
Numerical study of a continuous casting

process with electromagnetic brake

By the Faculty of Mechanical, Process and Energy Engineering

of the Technische Universität Bergakademie Freiberg

approved

Thesis

to attain the academic degree of

Doktor-Ingenieur

(Dr.-Ing.)

submitted by M. Sc. Xincheng Miao

born on the 11. August 1971 in Liaoning P.R.China

Assessor: Prof. Dr.-Ing. Rüdiger Schwarze

Prof. Dr.-Ing. Egbert Baake

Date of the award:Freiberg, 28th May 2014





Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.
Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts

habe ich Unterstützungsleistungen von folgenden Personen erhalten:

◦ K.Timmel and C.Zhang (Experimental)

◦ S.Eckert, D.Lucas, R.Schwarze and G.Gerbeth(Literature)

Weitere Personen waren an der Abfassung der vorliegenden Arbeit nicht beteiligt.
Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genommen. Weitere Personen

haben von mir keine geldwerten Leistungen für Arbeiten erhalten, die nicht als solche kenntlich
gemacht worden sind. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher
oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

M. Sc. Xincheng Miao



Declaration

I hereby declare that I completed this work without any improper help from a third party
and without using any aids other than those cited. All ideas derived directly or indirectly
from other sources are identi�ed as such.
In the selection and use of materials and in the writing of the manuscript I received support

from the following persons:

◦ K.Timmel and C.Zhang (Experimental)

◦ S.Eckert, D.Lucas, R.Schwarze and G.Gerbeth(Literature)

Persons other than those above did not contribute to the writing of this thesis.
I did not seek the help of a professional doctorate-consultant. Only those persons identi�ed

as having done so received any �nancial payment from me for any work done for me. This
thesis has not previously been published in the same or a similar form in Germany or abroad.

28th May 2014 M. Sc. Xincheng Miao



III

Acknowledgments

This work was conducted at the Magnetohydrodynamic Division in Helmholtz-Zentrum Dresden-
Rossendorf. First and foremost, I am deeply indebted to my PhD advisor Dr. Gunter Gerbeth
o�ering me the chance to study in the leading research group. With his consistent support
and guidance, it makes my work possible. I am very grateful for his patience, motivation,
enthusiasm, and immense knowledge in MHD that, taken together, make him a great mentor.
I will be specially thankful to Dr. Sven Eckert who has been helpful in providing advice

from science to scienti�c writings. He is always happy to have a discussions whenever I turned
to him for help.
I would like to thank my advisors Prof. Rüdiger Schwarze for providing me with the

opportunity to complete my PhD thesis at the Technische Universität Bergakademie Freiberg
as an external student at the Helmholtz-Zentrum Dresden-Rossendorf.
Then I want to express my appreciation to Dr. Dirk Lucas who alway guides me in numerical

modeling. I learned many knowledge from him, in particular, the theory of two-phase �ow.
I would like to acknowledge my colleague, Mr. Klaus Timmel, who is responsible for the

experiment in the project. He always kindly provides measuring data whenever I want to
know.
Special thanks will be given to Prof. Zhongming Ren of Shanghai University, P.R. China,

who introduced me to Helmholtz-Zemtrum Dresden-Rossendorf. Meanwhile, I would like
to take this opportunity to express my gratitude to Dr. Eckhard Krepper, Dr. Viktoriya
Shatrova and all of my colleagues
I am very grateful to Deutsche Forschungsgemeinschaft (DFG) for funding my research

in frame of the SFB 609 �Electromagnetic Flow Control in Metallurgy, Crystal Growth and
Electrochemistry�.
Finally, a great acknowledgment to my wife, Yang Song, for her understanding and support,

and my son, Yuntong Miao.





V

Abstract

This dissertation investigates the e�ect of electromagnetic braking and gas injection on the
�uid �ow in a continuous casting slab mold numerically and makes veri�cations on basis of
a small Liquid Metal Model for Continuous Casting of steel (mini-LIMMCAST). Numerical
calculations were performed by means of the software package CFX with an implemented
RANS-SST turbulence model. The non-isotropic nature of the MHD turbulence was taken
into account by speci�c modi�cations of the turbulence model. The numerical results were val-
idated by �ow measurements at the mini-LIMMCAST facility. Numerical simulations disclose
the damping e�ect on the �ow closely depending on the wall conductance ratio. In addition,
speci�c modi�cations of the turbulence model play a crucial role in reconstructing the peculiar
phenomenon of an excitation of nonsteady, nonisotropic, large-scale �ow perturbations caused
by the application of the DC magnetic �eld.
Chapter 1 consists of four parts: research objectives; motivation for the thesis; literature

review; a short introduction to the research background; a brief view of magnetohydrodynamic
fundamentals; as well as description of experimental setup.
Chapter 2 gives a description of the mathematical modelling. By virtue of the introduction

to turbulence models, RANS-SST turbulence model is chosen in present work. Considering
the in�uence of magnetic �eld on the turbulence, a speci�c modi�cation of the magnetic �eld
on turbulence model is addressed.
Chapter 3 introduces the choice of mathematical models and the implementation of a spe-

ci�c modi�cation of the magnetic �eld in�uence on the turbulence model in CFX, and then
making two tests for this MHD model.
Chapter 4 is focused on the e�ect of an electromagnetic brake on the turbulent melt �ow

in a continuous casting mold. The comparison between our numerical calculations and the
experimental results displays a good agreement; in particular, the peculiar phenomenon of an
excitation of nonsteady, nonisotropic, large-scale �ow perturbations caused by the application
of the DC magnetic �eld is reconstructed successfully. Another important result of our study
is the feature that the electrical boundary conditions, namely the wall conductivity ratio, have
a serious in�uence on the mold �ow while it is exposed to an external magnetic �eld.
Chapter 5 is concentrated on the investigation of bubble-driven liquid metal �ows with

external static magnetic �eld and the mathematical model veri�cation. The calculations
are able to reproduce a striking feature of a horizontal magnetic �eld found in the range
of moderate Hartmann numbers revealing that such a steady transverse magnetic �eld may
destabilize the �ow and cause distinct oscillations of the liquid velocity.
Chapter 6 addresses the study of �ow �eld in a slab mold with the applications of magnetic

�eld and gas injection. An Euler-Euler approach has been employed to investigate the e�ects
of argon gas and static magnetic �eld on the �ow pattern in a slab mold.
Chapter 7 summaries and draws some main conclusions from current work.
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1 Introduction

Modern steels are made with varying combinations of alloying metals to ful�ll many purposes,
for instance, in the construction of roads, railways, other infrastructure, buildings, appliances,
cars and so forth. To become steel, it must be melted and reprocessed to reduce the carbon to
the correct amount, at which point other elements can be added. This liquid is then continu-
ously cast into long slabs or molded into ingots. The productivity and quality of a continuous
caster depend mainly on process parameters, i.e. casting speed, casting temperature, depth
of Submerged Entry Nozzle (SEN), cleanliness of the melt, water �ow rates in the di�erent
cooling zones, etc. The phenomena in the casting mold are very complex, including heat
transfer, mass transfer, phase change, chemical reaction, etc. Many quality problems that
originate during continuous casting can be directly attributed to poor control of �uid �ow
conditions, �uctuations on �ow rate from the tundish into the mold cavity and changes of
the nozzle exit port �ow patterns. Therefore, �ow control in the mold takes a crucial role
in the continuous casting process to improve the quality and productivity, whereby magnetic
�elds have substantial capabilities to improve the quality of the steel and to enhance the
productivity of the process

1.1 Research Objectives

Generally, the �uid �ow in the metallurgical plant is highly turbulent and presents a complex
coupling with heat transfer, phase transfer, chemical reaction, momentum transportation,
etc. Owing to the complexity and lack of reliable measuring techniques, it has not been fully
understood until now. CFD simulations provide information about �ow and �uid properties
that may be di�cult or costly to obtain by measurements and which provides insight and un-
derstanding into the performance of a product or �ow behaviour in a speci�ed situation. The
ready applicability of CFD today has caused its usefulness to be recognized in many areas.
Computational models of �uid �ow can be useful tools to study and quantify these problems.
The overall objective of this work concentrates on investigating the e�ect of electromagnetic
braking and gas injection on the �uid �ow in a continuous casting slab mold numerically and
making veri�cations on basis of a small Liquid Metal Model for Continuous Casting of steel
(mini-LIMMCAST). Numerical calculations were performed by means of the software pack-
age CFX with an implemented RANS-SST (Reynolds-averaged Navier-Stokes-Shear Stress
Transport) turbulence model. The non-isotropic nature of the MHD turbulence was taken
into account by speci�c modi�cations of the turbulence model. This work is dedicated to pur-
suing a �exible mathematical model which is able to deal with complex industrial �ow under
the in�uence of external magnetic �eld and obtain a better understanding of �ow control in
the continuous casting process.

1.2 Motivation for the thesis

In a continuous casting process, productivity and quality are commonly concerned by both
producers and customers. A longitudinal facial crack is a special type of defect that only
occurs in continuous casting processes. This defect is caused by uneven cooling, both primary
cooling and secondary cooling, and includes molten steel qualities, such as the chemical com-
position being out of speci�cation, cleanliness of the material, and homogeneity. In a slab
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steel casting process, the jets impinging against the narrow face may cause shell thinning, and
even breakouts, if the superheat is too high and the interfacial gap is excessive. Fluid �ow
in the continuous casting process can cause many di�erent types of defects in the �nal prod-
ucts, so small improvements in �ow pattern can have a big impact. The decisive relationship
between the quality of the solidi�ed steel products and the properties of the melt �ow dur-
ing the continuous casting process has been demonstrated in many studies (for instance, see
the references in [96]). Insu�cient surface �ow tends to make meniscus freezing and related
surface defects. Excessive surface shear velocity may entrain mold-slag inclusions and lead
to surface level variations and �uctuations with time. Deep penetration of the jet entering
the mold cavity promotes the capture of subsurface inclusions. Fluid �ow in the mold is
controlled by many design and operation conditions, for example, design of submerged entry
nozzle (SEN), mold size, casting speed, �ow rate of gas injection, etc. Understanding the
basic physics behind the continuous casting process is bene�cial to improve the productivity
and quality. For example, the SEN controls the �ow pattern developed in the casting mold,
since the SEN governs the speed, direction and other characteristics of the liquid jet entering
the mold. The jet in turn in�uences the ultimate quality of the product through its e�ect on
surface waves, heat and mass transfer [55, 92, 97, 48, 91].
Application of various magnetic �elds provides an innovative and e�cient tool for an e�ective
and contactless �ow control in the mold, which facilitates substantial capabilities to improve
the quality of the steel and to enhance the productivity of the process. The external magnetic
�eld is of potential to control �uid �ow in the mold cavity by damping, accelerating, levitat-
ing, and stirring. Multitude implementations of magnetic �eld damping on the continuous
casting process have been categorized as follows:

1. Electromagnetic Brakes (EMBr): There are two typical Electromagnetic Brakes: EMBr
Ruler and EMBr Local Field. EMBr Ruler with a surrounding yoke and cores with two
part coils guiding the magnetic �eld towards the mold (see Fig. 1.1(a)). The braking
area of the Ruler covers substantially the entire width of the slab. EMBr Local Field
is of four part coils with electrical copper windings together with cores and outer yokes
(see Fig. 1.1(b)). The braking area covers the steel outlet from the SEN.

2. Flow Control Mold (FC-Mold): The Flow Control Mold (FC Mold) was developed on
the basis of Kawasaki Steel's operational experience of the �rst generation of EMBr.
This system produces two static magnetic �elds covering the entire width of the strand,
one at the meniscus and the other through the lower part of the mold (see Fig. 1.1(c)).

(a) EMBr Ruler (b) EMBr Local Field (c) FC Mold

Fig. 1.1: Types of the imposed external static magnetic �elds for a continuous casting slab mold (from ABB
comany)

The principle of an electromagnetic brake (EMBr) employs a static magnetic �eld aligned
perpendicular to the main �ow direction. It relies on the interaction between the electrically
conducting melt and the applied magnetic �eld resulting in a retarding force to slow down
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the mold �ow and to damp strong velocity �uctuations. A uniform reduction of the melt �ow
especially in the neighborhood of the jet emerging from the submerged entry nozzle (SEN)
is the main goal of the �ow control because violent �ows at high velocities are supposed to
cause an entrapment of bubbles or non-metallic inclusions impairing therefore the steel clean-
liness signi�cantly. When a magnetohydrodynamic (MHD) �ow is studied in the presence of
an external DC magnetic �eld, we basically encounter two boundary conditions: electrically
insulating wall and electrically conducting wall. Figure 1.2 illustrates the distribution of elec-
tric currents in a MHD duct �ow with electrically insulating wall and electrically conducting
wall, respectively. When an electrically conducting viscous incompressible �uid �ows through
ducts and a uniform steady magnetic �eld acts perpendicular to the channel walls, the distri-
bution of electric currents present signi�cant variations. For electrically insulating wall (see
Fig. 1.2(a)), the electric currents make closure inside the channel and are intensi�ed in the
vicinity of the walls. The walls normal to and parallel to the direction of the external magnetic
�eld are named Hartmann wall and side wall, respectively. For electrically conducting wall
(see Fig. 1.2(b)), the electric currents are able to pass through the interface between liquid
and solid shell. Obviously the boundary condition is very important when we deal with MHD
�ow. To begin with investigating the EMBr e�ect in a continuous casting steel slab mold, we
need to know the boundary condition in detail. Figure 1.3 shows a schematic of slab mold in
a center-plane across the wide face. The magnetic �eld is applied perpendicular to the wide
face, the cyan solid line present the induced electric currents. A layer of re-solidi�ed �ux exists
between the liquid pool and the water-cooling copper mold. The electrically insulating wall is
assumed on account of the small electrical conductivity of the re-solidi�ed �ux. Therefore, the
electrically insulating wall boundary condition is treated by most of numerical simulations in
the past. In reality, however, the electrical conductivity of the solidi�ed steel shell has to be
taken into account, which is larger compared to that of the molten steel. The induced electric
currents prioritize through the solidi�ed shell in preference to making closures in the vicinity
of the wall with the application of external magnetic �eld. Such in�uence of wall boundary
condition is characterized by a nondimensional parameter, the wall conductance ratio:

