γ0. Equating the coefficients of (2.103) and (2.104) yields:

γ0 = −1

2
(γ1 + γ2)

E =
1

2
(γ1 − γ2) (2.105)

D = −1

2
(γ1 + γ2) + γ3

Within this framework D > 0 correspond to an easy plane system and D < 0

to an easy axis system. For the biaxial anisotropy E > 0 the spins in the

xy plane will try to avoid the x axis which is then called the hard axis. Re-

spectively, the y axis is called intermediate axis. Of course, this is reversed for

E < 0. There are several examples in literature showing that this approach works

well29, 115, 116, 148, 151, 160, 162, 165, 181, 191, 192, 200, 229. However, one should be careful

about the results. As pointed out by Wüllen219 basically an axial magnetic anisotropy

energy (MAE) is calculated which is divided by S2 in order to obtain the ZFS pa-

rameter (i.e. the magnetic anisotropy). However, this is only valid if the spin is
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treated classically. Treating the spin quantum mechanically gives rise to a factor of
1

S(S− 1
2

)
instead of 1

S2 as proposed by Pederson et al98. Hence we get:

DNRLMOL =
MAE

S2
(2.106)

DvW =
MAE

S(S − 0.5)
. (2.107)

Obviously, the difference is rather small for systems with a large ferromagnetic

ground state, however it is substantial for small spins. For a S = 1 system for

example there is a difference of 50% between the two different approaches. This

results in a factor of two that DNRLMOL is off compared to experimental data for

S = 1 systems as shown for example by Reviakine et al188. Note that the magnetic

anisotropy energy itself is calculated correctly. The only problem is the evaluation

of D therefrom (wrong pre-factor applied!). For the approach of Neese148, 151, 152 on

the other hand there have been reported several errors188. Fixing those yields com-

parable results for the ZFS parameter within the Pederson-Khanna approach, the

Neese approach and the approach of Schmitt et al205. Overall the Pederson-Khanna

approach is preferable for the computation of the ZFS parameter205.

However, there still remain problems. Very often a considerable underestimation of

the D parameter is observed within the calculations50 which is basically due to an

intrinsic inaccuracy of the GGA functionals152. Using hybrid functionals does also

not improve the situation significantly152, 168, 188.

As already mentioned there are spin-orbit and spin-spin contributions to the ZFS

parameter, however only spin-orbit interaction is included in the approach of Ped-

erson and Khanna. This is sufficient since the spin-orbit interaction becomes the

dominant contribution to the ZFS tensor already for systems containing second-row-

elements, a trend which is resumed when going down the periodic table188. Note

that the perturbative approach might also fail for heavier atoms as the spin-orbit

coupling is usually large there and can no longer be treated as a perturbation of the

total energy. However, it works well for third-row transition metals which will be

dealt with in the present work.
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3 Computational details

3.1 DFT-codes

3.1.1 NRLMOL

Most of the density functional theory calculations have been carried out using the

Naval Research Laboratory Molecular Orbital Library (NRLMOL) program pack-

age, which is an all-electron implementation of DFT. NRLMOL combines large

Gaussian orbital basis sets as shown in Table (3.1), numerically precise variational

integration and an analytic solution of Poissons equation to accurately determine

the self-consistent potentials, secular matrix, total energies and Hellmann-Feymann-

Pulay forces98, 163, 164, 166, 180.

Table 3.1: Basis set information: shown are the Gaussian-type orbitals (GTO’s), con-

tracted Gaussian-type orbitals (CGTO’s) respectivly for the s, p and d orbitals

and the largest and smallest exponent (αmax/αmin) of the Gaussian-type or-

bitals (see also (2.52))

GTO’s CGTO’s exponents

s p d αmax αmin

Br 21 7 6 4 0.79 ∗ 107 0.78 ∗ 10−1

Ni 20 7 5 4 0.44 ∗ 107 0.51 ∗ 10−1

S 17 6 5 3 0.67 ∗ 106 0.71 ∗ 10−1

Cl 17 6 5 3 0.76 ∗ 106 0.85 ∗ 10−1

F 14 5 4 3 0.12 ∗ 106 0.12 ∗ 100

Ne 14 5 4 3 0.15 ∗ 106 0.14 ∗ 100

O 13 5 4 3 0.61 ∗ 105 0.10 ∗ 100

N 13 5 4 3 0.51 ∗ 105 0.94 ∗ 10−1

B 12 5 4 3 0.17 ∗ 105 0.54 ∗ 10−1

C 12 5 4 3 0.22 ∗ 105 0.77 ∗ 10−1

H 6 4 3 1 0.77 ∗ 102 0.74 ∗ 10−1

Starting from the experimental X-ray structure an isolated single molecule was gen-
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erated which has been used for the calculation. All calculations are done using the

PBE exchange correlation functional168.

3.1.2 ORCA

In order to compare the results obtained from the NRLMOL calculations additional

calculations using ORCA146, 147 have been carried out for selected molecules. ORCA

offers many features to the interested user1. Within the present work the broken

symmetry approach is used for the calculation of the exchange coupling constants J .

All calculations are done using revision 2.80 of the program package and Ahlrichs

triple ζ valence basis set204 as well as either the PBE exchange correlation func-

tional168 or B3LYP.

3.2 Visualization

3.2.1 XCrysDen

In order to understand certain features in more detail it is necessary to visualize not

only the structure of a given complex but also certain ground state properties such

as wave functions. For this purpose XCrysDen112, 113 is used within this work.

XCrysDen is released under GNU General Public License and is able to read the

very common and easy to work with structure data format *.xyz. It also includes

very intuitive to use measurement tools for distances, angles and dihedral angels.

Furthermore, is is possible to keep track of geometry optimization and can visualize

wave functions. All wave function plots presented in the present work are done using

an isovalue of 0.3
√
e/a3

0 unless stated otherwise. There is also an extensive toolbox

for the treatment of periodic structures available.

3.2.2 Jmol

Another tool for visualization used within the present work is Jmol2. Jmol is a

free, open source, java-based molecule viewer. It can be used for example for the

visualization of vibrations, surfaces and orbitals. A huge advantage of Jmol is the

support for RasMol/Chime scripting language which makes it highly adaptable and

easy to use.
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3.3 The SHAPE package

SHAPE9, 10, 43, 44, 49 is a program package for the calculation of continuous shape

measures of polygonal and polyhedral molecular fragments based on an algorithm

proposed by Pinsky and Avnir177.

The amount of symmetry in a given structure is given as a function of a normalized

root-mean deviation from the closest structure with the desired symmetry group

G. Assuming a structure composed of N vertices whose coordinates are given by

Qk, k = 1, 2, 3, ..., N the search for the nearest reference structure defined by the

vertex coordinates Pk, k = 1, 2, 3, ..., N can be described by:

S = min

∑N
k=1 |Qk − Pk|2∑N
k=1 |Qk −Q0|2

∗ 100 (3.1)

The coordinate vector of the center of mass of the investigated structure Q0 is

introduced in order to avoid size effects

Q0 =
1

N

N∑
k=1

Qk (3.2)

Note that S ranges between 0 and 1 by definition. Since nearly all symmetry-related

studies focus on small distortions the 0 − 1 range is expanded by a factor of 100.

Therefore the bounds are 100 ≤ S ≤ 0, with S(G) = 0 if a structure has the

desired symmetry. The symmetry measurement increases as it departs from the

given symmetry group. Note that all S(G) values are on the same scale and hence

comparable - regardless of the G.
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4 Results and discussion

4.1 The Robson-type hexamine-dithiophenolate macrocy-

cles [M II
2 (L6)(L′)]n+

The series of robson-type polyamine-dithiopenolate macrocycles offers an interest-

ing possibility to elucidate the influence of different bridging ions and metal centers

on the magnetic properties126, since the main framework of the complex remains

relatively unchanged by these changes. A schematic representation of the structure

is shown in Figure 4.1. Note that there are two different structural motifs, type A

Figure 4.1: Schematic sketch of the Robson-type polyamine-dithiophenolate macrocycles,

L6=polyamine-dithiophenolate ligand (C38H64N6S2), L’=coligand, M=metal

center, taken from126, Fig. 8

and type B. Each metal center is in an octahedral environment, independent of

the structure motif. The present work deals only with structures of type B, since a

larger number of experimentally accessible compounds exists for this structure mo-

tif. The structure information of the molecules is obtained from the experimental

X-ray structure. First of all, we will test the influence of various program packages

(namely NRLMOL, GAUSSIAN and ORCA) and exchange correlation functionals
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(PBE, B3LYP) on the calculation of the magnetic exchange coupling. Afterwards,

we will discuss the influence of different transition metal centers M (M = Ni, Mn,

Fe, Co) on the electronic structure and the magnetic coupling of a complex of type

[MII
2 (L6)(OAc)]+. As only the Ni-complexes show ferromagnetic coupling we will

then focus on the description of the electronic structure and magnetic properties (ex-

change coupling, magnetic anisotropy) of various [NiII2 (L6)(L′)]n+ complexes. Here

we can switch the magnetic coupling with respect to the third bridging ligand L′.

Trends in the magnetic coupling can be e plained in terms of the Goodenough-

Kanamori rules and within the Hay-Thibeault-Hoffmann model whereas trends in

the magnetic anisotropy can be related to geometric distortions and the HOMO-

LUMO gap. Furthermore, we will see that the size and charge of the third bridging

ligand does not influence the magnetic coupling. However, weak ligands should be

preferred as those open new ferromagnetic pathways across L′ that enhance the

ferromagnetic coupling.

4.1.1 The influence of different exchange correlation functionals and

program packages on the computation of the exchange coupling J

In order to verify our results testing of different exchange-correlation functionals

(namely PBE and B3LYP) using different program packages (NRLMOL, GAUS-

SIAN 03 and ORCA) was done:

• NRLMOL → PBE

• GAUSSIAN 03 → B3LYP

• ORCA → PBE, B3LYP.

An overview over the different calculations done for selected co-ligands L′ is given

in Table 4.1. It can be immediately seen that all the calculations shown in Table 4.1

reproduce the experimentally observed coupling. The PBE and B3LYP calculations

yield nearly identical results respectively. The remaining small discrepancies are due

to the use of different basis sets.

For the PBE calculations the known overestimation (approximately a factor of four)

of the exchange coupling constant is observed. Only for L’=BH−4 a surprising agree-

ment between the experimental and calculated coupling constant is observed. The
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Table 4.1: Magnetic exchange coupling constants J for selected third bridging ligands L′.

The coupling constants are calculated using the PBE exchange-correlation as

implemented in NRLMOL (Jnrl) and ORCA (Jorca) and the B3LYP hybrid

functional as implemented in GAUSSIAN 03 (Jgau) and ORCA. The results

for the calculation using GAUSSIAN 03 are taken from125. For comparison

experimental data (Jexp) are shown as well.

complex L′ PBE B3LYP Jexp Refs.

Jnrl Jorca Jgau Jorca

[cm−1] [cm−1] [cm−1] [cm−1] [cm−1]

21 N−3 -173 -184 -73 -78 -45 89

11 BH−4 32 31 21 19 27 102

16 NO−2 25 25 17 15 6.7 89

1 CH3CO−2 33 30 17 16 6.4 89

12 O2CPh− 31 29 17 15 5.8 89

19 pydz 11 14 15 15 3.5 89

otherwise occurring overestimation is due to the fact that standard DFT functionals

do not localize the d-states strong enough. Therefore, the resulting overlap of the

wave functions is larger resulting in an overestimation of the exchange coupling.

B3LYP somewhat corrects for this DFT failure by mixing Hartree-Fock exact ex-

change into the functional. Consequently, the calculated coupling constants are in

better agreement than those obtained from the DFT-PBE calculations. However,

they are still off by a factor of two. In the case of L′=BH−4 the ferromagnetic cou-

pling is even underestimated compared to experiment.

Altogether the comparison revealed that the results obtained from the NRLMOL/PBE

calculations are trustworthy and the emerging errors are well understood. Hence all

remaining calculations will be done using NRLMOL.

Furthermore, we studied the influence of the geometry on the computation of the

exchange coupling. As already mentioned all calculations have been done using

the experimentally obtained structure. In order to check our results a full geom-

etry relaxation of the isolated single molecule [NiII2 (L6)(OAc)]+ has been carried
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out. The calculated exchange coupling constant J of the isolated single molecule

(J = 33.14 cm−1) and the relaxed structure (J = 34.89 cm−1) differ only by about

5%. This deviation is much smaller than the error due to DFT. Hence the results

obtained starting directly from the isolated single molecule are deemed trustworthy.

4.1.2 Magnetic properties and electronic structure of [MII
2 (L6)(OAc)]+ as

a function of the transition metal ion M

a) magnetic coupling J

As already mentioned a whole family of synthesized typeB structures exists. Amongst

others also a series of [MII
2 (L6)(OAc)]+ complexes. The transition metals of this se-

ries are located in the 3d row - namely CoII, MnII, FeII and NiII. As shown in Table

4.2 ferromagnetic coupling is observed only in the case of NiII. All other complexes

show an antiferromagnetic exchange interaction.