CW =
2σW δW
σL

(1.1)

where σW denotes electrical conductivity of wall, δW is the thickness of the wall, σ is electrical
conductivity of liquid and L is the length scale (half of slab width). In addition, argon gas
is normally injected into the SEN to protect clogging. However, the interplay between the
turbulent liquid metal two-phase �ow and the magnetic �eld turns out to be rather complex.
On one hand, the magnetic �eld should have a considerable in�uence on the bubble velocity,
the bubble shape or the distribution of the gas in the cross section of the mold. On the other
hand, the void fraction also determines the closure of the induced electric current in the melt
and, therefore, the distribution of the Lorentz force. An electrically insulating gas bubble does
not experience a direct impact of the electromagnetic force, however, the pressure and the
velocity �eld in the surrounding conducting �uid are strongly a�ected by the applied magnetic
�eld. Modi�cations of the bubble shape, the drag coe�cient or the trajectory are expected
to exert a signi�cant in�uence on the dynamics of a dispersed bubbly �ow. Our motivation is
to develop a �exible three-dimensional turbulence model based on a validation using a liquid
metal mold with electrically insulating wall and electrically conducting wall, respectively, so
that we can get an insight into the e�ect of EMBr and gas injection on the �ow pattern in a
continuous casting steel slab mold.
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(a) electrically insulating wall

(b) electrically conducting wall

Fig. 1.2: Distribution of electric currents in a rectangular duct �ow with a homogeneous DC magnetic �eld (a
homogeneous DC magnetic �eld, B, is applied in z direction; the �uid �ow s in x axis with velocity U.)
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Fig. 1.3: A schematic of steel slab mold in a center-plane across the wide face (static DC magnetic �eld B is
imposed perpendicular to the wide faces in a slab mold; liquid metal discharged from SEN into the liquid pool
crossing B; the corresponding induced electric currents make closure in the mold)
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1.3 Literature review

1.3.1 EMBr e�ect in a single-phase continuous casting process

Although various EMBr designs have already been adopted for industrial use since more than
20 years [61, 42], the impact of a DC magnetic �eld on such highly turbulent and complex
�ows is a complicated phenomenon and has not been fully understood until now. Contrary to
the usual expectations, static magnetic �elds may even destabilize liquid metal �ows. Respec-
tive indications have been found in convection experiments in liquid metals, where it could
be demonstrated that a weak DC magnetic �eld can enhance the convective heat transfer [80,
79, 9]. First, direct observations of the destabilizing e�ect on the velocity �eld by an applied
DC magnetic �eld were reported by Zhang et al [94, 95], who considered the imposition of a
horizontal magnetic �eld on a bubble-driven �ow inside a cylindrical liquid metal column. For
a certain parameter range, the DC magnetic �eld gives rise to the development of distinctive
transient �ow pattern with increased turbulent perturbations.
In spite of physical models, CFD (computational �uid dynamics) is now used widely in indus-
tries, for instance, the impact of an EMBr on the melt �ow in the continuous casting mold
was addressed by many numerical studies considering various magnetic �eld con�gurations
or examining the in�uence of variations of di�erent casting parameters on the magnetic �eld
e�ect exerted by a given assembly. There is no doubt that an EMBr a�ects the jet char-
acteristics and the entire �ow pattern in the mold signi�cantly. Most of the authors rely
on a k − ε turbulence model and report a suppression of the mean �ow and the turbulent
�uctuations as well. The convective heat transfer is usually decreased and violent de�ections
of the free surface can be diminished. Cukierski and Thomas [12] studied the con�guration of
a local EMBr and documented remarkable e�ects of the magnetic �eld on the jet angle, the
impingement depth, the recirculation zones and the surface velocity. Kim et al [39] employed
a revised variant of a low Reynolds-number k− ε turbulence model to simulate the mold �ow
under the in�uence of a local magnetic �eld. Wang and Zhang [87] obtained a lowering of the
turbulent kinetic energy at the SEN outports and a more uniform �ow pattern in the mold if
a local EMBr is applied. Similar �ndings were presented for local EMBr [68], magnetic �elds
of the ruler type [46, 47] or in a FC mold [30]. The e�ciency of braking the velocity at the free
surface or the penetration depth of inclusions was suggested to depend on the position and
intensity of the magnetic �eld. A comparison between local and ruler EMBr was drawn by
Harada et al [26] showing a higher braking e�ciency provided by a level magnetic �eld. These
numerical results based on Large Eddy Simulations (LES) are supported by accompanying
mercury model experiments. It is interesting to note that a sensitive dependence of the surface
velocity on the nozzle conditions was observed in case of a local EMBr. A related study based
on LES was performed by Takatani [81] who described the general e�ect of the local magnetic
�eld as a suppression of the turbulent �ow and a tendency of the �ow pattern to become
two-dimensional. Furthermore, he found that the electromagnetic brake may accelerate the
�uctuations and the meniscus �ow in some cases, in particular for an improper selection of
the nozzle discharge angle.

1.3.2 Bubbly �ow with an external magnetic �eld

In principle, interactions of bubbles exert a great impact on the �ow pattern in a bubbly �ow
system. Three basic �ow regimes were observed by Evans et al [22] during the experimental
trials in the down-�owing column for the range of gas and liquid velocities. These were (i)
bubbly, (ii) churn-turbulent �ow, and (iii) annular �ow. Flow regimes are closely dependent
on the gas void fraction. Wallis [86] de�ned the critical void fraction, 0.27, which is the void
fraction at zero gas drift �ux where bubble coalescence commences and churn-turbulent �ow
begins. It is in reasonable agreement with the value obtained by Evans and Jameson [21] for
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turbulent liquid �ow in a down-�owing air-water system.
Some few theoretical papers are devoted to the magnetic �eld impact on the shape of a single
bubble rising in a liquid metal [82, 72, 70]. Unfortunately, respective experimental results
are not available because of the still missing availability of measuring techniques to provide a
reliable reconstruction of the surface of a gas bubble inside an opaque liquid metal. Shin and
Kang [72] considered an incompressible gas bubble in an axisymmetric straining �ow under
the in�uence of a uniform magnetic �eld. They predicted an elongation of the bubble along
the direction of the magnetic �eld. This bubble elongation increases monotonously as the
magnetic interaction parameter NB increases. The phenomenon of bubble elongation in �eld
direction was also reported by Shibasaki et al [70] for a bubble rising inside a steady mag-
netic �eld parallel to the gravity force. Takatani [82] studied two con�gurations of a bubble
ascending in either a vertical or a horizontal magnetic �eld. In case of a longitudinal �eld the
bubble contour is transformed to a bullet-like shape, which reduces the �ow resistance, but
leaves the terminal velocity almost una�ected compared to the situation without magnetic
�eld. In contrast, the shape of the bubble becomes �at if a transverse �eld is applied. The
resulting bubble velocity is supposed to be lower than that without magnetic �eld.
Experimental investigations on rigid spheres revealed an increase of the drag coe�cient pro-
portional to the square root of the interaction parameter, N . Galfgat [24] and Eckert et
al [19] investigated the in�uence of a transverse magnetic �eld on the velocity slip ratio in
a channel �ow. The linear dependence of the drag coe�cient on the magnetic �eld strength
would imply a continuous decrease of the slip ratio with rising magnetic �ux. However, the
slip ratio was found to be reduced only at moderate values of the magnetic �eld strength, but
increases again at higher values of the �eld intensity. This tendency is caused by the braking
e�ect on the liquid metal �ow, which is proportional to B2 and becomes dominant at high
�eld intensities therefore.
Experiments with single bubbles in stagnant liquid metal pools have demonstrated that an
imposed DC magnetic �eld modi�es the drag coe�cient. A vertical magnetic �eld damps the
horizontal components of the bubble velocity. This e�ect forces the bubble into a straighter
path and reduces the apparent drag force [93]. Similar observations were made by Mori et
al [59] in a transverse magnetic �eld. A suppression of the zig-zag motion of the bubble leads
to a higher terminal velocity. By contrast, the terminal velocity of bubbles moving along a
rectilinear way decreases with increasing �eld strength.
Another study was focused on turbulent dispersion of gas bubbles in an MHD duct �ow [18]
which were initially injected from a point source. The application of a transverse magnetic
�eld results in an anisotropic distribution of the void fraction over the duct cross-section with
a signi�cantly higher dispersion coe�cient found for the direction parallel to the �eld lines.
This �nding indicates that the damping of turbulent �uctuations is much more pronounced in
the direction parallel to the magnetic �eld than in the perpendicular direction. That means
that the bubble dispersion is determined by the existence of quasi-two-dimensional �uctua-
tions with a vorticity along the magnetic �eld direction being well-known for MHD turbulence
[76].
The rise of gas bubbles drives a �ow inside the liquid metal and acts as a source of turbulence.
Gherson and Lykoudis [25] investigated a mercury pipe �ow with dispersed nitrogen bubbles.
At large magnetic �elds they found regions with liquid turbulent �uctuations higher than
in the case without magnetic �eld. The authors explain this observation by a magnetically-
induced redistribution of the void fraction with the formation of large but unstable bubbles.
The higher frequency of bubble break-up processes cause an additional turbulence production.
Recently, Zhang et al [94, 95] presented an experimental study with respect to the impact of a
DC magnetic �eld on a bubble plume in a cylindrical liquid metal column. Measurements of
the liquid velocity revealed that a transverse magnetic �eld might provoke a destabilization of
the global �ow resulting in transient, oscillating �ow structures with predominant frequencies.
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That outcome seems to be contrary to usual expectations, because the Lorentz force is often
supposed to cause a deceleration of the mean �ow and a damping of turbulent �uctuations.

1.3.3 E�ect of EMBr and gas injection in a continuous casting process

Gas injection is necessary to prevent SEN from clogging and to reduce the quantity of inclu-
sions in molten steel by attaching. But with gas injection, the gas phase may often cause the
entrainment of mold slag into the liquid pool resulting in defects. In a steel continuous cast-
ing process the bubbly �ow regime is the most desirable operational regime because the small
discrete bubbles provide the greatest collection e�ciency for inclusions, and also minimise the
generation of unwanted turbulence within the casting mould.
Bai and Thomas [4, 5, 3] employed an Eulerian multiphase model to simulate two-phase tur-
bulent �ow of liquid steel and argon bubbles in a slide gate nozzle and validated the results
through PIV (particle image velocimetry) measurements at a water-air model experiment.
They reported that large bubbles cause a shallower jet angle and large �ow �uctuations in the
mold. The bubble size increases and the size distribution become less uniform as the liquid
velocity and the gas �ow rate increase. All those results are in agreement with the experimen-
tal �ndings of [63, 64]. By means of k−ε turbulence model, SEN clogging is studied by Wu et
al [92]. Moreover, Ramos et al [62] studied gas-liquid �ows inside the submerged entry nozzle
of a slab mold and its in�uence in the �ow in the mold by mathematical simulations and PIV.
They found that bubbly and annular �ows in the SEN generate structurally-uncoupled and
structurally-coupled �ows in the mold, respectively.

1.4 Research Background

Continuous casting (CC) is the process whereby molten metals are solidi�ed into casts which
can be further forged in the �nishing mills (see �gure 1.4). These semi-�nished slabs, blooms,
or billets are continuously casted by using unbottomed mold with water-cooling system. The
continuous casting process was granted between 1840 and 1940, when the CC development was
mainly in the proposal and pioneer development stage. The full range industrial development
started only between 1940 and 1970 [11, 23]. Fig. 1.5 shows the share of CC production in
% of total crude steel in the world [2]. By 1970, about 4% of the steel was continuously cast,
and then CC technique widespread. Relative to other casting processes, continuous casting
generally has a higher capital cost, but lower operating costs.
To start the casting process, �rstly, a dummy bar is positioned at the bottom of the mold.
Liquid metal �ows through Submerged Entry Nozzle (SEN) at the bottom of the tundish
and �lls into the mold, and then the molten steel is solidi�ed into a certain thickness shell in
contact with the walls of the water-cooling mold. Withdrawal of the dummy bar is initiated
when the liquid metal level in the mold reaches a predetermined position. When the dummy
bar head reaches a certain position, it is mechanically disconnected and the dummy bar
is removed. Solidi�cation of the molten steel continues progressively as the strand moves
through the casting machine, which casting conditions are established such that the strength
of the solidi�ed steel shell leaving the mold is su�cient to withstand the static pressure of the
molten steel in the mold. The strand is kept cooling down in the secondary zone till reaching
the torch cuto� point, where the strand is completely solidi�ed.
A major problem that may occur in continuous casting is breakout if solidifying steel sticks
to the mold surface, causing a tear in the shell of the strand. To prevent the mold wall
from sticking of the solidi�ed shell, the water-cooling mold is designed to oscillate vertically.
Meanwhile, mold powder or oil is added on the top of the liquid pool in the mold to lubricate
between the solidi�ed shell and the inner walls of the mold.
Below the water-cooling mold, the secondary cooling zone is followed, on certain types of
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Fig. 1.4: Schematic view of a continuous casting system

Fig. 1.5: Share of continuous casting products in total crude steel in the world [2]
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machine, by a bending unit and a straightener. After straightening, the cast section is cut to
the desired length either by torches or shears. The hot-cuto� lengths are then either delivered
to cooling beds or transferred directly to subsequent hot and cold rolling operations.

1.5 Some fundamentals of magnetohydrodynamics

Magnetohydrodynamics (MHD) is a branch of �uid dynamics which studies the dynamics of
electrically conducting �uids including plasmas, liquid metals, and salt water or electrolytes.
The engineering applications of MHD are related to MHD power generation, MHD propulsor,
MHD pump, plasma con�nement, liquid-metal cooling of nuclear reactors, electromagnetic
casting, etc. MHD can be mathematically represented by the combination of Maxwell's equa-
tions governing the electromagnetic �eld and the Navier-Stokes equations governing the �ow
�eld [13].
The crucial nondimensional parameters describing the in�uence of an external magnetic �eld
B on the electrically conducting �uid are Reynolds number Re, Hartmann number Ha, mag-
netic interaction parameter N and magnetic Reynolds number Rem, which can be written
as:

Re =
ρUL

µ
(1.2)

Rem = µ0σUL (1.3)

Ha = BL

√
σ

µ
(1.4)

N =
Ha2

Re
=
σLB2

ρU
(1.5)

where ρ, µ, µ0, U represent the material properties of the liquid (density, dynamic viscosity,
magnetic permeability), and the characteristic velocity. L and B denote characteristic length
scale and the magnetic �eld, respectively.
In many practical situations, the Reynolds number Re of the �ow is quite large and the mag-
netic Reynolds number Rem is much less than unity. Therefore, the induced magnetic �eld
can be neglected.
The application of an external magnetic �eld imposes a body force on the electrically con-
ducting liquid, the so-called electromagnetic force or Lorentz force FL

FL = J×B (1.6)

where the induced current density J is determined by Ohm's law

J = σ (E + U×B) . (1.7)

The above electric �eld E can be expressed by the electric potential ϕ in the form of E = −∇ϕ.
Because of the conservation of charge Eq. (1.7) can be rewritten as

∆ϕ = div(U×B). (1.8)

When an electrically conducting viscous incompressible �uid �ows through two unbounded
plates or ducts and a uniform steady magnetic �eld acts perpendicular to the channel walls,
the structure of the �ow changes drastically. The velocity pro�le becomes �at in the core as
a result of the electromagnetic braking e�ect. Moreover, two boundary layers develop in the
vicinity of the walls which have been theoretically predicted and experimentally characterized
by Hartmann [28, 29]. The main aspect is that a steady magnetic �eld orientates at right
angles to a boundary can completely transform the nature of the boundary layer, for example,
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changing its characteristic thickness.
Suppose a rectilinear shear �ow adjacent to a plane, stationary surface (see Fig. 1.6). Far
from the wall the �ow is uniform and equal to U∞ in x direction, and the no slip boundary
condition ensures some kind of boundary layer close to the wall. A uniform magnetic �eld B
is imposed in y direction. It then follows that

FL = J×B = −σB2U (1.9)

The Navier-Stokes equation is given as

µ
∂2U

∂y2
− σB2u =

∂p

∂x
(1.10)

which may be transformed to

∂2

∂y2
(U − U∞) =

U − U∞
δ2

, δ = (µ/σB2)1/2 (1.11)

This boundary layer with the thickness ∼ δ is called Hartmann boundary layer. It follows
δ = O(Ha−1), where δ is the non-dimensional boundary-layer thickness.

BB

x

y

U

U(y)

∞

Fig. 1.6: Sketch of a Hartmann boundary layer

1.6 Experimental Setup

The LIMMCAST (LIquid Metal Model of continuous CASTing of steel) program has been
established at HZDR for investigations of �uid �ow and related transport processes which are
of relevance for the continuous casting of steel [83, 84] (see Fig. 1.7). The experiments were
conducted at the mini-LIMMCAST facility which operates at room temperature using the
eutectic alloy Ga68In20Sn12, which is liquid at room temperature (Table 1.1). The interest is
focused on �ow measurements in the mold in order to investigate the impact of a level magnetic
�eld on the discharging jet. The experimental set-up corresponds to the con�guration of a
ruler EMBr. A detailed description and schematic views of the experimental facility can be
found in the paper of [83] The �ow measurements were conducted in a rectangular mold with
a cross section of 140×35mm2 made of acrylic glass. The melt is discharged through the SEN
with an inner diameter of 10mm into the mold through two oval ports on both sides of the
nozzle. The DC magnetic �eld is installed perpendicular to the �ow direction at the nozzle
ports along the wide face of the mold. A maximum �eld strength of 0.31T can be achieved
corresponding to a Hartmann number of 417.



12 CHAPTER I

Fig. 1.7: Snapshot of mini-LIMMCAST in HZDR

Fig. 1.8: Schematic view of the measuring volume inside the ultrasonic beam transmitted by an ultrasonic
transducer into a liquid medium
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Tab. 1.1: Properties of Ga68In20Sn12 and the mold wall in the model experiments

Density (ρ) 6360 kg ·m−3

Dynamic viscosity (µ) 0.00216 kg ·m−1 · s−1

Electrical conductivity (σ) 3.2×106 S ·m−1

Wall conductivity (σW ) 15×106 S ·m−1

Wall conductance ratio (CW ) 0.133 (brass plate)

The �uid velocity in the mold was measured by means of the Ultrasound Doppler Ve-
locimetry (UDV) [84] using the DOP2000 velocimeter (model 2125, Signal Processing SA,
Lausanne). This instrument is equipped with an internal multiplexer allowing for a sequential
data recording from a maximum of ten sensors. The US transducers were installed in two
ways: For measuring the horizontal velocity component perpendicular to the magnetic �eld
direction the sensor was attached at the outer mold wall. Various measuring positions were
selected along the midsection of the narrow face. Vertical velocities were determined by a
direct immersion of the sensor into the melt at the free surface. The velocity pro�les were
acquired with a scan rate of approximately 5Hz, whereas the lateral resolution varies between
5mm at measuring depths close to the sensor and approximately 9mm at a measuring depth
of 100mm. A velocity resolution of about 2.5mm/s was achieved. To investigate transient
characteristics of �uid �ow in the mold, instantaneous velocities are obtained by an ultrasound
transducer of 90Hz scan rate.
According to �gure 1.8, the speci�c shape of the measuring volume of a particular sensor at
each axial position was taken into account by a spatial average using �ve points within the
cross section of the ultrasonic beam.
To make validations of the mathematical modeling, the e�ective experimental results are in-
dispensable. In this dissertation, all the experimental data based on the mini-LIMMCAST
are acquired by one of my colleagues, Mr. Klaus Timmel.
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2 State of the Art

2.1 Governing equations Continuum Mechanics

The numerical procedure presented in this study is done for the assumption of incompressible
�ow of Newtonian �uids. The transport equation for single-phase is given in a stationary
frame.
The Continuity equation:

∇ · (U) = 0 (2.1)

The Momentum equations

Inertia (per volume)︷ ︸︸ ︷
ρ
( ∂U

∂t︸︷︷︸
Unsteady

acceleration

+ U · ∇U︸ ︷︷ ︸
Convective
acceleration

)
=

Divergence of stress︷ ︸︸ ︷
−∇p︸ ︷︷ ︸

Pressure
gradient

+ µ∇2U︸ ︷︷ ︸
Di�usion

+ f︸︷︷︸
Other
body
forces

(2.2)

In our daily life almost all �uid �ow which we encounter is turbulent, which for numerical
solutions requires �ne mesh enough to resolve all turbulent scales and also requires a small
time resolution when the Navier-Stokes equations are solved numerically. For this reason, we
usually use Reynolds decomposition in turbulent �ow, whereby an instantaneous quantity Ũi
is decomposed into its time-averaged part U and �uctuating part u so that Ũi = Ui + ui.
Time-averaged equations of motion for �uid �ow are called Reynolds-averaged Navier-Stokes
equations (or RANS equations). The governing equations can be written as follows:

ρUj
∂Ui
∂xj

=
∂

∂xj

[
−Pδij + µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− ρ 〈uiuj〉

]
. (2.3)

The above equations lead to the turbulence problem: the last term on the right-hand side,
the Reynolds stress, is unknown. The averaged equations are not closed. The objective of
turbulence models for the RANS equations is to compute the Reynolds stresses, which can be
done by three main categories of RANS-based turbulence models:

1. Linear eddy viscosity models

2. Nonlinear eddy viscosity models

3. Reynolds stress models (RSM)

Linear eddy viscosity models are widely used in which the Reynolds stresses, as obtained from
a Reynolds averaging of the Navier-Stokes equations, are modelled by a linear constitutive
relationship with the mean �ow straining �eld, as:

−ρ 〈uiuj〉 = 2µtSij −
2

3
ρkδij (2.4)

where µt is the coe�cient termed turbulent "viscosity" (also called the eddy viscosity),

k =
1

2
(u1u1 + u2u2 + u3u3) (2.5)
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is the mean turbulent kinetic energy

Sij =
1

2

[
∂Ui
∂xj

+
∂Uj
∂xi

]
− 1

3

∂Uk
∂xk

δij (2.6)

is the mean strain rate.
The Reynolds-averaged Navier-Stokes equations can be given in the following form:

∂

∂xj
(Uj) = 0 (2.7)

∂ρUi
∂t

+
∂

∂xj
(ρUiUj) = −∂p

∗

∂xi
+

∂

∂xj

[
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+ SM (2.8)

where p∗ is modi�ed pressure de�ned by

p∗ = p+
2

3
ρk + (µ+ µt)

∂Uk
∂xk

(2.9)

The last term in the above equation is neglected for incompressible �ows. ρ is the �uid den-
sity, Ui is the i component of the �uid velocity, t is the time, xj is j spatial coordinate, p is
pressure, µ and µt are laminar viscosity and turbulence viscosity, SM stands for the sum of
body forces.
The URANS equations are the usual RANS equations, but with the transient (unsteady) term
retained. Even if the results from URANS are unsteady, one is often interested only in the
time-averaged �ow. The time-averaged velocity is de�ned as U i, which means that we can de-
compose the results from an URANS as a time-averaged part U i, a resolved �uctuation ui, and
the modeled turbulent �uctuation u′i. Apparently, Unsteady Reynolds-time-averaged turbu-
lence model is capable to capture the �ow �uctuation, but the modeled turbulent �uctuation,ui
, can not be shown in �gure 2.1.

U

U

t

u'

U

Fig. 2.1: Reynolds decomposition of velocity
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2.2 Turbulence models

In �uid dynamics, the Reynolds number is used to characterize di�erent �ow regimes: laminar,
laminar-turbulent transition, turbulence. Turbulence �ow is a �ow regime characterized by
chaotic and randomness. In turbulent �ow, unsteady vortices appear on many scales and
interact with each other. Turbulence models are necessary because we cannot a�ord big
enough computers to directly capture every scale of motion. As a result, there are unsteady
(turbulent) motions a�ecting the �ow that cannot be resolved directly; they must therefore
be modeled. There are several subcategories for the linear eddy-viscosity models, depending
on the number of (transport) equations solved for the eddy viscosity coe�cient: Algebraic
models; One-equation models; Two-equation models.

2.2.1 Zero-equation turbulence model

Algebraic turbulence models or zero-equation turbulence models are models that do not re-
quire the solution of any additional equations, and are calculated directly from the �ow
variables. As a consequence, zero equation models may not be able to properly account for
history e�ects on the turbulence, such as convection and di�usion of turbulent energy. Lud-
wig Prandtl introduced the additional concept of the mixing length, along with the idea of
a boundary layer. For wall-bounded turbulent �ows, the eddy viscosity must vary with dis-
tance from the wall, hence the addition of the concept of a 'mixing length'. In the simplest
wall-bounded �ow model, the eddy viscosity is given by the equation:

νt =

∣∣∣∣∂U∂y
∣∣∣∣ l2m (2.10)

where ∂U
∂y is the partial derivative of the streamwise velocity (u) with respect to the wall

normal direction (y), lm is the mixing length.
For boundary layers, δ , we have

lm = κy, for y < δ

lm = δ, for y ≥ δ

where κ = 0.41 is the Karman constant.

2.2.2 One-equation turbulence model

One-Equation models solve a single transport equation for a quantity which is used to obtain
the turbulent viscosity. For example, in Prandtl's one-equation model, kinetic eddy viscosity
is de�ned as

νt = k
1
2 l = Ct

k2

ε
(2.11)

The kinetic turbulent energy is calculated by

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui
∂xj
− Ct

k
3
2

l
+

∂

∂xj
[(ν +

νt
σk

)
∂k

∂xj
] (2.12)

where Ct = 0.08, σk = 1, l denotes the turbulent length scale and the deviatoric stress tensor
is τij = 2νtSij − 2/3kδij .
Currently, a prominent one-equation model is the Spalart-Allmaras model [77] which solves a
transport equation for a viscosity-like variable.
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2.2.3 Two-equation turbulence model

Two-Equation models require the solution of two additional governing equations in order to
compute the contributions of turbulence to the mean �ow. Two-equation turbulence models
are very widely used, as they o�er a good compromise between numerical e�ort and compu-
tational accuracy. Two of the most common models are the k− ε model and the k−ω model.
The k − ε model is one of the most common turbulence models, although it just doesn't
perform well in cases of large adverse pressure gradients [90]. Usually, there are three kinds of
k − ε model: Standard k − ε model; Realizable k − ε model; RNG(Re-Normalisation Group)
k− ε model. The k− ε model is widely used for industrial simulations [97, 48, 62, 12, 46, 47].

k − ε turbulence model

The k − ε model is one of the most common turbulence models on the basis of two major
formulations of k and ε. It is �rst introduced by Harlow et al [27] even though the development
of this model is often credited to [37].
The turbulent energy, k, can be computed as:

k =
3

2
(U I)2 (2.13)

where U is the mean �ow velocity and I is the turbulence intensity. U can be computed from
the three mean velocity components Ux, Uy and Uz as:

U ≡
√
U2
x + U2

y + U2
z (2.14)

The turbulence intensity, I, also often refered to as turbulence level, is de�ned as:

I ≡

√
2
3 k

U
(2.15)

The turbulent dissipation rate, ε, can be computed using the following expression:

ε = C
3
4
µ
k

3
2

l
(2.16)

where Cµ is a turbulence model constant which usually has a value of 0.09, and l is the
turbulent length scale.
The turbulent viscosity is modeled as:

µt = ρCµ
k2

ε
(2.17)

The Turbulence kinetic energy k equation for the standard k − ε model is:

∂

∂t
(ρk) +

∂

∂xi
(ρkUi) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ Pk − ρε (2.18)

The turbulence dissipation ε equation for the standard k − ε model is:

∂

∂t
(ρε) +

∂

∂xi
(ρεUi) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Pk + C3εPb)− C2ερ

ε2

k
(2.19)

where Pk, production of k, represents the generation of turbulence kinetic energy due to the
mean velocity gradients, described as:

Pk = −ρ 〈uiuj〉
∂Uj
∂xi

= µtS
2 (2.20)
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The modulus of the mean rate-of-strain tensor, S, is de�ned as:

S ≡
√

2SijSij (2.21)

The constants are determined from simple benchmark experiments as follows:
C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, and σε = 1.3.