Table 4.2: Magnetic properties calculated using NRLMOL (JPBE) and ORCA (JB3LY P )

in comparison to experimental coupling constants, the energy difference ∆e

of the Hay-Thibeault-Hoffmann model and selected structural data of the

[MII
2 (L6)(OAc)]+ complexes

No. M JPBE JB3LY P Jexp ∆e d(M-M) M-S-M Refs.

[cm−1] [cm−1] [cm−1] [mRyd2] [Å] [◦]

1 NiII 33 16 6.4 0.014 3.48 89.64(4) 108, 109

2 MnII -14 -6 -5.1 0.558 3.46 80.41(0) 101

3 FeII -33 -11 -10 0.979 3.42 85.42(6) 101

4 CoII -141 -2 -1.9 0.068 3.45 81.01(1) 110

Although the M −M distance is nearly identical in the considered complexes there

exist large differences in the M II− S −M II angle. Here the Goodenough-Kanamori

rules can be applied in order to explain the observed coupling. In the case of NiII

a MII-S-MII angle close to 90◦ is observed. Therefore ferromagnetic coupling is

predicted. In the case of smaller angles antiferromagnetic exchange pathways are

58



Results

opened. These additional pathways will eventually dominate the ferromagnetic ex-

change contribution.

The Hay-Thibeault-Hoffmann model can also be applied successfully. The calculated

energy differences of the orbitals are in good agreement with the experimentally ob-

served coupling. The larger the splitting of d levels in the triplet solution of the

system the stronger the antiferromagnetic coupling becomes. For all cases shown

in Table 4.2 the usual DFT overestimation of the exchange coupling J as already

mentioned in section 2.5.2 is observed. Yet the sign of the magnetic coupling is repro-

duced in all cases. In the case of CoII the situation is somewhat more complicated.

The broken symmetry solutions seems to fail completely while the ferromagnetic

solution seems to yield the correct solution. Due to the wrong antiferromagnetic

solution the singlet-triplet splitting (which is proportional to the magnetic coupling

constant J) is computed to be much bigger than observed in experimental studies.

It is known that depending on the exchange correlation functional (and therefore on

the level of approximation) a calculation of the electronic ground state configura-

tion yields different solutions22. Indeed a significant improvement of the calculated

exchange coupling constant J is observed for the B3LYP calculation using ORCA.

The B3LYP density functional somewhat corrects for the already mentioned (see

section 2.5.2) failure of DFT failure by mixing Hartree - Fock exact exchange into

the functional. Therefore, the exchange coupling evaluated from the B3LYP cal-

culations is often in better agreement with the experimental ones195. Accordingly,

the calculated B3LYP exchange interaction for complex 4 (J = −2 cm−1) is closer

to the experimental one. For low spin CoII in an octahedral crystal field with one

electron occupying the degenerated eg orbital. The Hamiltonian of the simple form

H = −2J ~S1
~S2 is not correct anymore and additional interaction terms have to be

considered65. However, a mapping of energies obtained via DFT against a spin

Hamiltonian of the above mentioned form is impossible.
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b) electronic structure

NiIIOAc

Apart from the magnetic properties it is also very interesting to take a closer look

at the density of states (DOS) and the electronic structure of the different transi-

tion metal complexes. As shown in Figure 4.2 the ferromagnetic coupling complex
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Figure 4.2: (a) DOS NiIIOAc; (b) electronic structure of NiIIOAc close to EF (±1.5 eV)

NiIIOAc has a rather large HOMO-LUMO gap of 1.25 eV. Since NiIIOAc shows an

overall ferromagnetic behavior, it is necessary to consider two distinct spin channels

(spin up and spin down) separately. And since the actual HOMO-LUMO gap is

between spin up and spin down electrons, this leads immediately to the conclusion

that it is essential to take a look at the HOMO-LUMO gap of the respective spin

channels as well. The gap for the spin up electrons (2.79 eV) is more than twice of

the size the actual HOMO-LUMO gap, whereas the gap for the spin down electrons

equals 1.86 eV. It is therefore within the range of the actual HOMO-LUMO gap.

This gap for the spin down electrons would also mark the first transition that can

be observed in any optical spectra (for example in EELS) since there is no possible

optical dipole transition between the HOMO and the LUMO of the molecule. More
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accurate there are no allowed optical transitions including a spin flip which would

be necessary in this case.

Another fact is that all levels close to EF are dominated by NiII d-states as shown

in Figure 4.2a. In order to shine some light on the nature of these d-states Figure

4.2b shows the corresponding wave functions close to the Fermi level. Within the

spin up channel a ferromagnetic coupling pathway across the sulfur atoms is clearly

identified for the HOMO and the HOMO-2 whereas the HOMO-1 and the HOMO-3

indicate that there is an additional exchange pathway across the bridging acetate

ligand available that enhances the overall ferromagnetic coupling. The LUMO of

the spin up channel consists of ligand states and is not included in Figure 4.2b as

it is located well above the Fermi level. Similar pathways can be observed within

the spin down channel. Here the HOMO and the HOMO-1 are nearly degenerated

and feature a coupling pathway across the third bridging ligand as well as across

the sulfur atoms. The LUMO and the LUMO+1 also look nearly the same. The re-

spective wave functions include contributions from the NiII d-states as well as sulfur

p-states and a small amount of carbon p-states from the ligand system. The wave

functions that belong to the LUMO+2 and the LUMO+3 consist mainly of states

belonging to the acetate ligand and NiII d-states. All states that are higher in energy

belong the the ligand system and do not include any notable amount of NiII d-states.

MnIIOAc

A very similar electronic structure is calculated for the MnIIOAc as can be seen

in Figure 4.3. First of all it is no longer necessary to separate the spin channels

since there is no difference in these for an antiferromagnetic system. Again a large

HOMO-LUMO gap of 1.85 eV is observed and yet again all states close to the Fermi

level are dominated by MnII d-states as shown in Figure 4.3a. It is possible to trace

coupling pathways across the sulfur atoms (HOMO) and across the bridging acetate

ligand (HOMO-1). A very interesting feature can be found for the LUMO. Here it

is possible to track a direct overlap between the MnII ions. The LUMO+1 consists

mainly of states belonging to the acetate ligand and MnII d-states. Yet again all

states that are higher in energy belong the ligand system and do not include any

notable amount of MnII d-states.
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Figure 4.3: (a) DOS MnIIOAc; (b) electronic structure of MnIIOAc close to EF (±1.5 eV)

FeIIOAc

Compared to the already discussed transition metal complexes FeIIOAc comes along

with a very small HOMO-LUMO gap of 0.65eV as shown in Figure 4.4. Since the

complex shows an overall antiferromagnetic coupling, it is again not necessary to

consider the two spin channels separately. As illustrated in Figure 4.4a all states

close to the Fermi level are dominated by FeII d-states which is a common feature

for all the regarded transition metal complexes. Focusing at the states close to EF

(see Figure 4.3b) reveals for the HOMO-1 and the HOMO-2 the already known cou-

pling pathways across the sulfur atoms and the bridging acetate ligand. The HOMO

however is formed from pure FeII d-states in contrast to the MnIIOAc and NiIIOAc.

For the LUMO a mixing of FeII d-states and p-states belonging to the acetate ligand

is observed while for the LUMO+1 a direct overlap of FeII d-states can be found.

Such an unoccupied state was also noticed for the MnIIOAc. In the case of NiIIOAc

these direct overlap of d-states is observed for states well below the Fermi level.
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Figure 4.4: (a) DOS FeIIOAc; (b) electronic structure of FeIIOAc close to EF (±1.5 eV)

CoIIOAc

We will not discuss the electronic structure of CoIIOAc here as NRLMOL yields a

wrong antiferromagnetic solution due to the above mentioned reasons. However, one

would suspect that it is similar to the electronic structure of MnIIOAc and FeIIOAc.

4.1.3 Magnetic and electronic properties of [NiII2 (L6)(L′)]n+ as a function

of the third bridging ligand L’

a) magnetic coupling J

It was shown that the variation of transition metal centers allows only for lim-

ited changes of the magnetic properties. A far greater variety can be found by

changing the third bridging ligand L′. These changes allow a fine tuning of the

magnetic interactions. Since only the NiII complexes show ferromagnetic coupling

this section will deal with [NiII2 (L6)(L′)]n+ complexes including the third bridging

ligand L’=EtOCO−2 (5), CH3OCO−2 (6), µ1,3-meta-Chlorobenzoato− (7), µ1,3-3,4-

Dimethyl-6-phenylcyclohex-3-ene-1-carboxylato− (8), µ1,3-2-(Hydroxyethyl)Carbonato−
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(9), CH3CO−2 (1), µ1,3-(2E4E)-Hexa-2,4-dienoate− (10), BH−4 (11), O2CPh− (12),

NO−3 (13), HCO−2 (14), µ1,3-Bicarbonato (15), NO−2 (16), µ1,2-Phthalazine (17),

µ1,2-Pyrazolato (18), pydz (19), N2H4 (20), N−3 (21). An overview over the various

third bridging ligands is also given in Figure 6.1 in Appendix B (see also Figure

I). Note that all of them belong to the conformational type B and differ in size

and charge. Therefore, it is important to distinguish between structural and elec-

tronic effects on the magnetic coupling of the nickel ions. In order to relate the

magnetic properties to structural features Table 4.3 also lists the Ni-Ni distance and

the average Ni-S-Ni angle (deviations in brackets). The energy differences ∆e of the

Hay-Thibeault-Hoffmann model are also given in Table 4.3 in order to connect the

strength of the magnetic coupling to the electronic structure of the given complex.

Nearly all of the complexes show ferromagnetic coupling with varying strength of

the exchange coupling constant J . Only in the case of 20 and 21 we observe an-

tiferromagnetic coupling. For 21 the Ni-S-Ni angle is considerably larger than 90◦

(Ni-S-Ni=94.55◦), hence the Goodenough-Kanamori rules predict antiferromagnetic

coupling. However, in the case of 18 the deviation of the Ni-S-Ni angle is just the

same (Ni-S-Ni=86.38◦) and ferromagnetic coupling of the two NiII is observed. Thus

the coupling cannot be explained entirely by the Goodenough-Kanamori rules alone.

The energy difference ∆e of 21 is also quite large. Therefore, we would expect anti-

ferromagnetic coupling according to the HTH model. Hence, the antiferromagnetic

coupling can also be well understood in the terms of the electronic structure of com-

plex 21. The strong splitting of the magnetic orbitals is here induced by the strong

ligand field of the azido bridge. Note that the Ni-Ni distance is also much larger

than the average of ∼ 3.48 Å. For complex 18 on the contrary the energy differ-

ence ∆e of the involved d-orbitals is much smaller. This results in a ferromagnetic

coupling predicted by the HTH model. Therefore the electronic effect overrules the

structural effect resulting in an overall ferromagnetic coupling. In the case of 20

the energy difference ∆e is also considerably larger than the average yet only half

as large as the ∆e of 21. Accordingly, a smaller but nevertheless antiferromagnetic

coupling is predicted. A closer look at the Ni-S-Ni angle of 20 (87.74◦) reveals that

the antiferromagnetic behavior of complex 20 can be also understood in the terms

of the Goodenough-Kanamori rules. Complex 19 shows nearly identical bridging

angles Ni-S-Ni compared to 20. The Ni-Ni distance is also virtually the same.
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Table 4.3: Calculated magnetic coupling Jcalc using NRLMOL/PBE, the energy differ-

ence ∆e of the Hay-Thibeault-Hoffmann model and structural data of selected

[NiII2 (L6)(L′)]n+ complexes. For comparison the experimentally determined

magnetic coupling Jexp is given as well.

-

complex Jcalc Jexp ∆e d(Ni-Ni) Ni-S-Ni Refs.

[cm−1] [cm−1] [mRyd2] [Å] [◦]

5 37 - 0.019 3.49 90.47(5) 108, 109

6 35 - 0.007 3.49 90.00(6) 108, 109

7 35 - 0.076 3.46 89.95(12) 88

8 35 - 0.015 3.49 90.12(12) 106, 107

9 34 - 0.049 3.49 89.89(4) 108, 109

1 33 6.4 0.014 3.48 89.64(4) 108, 109

10 33 - 0.010 3.47 89.46(9) 106, 107

11 32 27 0.024 3.49 89.41(5) 102

12 31 5.8 0.009 3.47 89.09(4) 89

13 27 - 0.016 3.49 90.73(6) 89

14 27 - 0.019 3.48 88.95(3) 102

15 26 - 0.043 3.47 89.25(8) 89

16 25 6.7 0.047 3.40 87.03(4) 89

17 22 - 0.030 3.40 88.06(4) 89

18 20 - 0.050 3.39 86.38(9) 89

19 11 3.5 0.064 3.39 87.58(2) 89

20 -6 - 0.145 3.44 87.74(3) 89

21 -173 -45 0.313 3.68 94.55(4) 89

Nevertheless, ferromagnetic coupling is observed. This can again be understood in

the terms of the Hay-Thibeault-Hoffmann model since the energy difference ∆e is

only 0.064 mRyd2 and therefore significantly smaller than in complexes 20 and 21.