SST − k − ω turbulence model

Shear Stress Transport SST − k − ω two-equation model (written in conservation form) is
given by the following equations [56]:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
= P − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.22)

∂(ρω)

∂t
+
∂(ρUjω)

∂xj
=

ψ

νt
P − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj
(2.23)

In order to recover the original formulation of the eddy-viscosity, µt = ρa1k
max(a1ω,Ω) , the modi�-

cation can be done by applying a blend function F2 for free shear-layer. The turbulent eddy
viscosity is computed from:

νt =
a1k

max(a1ω, SF2)
(2.24)

The production term P can be expressed for incompressible �ow as:

P = µtSΩ (2.25)

where S denotes the magnitude of the strain rate, Sij , is the strain rate tensor, Ω is the
magnitude of vorticity rate, and Ωij stands for the vorticity tensor.

S =
√

2SijSij (2.26)

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(2.27)

Ω =
√

2ΩijΩij (2.28)

Ωij =
1

2

(
∂Ui
∂xj
− ∂Uj
∂xi

)
(2.29)

Each of the constants is a blend of an inner (1) and outer (2) constant, blended via:

φ = F1φ1 + (1− F1)φ2 (2.30)

where φ1 represents constant 1 and φ2 represents constant 2.
The constants are:

ψ1 =
β1

β∗
− σω1κ

2

√
β∗

, ψ2 =
β2

β∗
− σω2κ

2

√
β∗

,

σk1 = 0.85, σω1 = 0.5, β1 = 0.075,

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

and a1 = 0.31, β∗ = 0.09.
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Additional functions are given by:

F1 = tanh
(
arg4

1

)
(2.31)

arg1 = min

[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4ρk

CDkωσω2d2

]
(2.32)

F2 = tanh
(
arg2

2

)
(2.33)

arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)
(2.34)

The term arg1 obviously goes to zero far enough away from solid surfaces because of the 1/d
or 1/d2 dependency in all three terms. This argument ensures F1 goes to zero towards the
boundary layer edge and is equal to one in the sublayer. When F1 is equal to one, the ω
equation can be transformed into the ε equation.
The positive portion of the cross-di�usion term is given by

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

)
(2.35)

and d is the distance to the next surface, νt = µt/ρ is the turbulent kinematic viscosity.

2.2.4 Discussions and conclusions

The k − ω model is the model of choice in the sublayer of the boundary layer. Unlike any
other two-equation model, it does not involve damping functions and, as will be shown, allows
simple Dirichlet boundary conditions to be speci�ed. The SST (shear stress transport) model
is a blend of a k − ω model, which is used near walls, and a k − ε model, which is used
in regions far from walls. This model is fairly robust and generally does a good job near
solid boundaries. It also is often found to do a better job at capturing recirculation regions
than other models [34, 57]. Algebraic Reynolds stress models solve algebraic equations for
the Reynolds stresses, whereas di�erential Reynolds stress models solve di�erential transport
equations individually for each Reynolds stress component. The exact production term and
the inherent modeling of stress anisotropies theoretically make Reynolds Stress models more
suited to complex �ows; however, practice shows that they are often not superior to two-
equation models. The Large Eddy Simulation Model (LES) is an approach which solves for
large-scale �uctuating motions and uses sub-grid scale turbulence models for the small-scale
motion. Mathematically, the velocity �eld can be separated into a resolved and sub-grid
part. The resolved part of the �eld represent the large eddies, while the sub-grid part of
the velocity represent the small scales whose e�ect on the resolved �eld is included through
the Sub-Grid-Scale (SGS) model. SGS turbulence models usually employ the Boussinesq
hypothesis in search of calculating the SGS stress. The Smagorinsky-Lilly model is a typical
one. However, it must be noted that for wall bounded �ows, so called streaky structures
develop in the near wall region. These streaky structures must be resolved and this leads
to high resolution requirements and computing times for LES of wall-bounded �ows. The
alternative approach is Detached Eddy Simulation (DES), which combines elements of RANS
and LES formulations in order to arrive at a hybrid formulation, where RANS is used inside
attached and mildly separated boundary layers. When it is important to resolve the whole
range of spatial and temporal scales of the turbulence, or for low Reynolds numbers, less than
5000,we can consider Direct Numerical Simulation (DNS). Experience has shown that the use
of LES and DNS in boundary layer �ows at high Re numbers is extremely expensive and
therefore not applicable for many industrial �ow simulations.
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In this thesis, we are mainly concentrated on numerical simulations of continuous casting
process in the presence of external magnetic �eld. The induced electric currents will be closed
in the vicinity of walls while the bounded �ow passes through an external static magnetic
�eld. When the Hartmann number is large enough, the thickness of the Hartmann layer is
less that of the viscous boundary layer. Therefore, the Hartmann layer (see introduction)
must be considered. Under such circumstance the k−ε model is not suitable any more in this
case because the critical parameter, y+1, must be greater than 20 by using the k−ε model. In
reality, the �ow in the casting process is of high turbulence characteristic. LES or DNS models
will be rather costly and time consuming. In addition, the quasi-steady-state is required in a
continuous casting process, which the casting speed is constant when the caster is running, so
that the �ow in the mold is expected to be stable. Therefore SST −k−ω two-equation model
is fair enough to meet the need of �ow �eld simulations in a steel continuous casting process,
for example, �ow pattern at large scale, �ow oscillating and �uctuating, etc. Moreover, the
SST − k−ω two-equation model is chosen for the following reasons: The use of a ω equation
in the inner parts of the boundary layer makes the model directly usable all the way down
to the wall through the viscous sub-layer with any damping functions; The blending function
switches to a k − ε behavior in the free-stream to avoid the common k − ω problem that the
model is too sensitive to the inlet free-stream turbulence properties. Fine meshes near the
wall not only satisfy with the numerical accuracy for the SST − k − ω model, but also meet
the need to resolve the Hartmann layer.

2.3 Mathematical models for multiphase �ow

In gas-liquid two-phase �ow, the �ow pattern in a bounded �ow is dependent on the void
fraction of gas phase, slip velocity, interfacial shear, etc. For example, �gure 2.2 shows the �ow
regime in a vertical pipe. In general, the �ow regime is characterized as: bubbly �ow, slug �ow,
churn �ow and annular �ow. In bubbly �ow regime, numerous bubbles are distinguishable as
the gas is dispersed in the form of discrete bubbles in the continuous liquid phase, whereby
the bubbles may vary in both size and shape. In slug �ow regime, coalescence of bubbles
leads to form larger bubbles as a result of increasing void fraction, which are similar in size
to the pipe diameter and have a characteristic shape similar to a bullet with a hemispherical
nose and a blunt tail. In churn �ow regime, the structure of the �ow becomes unstable with
the �uid traveling up and down in an oscillatory way. Once the interfacial shear of the high
velocity gas on the liquid �lm becomes dominant over the gravity force, the liquid is expelled
from the center of the pipe and �ows as a thin �lm on the wall. In addition, liquid may be
entrained in the gas core as small droplets. We call this particularly stable �ow pattern as
annular �ow.
In the process of a steel continuous casting, generally, Argon is introduced in Submerged
Entry Nozzle (SEN) to prevent nozzle ports from clogging. We expect the gas phase injected
in the liquid behaves as discrete bubbles. To simulate bubbly �ow, interphase momentum
transfer models are introduced. Interphase momentum, MLG, occurs due to interfacial forces
acting on phase L by the interaction with phase G and vice versa. The interfacial forces
between two phases are equal and opposite, therefore the net interfacial forces sum to zero.
The detailed mathematical models are given in the following sections.

2.3.1 Basic equations

In our simulations we apply the Euler-Euler approach considering both the liquid and the
gaseous phase with certain volume fractions αL and αG, respectively. On the supposition
that any mass exchange between the phases can be neglected, the system of equations of
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Fig. 2.2: Schematic of �ow regime in a vertical pipe [22]

continuity and momentum is given as follows [17]:

∂(αkρk)

∂t
+∇ · (αkρkUk) = 0 (2.36)

∂(αkρkUk)

∂t
+∇ · (αkρkUkUk) = −∇p−∇ · (αkτk) + αkρkg + FI,k + FL,k (2.37)

where the subscript k = L denotes the liquid metal phase and k = G the gas phase, respec-
tively. The terms on the right-hand side of Eq. (2.37) represent the pressure gradient, the
turbulent viscous stress, the gravity force, the interfacial forces FI,k, and the electromagnetic
force FL,k. The summation of void fraction, αk, is unity.

In multiphase �uid �ow, the summation of the net interfacial forces is equal to zero. The
interfacial forces FI,L in Eq. (2.37) can be expressed as

FI,L = −FI,G = FD,L + FL,L + FVM,L + FLUB,L + FTD,L (2.38)

where the terms on the right-hand side of Eq. (2.38) are the drag force, the lift force, the
virtual mass force, the wall lubrication force and the turbulent dispersion force.

2.3.2 Bubble-induced turbulence

Within this study the SST − k − ω turbulence model [56] was chosen, which can be applied
for calculating the turbulent shear-stress viscosity in the continuous phase. This model has
to be extended for the situation of a bubbly �ow. Sato et al [66, 65] proposed a model taking
account the turbulence induced by the motion of dispersed bubbles. He assumed that the
e�ective viscosity of the liquid phase is composed of three contributions: the laminar viscosity,
the turbulent eddy viscosity and the bubble-induced turbulence (BIT).

µBIT = CBITρLαGdG|UL −UG| (2.39)

where the parameter CBIT has a value of 0.6.
However, Deen and Dhotre et al [15, 16] found that the added bubble-induced viscosity did not
alter the simulation results signi�cantly. Considering the migration of gas bubbles through the
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liquid phase and the e�ect of bubble-induced turbulence, Simonin and Viollet [73] included
extra source terms into the turbulence models. The expressions are given by:

St,k = Ck2CfρLαLαGk (2.40)

St,ε = Cε2CfρLαLαGε (2.41)

For the SST k-ω turbulence model, an expression has to be obtained for St,ω instead of St,ε.
This term can be written in the form of St,ω = Cε2CfρLαL αGCµωk, whereas Cf stands for
the interphase friction coe�cient Cf = 3

4(CD/dB) | UG −UL |. The coe�cients Cµ = 0.09,
Ck2 = 0.75 and Cε2 = 0.6 are suggested by [69].

2.3.3 Drag force

The drag force results from the skin friction and the form drag due to the viscous surface
shear stress and the pressure distribution around the bubble. A generic description for the
drag force per unit volume was proposed by Clift [10] for bubbles

FD,L =
3

4
αGρL

CD
dB
| UG −UL | (UG −UL) (2.42)

where CD is the drag coe�cient which can be adopted by the Grace model and the Ishii-
Zuber model [33]. CD is not a constant but varies as a function of speed, �ow direction,
object position, object size, �uid density and �uid viscosity. As is shown in �gure 2.3, drag
coe�cient for a sphere as a function of Reynolds number Re. The solid line is for a sphere
with a smooth surface, while the dashed line is for the case of a rough surface. The numbers
along the line indicate several �ow regimes and associated changes in the drag coe�cient:

� a: Stokes �ow and steady separated �ow,

� b: transitional separated unsteady �ow with a laminar �ow boundary layer,

� c: separated unsteady �ow with a laminar boundary layer at the upstream side and a
chaotic turbulent wake at the downstream of the sphere,

� d: supercritical separated �ow.

The Grace drag model in the distorted particle regime is given by:

CD(ellipse) =
4

3

gdB
U2
T

∆ρ

ρL
(2.43)

where ∆ρ = ρL − ρG and UT denotes bubble terminal velocity.
The Ishii-Zuber correlation gives:

CD(sphere) = 24
ReB

(
1 + 0.15ReB

0.687
)

CD(ellipse) = 4
3dB

√
2g4ρ
γ

CD(cap) = 8
3

(2.44)

where γ denotes the interfacial tension between liquid and gas. ReB = dB|Uslip|/νL is the
bubble Reynolds number, in which dB denotes the bubble diameter, slip velocity Uslip =
UL −UG, represents the relative velocity of the liquid with respect to the bubble, νL is the
kinetic viscosity of the liquid.
Consequently, the resulting drag coe�cient was taken as

CD = max{CD(sphere),min[CD(ellipse), CD(cap)]} (2.45)
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Fig. 2.3: Relationship between drag coe�cient and Reynolds number for a sphere [10]

2.3.4 Lift force

A bubble rising in a liquid in the presence of a transverse velocity gradient is subjected to a
perpendicular lift force. The lift force, which arises from the shear-induced relative motion in
the continuous phase around the bubble, was introduced by Zun [98]. It can be calculated as
follows:

FL,L = CLαGρL(UG −UL)× (∇×UL) (2.46)

Usually, the lift force coe�cient has a positive value, which acts in the direction of decreasing
liquid velocity. Numerical [20] and experimental [85] investigations showed that the direction
of the lift force change its sign when a substantial deformation of the bubble occurs. As
is shown in �gure 2.4, the lift force for large ellipsoidal bubble point towards the center,
but the lift force changes it sign towards the wall. From experiments on a single bubble,

Slip velocity

Slip velocity

Fluid velocity

Lift force

Lift force

Fig. 2.4: Schematic of lift force in a vertical pipe �ow [85]
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Tomiyama1995 et al [85] derived the following correlations for the lift coe�cient:

CL =


min{0.288 + tanh(0.121ReB), f(EoB)} EoB < 4
f(EoB) 4 ≤ EoB < 10.7
−0.27 EoB ≥ 10.7

(2.47)

with f(EoB) = 0.00105Eo3
B − 0.0159Eo2

B − 0.0204EoB + 0.474. The Eötvös number of the
bubble is de�ned as

EoB =
(ρL − ρG)gd2

H

γ
(2.48)

dH is the maximum horizontal dimension of the bubble. The empirical correction for the
aspect ratio is obtained by Wellek et al [88] with the following equation:

dH = dB
3
√

1 + 0.163Eo0.757 (2.49)

Investigations by Lucas et al [50, 49, 51] showed that these correlations work well also for
poly-disperse �ows. Comparing numerical simulation and experiments, Krepper et al [44]
concluded that the lift force exerts a damping e�ect in dense bubble plumes.