These facts suggest that the effects on the electronic structure due to the chemical

bonding of the third bridging ligand L′ becomes the deciding factor and somewhere
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between 0.6 mRyd2 < ∆e <0.15 mRyd2 ferromagnetic interaction becomes favored.

A comparison of the remaining energy differences shows that they all display more

or less the same values. Without the influence of additional structural effects one

expects larger ferromagnetic coupling together with smaller values of ∆e. However,

there are some exceptions - for example 7. Despite the large energy difference of

∆e = 0.076 mRyd2 strong ferromagnetic coupling is predicted. This complex also

shows a Ni-S-Ni angle of 89.95◦. Therefore ferromagnetic coupling is predicted by

the Goodenough-Kanamori rules. It seems that in this case the structural effect

on the magnetic coupling is stronger than the electronic one. This is again a good

example that structural changes and electronic effects affect at the same time the

magnetic coupling within these series of nickel complexes.

The discussed relation between the calculated exchange coupling constant Jcalc and

the energy difference ∆e is highlighted in Figure 4.5. The data deviate from a per-
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Figure 4.5: Plot of ∆e against Jcalc for [NiII2 (L6)(L′)]n+ complexes including a linear least

squares fit for all complexes (black) and for all complexes but 21 (L’=N−3 )

(red)

fect linear dependence due to small differences in the local structural environment

of the magnetic NiII ion. Nevertheless, a least square fit was done in order to pre-

dict the maximal possible ferromagnetic J value. The fit yields a maximal possible
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ferromagnetic coupling of J = 48.8 cm−1. This suggests that within the family of

nickel amine-thiophenolat complexes no higher values of the coupling constant J are

possible regardless of the third bridging ligand L’. The value for this predicted Jmax

is even smaller (= 36.2 cm−1) if complex 21 is removed from the fit (see Figure 4.5).

However, the regression coefficient becomes quite bad for this fit compared to the fit

including all complexes. This is mainly due to a large scattering of the of the HTH

values for the ferromagnetically coupling complexes. Here we can clearly see the

influence of the ligand field of each L’ which does of course influence the splitting of

the d-levels at the Ni ions (which is measured by the HTH value). Yet the co-ligand

L’ is crucial for the magnetic coupling. As shown elsewhere125 about 70% of the to-

tal ferromagnetic coupling are mediated via the bridge. This was proven by model

calculations without the third bridging ligand and otherwise unchanged geometry.

The results are shown in Table 6.1 in Appendix B. As already mentioned, the only

difference between all these models is the changed geometry of the magnetic core.

All atoms and chemical bonds are identical. Note that the removal of the third

bridging ligand L’ will perturb the electronic structure considerably. Therefore the

model calculations should only be compared with each other, since all differences in

the magnetic coupling will have geometrical reasons.

As shown in Figure 4.6 there exists again a nearly linear dependence of ∆emodel

vs. Jmodel. Interestingly, the linear fit predicts nearly the same theoretical Jmax (=

35.2 cm−1) as the fit of the original data excluding complex 21 (Jmax = 36.2 cm−1).

However the regression coefficient is far higher now since the influence of the ligand

field of L’ is removed. The differences that occur now are only due to the slightly

different geometry of each complex. This already indicates the strong link between

the electronic structure and the magnetic coupling.

In nearly all model calculations the strength of the ferromagnetic coupling drops

to about 1/3 of the coupling with the third bridging ligand. In some cases even

weak antiferromagnetic coupling is observed. A closer look at the energy differences

∆emodel reveals an increased splitting of levels compared to the original calculations

(see also 4.1.3). Therefore, the reduced strength of the magnetic coupling can be

easily understood in the terms of the Hay-Thibeault-Hoffmann model. Only in the

case of the L′ =N−3 co-ligand a strong ferromagnetic coupling is observed for the

model calculation together with a reduced energy difference. This indicates that the
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Figure 4.6: Plot of ∆emodel against Jmodel for [NiII2 (L6)(L′)]n+ complexes including a linear

least squares fit.

co-ligand L′ is either opening a new exchange pathway or it is changing the orbital

manifold and therefore the magnetic coupling. In order to clarify the situation some

more model calculations have been carried out124. To keep track of the change of

the magnetic coupling J with respect to the third bridging ligand L′ some model

calculations of complex 11 are done. Note that there is no change of geometry here

since the BH−4 bridge is simply replaced by some other co-ligands. Therefore all ob-

served changes are due to variations of the electronic structure of the third bridging

ligand. Swapping from BH−4 to halogen ions (F−, Cl−, Br−) results in an increase of

the calculated exchange coupling to J ∼ 37 cm−1. Replacing the BH−4 ligand by the

iso-electronic CH4 yields a coupling of J = 30 cm−1. Finally, Ne was introduced as a

bridging ligand resulting in a weak ferromagnetic coupling of J = 12 cm−1 which is

about the value of the model calculation without any co-ligand. These model calcu-

lations suggest, that the magnetic coupling basically does not depend on the charge

or size of the co-ligand L′. The only important feature is the electronic structure

of the third bridging ligand - namely the energetic position of the p-levels because

they mediate the superexchange. There exists a direct exchange pathway across

the bridge as shown in Figure 4.7 which is most pronounced in complex 11. In the

case of 21 the N−3 co-ligand changes the orbital energies in such a way, that the
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(a) sideview (b) topview

Figure 4.7: Exchange pathway across the BH−4 bridge 11. The depicted orbital belongs

to the HOMO-15 in the spin up channel.

ferromagnetic exchange pathway across the third bridging ligand becomes blocked.

This is not surprising, since N−3 is known as a ligand inducing a strong ligand field.

All these observations result in some general rules to enhance the magnetic exchange

coupling J within these series of Robson-type hexamine-dithiophenolate macrocycles

[MII
2 (L6)(L′)]+:

• Ferromagnetic coupling is only observed in the case of M=NiII. All other

examined third row transition metal ions yield antiferromagnetic coupling.

• The strength (J) and the kind (ferromagnetic or antiferromagnetic) of the

magnetic coupling can be understood in terms of structural as well as electronic

effects.

• The influence of the structure on the magnetic coupling is described by the

Goodenough-Kanamori rules, whereas the impact of the electronic structure

is described within the Hay-Thibeault-Hoffmann model. Both effects compete

with each other and may enhance or cancel out their effects.

• The energy splitting of the Hay-Thibeault-Hoffmann model can be understood

as a measure of the crystal field strength of L’. Only weak ligands favor ferro-

magnetic exchange.
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• An additional ferromagnetic exchange pathway is provided across the third

bridging ligand L’.

• The co-ligand should be of appropriate geometrical size to keep the general

structure of type B.

• The largest predicted ferromagnetic coupling J of the [NiII2 (L6)(L′)]n+ com-

plexes is about 50 cm−1.

b) magnetic anisotropy D

While it appears possible to rationalize the observed magnetic exchange properties in

terms of structural and electronic elements, the situation changes completely when

considering the magnetic anisotropy D. As shown in literature30, 50, 72, 77, 134, 150, 191

there are basically four parameters that influence the sign and the value of the

magnetic anisotropy D:

• the geometric distortion of the metal center environment

• the crystal field strength of the ligand

• the covalence of the metal center

• the HOMO-LUMO gap (which is of course induced by geometric distortions

and varying crystal field strength)

In the case of the Robson-type hexamine-dithiophenolate macrocycles the covalence

of the metal center is always the same - therefore the magnetic anisotropy should

be governed by the crystal field strength of the ligand and the geometric distortion.

Both working together do of course also influence the HOMO-LUMO gap of the

respective molecule. The crystal field strength of the third bridging ligand can be

expressed in terms of the Hay-Thibeault-Hoffmann model. The stronger the crystal

field induced by the ligand the larger is the splitting of levels (note that the Hay-

Thibeault-Hoffmann model takes only unoccupied levels into account). Yet there

is no connection between D and the splitting of the orbital energies as calculated

within the HTH model for the original structures as shown in Figure 4.8.
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Figure 4.8: Plot of ∆eorig/model against Dorig/model (empty/filled triangles) for various

[NiII2 (L6)(L′)]n+ complexes

Upon the removal of the third bridging ligand (see Table 6.1 in Appendix B) all

electronic contributions of this co-ligand vanish and we observe a much higher HTH

energy difference and accordingly smaller ferromagnetic coupling or even a change

from ferromagnetic coupling to antiferromagnetic coupling (complex 16-19). For

the cases of 20 and 21 we can switch from (strong) antiferromagnetic coupling to

ferromagnetic coupling as already explained in more detail in section 4.1.3. Interest-

ingly, this decrease in the strength of the coupling is accompanied by an increase in

the strength of the magnetic anisotropy D as shown in Figure 4.9 (red). Apparently,

the system tends to high coupling constants and low D values in the case for the

original molecules and vice versa in the case of the model calculations. This in-

dicates that a given ferromagnetic system minimizes its energy either by a strong

coupling of the spins or a strong magnetic anisotropy.

Furthermore, the removal of the third bridging ligand leads to a tremendous re-
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Figure 4.9: Plot of the magnetic anisotropy D against J (red) and the HOMO-LUMO

gap (blue) for various [NiII2 (L6)(L′)]n+ (filled circles) and [NiII2 (L6)]n+ (empty

circles) complexes

duction (one order of magnitude) of the HOMO-LUMO gap of any given complex.

This can be related to the crystal field splitting induced by the co-ligand which does

of course vanish once L’ is removed. This reduction of the HOMO-LUMO gap is

directly related to an increase of |D| as shown in Figure 4.9 (blue) and in Table 6.1

in Appendix B. As already stated by Goswani and Misra77 an increasing magnetic

anisotropy is related to a decreasing HOMO-LUMO gap which is clearly observed

here as well.

A further attempt to relate the magnetic anisotropy to structural parameters is the

computation of the mean deviation ∆O = |O1+O2|
2

from the octahedral symmetry of

both central NiII ions for the original molecules. These values are obtained by the

use of the SHAPE package. As shown in Figure 4.10 the smaller the variation from a

perfect octahedron, the more likely is a single molecule magnet behavior. Yet there

are deviations from this rule. In the case of 9 a negative magnetic anisotropy is
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Figure 4.10: Plot of ∆eorig against Dorig for [NiII2 (L6)(L′)]n+ complexes

observed despite the fact that a large geometric distortion is present. In the case of

1 and 10 the reversed behavior can be found. These two complexes exhibit only a

small distortion from the octahedral environment of the two central NiII ions, yet the

magnetization prefers an easy plane system. Apparently, an easy axis behavior of a

given complex is more likely for nearly undistorted octahedral structures. However,

this is not a sufficient condition for the occurrence of an easy axis anisotropy. A

detailed overview of all the discussed properties of the original and model systems

can be found in Appendix B in Table 6.1.

Summarizing this section it can be concluded that

• there is no connection between the energy difference ∆e of the HTH model

and the magnetic anisotropy D.

• the magnetic anisotropy D and the strength of the magnetic coupling seem to

be connected. For this system it is not possible to maximize both quantities

at the same time.

• a decreasing HOMO-LUMO gap results in an increase of the magnetic anisotropy.

• a nearly octahedral environment favors easy axis system but not all “undis-

torted” structures yield SMM behavior.
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c) electronic structure

After the detailed discussion of the magnetic properties this work shall now fo-

cus on the electronic properties of the variously bridged [NiII2 (L6)(L′)]n+ complexes.

According to experimental data complex 11 (L’= BH−4 ) exhibits the largest ferro-

magnetic coupling and hence it shall be the first complex whose electronic structure

is discussed in more detail.
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Figure 4.11: (a) DOS of [NiII2 (L6)(BH4)]+ ;

(b) electronic structure of [NiII2 (L6)(BH4)]+ close to EF (±1.5 eV)

As shown in Figure 4.11 the ferromagnetic complex [NiII2 (L6)(BH4)]+ has a HOMO-

LUMO gap of approximately 1 eV which is between a spin up state (HOMO) and

a spin down state (LUMO). The HOMO-LUMO gaps within the spin channels are

even larger with 2.84 eV (spin up) and 1.77 eV (spin down). Yet again all levels

close to the Fermi level are dominated by NiII d-states as shown in Figure 4.11a and

already observed in case of the [MII
2 (L6)(OAc)]+ macrocycles discussed in section

4.1.2. Consistently, the corresponding wave functions (see Figure 4.11b) are also

very similar. Within the spin up channel a ferromagnetic coupling pathway across
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the sulfur atoms is clearly identified for the HOMO and the HOMO-1 whereas the

HOMO-2 and the HOMO-3 indicate that there is an additional exchange pathway

across the bridging BH4 ligand enhancing the overall ferromagnetic coupling. The

LUMO of the spin up channel consists of ligand states and is not included in Figure

4.11b as it is located well above the Fermi level. Similar pathways can be observed

within the spin down channel. Here the HOMO, HOMO-1 and the HOMO-2 are

very close in energy and feature a coupling pathway across the the sulfur atoms. The

LUMO and the LUMO+1 on the other hand include contributions from the NiII d-

states as well as the bridging BH4 ion. The wave functions that build the LUMO+2

and the LUMO+3 consist mainly of states belonging to the sulfur atoms and NiII d-

states. All states that are higher in energy belong the the ligand system and do not

include any notable amount of NiII d-states. Upon the removal of the BH−4 bridge the
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Figure 4.12: (a) DOS of complex 11 without BH−4 ;

(b) electronic structure of complex 11 without BH−4 close to EF (±1.5 eV).