2.3.5 Other forces on bubbles

The turbulent dispersion force was introduced in order to account for the random in�uence
of the turbulent eddies in the liquid �ow on the dispersed bubbles. The turbulent dispersion
force model of [7, Lopez de Bertodano] was chosen

FTD,L = CTDρLkL∇αL, (2.50)

where the turbulent dispersion coe�cient is CTD = 0.1 and kL is the liquid turbulent kinetic
energy per unit of mass.

In two-phase �uid �ows, the virtual mass force is caused by an accelerated motion of the
bubble, which displaces the liquid around. It appears as an additional resistance to the bubble
motion being proportional to the relative phase accelerations [35].

FVM,L = FVM,G = αGρLCVM (
D

Dt
UG −

D

Dt
UL) (2.51)

Moreover, the virtual mass force seems important to stabilize the calculation during the early
stages of the �ow evolution and makes no di�erence on the �nal results [74]. Normally, the
virtual mass force coe�cient CVM is speci�ed to 0.5 by default.
The wall lubrication force is strongly connected with the lateral lift force, which tends to push
the dispersed phase away from the wall in a vertical pipe �ow. Antal et al [1] proposed a wall
lubrication force model as follows:

FLUB,L = −CWLρLαG|UL −UG|2nW (2.52)

where nW is the unit normal pointing away from the wall. The coe�cient of wall lubrication
force, CWL, is given by

CWL = max{0, −0.01

dB
+

0.05

d
} (2.53)

Note that yW , the distance to the nearest wall, is only active in a thin layer adjacent to the
wall. By default CWL = 0 when d ≥ 5dB.
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2.3.6 MUSIG model

For simplicity, the gas phase is treated as mono-dispersed phase in a gas-liquid two-phase
�ow. However, many industrial �uid �ow applications involve a two-phase �ow with a size
distribution. The size distribution of the dispersed phase, including solid particles, bubbles,
or droplets, can evolve in a combination of di�erent phenomena like nucleation, growth,
dispersion, aggregation, breakage, etc. To model a poly-dispersed �ow, a balance equation is
required to describe the changes in the particle population, in addition to momentum, mass,
and energy balances. A number density function is introduced to account for the particle
population in consideration of source or sink terms caused by particles entering and leaving
a control volume through di�erent mechanisms:

∂

∂t
n(m, t) +

∂

∂xi
(Ui(m, t) · n(m, t)) = Si (2.54)

where n(m, t) represents the number density of particles of mass m at time t, Si is a source
term.
The size distribution is discretized into a prede�ned set of size groups. The relationship
between the diameter and the mass of a particular group is de�ned as:

m = ρG
πd3

B

6
(2.55)

By means of equal diameter discretization, the diameter of group i is calculated from:

dB,i = dB,min +
dB,max − dB,min

N
(i− 1

2
) (2.56)

where N is the number density of the size group, dB,min is minimum bubble diameter and
dB,max is maximum bubble diameter.
The MUSIG (Multiple Size Group) model has been developed to deal with poly-dispersed mul-
tiphase �ows in Ansys CFX. A homogeneous MUSIG model was �rstly proposed by Luo [52],
which assumed all size groups for a given poly-dispersed (MUSIG) �uid at the same velocity.
The homogeneous model is limited to convection dominated bubbly �ows or bubbles with
small inertia. To improve the MUSIG model, Krepper et al [45] developed an inhomogeneous
MUSIG model where the gaseous phase is allowed to be divided into Nr phase groups with
their own velocities.
De�ning the size fraction fi = αG,i/αG, whereby the volume fraction of size group i is αG,i.
The transport equations for all size fractions of the dispersed phase can be written as:

∂

∂t
(ρG,iαGfi) +

∂

∂xi
(ρG,iαG,ifi) = BB −DB +BC −DC (2.57)

where BB, DB, BC and DC stand for the birth rate due to breakup of larger particles, the
death rate due to breakup into smaller particles, the birth rate due to coalescence of smaller
particles, and the death rate due to coalescence with other particles, respectively.
Obviously, the inhomogeneous MUSIG model is capable of dealing with heterogeneous velocity
�elds of dispersed phase with di�erent size groups at the same time. In the meanwhile it allows
su�cient size groups to model the process of coalescence and breakup for dispersed phase,
for example, bubbles. In Ansys CFX, the coalescence model of Prince and Blanch [60] is
supported. The Prince and Blanch Model assumes that the coalescence of two bubbles occurs
in three steps: the collision of bubbles traps a small amount of liquid between them in the
form of a liquid �lm; This liquid �lm then drains until it reaches a critical thickness; The �lm
ruptures and the bubbles join together. The coalescence kernel is then modeled by

Q(mi;mj) = (θTij + θBij + θSij)ηij (2.58)
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whereby, mi and mj stand for mass of bubble i and j, Q denotes collision rate, ηij is collision
e�ciency relating to the time, and θTij , θ

B
ij , θ

S
ij stand for turbulent, buoyancy, and shear

contributions to collision frequency, respectively.
For the breakup of bubbles, Luo and Svendson [53] developed a theoretical model based on
the theory of isotropic turbulence and probability. The breakup kernel is modeled as:

g(mi;mj) = 0.923FB(1− αG)(
εL
d2
B,i

)1/3

1∫
ξmin

(1 + ξ)2

ξ11/3
e−χdξ (2.59)

where ξ is the dimensionless size of eddies in the inertial subrange of isotropic turbulence, εL
is the continuous-phase eddy dissipation rate, FB is a calibration coe�cient, and

χ =
12((mj/mi)

2/3 + (1−mj/mi)
2/3 − 1)γ

2ρLε
2/2
L d

5/3
G,iξ

11/3
, (2.60)

γ is surface tension.

2.4 Modeling of near-wall turbulence

Owing to large velocity gradients and the selective damping of wall-normal velocity �uctua-
tions, wall boundary conditions require special treatment (Fig. 2.5). A wall-function simula-
tion normally requires that y+ of the �rst cell outside the walls is in the log-layer, which starts
at about y+ ∼ 20 and, depending on the Re number, extends up to y+ ∼ 200. In the log
layer, there is equilibrium between production and dissipation of the turbulent kinetic energy,
therefore decreasing turbulent instability in near-wall simulations.
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Fig. 2.5: Wall function, i.e. horizontal velocity near the wall with mixing length model

The momentum balance for the near-wall cell requires the wall shear stress τw(= u2
τ ), which

needs some assumption between near-wall and the surface. If the near-wall node lies in the
logarithmic region then

U+ =
Ut
Uτ

=
1

κ
ln(y+) +B (2.61)
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where

y+ =
ρ∆yUτ
µ

(2.62)

Uτ =
τω
ρ

(2.63)

U+ stands for the near wall velocity, Uτ represents the friction velocity, Ut denotes the known
velocity tangent to the wall at a distance of ∆y from the wall, κ ≈ 0.41 is the von Karman
constant, B is a log-layer constant depending on wall roughness (∼ 5.0 for a smooth wall), y+

is the dimensionless distance from the wall and τω is the wall shear stress. ∆n is the distance
between the �rst and second grid points o� the wall. For standard wall function, ∆y = ∆n/4.
a) Scalable Wall Functions
Obviously the equation 2.35 becomes singular at separation points where the near wall velocity,
Ut, approaches zero. An alternative velocity scale, u∗ can be used instead of uτ :

u∗ = C1/4
µ k (2.64)

Based on this de�nition, the following explicit equation for uτ can be obtained:

Uτ =
Ut

1
κ ln(y∗) +B

(2.65)

The absolute value of the wall shear stress τω, is then obtained from:

τω = ρU∗Uτ (2.66)

where y∗ = (ρU∗∆y)/µ, The above scalable wall function can be applied on arbitrarily �ne
meshes and allows users to perform a consistent mesh re�nement independent of the Reynolds
number of the application.
The basic idea behind the scalable wall-function approach is to limit the y∗ value used in the
logarithmic formulation by a lower value of y+ = max(y∗, 11.6) where 11.06 is the value of
y+ at the intersection between the logarithmic and the linear near wall pro�le. To use these
equilibrium pro�les e�ectively, it is desirable that the grid spacing be such that the near-wall
node lies within the logarithmic layer; ideally, 30 < y+ < 150, has to be relaxed somewhat in
practice, but means that with wall-function calculations the grid cannot be made arbitrarily
�ne close to solid boundaries.
b) Automatic near-wall treatment
A low-Re simulation using fully resolved boundary layers requires special viscosity-dependent
modi�cations to the turbulence model and re�ned boundary layer mesh with the �rst cell at
the walls at a value of y+ less than 1. Stretching of the following cells outside of a wall should
usually be kept below something like 1.25 of growth rate. This condition cannot be guaranteed
in most applications at walls. For this reason, a new near wall treatment was developed by
CFX for the ω based models that allows for a smooth shift from a low-Reynolds number form
to a wall function formulation. This near wall boundary condition, named automatic near
wall treatment in CFX, is used as the default in all models based on the ω-equation. The
�ux for the k-equation is arti�cially kept to be zero and the �ux in the momentum equation
is computed from the velocity pro�le. The equations are as follows:
Flux for the momentum equation, FU :

FU = −ρUτU∗ (2.67)

where

U∗ =
4

√√√√(

√
µ

ρ
|∆U
∆y
|)4 + (

√
α1k)4 (2.68)
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Uτ =
4

√√√√(

√
µ

ρ
|∆U
∆y
|)4 + (

U

1/κlog(y+) +B
)4 (2.69)

Flux for the k-equation:

Fk = 0 (2.70)

In the ω-equation, an algebraic expression is speci�ed instead of an added �ux. It is a blend
between the analytical expression for ω in the logarithmic region and the sublayer region,
respectively.

ωlog =
U∗

α1κy
=

1

α1κν

U∗

y+
(2.71)

ωsub =
6ν

β∆y
(2.72)

where ∆y = ∆n. Using this a blending can take the following form:

ωω = ωsub

√
1 +

ωlog
ωsub

, (2.73)

In the low Reynolds number mode, the location of the �rst mesh point is virtually moved
down through the viscous sub-layer as the mesh is re�ned. Note that the physical location
of the �rst mesh point is always at the wall. However, the �rst mesh point is treated as if it
were 4y away from the wall.

2.5 Modeling of magnetic �eld in�uence on turbulence

The application of a strong DC magnetic �eld gives rise to a magnetic dissipation term called
as Joule dissipation. The turbulent �ow undergoes a reorganization as consequence of the
conservation of angular momentum against the background of a continuous decay of turbulent
kinetic energy. The structure of the turbulent �ow becomes modi�ed considerably, because
velocity �uctuations being non-parallel with respect to the magnetic �eld lines are subjected
to the Joule dissipation. As a consequence the turbulent eddies become aligned and elongated
along the direction of the imposed magnetic �eld [76, 14]. It is also clear that the destruction
of kinetic energy in the presence of magnetic �eld is accelerated by Joule dissipation and
consequently the contribution of viscosity to the overall damping of the vortex is found to
be negligible [78]. Under a weak magnetic �eld, the behavior of a vortex is complex due
to the large ratio of centrifugal forces acting on the vortex to the Lorentz forces. The �uid
structure propagates radially outwards like a thermal pump. For the case of a high interaction
parameter and a low magnetic Reynolds number, the Joule time (tm), is small in comparison
with the turn-over time of an eddy, t0 = L/U :

tm = ρ/σB2 � L/U, (2.74)

so that the interaction parameter, N , is large compared to unity:

N = t0/tm = σB2L/ρU � 1. (2.75)

Sommeria and Moreau [76] conducted the vorticity equation of the parallel component z in
the following approximate linear form when both interaction parameter and Reynolds number
are large:

∂ωz
∂t

= −σB
2

ρ
∇−1
⊥

(
∂2ωz
∂z2

)
(2.76)
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The application of the ∇−1
⊥ operator is equivalent to multiplication by −l2⊥ in Fourier space,

where L⊥ is the length scale perpendicular to the magnetic �eld. The length scale parallel to
the �eld, L‖, is expected to evolve in the form of

L‖ = L⊥(t/tm)1/2 (2.77)

According to the above relation, an anisotropic state is attained if a turbulent structure is
subject to a magnetic �eld, wherein

L‖/L⊥ ∼ N1/2 (2.78)

if L⊥N
1/2 is smaller than the spacing of the walls perpendicular to the imposed magnetic

�eld.
The anisotropy of the Joule dissipation has to be taken into account by the turbulence model
which needs an input of information about the dimensionality of the turbulence. Usually, the
turbulence can be considered to be 3D and isotropic in most applications, but, a preferred
orientation of the turbulent vortices in �eld direction provokes a quasi-2D character of the
turbulent �ow �eld. This reorganization of the �ow leads to a remarkable anisotropy of the
Reynolds stress which cannot be reproduced by the Reynolds-averaged models.
Generally RANS (Reynolds-Averaged Navier-Stokes) turbulence models do not take into ac-
count the damping of turbulence by the magnetic �eld. Lykoudis and Brouillette [54] proposed
damping functions generalized by the Prandtl mixing length concept. Damping functions are
added to the algebraic model in consideration of the presence of magnetic �eld. Equations
for the turbulent kinetic energy and its dissipation rate based on two scale direct interaction
approximation approach is derived by Shimomura [71]. A consideration of turbulent �ows
exposed to an external steady magnetic �eld B requires a completion of the equations for k
and ε with sink terms describing the magnetic Joule dissipation. A few studies are known
to extend turbulence models to MHD �ows in closed channels in a transverse magnetic �eld
[40, 32, 36]. The authors suggested sink terms for k and ε equations in describing the e�ect
of the Joule dissipation in the form of

Se,k = C3
σB2

0

ρ
k (2.79)

and

Se,ε = C4
σB2

0

ρ
ε (2.80)

respectively, with the closure constants C3 = 0.5 and C4 = 1.0 in [40].
Unlike the above constant coe�cients, Smolentsev et al [75] postulated modi�cations for C3

and C4 as follows:

C3 = 1.9e−2.0N (2.81)

and

C4 = 1.9e−4.0N (2.82)

Ji and Gardner [36] suggested a modi�ed k − ε turbulence model for a turbulent pipe �ow
under the action of a transverse magnetic �eld. Extra terms were incorporated into the equa-
tions for k and ε in order to modulate the Hartmann e�ect of the electromagnetic damping.
The decay of the turbulent kinetic energy was postulated to be proportional to eN , whereas
N denotes the magnetic interaction parameter. This model is restricted to relatively simple
geometries (e.g. pipe or channel �ow) and to homogeneous magnetic �elds.
The approach was further re�ned by Kenjeres and Hanjalic [38] proposing a more sophisticated
modi�cation of the standard k − ε model on the basis of the full stress transport equation.
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They introduced a local interaction parameter which should re�ect the local relation between
the characteristic magnetic braking time and the turbulence time scale. It was shown that
this modi�cation makes the new model suitable to deal with liquid metal �ows in inhomoge-
neous magnetic �elds. Widlund et al [89] proposed a Reynolds stress closure for homogeneous
shear-free turbulence exposed to a strong DC magnetic �eld at low magnetic Reynolds num-
bers. Therefore, a new scalar dimensionality anisotropy parameter αµ was introduced which
contains important information about the length-scale distribution of vortices showing vari-
ous orientations with respect to the applied magnetic �eld. An additional transport equation
was implemented to describe the development of the anisotropy parameter on the basis of
phenomenological reasoning. The Joule dissipation was integrated into the k-equation as an
extra source term with the anisotropy parameter αµ.
In the present work, we mainly deal with electromagnetic braking in a continuous casting slab
mold. Considering the complex geometry and the imposed inhomogeneous magnetic �eld, the
above modi�ed k−ε turbulence model is not suitable. Therefore, we use a so-called anisotropy
variable, αµ, which was proposed by Widlund et al [89]. Joule dissipation for kinetic energy

scales as (λ⊥λ‖
)2 σB

2
0

ρ k, where λ⊥ and λ‖ are characteristic turbulent length scales in the di-

rections parallel and perpendicular, respectively, to the magnetic �eld. αµ is proportional to
(λ⊥λ‖

)2. A respective value of αµ = 1/3 has been selected for isotropic turbulence, whereas

it tends to αµ = 0 in the limit of 2D turbulence. In this case the turbulent structures are
expanded along the direction of the magnetic �eld. The sink source terms for the SST −k−ω
turbulence model are modi�ed and then given by

Se,k =
σB2

0

ρ
αµk (2.83)

Se,ω =
σB2

0

ρ
αµω (2.84)

The value of the anisotropy variable αµ can be derived from

Dαµ
Dt
− ∂

∂xj
(νt

∂αµ
∂xj

) = Cα1(
1

3
− αµ)ω − Cα2

σB2
0

ρ
α2
µ (2.85)

where Cα1 = 0.2 and Cα2 = 1.74. The right-hand �rst term denotes a linear return-to-isotropy
term, driving a return to isotropic state (αµ = 1/3). The right-hand second term stands for
magnetic anisotropy, forcing the turbulence towards the two dimensional state (αµ = 0). Se,k
and Se,ω are added as source terms in k equation and −ω equation, respectively.
In ANSYS CFX implementation, αµ is de�ned as a user scalar variable of the generic form.
Source terms are linearized and written (in a cell P ) as:

S = SU + SPαµ (2.86)

The αµ is calculated by its transport equation in CFX. The source term for the αµ transport
equation is

Sαµ = SU + SPαµ =
1

3
Cα1ω − (Cα1ω + Cα2

σ0B
2
0

ρ
αµ)αµ, (2.87)

where Cα1 = 0.2 and Cα2 = 1.74.
The boundary conditions for αµ are:

� At Inlet and Outlet, αµ = 1/3;

� In the solution domain, αµ = 1/3;

� At walls, zero gradient of αµ
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3 Implementation of mathematical models

In this work, we choose the commercial CFD software ANSYS CFX and the "hypnos" cluster
(in HZDR) as a computing platform. CFX software is a high-performance, general purpose
�uid dynamics program that is able to be applied to solve wide-ranging �uid �ow problems.
In particular, it is convenient and �exible to modify or add transport equations by using CFX
Expression Language (CEL). Thanks to the cluster in HZDR, all the cases can be run in
parallel.

3.1 Finite Volume Method

The �nite-volume method (FVM) is widely used in Computational Fluid Dynamics (CFD),
which representing and evaluating partial di�erential equations in the form of algebraic equa-
tions. This method is conservative and applicable for general polyhedral �nite control volume
(CV). ANSYS CFX uses an element-based �nite volume method, which �rst involves dis-
cretizing the spatial domain using a mesh. Seeing �gure 3.1, the values are stored in cell
centers (black dots) and �uxes are calculated at face enters (white dots). In the �nite volume
method, volume integrals in a partial di�erential equation that contain a divergence term are
converted to surface integrals, using the divergence theorem.

P
W w e E

T

t

B

b

N

n

S

s

Fig. 3.1: Control volume de�nition

The conservation equation for the transport of a scalar φ in unsteady �ow has the general
form as:

∂ρφ

∂t︸︷︷︸
transient term

+ div(ρφu)︸ ︷︷ ︸
convection term

= div(Γ gradφ)︸ ︷︷ ︸
di�usion term

+ Sφ︸︷︷︸
source term

(3.1)

Discretization of the transient term in a �nite control volume is written as:∫
CV

∂(ρφ)

∂t
dV =

∫ t+ 1
2

∆t

t− 1
2

∆t

∂(ρφ)

∂t
dV =

(ρφ)t+
1
2

∆t − (ρφ)t−
1
2

∆t

∆t
∆V (3.2)
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where, second order backward Euler scheme is chosen and de�ned as follows:

(ρφ)t+
1
2

∆t =
3

2
(ρφ)t − 1

2
(ρφ)t−∆t,

(ρφ)t−
1
2

∆t =
3

2
(ρφ)t−∆t − 1

2
(ρφ)t−2∆t

Discretization of the convective term is:∫
CV

∂(ρuiφ)

∂xi
dV =

∮
S
ρ φu · n︸ ︷︷ ︸
convective �ux C

dS =
∑
f

Sf · (ρu)fφf (3.3)

Discretization of the di�usion term is:∫
CV

∂

∂xi
(Γ
∂φ

∂xi
)dV =

∮
S

Γ∇φ · n︸ ︷︷ ︸
di�usive �ux D

dS =
∑
f

ΓfSf · (∇φ)f (3.4)

Discretization of the source term is: ∫
CV

QdV = QP∆V (3.5)

There are normally three di�erencing schemes for the property of φ as follows:
The central di�erencing (CD) scheme is second-order accurate, but unbounded,

φf = fN/PNφP + (1− fN/PN)φN (3.6)

where, the subscript f stands for the face, fN is the distance between face f and cell centre
N , PN is the distance between cell centre P and N , and Sf is outward face vector.
The upwind di�erencing (UD) scheme is �rst-order accurate and bounded,

φf = { φP for Sf · (ρU)f ≥ 0
φN for Sf · (ρU)f < 0

(3.7)

The blending di�erencing (BD) scheme combines UD and CD in an attempt to preserve the
boundedness with reasonable accuracy,

φf = (1− β)(φf )UD + β(φf )CD (3.8)

where β represents the blending coe�cient. In ANSYS CFX, the High Resolution Scheme is
chosen to calculate convection term, di�usion term, and source term. The High Resolution
Scheme uses a special nonlinear recipe for β at each node, computed to be as close to 1 as
possible without introducing new extrema. The nodal value for β is taken to be the minimum
value of all integration point values surrounding the node and not permitted to exceed 1.
ANSYS CFX also uses a co-located (non-staggered) grid layout such that the control volumes
are identical for all transport equations to deal with Pressure Gradient term by using Rhie
and Chow Pressure-Velocity Coupling method.
In the two-phase �uid model, both of the phases must be continuous, but it is obvious that in
a dispersed phase existing in a continuous �uid, the discontinuity appears. Thus, for solving
this di�culty, and also to determine which phase is present at a particular point (function of
space and time), the phase indicator function Mk(x, t) is de�ned as:

Mk(x, t) =

{
1 if phase k is found at (x,t)
0 otherwise

(3.9)
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It follows that the ensemble averaged phase indication function, summed over all phases, must
equal one. Therefore, the volume fraction of each phase can be de�ned by

αk = lim
n→∞

1

Np

Np∑
n=1

(Mk)n (3.10)

where Np is the number of experiments.
Then the weighted-averaging procedures follows that:

� Phase-weighted density 〈ρ〉 = Mkρ

MK
= Mkρ

αk

� Phase-weighted velocity 〈Uk,i〉 = MkρUi
MKρ

= MkρUi
αk〈ρk〉

� Phase-weighted electrical potential 〈σ〉 = Mkσ
MK

= Mkσ
αk

The above de�nitions show that the volume fraction for dispersed phase (particles, bubbles,
droplets...) is obtained by statistical probability and the interface structure is not available
after averaging. Averaging also introduces unknown correlations, which must be modeled by
phase interaction models, for example, drag force model, lift force model, etc. Moreover, the
forces (Lorentz force, drag force, etc.) acting on �nite control volume are the results from
phase-weighted averaging, then the physical modeling error and the spatial discretization error
are unavoidable. Therefore, two-phase MHD �ow must be validated before making further
simulations, which a non-trival bubble-driven MHD �ow was investigated (see Chapter 5 in
detail).
Base on the Chapter 2, the mathematical models chosen in this work are given in Table 3.1.

Tab. 3.1: Implementation of mathematical models in CFX

Single-phase in
C.C. (Chapter
IV)

Bubbly �ow
(Chapter V)

Two-phase in
C.C. (Chapter
VI)

Turbulence model SST − k − ω SST − k − ω SST − k − ω
MHD model electrical poten-

tial method
electrical poten-
tial method

electrical poten-
tial method

Modi�cation of mag-
netic �eld on turbu-
lence

Ola Widlund αµ
model

Ola Widlund αµ
model

Ola Widlund αµ
model

Particle model · · · Homogeneous
particle model

Inhomogeneous
MUSIG model

Drag force · · · Ishii-Zuber model Ishii-Zuber model

Lift force · · · Tomiyama lift
force model

Tomiyama lift
force model

Turbulent dispersion
model

· · · Lopez de Berto-
dano model

Lopez de Berto-
dano model

Wall lubrication
force model

· · · [1] model [1] model

Bubble induced tur-
bulent model

· · · [73] model [73] model
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Fig. 3.2: Con�guration of test case

3.2 Test of MHD model in CFX

In order to validate the MHD model, one simple case was carried out and implemented
in ANSYS CFX. Assuming an electrically conducting �uid �ows through a pipe with an
inhomogeneous velocity under the consideration of a transverse magnetic �eld. Fig. 3.2 shows
the con�guration, where the radius of pipe is R = 45mm and the height is H = 220mm.
The velocity can be de�ned by:

U =
〈
0, 0, U0(1− r2/R2)

〉
(3.11)

and the magnetic �eld is
B = 〈0, B0, 0〉 (3.12)

In cylindrical coordinate, the variables of velocity and magnetic �eld were transformed as
follows:

U =
〈
0, 0, U0(1− r2/R2)

〉
(3.13)

B = 〈B0 sin θ,B0 cos θ, 0〉 (3.14)

Electrical current can be taken in the form of

J = σ (−∇ϕ+ U×B) (3.15)

Therefore, we obtain an electrical potential Laplace equation owing to the source-free property
of the electrical current.

∆σϕ = ∇σ (U×B) (3.16)

For insulating wall, Jn = 0, which means the electrical current normal to the wall is zero.
Therefore, analytical solution of Lorentz force can be derived as follows:

Fx = Fy = 0, Fz =
σU0B

2
0

4

(
r2

R2
− 1

)
cos θ (3.17)

Calculation was performed by CFX with MHD model. The properties of liquid are listed in
Table 3.2.
According to the above parameters, the Reynolds number is 100, and the Hartmann numbers
are 30 and 60. Consequently the interaction parameter, N = Ha2/Re, are 9 and 36, respec-
tively. It makes clear that the �ow in this case is in the laminar regime.
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Tab. 3.2: Properties of liquid and geometry

Characteristic length scale L = 2R = 0.09m
Characteristic velocity U0 = 1m · s−1

Electrical conductivity σ, is 1 S ·m−1

Density 1000 kg ·m−3

Dynamic viscosity 0.9 kg ·m−1 · s−1

Magnetic �ux B 10 T and 20 T
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Fig. 3.3: Lorentz force density pro�le along X-axial at half height

Fig. 3.4: Distribution of electrical current in a cross-section at half height, (left: Ha=30, right: Ha=60)
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Fig. 3.5: Distribution of Lorentz force in a cross-section at half height, Ha=60

Figure 3.3 shows the Lorentz force pro�le along x-axial at half height. The numerical result
is in very good agreement with the analytical solution at di�erent Hartmann numbers. The
distributions of electrical current and Lorentz force in a cross-section at a half height are
shown in �gure 3.4 and 3.5, receptively. The distribution of electrical current is comparable
to Davidson's solution [14]. By taking this simple test, the MHD model in CFX was testi�ed
initially. It turns out that the MHD model in CFX is valid.

3.3 Grid sensitivity

As mentioned above, the Hartmann layer is an important property of MHD �ows. [6] studied
a MHD duct �ow with di�erent mesh near the wall and concluded that numerical solutions
are consistent with theoretical predictions provided a su�cient resolution is placed in the
Hartmann layers attached to the walls. In order to obtain accuracy, �ner grids are required.
However, �ner grid will result with increase in time computing. Thus, optimization of grid
size is required to provide an acceptable solution accuracy.
To give a meaningful CFD prediction, numerical uncertainty should �rst be estimated, espe-
cially on the grid sensitivity before making further studies. In this section we discuss numerical
results for a MHD duct �ow problem which exhibit typical MHD boundary layers: Hartmann
layers with the thickness O(Ha−1) at the walls perpendicular to the magnetic �eld, and side
layers with the thickness O(Ha−1/2) at the parallel walls. Classic �M-shaped� velocity pro�le
is presented caused by a uniform magnetic �eld.