The wave functions belonging to HOMO-6 to HOMO-2 are pure NiII d-states.

For reasons of clarity these states are omitted and instead depicted in Ap-

pendix B (Figure 6.2)

electronic structure does change, yet the overall ferromagnetic coupling is preserved
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(but weakened). The most outstanding change is the tremendous reduction of the

HOMO-LUMO gap by a factor of 5 (1.06 eV → 0.19 eV) as shown in Figure 4.12.

Taking a closer look at the density of states (Figure 4.12a) it becomes evident that

there are also similarities to the density of states of the original complex. Compared

to the DOS shown in Figure 4.11a the states close to the Fermi level are shifted

towards EF , while those further away are more or less unaffected. Furthermore, a

larger splitting of levels is observed especially for the unoccupied states of the spin

down channel close to the Fermi level. Taking a closer look at the wave functions

close to EF confirmed this assumption. As depicted in Figure 4.12b the HOMO and

the HOMO-1 in the spin up channel are identical with the respective states for the

original complex. The HOMO-2 of the spin up channel is an orbital also present in

the original complex, where it is the HOMO-4. As already discussed the HOMO-2

and HOMO-3 of the original include contributions from the BH−4 bridge. These

states do upon the removal of the third bridging ligand. A similar behavior can be

observed for the spin down channel.

Summarizing it can be concluded that the removal of the third bridging ligand

results in

• a tremendous decrease of the HOMO-LUMO gap (∼ 1
5

of the original value).

• a larger splitting of levels for the unoccupied states of the spin down channel

close to the Fermi level.

• the disappearance of states including contributions from the third bridging

ligand.

• an overall preserved level ordering (apart from the states mentioned above).

The density of states for the ferromagnetic coupling complexes looks very alike for

all considered complexes, hence a separate discussion for every single complex is

omitted. The DOS of the antiferromagnetic coupling complexes is similar to the

already discussed DOS of complex 2 (see section 4.1.2) and will be discussed here

neither. For comparison the DOS of complexes 1, 5-10 and 12-21 with and without

L’ are also depicted in Appendix B in Figures 6.3-6.19.

76



Results

Overall we have been able to show that

• Ferromagnetic coupling is only observed in the case of M=NiII. All other

examined third row transition metal ions yield antiferromagnetic coupling.

• The influence of the structure on the magnetic coupling is described by the

Goodenough-Kanamori rules, whereas the impact of the electronic structure

is described within the Hay-Thibeault-Hoffmann model. Both effects compete

with each other and may enhance or cancel out their effects.

• The energy splitting of the Hay-Thibeault-Hoffmann model can be understood

as a measure of the crystal field strength of L’. Only weak ligands favor ferro-

magnetic exchange.

• An additional ferromagnetic exchange pathway is provided across the third

bridging ligand L’.

• Upon the removal of L’ a tremendous decrease of the HOMO-LUMO gap (∼ 1
5

of the original value) is observed.

• The magnetic anisotropy D and the strength of the magnetic coupling seem to

be connected. For this system it is not possible to maximize both quantities

at the same time.

• A decreasing HOMO-LUMO gap results in an increase of the magnetic anisotropy.

• A nearly octahedral environment favors easy axis system but not all “undis-

torted” structures yield SMM behavior.
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4.2 Various azido-µ1,1 bridged transition metal complexes

As already observed in the case of the Robson-type hexamine-dithiophenolate macro-

cycles there seems to be a connection between the magnetic coupling J and the

magnetic anisotropy D in a way that we can not have strong coupling and strong

magnetic anisotropy at the same time. Now we will focus on the question whether

or not it is possible to combine a large spin ground state S and a high magnetic

anisotropy. This would of course be preferred in order to build single molecule

magnets with a large barrier of magnetization U which is given by U = S2|D| (see

also section 2.4.4). In order to get comparable results we restricted ourselves to

octahedral coordinated, azido-bridged copper, nickel and manganese dimers with

the general structure shown in Figure 4.13. As shown in literature dinuclear com-

Figure 4.13: octahedral coordinated µ1,1-azido bridged transition metal (TM) dimer; grey:

any ligand, orange: TM II , blue: N

plexes including a TM(µ1,1 − N3)2TM magnetic fragment are usually expected to

couple ferromagnetically due to the orientation of the magnetic orbitals7, 47, 186, 190

and hence the Nazide-TM-Nazide angles59, 129, 197. Yet this is not always true. In the

case of asymmetric complexes the TM-Nazide distances become the deciding factor.
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Larger TM−Nazide distances result in a damping of the ferromagnetic coupling and

may even give rise to antiferromagnetic coupling197, 218 within the transition metal

dimer. Nevertheless these dimers are expected to exhibit largely ferromagnetic cou-

pling and thus a high spin ground state. Hence they are promising candidates to ob-

serve a possible connection between the ground state S and the magnetic anisotropy

D. Note that all anisotropies presented within this chapter are calculated according

to van Wüllen219 (see equation (2.106)). In order to keep the study comparable only

octahedral coordinated transition metal complexes are examined. A more detailed

discussion of structural and magnetic trends can be found elsewhere5, 189.

4.2.1 Cu(µ1,1 − N3)2Cu complexes

An intensive search within the Cambridge Structural Database (CSD)8 yields 11

complexes showing the desired geometry. An overview of the respective structures is

given in Figure 6.20 in Appendix C (see also Figure II). The theoretical and (if avail-

able) experimental results for the magnetic behavior are summarized in Table 4.4.

All results are in fairly good agreement with experimental results except LIZVOF.

Here an antiferromagnetic coupling of the two CuII is predicted, whereas strong

ferromagnetic coupling is observed experimentally. It can be assumed that this dis-

crepancy is due to a failure of the broken symmetry approach since the coupling

of the nearly identical complex LIZVUL is predicted correctly. For FELZAY and

YIBNON very weak antiferromagnetic coupling is predicted experimentally while

the calculations yield weak ferromagnetic coupling. Here the divergence may be

due to the general overestimation of the exchange coupling within DFT (see also

section 2.5.2). In order to overcome these shortcommings further calculations using

the B3LYP functional as implemented in ORCA have been done since it is known

that B3LYP usually yields better results compared to PBE calculations. These cal-

culations reproduced the correct coupling for all complexes except LIFGAI where a

weak antiferromagnetic coupling is predicted instead of the experimentally observed

ferromagnetic coupling. For comparison further PBE calculations using ORCA have

been carried out for all considered complexes. However, those calculations only con-

firm the results obtained from the NRLMOL/PBE calculations.

Based on these findings the magnetic anisotropy D has been calculated as imple-
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Table 4.4: Magnetic properties of various Cu(µ1,1−N3)2Cu complexes. Given are experi-

mental Jexp and calculated JPBE/JB3LYP coupling constants as well as magnetic

anisotropy Dexp/calc (Dcorr is the corrected magnetic anisotropy according to

Van Wüllen219) and the barrier of magnetization U which is calculated based

on the corrected magnetic anisotropies. For the calculation of the coupling con-

stant NRLMOL(PBE)/ORCA(B3LYP) have been used. *=relaxed structure

complex Jexp JPBE JB3LYP Dexp Dcalc Dcorr U Refs.

[cm−1] [cm−1] [cm−1] [cm−1] [K] [K] [K]

BATHUZ10 35 ± 10 49 54 - 0.31 0.62 - 52

FELZAY -1.5 3 1 - - - - 203

LIFGAI* 20.1 10 -3 -12.5 -2.10 -4.20 4.2 53

LIZVOF 115 -10 70 - -2.50 -5.00 5.0 67

LIZVUL* 112 40 97 - -2.50 -5.00 5.0 67

PIDYEG -2.9 -7 17 - - - - 54

PIVMOX - -21 -20 - - - - 122

WEVKUD - 20 75 - -2.75 -5.50 5.5 135

WIDNUS - 13 78 - -2.68 -5.36 5.4 136

YIBNON -2.46 4 -1 - - - - 6

ZUBYUQ - -1 -4 - - - - 74

mented in NRLMOL. It has been determined for all complexes where a ferromag-

netic coupling is observed experimentally or where PBE and B3LYP calculations

agree on the ferromagnetic coupling for those complexes with no experimental data

available. All of them - except BATHUZ10 - show an easy axis behavior and are

therefore single molecule magnets (SMMs). The magnetic anisotropy of the six

SMMs is nearly identical with |D| ∼ 5 K. Only LIFGAI (D = −10 K) and LIZVUL

(D = −18 K) show a significant higher anisotropy. However upon the relaxation of

these two structures a much smaller magnetic anisotropy of D = −4.2/− 5 K (LIF-

GAI*/LIZVUL*) is observed. Note that this decrease of the magnetic anisotropy is

accompanied by a decrease of the total energy (i.e. the solution with a high energy

yields a high magnetic anisotropy whereas the solution with the lowest energy yields
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a low magnetic anisotropy). Summarizing it can be stated that complexes show a

resulting barrier of ∼ 5 K.

4.2.2 Ni(µ1,1 − N3)2Ni complexes

In the case of Ni(µ1,1 − N3)2Ni complexes only eight complexes of the required

geometry can be found within the CSD. An overview of the respective structures

is given in Figure 6.21 in Appendix C (see also Figure III). The theoretical and (if

available) experimental results are summarized in Table 4.5. All of them exhibit a

S = 2 ground state in the calculations. Again there is a good the agreement between

Table 4.5: Magnetic properties of various Ni(µ1,1 − N3)2Ni complexes. Given are experi-

mental Jexp and calculated JPBE/JB3LYP coupling constants as well as magnetic

anisotropy Dexp/calc (Dcorr is the corrected magnetic anisotropy according to

Van Wüllen219) and the barrier of magnetization U which is calculated based

on the corrected magnetic anisotropies. For the calculation of the coupling

constant NRLMOL(PBE)/ORCA(B3LYP) have been used.

complex Jexp JPBE JB3LYP Dexp Dcalc Dcorr U Refs.

[cm−1] [cm−1] [cm−1] [cm−1] [K] [K] [K]

CALWUH 13.6 26 33 -19.2 0.88 1.17 - 21

DAWTUR 1.2 13 26 - -0.73 -0.97 3.8 27

GUWJIR 21.8 32 36 - 1.25 1.66 - 61

IXUFEM 39.0 25 28 7.3 -0.59 -0.78 3.1 62

JEDHIK 11.5 29 30 5.27 -0.77 -1.02 4.0 202

JEXCIY 20.1 16 27 -12.5 1.37 1.82 - 16

PEJNAT 33.8 20 30 -21.5 0.43 0.57 - 221

TEQNEJ -1.8 9 11 0(fixed) -0.83 -1.11 3.3 48

experimentally obtained coupling constants and the calculated ones. Only in the case

of TEQNEJ ferromagnetic coupling is predicted whereas antiferromagnetic coupling

is observed experimentally. However, the ferromagnetic ground state is confirmed
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by the B3LYP calculations, hence it is assumed that the ferromagnetic coupling is

indeed present. Hence a magnetic anisotropy for TEQNEJ was calculated despite

the fact that the experimentally obtained coupling was weakly antiferromagnetic.

The agreement between the calculated and experimentally obtained anisotropies on

the other hand is rather bad. However, a similar behavior has been observed by

Zein et al.229. They found that a mismatch of the calculated and experimentally

obtained anisotropies is observed for large E
D

ratios, i.e. for cases where a large

biaxial anisotropy E is present. For Mn complexes these “critical” ratio is E
D
> 0.2.

Nearly all of the here considered Ni(µ1,1−N3)2Ni complexes show a E
D
> 0.1 ratio. So

it might well be that the “critical” ratio for the Ni(µ1,1−N3)2Ni is smaller compared

to the Mn complexes investigated by Zein et al.229.