3.3.1 Con�guration of an MHD duct �ow

In this grid sensitivity study, a nonconducting rectangular duct is considered with an aspect
ratio Lb/La = 1 (here, Lb is the duct half-height in the magnetic �eld direction and La is the
duct half-width perpendicular to the magnetic �eld), and the ratio of duct length to width is
30. Uniform magnetic �eld is applied in the direction of height. Reynolds number, Hartmann
number and interaction parameter are 90000, 90 and 0.09, namely. The SST − k − ω model
is adopted to calculate the velocity �eld.

3.3.2 Results and discussion

The distribution of electric current at a cross-section is shown in �gure 3.6. With electrically
insulating wall, the electric currents separate at y = 0 and make closure near the wall.
Obviously the electric current is strongly intensi�ed in the region of walls perpendicular to
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Fig. 3.6: Current distribution at a cross section, electrically insulating wall

the magnetic �eld. To make a grid sensitivity analysis, y+ is identi�ed to characterize the
grid resolution. Figure 3.7 shows the velocity pro�les over the center line perpendicular and
parallel to the applied magnetic �eld, respectively. It was found that the numerical solutions
varies with y+. The case with y+ = 1 is closely approaching to that with y+ = 0.01. For the
other cases, the accuracy is not guaranteed. The results indicate that y+ must be equal to or
less than unity in order to remain accuracy when we choose turbulence models to deal with
turbulent MHD �ow.
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(a) along x-axis

(b) along y-axis

Fig. 3.7: Velocity pro�les at center lines at half height
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4 Study of the modi�ed turbulence model

in a continuous casting slab liquid metal

mold

As a �rst step, we want to focus on the impact of a DC magnetic �eld on the mean �ow
pattern and the large energy-carrying structures. Therefore, the URANS-SST k−ω turbulence
model [56] is used within this chapter to calculate the Reynolds stress. In this chapter, �rstly
we verify the modi�ed turbulence model (Ola Widlund αµ model) in a continuous casting slab
liquid metal mold (mini-LIMMCAST) by comparing with experimental results. Then further
investigation on the e�ect of external static magnetic �eld on the �ow pattern in the mold
was carried out with di�erent electrical wall boundary conditions.

4.1 Computational conditions

The geometry of the considered case is on the basis of the Mini-LIMMCAST facility at HZDR
(see chapter introduction). Figure 4.1 shows the full scale computational domain, which is
divided into ∼ 1.2 million hybrid cells. The monitoring points of instantaneous velocity are
plotted in �gure 4.2. An external static DC magnetic �eld is applied perpendicular to the
wide face, where the magnet pole faces are positioned in the jet zone. As shown in �gure 4.3,
the distribution of the imposed magnetic �ux is almost homogeneous in x direction (mold
width from −0.07 m to 0.07 m). The maximum of magnetic �ux is located in the jet zone
and decayed away from magnet pole face.

 

Fig. 4.1: Computational domain and mesh based on the geometry of the mini-LIMMCAST facility

The inlet velocity and turbulence parameters in the solution domain are obtained from the
velocity pro�le which is calculated independently from a previous nozzle �ow simulation (�ow
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rate ∼0.11 L ·m−1). At the free surface, a free-slip wall is speci�ed for simplicity and no-slip
wall is assumed for all other walls. At the exit of the domain, the static pressure is zero, and
normal gradients of all variables are set to zero.
The boundary condition for the electric potential ϕ is given by:

∂ϕ

∂n
= (U×B)b · n (4.1)

where the subscript b stands for the boundary and n is the unit vector normal to the boundary.
For an electrically insulating boundary, it gives ϕ = ϕ0, which means that the induced current
normal to the wall is zero. For an electrically conducting boundary, the electric current is
conserved through the interface between �uid domain and solid domain (shell) in the way
that ∂ϕ

∂n = ∂ϕb
∂n .

Even though the thickness of the solidi�ed shell grows along the casting direction in the
continuous casting mold, for simplicity, a uniform thickness of solidi�ed shell is assumed
for numerical simulations because the maximum magnetic �ux is located in the jet area,
the thickness of shell is �xed and the wall conductance ratio only varies with the electrical
conductivity of shell.
In the case of N � 1, there is only one possible type of boundary layer, the Hartmann
layer, in which the electromagnetic and viscous terms are much larger than the inertial terms.
Therefore, it follows δ = O(Ha−1), where δ is a non-dimensional boundary-layer thickness.
For example, the Hartmann layer thickness is ∼ 0.042 mm when the reference Hartmann
number is 417 (B0 = 0.31 T ). Moreover, it is rather di�cult to de�ne a universal Reynolds
number in a continuous casting slab mold. Here, we de�ne three typical Reynolds numbers
according to the �ow characteristics as follows:

� In the SEN, the characteristic velocity is 1.4 m/s (mean velocity at the inlet), the
length scale is 0.01 m, the Reynolds number is 41222, and the boundary layer thickness
is approximately equal to 0.25 mm;

� In the jet area, characteristic velocity is 0.4 m/s (bulk velocity), the length scale is 0.01
m, the Reynolds number is 20611, and the boundary layer thickness is approximately
equal to 0.61 mm;

� In the computation domain, the characteristic velocity is 0.024 m/s (casting speed), the
length scale is 0.177 m (cube root of domain volume), the Reynolds number is 12508,
and the boundary layer thickness is approximately equal to 5.23 mm;

In our calculations, the thickness of Hartmann layer is much smaller than the boundary layer
thickness. Therefore, the Hartmann layer is considered by �ning the mesh near the wide and
narrow faces in the mold (see Fig. 4.1).

4.2 Results

4.2.1 Comparison of the Time-Averaged Flow

In a �rst step, we examine the spatial structure of the time-averaged velocity �eld. A speci�c
processing and adaptation of the numerical data was necessary to allow for a suitable compar-
ison between the numerical results and corresponding experiments where a line array of ten
ultrasonic transducers was used with a distance of 10 mm between two adjacent sensors. As
can be see in �gure 4.4, the dark rectangle is the mapping area of UDV. The two-dimensional
contour plots of the velocity �eld in a half mold as shown in the �gures 4.5 through 4.9 for the
x-z plane at y = 0 have been obtained by an interpolation process based on the data along
the ten measuring lines.
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Fig. 4.2: Monitoring positions and spatial-averaging regions in which instantaneous vertical velocities are eval-
uated in the midplane between widefaces. (Dashed lines are boundaries of the cylindrical UDV measurement
regions, x = 0.02 m and x = 0.045 m): p1 (0.0245 m, 0 m, 0.25 m), p2 (0.0245 m, 0 m, 0.23 m), p3 (0.0245
m, 0 m, 0.21 m)

Fig. 4.3: Plots of the imposed external static magnetic �elds for calculations in the mold, B0 = 0.31 T
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Fig. 4.4: Mapping area of UDV and position of transducers in mini-LIMMCAST mold, (a) mapping area from
z = 0.18 m to z = 0.27 m

(a) experimental result (b) numerical simulation

Fig. 4.5: Contour plots of the time-averaged horizontal velocity in the midplane parallel to the mold wide face
without any applied magnetic �eld
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(a) experimental result (b) numerical simulations using a mod-
i�ed turbulence model

(c) numerical simulations using SST −
k − ω without modi�cation

Fig. 4.6: Contour plots of the time-averaged horizontal velocity in the midplane parallel to the mold wide face
with electrically insulating mold walls, B0 = 0.31 T (within the dotted lines)
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(a) experimental result (b) numerical simulations using a mod-
i�ed turbulence model

(c) numerical simulations using SST −
k − ω without modi�cation

Fig. 4.7: Contour plots of the time-averaged horizontal velocity in the midplane parallel to the mold wide face
with electrically conducting mold walls, B0 = 0.31 T (within the dotted lines)

(a) electrically insulating wall (b) electrically conducting wall

Fig. 4.8: Contour plots of the time-averaged αµ in the midplane parallel to the mold wide face, B0 = 0.31 T
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Fig. 4.9: Pro�les of the time-averaged vertical velocity along a vertical line in the midplane at x = 0.02 m:
(a) B0 = 0; (b) B0 = 0.31 T , insulating mold; and (c) B0 = 0.31 T , conducting mold (solid line: numerical
results; points: experimental data �lled in the values of the minimum and maximum)

Fig. 4.10: Pro�les of the time-averaged vertical velocity along a vertical line in the midplane at x = 0.045 m:
(a) B0 = 0 T ; (b) B0 = 0.31 T , insulating mold; and (c) B0 = 0.31 T , conducting mold (solid line: numerical
results; points: experimental data �lled in the values of the minimum and maximum)
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As a consequence, some artifacts occur in the �ow pattern, typically with respect to the im-
perfectness of the speci�c measuring con�guration. In particular, the measured �ow velocity
near the SEN port is smaller than the numerical results for all the cases. Contour plots of the
horizontal velocity component are presented for three di�erent situations: the discharged jet
without magnetic �eld (�gures 4.5), the application of a magnetic �eld of 0.31 T within an
electrically insulating mold (�gure 4.6), and the magnetic �eld of the same strength in an elec-
trically conducting mold (�gure 4.7). The �gures show a good agreement between numerical
simulation and �ow measurements except that the numerical �ow velocity is overestimated
compared with the experimental data. This may be cause by the divergence of the ultrasound
transmitting in liquid metal. The angle of the jet, which becomes �atter under the magnetic
�eld in�uence, matches well for all the cases. Strong recirculation zones appear above the jet
region in an electrically conducting mold (�gure 4.7), whereas the simulations give a better
prediction if the anisotropy of the MHD turbulence is incorporated into the model. Moreover,
the electrically conducting wall promotes a braking of the velocity inside the jet, whereas the
weakening of the �ow becomes more pronounced in the numerical results. The corresponding
distribution of the time-averaged value αµ in the midplane across the wide face is contoured
in �gure 4.8. Obviously the change of αµ is con�ned to the jet area for both electrically
insulating wall and electrically conducting wall.
To make further comparison, corresponding pro�les of the vertical velocity component at
x = 0.02 m and x = 0.0455 m are shown in �gure 4.9 and 4.10, respectively. In general,
a comparison of the calculated results with the UDV �ow measurements yields a su�ciently
good coincidence. However, at x = 0.02 m (closer to SEN) the numerical results are larger
than the experimental data in the jet area. The blue fringes around the curves represent the
standard deviation of the time-averaged velocity values. It is interesting to note that �uctu-
ations of the �ow �eld in the lower part of the mold seem to be signi�cantly tranquilized in
case of an electrically conducting wall. Another analysis is especially focused on the observed
variations of the velocity �elds appearing under di�erent electrical boundary conditions within
the mold.

4.2.2 In�uence of Magnetic Field Intensity

The di�erences of the �ow pattern in the mold occurring under various magnetic �eld con-
ditions become apparent by drawing the time-averaged velocity streamlines in �gures 4.11
and 4.13. As shown in �gure 4.11(a) for the absence of any magnetic �eld, the liquid metal
jet discharged from the SEN ports impinges on the narrow faces and splits into upward and
downward �ows forming two recirculation regions: an upper vortex between jet and menis-
cus and a lower-recirculation region, which generates a reversed �ow toward the SEN around
the mold center line. A rising magnetic �ux for the electrically insulating wall causes an
increasing deformation of the lower recirculation zone (�gures 4.11(b) through 4.11(d)). In
case of the maximum magnetic �eld, the typical double-roll �ow pattern is replaced by a new
�ow structure. The original lower recirculation zone is shifted downward, and extra smaller
vortices appear just below the SEN at higher magnetic �eld strengths. Figure 4.12 presents
horizontal pro�les of the vertical velocity component below the magnetic �eld position for the
nonconducting case. The imposition of the magnetic �eld reduces the vertical velocity at the
mold center. Further increase of the �eld strength leads to an inversion of the �ow direction
corresponding to the formation of the new vortex pair as shown in �gure 4.11(d).
Signi�cant changes of the �ow pattern from the magnetic �eld impact can also be observed
in �gure 4.13, where the case of the electrically conducting wall is displayed. The size of the
recirculating rolls is signi�cantly compressed to regions close to the SEN ports. The velocity
�eld below the SEN tends toward a plug �ow at the highest magnetic �eld strength. It is
worth noting that the magnetic �eld considerably changes the �ow at the free surface. A small
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(a) B0 = 0 (b) B0 = 0.11 T

(c) B0 = 0.21 T (d) B0 = 0.31 T

Fig. 4.11: Streamlines of the time-averaged velocity in the midplane parallel to the mold wide face with elec-
trically insulating walls obtained from numerical simulations using a modi�ed turbulence model
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Fig. 4.12: Pro�les of the time-averaged vertical velocity at di�erent magnetic �eld intensities in an electrically
insulating mold; data were recorded along a horizontal line in the midplane parallel to the mold wide face at
z = 0.018 m

counter-rotating vortex appears close to the SEN at moderate �eld intensities (�gure 4.13(b)).
A subsequent increase of the �eld strength causes a reversal of the �ow direction near the free
surface by an expansion of this vortex over the entire mold cross section.
The three-dimensional distributions of the induced electrical currents are plotted in �gure 4.14
for both situations of an insulating and a conducting mold wall at a magnetic �eld strength
of 0.31 T. If the wall is nonconducting, then the closure of the current loops occurs in a large
volume between the discharging jet zones at both sides of the nozzle (�gure 4.14(a)). Oth-
erwise, the main part of electric currents in �gure 4.14(b) runs through the conducting mold
walls. The closure of the induced currents is basically determined by the electrical resistance
along the current path. In case of the nonconducting wall, the electrical currents may close
through the Hartmann layers, too. The electrical resistance of the Hartmann layers, however,
is determined by their thickness δ, which scales with Ha−1. The Hartmann layer thickness
becomes quite small at the maximum magnetic �eld intensities considered in this work (0.04
mm at Ha = 417). This e�ect reduces the e�ective cross section of the back circuit of the
electrical current and causes a relative large electrical resistance. Obviously, in the case con-
sidered in �gure 4.14(a), the closure of the induced currents becomes more favorable in the
bulk �uid between the two jets.
A more detailed view of the electrical current densities provides �gure 4.15 showing a 2-D
distribution in a y-z cross section at x = 0.0245 m. In the case of the insulating wall (�g-
ure 4.15(a)), the induced currents pass through the center of the jet and distribute over a
wide region above the jet. A minor part of the current closes through the Hartmann layers,
causing a higher density of electrical current in the vicinity of the wall. In the other case,
the current �ows directly through the conducting mold wall (�gure 4.15(b)). The resulting
current loops are considerably smaller and are almost restricted to the zone around the jet.
As a consequence, the Lorentz force should exhibit a higher concentration there. Figure 4.16
displays the distribution of the corresponding electric potential, which widely spreads over
the upper part of the mold in case of a nonconducting mold (�gure 4.16(a)), whereas a clear
restriction to the jet zone becomes obvious for electrically conducting walls (�gure 4.16(b)).
As is well-known, if the �ow is irrotational and the line element is perpendicular to a stream-
line, the velocity potential is constant along lines perpendicular to streamlines, so that the
velocity potential decreases in the direction of �ow just as the electrical potential decreases
in the direction in which the current �ows. As a consequence, the distribution of electrical
potential is similar to the streamlines of the �uid �ow.
The intensity and the path of the induced electrical currents have a distinct in�uence on the
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(a) B0 = 0 (b) B0 = 0.11 T