Note that that not all of the dimers show SMM behavior, nevertheless the absolute

value of the magnetic anisotropy is within an order of magnitude 0.57 K< |D| < 1.82

K. In the case of the SMMs the deviation is even smaller 0.78 K< |D| < 1.11 K.

Therefore, it is not surprising that the barrier of magnetization U differs only slightly

U ∼ 3.6 K. Interestingly this is the same order of magnitude as the barrier height

observed in the case of the Cu-dimers. It is remarkably smaller than the barrier

calculated for the copper complexes. This is rather surprising since we would expect

a higher barrier for complexes with a higher total spin according to U = S2|D|.
Here the total spin S enters quadratically whereas it is linearly dependend on the

magnetic anisotropy D. Hence one would expect a higher barrier for larger total

spins. On the other hand one could argue that there is a “hidden” [S · (S − 0.5)]−1

dependency in the computation of D as pointed out by van Wüllen219. As explained

in more detail in section 2.5.3 we actually calculate an axial magnetic anisotropy

energy (MAE) which is divided by S · (S − 0.5) in order to obtain the magnetic

anisotropy D (see equation (2.106). Taking that into account the actual formula for

the calculation of the barrier of magnetization U should read:

U = |D| · S2 = MAE
S2

S(S− 0.5)
= MAE

S

S− 0.5
. (4.1)
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Using this connection one could define the ratio ∆1 of the different barriers of mag-

netization of the copper dimers and the nickel dimers according to:

∆1 =
UCu

UNi

=
MAECu · SCu(SNi − 0.5)

(SCu − 0.5) ·MAENi · SNi

(4.2)

=
MAECu · 1 · (2− 0.5)

(1− 0.5) ·MAENi · 2

=
3 ·MAECu

2 ·MAENi

Apparently, the ratio ∆ depends only on a pre-factor given by the respective tran-

sition metal species and the axial magnetic anisotropy energy. A very crude ap-

proximation for the MAE can for example be extracted from the free ion sin-

gle electron spin-orbit coupling parameters ζ. Here we find ζNi = 630 cm−1 and

ζCu = 830 cm−1127. The free ion single electron spin-orbit coupling parameter of

copper is larger than the one of nickel which is to be expected as the value of

ζ increases with increasing nuclear charge. As pointed out by Neese et al151 for

iron-complexes ζ is reduced due to the relativistic nephelauxetic effect (enhanced

covalent metal-ligand bond). Note that the relativistic nephelauxetic effect depends

on the nature of the ligand18, 19, 130 as well as on the nature of the central metal

ion63, 95. The effect of the ligands should be negligible within the present study

since we deliberately choose complexes with nearly identical ligands. As for the

different transition metal centers we expect a larger relativistic nephelauxetic effect

for copper compared to nickel.95. Summarizing can be stated that we would expect

an overall ratio ∆1 of roughly two when taking into account the pre-factor 3
2

and

the free ion single electron spin-orbit coupling parameters ζ as a first approximation

for the axial magnetic anisotropy energy. In other words we expect the barrier of

magnetization to be twice as large for the copper complexes compared to the nickel

complexes. However, we observe

UCu

UNi

∼ 1.4 (4.3)

for the ratio ∆1. This damping might by due to the relativistic nephelauxetic effect

which leads to a larger reduction of the free ion single electron spin-orbit coupling

parameters ζ in copper compared to nickel. Thus, the advantage gained by having
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a larger spin ground state is destroyed by the much smaller magnetic anisotropy.

The drop in the anisotropy is even larger than the increase given by the larger spin

ground state resulting in an overall smaller barrier of magnetization. The interesting

question is now how the manganese complexes behave.

4.2.3 Mn(µ1,1 − N3)2Mn complexes

There are several Mn2 complexes exhibiting the desired structure. The theoretical

and (if available) experimentally obtained magnetic properties are summarized in

Table 4.6. An overview of the respective structures is given in Figure 6.22 in Ap-

pendix C (see also Figure IV). All of them exhibit either a S = 5 ground state or - in

the case of antiferromagnetic coupling - a S = 0 ground state. All manganese com-

plexes show a rather weak coupling and the experimental results are in no agreement

to the coupling constants calculated using a PBE xc-functional. For comparison we

also did PBE calculations using the ORCA program packages, however the results

are identical to those obtained using NRLMOL. The B3LYP calculations on the

other hand predict the ferromagnetic coupling correctly and hence the magnetic

anisotropy is calculated for all complexes regardless of the magnetic coupling pre-

dicted by the PBE calculations. Interestingly we observe for all the complexes a

barrier U ∼ 2± 1 K which is in the range of the barrier observed for the nickel and

copper dimers. The barrier is even somewhat lower compared to the other transi-

tion metal complexes. Again this is surprising. At first glance one would expect the

highest barrier of magnetization for the manganese complexes since we get here the

highest spin ground state of S = 5 (remember: U = S2|D|). However, here we also

have to bear in mind the “hidden” [S · (S − 0.5)]−1 dependency in the computation

of D219 within second order perturbation theory. Taking that into account we can

again define the ratio ∆ of the different barriers of magnetization. This time for the

copper/manganese and the nickel/manganese dimers. This should read as:

∆3 =
UCu

UMn

=
MAECu · SCu(SMn − 0.5)

(SCu − 0.5) ·MAEMn · SMn

=
9 ·MAECu

5 ·MAEMn

and

∆4 =
UNi

UMn

=
MAENi · SNi(SMn − 0.5)

(SNi − 0.5) ·MAEMn · SMn

=
6 ·MAENi

5 ·MAEMn
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Table 4.6: Magnetic properties of various Mn(µ1,1−N3)2Mn complexes. Given are experi-

mental Jexp and calculated JPBE/JB3LYP coupling constants as well as magnetic

anisotropy Dexp/calc (Dcorr is the corrected magnetic anisotropy according to

Van Wüllen219) and the barrier of magnetization U which is calculated based on

the corrected magnetic anisotropies. For the calculation of the coupling con-

stant NRLMOL(PBE)/ORCA(B3LYP) have been used. FM: ferromagnetic,

AFM: antiferromagnetic

complex Jexp JPBE JB3LYP Dexp Dcalc Dcorr U Refs.

[cm−1] [cm−1] [cm−1] [cm−1] [K] [K] [K]

FIBJIK intra: weak FM 1 4 - 0.04 0.04 - 121

inter: weak AFM -

LEXPOU - 2 4 - 0.06 0.07 - 184

LIMLAV 1.31 -1 4 - -0.09 -0.10 2.5 226

PIVQOB 2.46 -2 4 0.019 0.86 0.95 - 228

PIVQUH 2.26 -1 4 0.017 0.07 0.08 - 228

PIVRAO 1.92 1 4 - -0.12 -0.13 3.2 228

RALKAR 0.77 1 3 - 0.03 0.03 - 105

RALKEV 2.04 3 5 - -0.13 -0.14 3.5 105

RALKIZ 1.75 3 5 - -0.11 -0.12 3.0 105

RASHID 0.65 2 4 - -0.03 -0.03 0.7 153

RASHOJ 0.55 -1 3 - -0.04 -0.04 1.0 153

RASHUP 0.68 1 4 - -0.04 -0.04 1.0 153

Again we observe that the ratio of the respective barriers of magnetization depends

on a prefactor given by the involved transition metal ions and the axial magnetic

anisotropy energy. Taking the free ion single electron spin-orbit coupling parameters

ζMn = 300 cm−1 as a first crude approximation we get:

∆3 = 5 and ∆4 = 2.5

But already here we see that the barrier of the dimers containing manganese ions

is always expected to be the smallest out of the three regarded transition metals.
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Now we compare these to the actual calculated barriers and we get:

UCu

UNi

estimated:

calculated:

∆1 =
UCu

UNi

∆1 = 2

∆1 ∼ 1.4

∆3 =
UCu

UMn

∆3 = 5

∆3 ∼ 3

∆4 =
UNi

UMn

∆4 = 2.5

∆4 ∼ 1.5

Apparently, we observe the same trend for the calculated barriers of magnetiza-

tion and the respective ratios as predicted by the estimations. The barrier U of

the copper complexes is always larger than the respective barrier of the nickel and

manganese complexes. The ratio of the calculated barriers is smaller than those ob-

tained from the estimations which might again be due to the damping evoked by the

relativistic nephelauxetic effect as already discussed in the previous section. Note

that the damping of the free ion single electron spin-orbit coupling parameters ζ

due to the relativistic nephelauxetic effect is strongest for copper followed by nickel

and manganese. Hence it is not surprising that the calculated ratio ∆4 is furthest

away from the predicted one.

Summarizing it can be concluded that the barrier of magnetization U is within an

order of magnitude (U = 1 − 5K) for all regarded complexes. As shown in Fig-

ure 4.14a the computed magnetic anisotropy D goes down for increasing magnetic

moments, i.e. upon changing the transition metal center of the complexes from

copper via nickel to manganese. Furthermore, we observe a nearly linear depen-

dency of D and 1
S2 (regression yields y = 0.18426 − 5.1796x,R2 = 0.99). In other

words we can increase S2 by a factor of 25 (by replacing the copper centers with

manganese centers) and we get a decrease of the magnetic anisotropy of a factor

of approximately five. For comparison the results obtained from NRLMOL calcu-

lations without the correction proposed by Van Wüllen219 are plotted (red line) in

Figure 4.14a as well. Here we also observe a linear dependency (regression yields

y = −0.021934− 2.46x,R2 = 0.98), however the pre-factors have changed. Further-

more we see that the correction of Van Wüllen219 got the strongest effect for the

copper system with a small total spin S. This is to be expected as the correction

acts strongest on systems with small spin as explained in more detail in section

2.5.3. In this section we can also find the explanation for the nearly linear behavior

of D vs. 1
S2 . As stated there and shown in equation 2.106 and 4.1 the barrier of
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Figure 4.14: Figure 4.14a: Magnetic anisotropy D depending on 1
S2 ;

red: magnetic anisotropy D as calculated in NRLMOL;

red line: regression y = −0.02− 2.46x,R2 = 0.98;

black: corrected magnetic anisotropy (according to Van Wüllen219);

black line: regression y = 0.18− 5.186x,R2 = 0.99

Figure 4.14b: barrier of magnetization U depending on 1
S2

red: barrier of magnetization U ;

red line: regression y = 2.2496 + 0.32735x,R2 = 0.17;

black: corrected barrier (according to Van Wüllen219);

black line: regression y = 2.2935 + 2.8271x,R2 = 0.80

magnetization does ultimately depend on the calculated axial magnetic anisotropy

energy MAE and the total spin of the given system:

U =
S ·MAE

S − 0.5
.

Here we observe by no means a quadratic dependency on the total spin ground state

S as indicated by U = S2|D| - the common formula used for the calculation of the

barrier of magnetization. Rather we have a S
S−0.5

dependency which converges to

one for large S

lim
S→∞

S

S − 0.5
= 1. (4.4)

Thus, the barrier does ultimately depend only on the axial magnetic anisotropy en-

ergy as calculated within NRLMOL for our test cases. (On a side note - equation 4.1
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would read U = MAE without the correction of Van Wüllen219 to the computation

of the magnetic anisotropy energy.) As already mentioned the MAE is proportional

to the free ion single electron spin-orbit coupling parameter ζ, which does increase

with increasing nuclear charge (see Figure 4.15). Hence, we got a pre-factor in equa-

Ti2+ V2+ Cr2+ Mn2+ Fe2+ Co2+ Ni2+ Cu2+

ζ
[c

m
−

1
]

100
200
300
400
500
600
700
800
900

Figure 4.15: The free ion single electron spin-orbit coupling parameter ζ of various first

row transition metal ions127. For configurations with more than one unpaired

electron it is also common to use λ which is given by λ = ± ζ
2S where S is the

total spin. By definition λ < 0 applies for less than half filled shells (d1− d4)

whereas λ > 0 applies elsewhere. Note that the same trend is observed for

higher (+3, +4, ...) and lower (+1, 0) charged ions. The only difference is

that larger charges increase the free ion single electron spin-orbit coupling

parameter systematically whereas the opposite trend is observed for smaller

charged ions.

tion 4.1 that goes to one for large S and a MAE that can be estimated by the free

ion single electron spin-orbit coupling parameter ζ which increases from manganese

via nickel to copper. Accordingly it is not surprising that we do indeed observe the

largest barrier of magnetization for the copper complexes (S = 1) and not for the

nickel (S = 2) or manganese (S = 5) complexes which is summarized in Figure

4.14b. The advantage of a large spin ground state S is destroyed by the decrease of

the free ion single electron spin-orbit coupling parameter. The pre-factor S
S−0.5

even

enhances the barrier of complexes with a small spin ground state (i.e. copper) in

addition to the already larger ζ.
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Summarizing this section we can state that

• all considered complexes exhibit a barrier U = 1− 5K.

• the barrier decreases from copper via nickel to manganese complexes.

• due to a “hidden” dependency on S in the calculation of the magnetic anisotropy

D the barrier of magnetization should be calculated according to U = S·MAE
S−0.5

instead of U = S2|D|.

• the magnetic anisotropy energy (MAE) scales roughly with the free ion single

electron spin-orbit coupling parameter ζ as long as one stays within one group

of the periodic table (i.e. first row TMs or second row TMs) and within the

same oxidation form (i.e. TM2+ or TM3+ or TM1+).

• the free ion single electron spin-orbit coupling parameter ζ increases with

increasing nuclear charge.

• the advantage of a large spin ground state S is destroyed by the decrease of

the free ion single electron spin-orbit coupling parameter ζ.

• a high spin ground state does not necessarily result in a larger barrier (due to

the above mentioned points).
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4.3 The family of hexametallic [MnIII
6 O2(R-sao)6]

2+

There exist further experimental evidence that a given magnetic system minimizes

its energy either by magnetic coupling or magnetic anisotropy. The family of polynu-

clear Mn6 complexes of the general formula [MnIII
6 O2(R-sao)6(O2CR’)2(sol)4−6] (where

sao2− is the dianion of salicylaldoxime or 2-hydroxybenzaldeyhyde oxime; R=H, Me,

Et; R′=H, Me, Ph, etc; sol=EtOH, MeOH and/or H2O), synthesized by Brechin and

coworkers138–142, shows appealing magnetic properties. Yet all of them show basi-

cally the same magnetic core configuration. Two Mn3 triangles are linked together

via oxygen bridges as shown in Figure 4.16. Note that there are two structure motifs.

Figure 4.16: Core configuration of the Mn6 clusters - two Mn3 triangles linked together

via oxygen bridges. The dotted bonds are not always present and depend on

the size of R and R′; purple:Mn, blue:N, yellow:O

Depending on the size of R and R′ the dotted bridge may or may not be developed.

For of small ligands the bridge is formed resulting in an octahedral environment

of all Mn ions. More bulky ligands distort the structure and the two Mn-O-Mn

bridges are destroyed. In this case four of the manganese ions are in an octahedral
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environment and the remaining two are in a square pyramidal environment. Table

4.7 shows a selection of some members of the family giving an impression about the

wide range of possible ground states depending on the ligands R and R′. There

Table 4.7: Magnetic properties of the family of Mn6 complexes (references: A-H138, I-

L100) and the energy barrier Ueff

No. S Dexp U exp
eff

[cm−1] [K]

A [Mn6O2(H− sao)6(O2CH)2(MeOH)4] 4 -1.39 28.0

B [Mn6O2(Me− sao)6(O2CCPh3)2(EtOH)4] 4 n.a. 31.7

C [Mn6O2(Et− sao)6(O2CCMe3)2(EtOH)5] 6 -0.75 30.0

D [Mn6O2(Et− sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] 9 -0.37 56.9

E [Mn6O2(Me− sao)6(O2CPhBr)2(EtOH)6] 11 -0.50 50.2

F [Mn6O2(Et− sao)6(O2CPh)2(EtOH)4(H2O)2] 12 -0.43 53.1

G [Mn6O2(Et− sao)6(O2CPh(Me)2)2(EtOH)6] 12 -0.43 86.4

H [Mn6O2(Et− sao)6(O2CPhMe)2(EtOH)4(H2O)2] 12 -0.44 69.9

I [Mn6O2(Et− sao)6(O2C12H17)2(EtOH)4(H2O)2] 5±1 n.a. 31.2

K [Mn6O2(Et− sao)6(O2CNapth)2(EtOH)4(H2O)2] 12 -0.34 60.1

L [Mn6O2(Et− sao)6(O2CAnth)2(EtOH)4(H2O)2] 12 -0.44 60.1

are many more complexes available whose magnetic properties are discussed else-

where97, 100, 132, 133, 138, 217. Within the selection nearly all magnetic ground states

ranging from S = 4 to S = 12 are present. A detailed discussion of the magnetic

coupling J within this family of Mn6 complexes can be found in literature55, 97, 100, 138

and will be discussed here only briefly. The coupling seems to depend strongly on

the Mn-N-O-Mn torsion angle. Above a torsion angle of approximately 31◦ the

coupling is ferromagnetic while smaller torsion angles lead to an antiferromagnetic

coupling between Mn2 pairs55, 132. The coupling in between the Mn3 triangles on

the other hand is always ferromagnetic138. Hence it is possible to tune the ground

state depending on the ligands R and R′. A S = 4 ground state for example can be

described by a spin-flip of two MnIII cations200. As the molecules are relatively sta-
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ble it is possible to deposit them for example on Au(111) surfaces145 which might be

an interesting application for spintronics. As shown by Cremades and co-workers56

in a purely theoretical work the Mn6 complexes are well suited for applications for

spintronics. It is also possible to influence the ground state by pressure. Increasing

the pressure results in a reduction of the total S182. Furthermore, there are several

examples in literature97, 117, 213 that report mixed valence species showing interesting

properties.

Table 4.8: Barrier of magnetization U [K] for different possible ground states, namely

S = 4, 8, 12 calculated using NRLMOL. Furthermore, it is shown in a schematic

way how the respective ground states can be explained by spin inversion of

certain Mn3+ atoms (red).

No. S=4 S=8 S=12

A 62 57 54

B 62 56 53

C 55 57 53

D 65 59 56

E 62 56 53

F 65 59 55

G 65 58 54

H 65 59 56

I 64 58 54

K 52 46 42

L 45 43 39

(a) S=12

(b) S=8

(c) S=4

Undoubtedly there is a broad range of experimentally available magnetic ground

states within this family of Mn6 complexes, however the magnetic barrier U is within

a factor of two for all of them. For example the magnetic barrier U for the S = 12

ground state is only twice as large as the barrier for the S = 4 ground state. This

would not to be expected considering the rather simple formula U = S2 |D|, which
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indicates that a large magnetic groundstate S leads to a large barrier U . However,

as evident from the experimental data, this is clearly not the case. This can of

course be understood in terms of the discussion introduced in section 4.2. Assuming

that the MAE does not change (due to the same magnetic core of all structures)

we would indeed expect the experimentally observed behavior. Moreover, we would

expect to see the largest barriers U for the smaller spin ground states. This behavior

is observed in the calculations as shown in Table 4.8. First of all it is remarkable

that all considered complexes show nearly identical barriers of magnetization in the

calculation. This is in some contradiction to the experimental results shown in Table

4.7. An explanation for the difference could be that the experimental D values are

averaged over the low-lying states200 which is not the case for the calculated ones.

Only complex L and M show a significantly smaller barrier U which will be discussed

later. The highest barrier U is always observed for the S = 4 ground state as already

predicted based on our simple estimation. If we now consider the ratio ∆ of the

different ground states (remember, we are still under the assumption that the MAE

does not change), we get:

UCu

UNi

estimated:

calculated:

∆5 =
US=4

US=12

∆5 = 1.10

∆5 ∼ 1.16

and

∆6 =
US=8

US=12

∆6 = 1.02

∆6 ∼ 1.07

and

∆7 =
US=4

US=8

∆7 = 1.07

∆7 ∼ 1.08

Here we already observe a good agreement between our estimated ∆ and the ones

obtained from the actual calculations. However, a slight misfit remains. In order

to understand this Table 4.9 shows the computed magnetic anisotropies D as well

as the spin channel contributions (see section 2.5.3) of selected Mn6 complexes. An

overview over all considered complexes is given in Table 6.2 in Appendix D. What

we observe is a magnetic anisotropy for the lowest spin states (S = 4) that is one

order of magnitude smaller than in the highest spin state (S = 12). This is consis-

tent with the findings of Ruiz et al.200 who investigated some other members of the

same class of molecules as well as Mn12
123 and Martinez-Lillo et al133 who reported

a similar behavior for a closely related class of molecules.

The electronic structure of each Mn3+ ion is not altered by the spin flip since the

most important contributions to the magnetic anisotropy come from Mij terms in-
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Table 4.9: magnetic anisotropy D [K] of the Mn6 complexes A,G and L indicating the spin

channel contributions (see also equation 2.99. Shown are results for S =4,8 and

12. All D values are corrected according to Van Wüllen219. MAE=magnetic

anisotropy energy, α= spin up electrons, β= spin down electrons

complex S Dcalc MAE α− α α− β β − α β − β |D| · S2

A 4 -3.855 -53.9 -0.793 -1.879 -0.818 -0.430 61.7

8 -0.884 -53.0 -0.221 -0.521 -0.096 -0.049 56.6

12 -0.378 -52.1 -0.112 -0.264 0.002 0.002 54.3

G 4 -4.125 -57.7 -0.922 -1.744 -0.913 -0.568 66.0

8 -0.929 -55.7 -0.247 -0.508 -0.099 -0.077 59.4

12 -0.384 -52.9 -0.121 -0.262 0.009 -0.010 55.3

L 4 -3.304 -46.2 -0.277 -1.281 -1.260 -0.534 52.8

8 -0.731 -43.8 -0.191 -0.463 -0.045 -0.030 46.7

12 -0.292 -40.2 -0.049 -0.205 0.060 -0.009 42.0

volving excitations within d orbitals of the same metal200 (see equation (2.99)). The

only effect of a spin flip is the replacement of α− α and α− β by β − α and β − β
contributions at the respective Mn3+ ions that are involved in the spin flip. Note

that α−α refers here to a transition of an α spin occupied to an α spin unoccupied

orbital. These concepts are reflected in Table 4.9. For the low spin state S = 4

we see significant contributions from all spin channels. The weights of the α − α

and α − β terms are approximately twice as large as the β − β and β − α which is

consistent with the number of Mn3+ with spin up (α) and spin down (β) electrons.

This can also be seen nicely in Figure 4.8. For the high spin state S = 12 we observe

only contributions from the α − α and α − β channel which is also consistent with

this picture since there are no β electrons in the metal d manifold. The small β− β
and β − α contributions that appear in Table 4.9 are mainly due to low lying β

electrons localized at the ligands. However, these contributions are fairly small due

to a large denominator in equation 2.99 in section 2.5.3. For the intermediate case

of S = 8 we observe contributions from all spin channels, however the α − α and

94



Results

α − β contribution are approximately five times larger than the β − β and β − α
contributions. This is again consistent with the number of Mn3+ with spin up (α)

and spin down (β) electrons (see also Figure 4.8).

All this suggests that the magnetic anisotropy D and the ground state of a given

system are closely related. Another conclusion that can be made is that the mag-

netic anisotropy does not depend crucially on the structural details. Although all

complexes are very similar there are small differences in the actual environment of

every Mn3+ ion. For example, there are different ligands surrounding the Mn3+ ions

resulting in slightly shorter or longer bond length. Furthermore, the coordination

number of selected Mn3+ ions can change depending on the ligand. However, the

calculations reveal that there is only a small impact of these changes in the com-

puted magnetic anisotropy. The ground state of the molecule varies the value of

the magnetic anisotropy in a far greater range compared to the effect of the small

changes of structural details. This leads ultimately to the conclusion that a high

spin ground state and a large magnetic anisotropy seem to be incompatible. The

common approach to raise the barrier U simply by maximizing the ground state S

of a given system is also not very promising as we observe similar energy barriers for

different spin states of a given system. Due to the previously mentioned fact that

the barrier should actually be calculated as

U =
S ·MAE

S − 0.5
and lim

S→∞

S

S − 0.5
= 1. (4.5)

It is even to be expected that lower ground states yield a higher barrier U . This is

exactly the behavior we observe in Table 4.9. As shown there the MAE does not

stay constant upon a change of the ground state. In fact, it decreases linearly with

increasing S as shown in Figure 4.17.
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Figure 4.17: black: complex A; regression: y = 54.86− 0.23x,R2 = −0.999

blue: complex G; regression: y = 60.25− 0.60x,R2 = −0.995

red: complex L; regression: y = 49.42− 0.74x,R2 = −0.993

Hence, we get two effects. We expect

• a (slightly) higher barrier U for small ground states S due to equation 4.5

• a higher barrier U for small ground states S due to a decrease of the MAE for

higher ground states S as shown in Figure 4.17

Both effects favor a decrease of the barrier with increasing S which is indeed observed

in the calculations.

One might argue that this effect is not observed for the experimental data. As shown

in Table 4.7 the barrier for a low ground state (S = 4) complex is approximately

three times smaller compared to the barrier of a large ground state (S = 12) complex.

However, here you have to keep in mind that all the experimental structures differ

slightly in the composition. Hence we expect slightly different bond length, bond

angles and so on for each complex. This small differences may of course have a large

effect on the actual barrier observed for each of the complexes as especially the

magnetic anisotropy depends crucially on such structural parameters19, 191. In the

96



Results

theoretical considerations done in the present work we assumed different possible

ground states for each complex and calculated the respective magnetic anisotropy.

This is not direct comparable to the experimental results as there only the “real”

ground state of the complex is accessible. Yet, the experimental data agree with the

theoretical observation that the barrier U is by no means quadratically dependent

on the ground state S as indicated by U = S2|D|.
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5 Conclusion

As already explained single molecule magnets (SMMs) are very interesting candi-

dates for storage devises of the next generation. Unfortunately it is not yet possible

to operate them at room temperature which would be favorable in order to build

up devises for the everyday use. In order to do that it is necessary to enhance the

barrier U for a flip S → −S. As the barrier is given by U = S2|D| it is essential

to understand and control each of the parameters as well as the interplay of the

ground state S and the magnetic anisotropy D. While the well known Goodenough-

Kanamori rules75, 76, 104 yield an accurate description of the magnetic coupling and

hence the ground state of a given molecule there are no such easy to understand

rules that might explain or predict the magnetic anisotropy.

In order to gain some insight in the underlying mechanisms the present work will

deal with the electronic and magnetic properties of various transition metal com-

plexes. Furthermore we will address the issue of a dual optimization of the magnetic

anisotropy D and the ground state S in more detail. All results are based on density

functional theory93, 111 within the generalized gradient approximation (GGA) using

mainly the PBE168 functional.

As shown in section 4.1 the magnetic coupling and respectively also the ground

state of a given system (here [MII
2 (L6)(L’)]n+ (L6=polyamine-dithiophenolate ligand

(C38H64N6S2), L’= variable third bridging ligand) is tuneable by L’ and M. Ferro-

magnetic coupling is only observed in the case of M=NiII, all other examined third

row transition metal ions (manganese, iron, copper) yield antiferromagnetic cou-

pling. As we are only interested in ferromagnetically coupling systems we focused

our studies on the nickel complexes. Experimentally there is a wide range of third

bridging ligands realized which were studied here in great detail with respect to the

electronic structure and the magnetic coupling. The largest predicted ferromagnetic

coupling J within this family of the [NiII2 (L6)(L′)]n+ complexes is about 50 cm−1.

We have been able to relate the strength (given by the coupling constant J) and the

kind (ferromagnetic or antiferromagnetic) of the magnetic coupling in terms of struc-

tural as well as electronic effects. The influence of the structure can be explained
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in terms of the Goodenough-Kanamori rules, whereas the impact of the electronic

structure is described within the Hay-Thibeault-Hoffmann model90. Both effects

compete with each other and may enhance or cancel out their effects. Furthermore,

it was shown that the coupling depends crucially on the the crystal field strength of

L’. In order to tune J to higher ferromagnetic couplings only weak co-ligands should

be considered. In addition to the already mentioned facts we noted that the third

bridging ligand opens a new pathway for a ferromagnetic exchange between the two

nickel ions which is most pronounced for L’=BH4. This has been proved by model

calculations without L’ where a tremendous reduction of J is observed. Further-

more, for these calculations a large decrease of the HOMO-LUMO gap was observed

(∼ 1
10

of the original value), while the overall level ordering (apart from the states

belonging to L’) is preserved. In addition to the magnetic coupling we also took a

closer look at the magnetic anisotropy and found that the magnetic anisotropy D

and the strength of the magnetic coupling are not independent of each other. For

this system it is not possible to maximize both quantities. You can either have a

strong coupling or a large magnetic anisotropy. Furthermore, we observed that a

decreasing HOMO-LUMO gap results in an increase of the magnetic anisotropy in

accordance with literature77. The magnetic anisotropy could also be related to the

environment of the Ni2+ ions. An nearly octahedral environment favors easy plane

systems but not all “undistorted” structures yield SMM behavior.

In section 4.2 we focused on the question whether or not it is possible to com-

bine a large spin ground state S and a high magnetic anisotropy D in order to

achieve a large barrier of magnetization U = S2|D|. In order to get comparable re-

sults we restricted ourselves to octahedral coordinated, azido-bridged copper, nickel

and manganese dimers. As shown by the calculations all of them exhibit a barrier

U = 1 − 5K and the barrier decreases from copper via nickel to manganese com-

plexes. Furthermore we explained in detail that due to a “hidden” dependency on S

in the calculation of the magnetic anisotropy D the barrier of magnetization should

be calculated with respect to the magnetic anisotropy energy (MAE) as

U =
S

S − 0.5
MAE
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with

lim
S→∞

S

S − 0.5
= 1.

The MAE on the other hand scales roughly with the free ion single electron spin-orbit

coupling parameter ζ as long as one stays within one group of the periodic table (i.e.

first row transition metals (TMs) or second row transition metals) and within the

same oxidation form (i.e. TM2+ or TM3+ or TM1+). An other interesting fact is that

the free ion single electron spin-orbit coupling parameter ζ increases with increasing

nuclear charge. Therefore the advantage of a large spin ground state S is destroyed

by the simultaneous decrease of the free ion single electron spin-orbit coupling pa-

rameter ζ. Hence a high spin ground state does not necessarily result in a larger

barrier (due to the above mentioned points). It is rather the other way around. The

advantage of having a higher spin ground state S (SCu < SNi < SMn) is completely

destroyed by the reduction of the MAE (MAECu > MAENi > MAEMn) resulting

in an overall reduced barrier U for the complex with the largest spin ground state

(UCu > UNi > UMn). It is also notable that all calculated barriers are within an

order of magnitude U = 1−5 K which seems to be the maximum barrier obtainable

within this system.

Finally the present work focused on a family of hexametallic [MnIII
6 O2(R− sao)6]2+

complexes in section 4.3. As shown experimentally there is a wide range of possible

ground states obtainable within this family. Therefore, it is a good test system to

study the influence of the ground state S on the magnetic anisotropy D. Similarly

to the octahedral coordinated, azido-bridged copper, nickel and manganese dimers

we have been able to show that there is an overall reduction of the barrier U with

increasing ground state S. However, here the effect is not due to different transition

metal centers but purely on account of different ground states. This can be under-

stood by the overlap of two effects. On the one hand we expect a (slightly) higher

barrier U for small ground states S and on the other hand there is a decrease of

the MAE for higher ground states S as shown in Figure 4.17. Both effects favor a

decrease of the barrier with increasing S which is indeed observed in the calculations.

Summarizing all these facts we conclude that there is a dependency of S within
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the magnetic anisotropy which (over)compensates the seemingly quadratic depen-

dency on the ground state in the calculation of the barrier U = S2|D|. There are

several examples within the available literature150, 200 where a similar conclusion is

reached. It does not seem possible to consider the magnetic anisotropy D and the

spin state S as two distinct features of a given system. From the experimental as

well as computational point of view it appears that they are closely related in an

inverse relation. Hence, a dual optimization of both parameters is not possible. In

general a high spin ground state S is accompanied by a small magnetic anisotropy

D and vice versa.
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6 Appendix

6.1 Appendix A

Calculation of the spin Hamiltonian for the Ising model:

~S = (0, 0, Sz)

Sz| ↑>= 1
2 | ↑> <↑ | ↑>= 1

Sz| ↓>= −1
2 | ↓> <↑ | ↓>= 0

Given two interacting spins ~S1 = ~S2 = 1
2 and the hamiltonian H = −2JS1zS2z the

following spin Hamiltonian is obtained:

↑↑ ↑↓ ↓↑ ↓↓
↑↑ 1

↑↓ 2

↓↑
↓↓

(6.1)

The entry in position number 1 is given by:

<↑↑ |H| ↑↑> = <↑↑ | − 2JS1zS2z| ↑↑>

= −2J <↑↑ |S1zS2z| ↑↑>

= −2J <↑↑ |1
2

1

2
| ↑↑>

= −J
2
<↑↑ | ↑↑>

= −J
2

The entry in position number 2 is given by:

<↑↑ |H| ↑↓> = <↑↑ | − 2JS1zS2z| ↑↓>

= −2J <↑↑ |S1zS2z| ↑↓>

= −2J <↑↑ |1
2

(
−1

2

)
| ↑↓>

=
J

2
<↑↑ | ↑↓>

= 0

accordingly all the other position are evaluated resulting in the spin Hamiltonian shown

in 2.57
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Calculation of the spin Hamiltonian for the Heisenberg model:

~S = (Sx, Sy, Sz)

H = −2J ~S1
~S2 = −2J(S1xS2x + S1yS2y + S1zS2z)

The discussion will again be for two interacting spins ~S1 = ~S2 = 1
2 and ~S1z = ~S2z = 1

2

For reasons already discussed in section 2.4.1 the generation and annihilation operator S+

and S− are defined.

S+ = Sx + iSy

S− = Sx − iSy.

The products S+ · S− and S− · S+ are given by:

S+ · S− = S2
x + iSySx − SxiSy + S2

y

S− · S+ = S2
x + SxiSy − iSySx + S2

y .

The sum of these products yields

(S+ · S−) + (S− · S+) = 2S2
x + 2S2

y

(S1+ · S2−) + (S1− · S2+) = 2S1xS2x + 2S1yS2y.

Hence the hamiltonian can be rewritten:

H = −2J

(
(S1+ · S2−) + (S1− · S2+)

2
+ S1zS2z

)
.

Furthermore it is known that:

S±|S, Sz >=
√
S(S + 1)− Sz(Sz ± 1)|S, Sz ± 1 >

Taking all these considerations into account we get for S = 1
2 and Sz = 1

2 :

Sz| ↑>= 1
2 | ↑> <↑ | ↑>= 1

Sz| ↓>= −1
2 | ↓> <↑ | ↓>= 0
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S+| ↑> =

√
1

2

(
3

2

)
− 1

2

(
3

2

)∣∣∣∣∣ 1

2
,
3

2
>= 0

S+| ↓> =

√
1

2

(
3

2

)
−
(
−1

2

)(
1

2

)∣∣∣∣∣ 1

2
,
1

2
>= 1| ↑>

S−| ↑> =

√
1

2

(
3

2

)
− 1

2

(
−1

2

)∣∣∣∣∣ 1

2
,−1

2
>= 1| ↓>

S−| ↓> =

√
1

2

(
3

2

)
−
(
−1

2

)(
−3

2

)∣∣∣∣∣ 1

2
,−3

2
>= 0.

Note that Sz = 3
2 is forbidden. Only Sz ± 1

2 is allowed for S = 1
2 spins.

The basis of the spin Hamiltonian is similar to the Ising model:

↑↑ ↑↓ ↓↑ ↓↓
↑↑ 1

↑↓
↓↑
↓↓

(6.2)

The entry in position number 1 is given by:

<↑↑ |H| ↑↑>

= <↑↑ | − 2J

(
(S1+ · S2−) + (S1− · S2+)

2
+ S1zS2z

)
| ↑↑>

= <↑↑ | − JS1+S2− − JS1−S2+ − 2JS1zS2z| ↑↑>

= −J <↑↑ |S1+S2−| ↑↑> −J <↑↑ |S1−S2+| ↑↑> −2J <↑↑ |S1zS2z| ↑↑>

Each of the three terms will now be treated separately:

−J <↑↑ |S1+S2−| ↑↑> = −J <↑↑ |0 · 1| ↑↓>

= 0

−J <↑↑ |S1−S2+| ↑↑> = −J <↑↑ |1 · 0| ↓↑>

= 0
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−2J <↑↑ |S1zS2z| ↑↑> = −2J <↑↑ |1
2
· 1

2
| ↑↑>

= −J
2

Hence

<↑↑ |H| ↑↑>= −J
2

Accordingly all other all the other position are evaluated resulting in the spin Hamiltonian

shown in 2.64
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6.2 Appendix B

• Figure 6.1: third bridging ligands L’ - overview of the various structures

• Figure 6.2: electronic structure of complex 11 without BH−4 ; focused on energy

window -1 eV to -1.5 eV

• Table 6.1: properties of various original/model NiII2 complexes

• Figures 6.3-6.19: density of states of 1, 5-10 and 12-21 a) with and b) without the

respective third bridging ligand
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(a) 1 (b) 5 (c) 6 (d) 7

(e) 8 (f) 9 (g) 10 (h) 12

(i) 11 (j) 13 (k) 14 (l) 15 (m) 16

(n) 17 (o) 18 (p) 19 (q) 20 (r) 21

Figure 6.1: Overview of the various third bridging ligands L’ of the Robson-type hexamine-

dithiophenolate macrocycles: L’=CH3CO−2 (1), EtOCO−2 (5), CH3OCO−2 (6),

µ1,3-meta-Chlorobenzoato− (7), µ1,3-3,4-Dimethyl-6-phenylcyclohex-3-ene-1-

carboxylato− (8), µ1,3-2-(Hydroxyethyl)Carbonato− (9), µ1,3-(2E4E)-Hexa-

2,4-dienoate− (10), BH−4 (11), O2CPh− (12), NO−3 (13), HCO−2 (14), µ1,3-

Bicarbonato (15), NO−2 (16), µ1,2-Phthalazine (17), µ1,2-Pyrazolato (18),

pydz (19), N2H4 (20), N−3 (21); grey: C; blue: N; red: O; green: Cl, pink: B
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HOMO-4

HOMO-3

HOMO-2

HOMO-6

HOMO-5

HOMO-4

HOMO-3

HOMO-2

Energy
(eV)

-1

-1.1

-1.2

-1.3

-1.4

-1.5

Figure 6.2: electronic structure of complex 11 without BH−4 ; focused on energy window

-1 eV to -1.5 eV
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Appendix B

DOS of various [NiII2 (L6)(L′)]n+ (1, 5-21 except 11) complexes with and without the

respective third bridging ligand L′. For ferromagnetically coupling complexes the spin

up and spin down channel for the electrons is presented, whereas such a distinction is

not necessary for the antiferromagnetic coupling complexes. Hence only the total density

of states is presented. The scaling of the y-axis is the same for all shown DOS. The

electronic structure of the ferromagnetically coupling complexes is very similar for each

of the complexes and a representative, detailed discussion of the electronic structure of

[NiII2 (L6)(BH4)]+ can be found in section 4.1.3 The DOS of the antiferromagnetically

coupling complexes is also very similar for all complexes and is described in more detail

for the FeIIOAc and MnIIOAc complex in section 4.1.2.
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Figure 6.3: DOS of [NiII2 (L6)(CH3CO2)]+ (1)
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Figure 6.4: DOS of [NiII2 (L6)(EtOCO2)]+(5)
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Figure 6.5: DOS of [NiII2 (L6)(CH3OCO2)]+ (6)
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Figure 6.6: DOS of [NiII2 (L6)(m− Cl − C6H4CO2)]+ (7)
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Figure 6.7: DOS of [NiII2 (L6)(C15H17O2)]+ (8)
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Figure 6.8: DOS of [NiII2 (L6)(HO(CH2)2OCO2)]+ (9)
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Figure 6.9: DOS of [NiII2 (L6)(C5H8CO2)]+ (10)
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Figure 6.10: DOS of [NiII2 (L6)(O2CPh)]+ (12)
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Figure 6.11: DOS of [NiII2 (L6)(NO3)]+ (13)
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Figure 6.12: DOS of [NiII2 (L6)(HCO2)]+ (14)
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Figure 6.13: DOS of [NiII2 (L6)(CO2OH)]+ (15)
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Figure 6.14: DOS of [NiII2 (L6)(NO−2 )]+ (16)
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Figure 6.15: DOS of [NiII2 (L6)(C8H6N2)]2+ (17)
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Figure 6.16: DOS of [NiII2 (L6)(C3H4N2)]+ (18)
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Figure 6.17: DOS of [NiII2 (L6)(pydz)]2+ (19)
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Figure 6.18: DOS of [NiII2 (L6)(N2H4)]2+ (20)
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Figure 6.19: DOS of [NiII2 (L6)(N3)]+ (21)
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6.3 Appendix C

Overview of the various azido-bridged copper, nickel and manganese dimers including

structure and chemical formulas of the respective complexes:

• Figure 6.20: copper dimers

• Figure 6.21: nickel dimers

• Figure 6.22: manganese dimers

color code:

• grey: C

• blue: N

• red: O

• orange: Cu

• green: Ni

• purple: Mn

• H is omitted for reasons of clarity
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6.4 Appendix D

Table 6.2: magnetic anisotropyD [K] of various Mn6 complexes indicating the spin channel

contributions. Shown are results for S =4,8 and 12. All values are corrected

according to Van Wüllen219

complex S Dcalc α− α α− β β − α β − β |D| · S2

A 4 -3.855 -0.793 -1.879 -0.818 -0.430 61.7

8 -0.884 -0.221 -0.521 -0.096 -0.049 56.6

12 -0.378 -0.112 -0.264 0.002 0.002 54.3

B 4 -3.835 -0.844 -1.763 -0.731 -0.505 61.3

8 -0.877 -0.065 -0.107 -0.477 -0.235 56.1

12 -0.363 -0.115 -0.248 0.007 -0.006 52.3

C 4 -3.912 -0.859 -1.720 -0.822 -0.507 62.5

8 -0.894 -0.238 -0.496 -0.098 -0.067 57.2

12 -0.370 -0.116 -0.253 0.006 -0.006 53.2

D 4 -4.155 -0.922 -1.762 -0.923 -0.576 66.4

8 -0.935 -0.078 -0.099 -0.512 -0.247 59.8

12 -0.386 -0.121 -0.263 0.009 -0.010 55.5

E 4 -3.882 1.520 -2.563 -2.058 1.471 62.1

8 -0.878 0.361 -0.684 -0.413 0.348 56.1

12 -0.369 0.161 -0.336 -0.158 0.157 53.2

F 4 -4.125 -0.922 -1.744 -0.913 -0.568 66.0

8 -0.929 -0.247 -0.508 -0.099 -0.077 59.4

12 -0.384 -0.121 -0.262 0.009 -0.010 55.3

G 4 -4.130 -0.914 -1.769 -0.900 -0.567 66.0

8 -0.928 -0.245 -0.511 -0.097 -0.076 59.3

12 -0.383 -0.120 -0.262 0.009 -0.009 55.1

H 4 -4.157 -0.935 -1.806 -0.888 -0.565 66.5

8 -0.934 -0.247 -0.518 -0.094 -0.077 59.7

12 -0.385 -0.120 -0.264 0.010 -0.010 55.4

I 4 -4.067 -0.912 -1.774 -0.841 -0.555 65.0

8 -0.917 -0.245 -0.508 -0.090 -0.074 58.6

12 -0.381 -0.120 -0.260 0.008 -0.008 54.8

K 4 -3.304 -0.277 -1.281 -1.260 -0.534 52.8
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8 -0.731 -0.191 -0.463 -0.045 -0.030 46.7

12 -0.292 -0.049 -0.205 0.060 -0.009 42.0

L 4 -2.953 -0.300 -1.112 -1.185 -0.458 47.2

8 -0.680 -0.092 -0.375 -0.151 -0.065 43.5

12 -0.277 -0.051 -0.201 0.034 0.009 39.8
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[33] N. Bohr. Über die Serienspektra der Elemente. Z. Physik, 2(5):423469, 1920.

[34] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Ann. Phys.

(Berlin), 389(20):457–484, 1927.

[35] S.F. Boys. Electronic wave functions. I. a general method of calculation for the

stationary states of any molecular system. Proc. R. Soc. A, 200(1063):542–554,

1950.

[36] R. Caballol, O. Castell, F. Illas, I. de P. R. Moreira, and J. P. Malrieu. Remarks

on the proper use of the broken symmetry approach to magnetic coupling. J.

Phys. Chem. A, 101(42):7860–7866, 1997.

[37] C.J. Calzado, C. Angeli, D. Taratiel, R. Caballol, and J.P. Malrieu. Analysis

of the magnetic coupling in binuclear systems. iii. the role of the ligand to

metal charge transfer excitations revisited. J. Chem. Phys., 131(4):044327,

2009.

[38] C.J. Calzado, J. Cabrero, J.P. Malrieu, and R. Caballol. Analysis of the mag-

netic coupling in binuclear complexes. ii. derivation of valence effective hamil-

tonians from ab initio ci and dft calculations. J. Chem. Phys., 116(10):3985–

4000, 2002.

[39] C.J. Calzado, J.Cabrero, J.P. Malrieu, and R. Caballol. Analysis of the mag-

netic coupling in binuclear complexes. i. physics of the coupling. J. Chem.

Phys., 116(7):2728–2747, 2002.

[40] K. Capelle. A bird’s-eye view of density-functional theory. Braz. J. Phys.,

36(4A):1318–1343, 2006.

131



Bibliography

[41] R. Car and M. Parrinello. Unified approach for molecular dynamics and

density-functional theory. Phys. Rev. Lett., 55(22):2471–2474, 1985.

[42] S. Carretta, T. Guidi, P. Santini, G. Amoretti, O. Pieper, B. Lake, J. van

Slageren, F. El Hallak, W. Wernsdorfer, H. Mutka, M. Russina, C. J. Mil-

ios, and E. K. Brechin. Breakdown of the giant spin model in the magnetic

relaxation of the Mn6 nanomagnets. Phys. Rev. Lett., 100(15):157203, 2008.

[43] D. Casanova, P. Alemany, J.M. Bofill, and S. Alvarez. Shape and symmetry of

heptacoordinate transition-metal complexes: Structural trends. Chem. Eur.

J., 9(6):1281–1295, 2003.

[44] D. Casanova, M. Llunell, P. Alemany, and S. Alvarez. The rich stereochemistry

of eight-vertex polyhedra: A continuous shape measures study. Chem. Eur.

J., 11(5):1479–1494, 2005.

[45] D. Ceperley, G. V. Chester, and M. H. Kalos. Monte carlo simulation of a

many-fermion study. Phys. Rev. B, 16:3081–3099, Oct 1977.

[46] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochas-

tic method. Phys. Rev. Lett., 45:566–569, Aug 1980.

[47] M.F. Charlot, O. Kahn, M. Chaillet, and C. Larrieu. Interaction between

copper(II) ions through the azido bridge: concept of spin polarization and ab

initio calculations on model systems. J. Am. Chem. Soc., 108(10):2574–2581,

1986.

[48] P. Chaudhuri, R. Wagner, S. Khanra, and T. Weyhermueller. Ferromagnetic

vs. antiferromagnetic coupling in bis(µ2-1,1-azido)dinickel(II) with syn- and

anti-conformations of the end-on azide bridges. Dalton Trans., (41):4962–

4968, 2006.

[49] J. Cirera, P. Alemany, and S. Alvarez. Mapping the stereochemistry and

symmetry of tetracoordinate transition-metal complexes. Chem. Eur. J.,

10(1):190–207, 2007.

132



Bibliography

[50] J. Cirera, E. Ruiz, S. Alvarez, F. Neese, and J. Kortus. How to build molecules

with large magnetic anisotropy. Chem. Eur. J., 15(16):4078–4087, 2009.

[51] D. Collison, M. Murrie, V.S. Oganesyan, S. Piligkos, N.R.J. Poolton, G. Ra-

jaraman, G.M. Smith, A.J. Thomson, G.A. Timko, W. Wernsdorfer, R.E.P.

Winpenny, and E.J.L. McInnes. Magnetic and optical studies on an S=6

ground-state cluster [Cr12O9(OH)3(O2CCMe3)15]: Determination of, and the

relationship between, single-ion and cluster spin hamiltonian parameters. In-

org. Chem., 42(17):5293–5303, 2003. PMID: 12924901.

[52] J. Comarmond, P. Plumere, J.M. Lehn, Y. Agnus, R. Louis, R. Weiss,

O. Kahn, and I. Morgensternbadarau. Dinuclear copper(II) cryptates of

macrocyclic ligands: synthesis, crystal structure, and magnetic properties.

Mechanism of the exchange interaction through bridging azido ligands. J.

Am. Chem. Soc., 104(23):6330–6340, 1982.

[53] R. Cortes, L. Lezama, J.I.R. Larramendi, M. Inausti, J.V. Folgado,

G. Madariaga, and T. Rojo. Crystal-structure, spectroscopic and

magnetic properties of 2 unsual compounds - [Cu(terpy)(N3)Cl] and

[(Cu0.75Ni0.25(terpy)(N3)2)]∗2H2O (terpy = 2,2’/6’,2”-terpyridine). J. Chem.

Soc. - Dalton Trans., (17):2573–2579, 1994.

[54] R. Cortes, M.K. Urtiaga, L. Lezama, J.I.R Larramendi, M.I. Arriortua, and

T. Rojo. Synthetic strategy, magnetic and spectroscopic properties of the ter-

pyridine complexes [Cu(terpy)X(H2O)n]Y (X = NCO, NCS or N3; n= 0 or 1;

Y = NO3 or PF6). Crystal structures of the azidenitrate and azidehexafluoro-

phosphate. J. Chem. Soc. - Dalton Trans., (24):3685–3694, DEC 21 1993.

[55] E. Cremades, J. Cano, E. Ruiz, G. Rajaraman, C.J. Milios, and E.K. Brechin.

Theoretical Methods Enlighten Magnetic Properties of a Family of Mn6 Single-

Molecule Magnets. Inorg. Chem., 48(16):8012–8019, 2009. PMID: 19624160.

[56] E. Cremades, C.D. Pemmaraju, S. Sanvito, and E. Ruiz. Spin-polarized trans-

port through single-molecule magnet mn6 complexes. Nanoscale, 5(11):4751–

4757, 2013.

133



Bibliography

[57] D. Cremer. Density functional theory: Coverage of dynamic and non-dynamic

electron correlation effects. Molec. Phys., 99(23):1899–1940, 2001. cited By

(since 1996)139.

[58] G.I. Csonka, O.A. Vydrov, G.E. Scuseria, A. Ruzsinszky, and J.P. Perdew. Di-

minished gradient dependence of density functionals: Constraint satisfaction

and self-interaction correction. J. Chem. Phys., 126(24):244107, 2007.

[59] F.F. de Biani, E. Ruiz, J. Cano, J.J. Novoa, and S. Alvarez. Magnetic cou-

pling in end-to-end azido-bridged copper and nickel binuclear complexes: A

theoretical study. Inorg. Chem., 39(15):3221–3229, 2000.
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