(c) B0 = 0.21 T (d) B0 = 0.31 T

Fig. 4.13: Streamlines of the time-averaged velocity in the midplane parallel to the mold wide face with elec-
trically conducting walls obtained from numerical simulations using a modi�ed turbulence model except for
(c) where the common RANS model was used
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(a) insulating mold, CW =
0

(b) conducting mold, CW =
0.133

Fig. 4.14: 3-D distribution of the induced electrical currents around the jets discharging from the SEN, EMBr
ruler (B0 = 0.31 T )

Fig. 4.15: 2D distribution of the induced electrical currents in a y − z cross-section at x = 0.0245 m, EMBr
ruler (B0 = 0.31 T ): (a) insulating mold, CW = 0 and (b) conducting mold, CW = 0.133. Dashed line stands
for the interface between the mold and the inserted brass plates. The jet position is indicated by the gray
insert represented by a velocity isosurface at 0.4 m/s
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Fig. 4.16: Distribution of the electrical potential in the midplane parallel to the wide face, EMBr ruler (B0 =
0.31 T ): (a) insulating mold, CW = 0 and (b) conducting mold, CW = 0.133

resulting Lorentz force, which is compared in �gures 4.17 and 4.18 for both the situation of
the insulating and electrically conducting boundary conditions. The two dashed lines denote
the magnetic pole faces. The di�erences seem to be small in the midsection of the mold, but
the deviations in regions near the wall are remarkable. Figures 4.17(b) and 4.18(b) display
the situation inside the Hartmann layers wherein the Lorentz force is aligned with the �ow
direction. The e�ect of the electromagnetic force remains focused on the �uid region between
the pole faces of the magnetic �eld for the conducting mold. The nonconducting case reveals
a perceptible force action also in the upper part of the mold provoked by the closure of the
induced currents in this region. Note that the magnetic �eld decays outside the magnet pole
face region (see Fig. 4.3), but it is still strong enough in the �uid �eld regions to cause relevant
Lorentz forces there.

Fig. 4.17: Distribution of the Lorentz force for the case of an electrically insulating mold wall, B0 = 0.31 T :
(a) in the midplane, y = 0 and (b) near the wall, y = 0.0174 m

4.2.3 Fluctuations of the Mold Flow

The following section is devoted to the properties of the transient �ow. Time series of the
horizontal velocity obtained both by numerical simulations and �ow measurements at a po-
sition inside the jet (x = 0.0245 m, y = 0, and z = 0.23 m) are displayed in �gure 4.19.
The experimental data were recorded at a scan rate of 90 Hz. For a clearer depiction, all the
results shown here were �ltered with a respective low-pass �lter. The negative values of the
velocity stand for the �ow direction toward the narrow face. The time series in �gure 4.19
indicate a turbulent �ow, whereas the amplitudes of the velocity �uctuations found in the ex-
periment are well recovered by the numerical simulations after 0.2s FFT �lter. It is apparent
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Fig. 4.18: Distribution of the Lorentz force for the case of an electrically conducting mold wall, B0 = 0.31 T :
(a) in the midplane, y = 0 and (b) near the wall, y = 0.0174 m

that turbulent �uctuations (high frequency) was damped out owing to URANS turbulence
model, because SST − k−ω turbulence model models the turbulence at all scales. Therefore
SST − k − ω turbulence model fails to capture turbulence with high frequency, however it is
possible to obtain �ow �uctuations with lower frequency.
Corresponding velocity time series for a magnetic �eld of 0.31 T in the electrically insulating
mold are presented in �gure 4.20. Obviously, under such conditions, the magnetic �eld has
not the ability to suppress the turbulent �ow. Distinct velocity �uctuations survive, and
especially the low-frequency oscillations become even stronger (note the di�erent scaling of
the velocity scale). This tendency was also predicted by our numerical calculations regardless
whether the anisotropy variable αµ has been included into the turbulence model. The fur-
ther comparison is shown in �gure 4.21. It is apparent from �gure 4.21 that the calculation
with turbulence modi�cation gives a better prediction in both amplitude and frequency. The
tendency towards oscillation is caused by electromagnetic damping. When the EMBr system
switches on, the typical double-roll �ow pattern is changed. In the lower recirculation region,
the large eddies are squeezed and become smaller by the electromagnetic damping so that the
lower eddies detached from the narrow faces and the bottom. The evolution of two quasi-free
eddies has a tendency to be unsteady and deformed, leading to an asymmetric �ow.
Figure 4.22 shows corresponding snapshots of the two-dimensional �ow �eld at y = 0. The
time series presented previously were recorded at the location which is marked by the red
spot. It becomes obvious that the strong velocity �uctuations observed in �gure 4.20 are
related to remarkable oscillations of the jet position. The same phenomenon has already
been reported in the preceding experimental study [83]. Moreover, the numerical simulations
show a reciprocal de�ection of both jets discharging at the left and right side of the nozzle,
respectively. This has been proven by further �ow measurements using two ultrasonic sensors
adjusted at the opposite sides of the narrow mold face. This setup allows for a simultaneous
acquisition of the horizontal velocity pro�les for both jets at a height of z = 0.225 m.
The situation in the electrically conducting mold with a �eld strength of 0.31 T is shown
in �gure 4.23. Three di�erent positions are considered in this �gure: above the discharged
jet (�gure 4.23(a)), within the jet (�gure 4.23(b)), and below the jet (�gure 4.23(c)). The
�ow measurements reveal remaining velocity �uctuations at all three locations that are the
strongest inside the jet. It becomes evident that this phenomenon cannot be captured by
the numerical simulations as long as the anisotropy of the MHD turbulence is not considered
in the turbulence model. The conventional model without anisotropy factor αµ spuriously
predicts an almost complete suppression of the turbulent �ow. By contrast, the turbulent
velocity �uctuations reproduced by means of the MHD turbulence model are of the same
magnitude as found in the experiments. The positive horizontal velocities observed above the
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Fig. 4.19: Time series of the instantaneous horizontal velocity without magnetic �eld at the position P2

Fig. 4.20: Time series of the instantaneous horizontal velocity for B0 = 0.31 T in the electrically insulating
mold at the position P2
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Fig. 4.21: FFT of the instantaneous horizontal velocity for B0 = 0.31 T in the electrically insulating mold at
the position P2

jet (�gure 4.23(a)) indicate a return �ow toward the SEN. The horizontal �ow at the position
below the jet (�gure 4.23(c)) �uctuates only slightly around zero, con�rming a calmed plug-
like �ow pattern in the lower mold region. The time series recorded in the vicinity of the jet
show remarkable oscillations with a dominating frequency (�gure 4.23(b)).
An explanation can be found by analyzing the succession of the drawings of the two-dimensional
�ow pattern plotted in �gure 4.24. In comparison to the �ow between the insulating walls
as presented in �gure 4.22, the jet position remains almost steady; however, a sequence of
smaller vortices moves along within the jet toward the narrow face where they move along the
side walls downward. Moreover, vortical structures become visible within the jet; however,
the characteristic frequencies seem to be lower as found by the numerical calculations. A po-
tential reason is the limitation of the current measuring technique with respect to the spatial
resolution of the ultrasonic sensor. Future measurements might overcome this handicap by
using ultrasonic sensor arrays or local conductivity anemometers.

4.2.4 In�uence of Wall Conductance Ratio

In a real casting process the solidi�ed shell plays the role of a conducting wall. The electrical
wall conductance ratio was identi�ed as an important parameter, which has a serious in�uence
on the mold �ow just as it is exposed to an external magnetic �eld. The wall conductance
ratio increases with growing thickness of the shell. The streamlines of the time-averaged
velocity in the midplane parallel to the wide face in the mold varying with the electrical
wall conductance ratio under the in�uence of the EMBr ruler are shown in �gure 4.25. It
turns out that the solidifying shell has a considerable impact on the magnetic damping of the
�ow. The size of the recirculating eddies was compressed to the jet zone and the e�ciency of
the magnetic damping e�ect was improved with increasing electrical wall conductance ratio.
The di�erences of the �ow pattern in the mold become signi�cant when the electrical wall
conductance ratio speci�es between CW = 0.03 and CW = 0.08 (Fig. 4.25(d) and 4.25(e)).
Moreover, the �ow pattern tends to behave like the case with electrically insulating wall when
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.22: Snapshots of velocity vector �eld in the midplane of the mold for the case of an electrically insulating
wall (B0 = 0.31 T )
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Fig. 4.23: Time series of the instantaneous horizontal velocity for B0 = 0.31 T in the electrically conducting
mold at the position P1 (top), P2 (middle) and P3 (bottom)

the electrical wall conductance ratio is less than CW = 0.01.
Fig. 4.26 shows the time-averaged shear velocity pro�le along the x-axis at y = 0 on the free
surface with variation of the electrical wall conductance ratio. In comparison to the case with
electrically insulating wall (CW = 0), the shear velocity is positive when CW ≥ 0.01 in the
vicinity of the SEN.
From the above numerical analysis, we can draw a conclusion that the �ow pattern in the mold
is closely dependent on some crucial non-dimensional parameters, for example, the Hartmann
number, the wall conductance ratio, the Reynolds number, etc. Therefore we propose a non-
dimensional parameter to design the �ow pattern in the mold under the in�uence of EMBr.
The new non-dimensional parameter Mc is de�ned as follows:

Mc = C
1/2
W

Ha2

Re
(4.2)

To study the e�ect ofMc on the �ow pattern, two sets of numerical simulations are performed
varying the magnetic �ux and the electrical conductivity of the wall. The parameters are
listed in tables 4.1 and 4.2. As is shown in �gure 4.27, surprisingly the same �ow patterns
are obtained at a �xed value of Mc = 2.0. Decreasing Mc to 0.63, the �ow pattern di�ers
signi�cantly from the case with Mc = 2.0. In addition, we also obtain the same �ow pattern
on the precondition that the non-dimensional parameter Mc is �xed. It indicates that the
new parameter we proposed has the potential to design and optimize the �ow pattern in the
mold under certain circumstance.

4.3 Summary and discussion

The main intentions for using an electromagnetic brake in slab continuous casting are the
deceleration of the steel jet discharging from the SEN, the achievement of a uniform and
stable �ow pattern in the mold, a lowering of the surface velocity, and a reduction of turbulent
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.24: Snapshots of velocity vector �eld in the midplane of the mold for the case of an electrically conducting
wall, B0 = 0.31 T

Tab. 4.1: Operating parameters with Mc = 2.0

σ(S ·m−1) σw(S ·m−1) B0(T ) Ha

1.0× 108 0.22 300
5.2× 107 0.27 367

3.27× 106 3.0× 107 0.31 422
1.0× 107 0.41 556
5.2× 106 0.48 654
3.0× 106 0.55 749
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(a) Cw=0.433 (b) Cw=0.266 (c) Cw=0.133

(d) Cw=0.08 (e) Cw=0.03 (f) Cw=0.01

(g) Cw=10−5 (h) Cw=10−8 (i) Cw = 10−11

Fig. 4.25: Streamlines of the time-averaged velocity in the midplane parallel to the mold wide face with di�erent
electrical conductivities of the wall (B0 = 0.31 T )

Tab. 4.2: Operating parameters with Mc = 0.63

σ(S ·m−1) σw(S ·m−1) B0(T ) Ha

1.0× 107 0.22 300
5.2× 106 0.27 367

3.27× 106 3.0× 106 0.31 422
1.0× 106 0.41 556
5.2× 105 0.48 654
3.0× 105 0.55 749
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Fig. 4.26: Shear velocity along the x-axis at y = 0 on the free surface with di�erent wall conductance ratio
(B0 = 0.31 T )

(a) Mc = 2.0 (b) Mc = 0.63

Fig. 4.27: Streamlines of the time-averaged horizontal velocity in the midplane parallel to the mold wide face
varying with Mc
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velocity �uctuations. The interaction between the applied magnetic �eld and the highly
turbulent �ow is very complex, and proper predictions concerning the e�ciency of the EMBr
are di�cult. The numerical and experimental activities presented here are concerned with the
melt �ow in a continuous-casting mold under the impact of an EMBr, which covers the entire
mold width. The e�ect of the DC magnetic �eld on the �ow structure became evident both
in the numerical simulations and the model experiments. Moreover, it was demonstrated that
the electrical conductivity of the inner mold walls plays an important role. Modi�cations of
the wall conductivity determine the closure of the induced electrical currents and the resulting
Lorentz force. With magnetic �eld, the exit angle of the jet discharging from the SEN becomes
�atter, which means that the penetration depth of the discharging melt �ow into the lower
part of the mold is reduced in the MHD case.
The �ow pattern in the mold is signi�cantly modi�ed by the magnetic �eld, i.e., the typical

double-roll structure is considerably deformed in the situation of an electrically conducting
mold or even replaced by a multilayer vortex structure in a nonconducting mold. An inversion
of the �ow direction at the free surface was observed in the conducting mold.
An important issue is the magnetic damping of transient, turbulent �ows. In the ex-

periments performed within this study we did not observe a uniform damping e�ect of the
magnetic �eld, which means that the resulting properties of both the mean �ow and the
turbulent oscillations depend signi�cantly on the location of the observation point and the
electrical boundary conditions. In particular, the application of the DC magnetic �eld may
cause an ampli�cation of velocity �uctuations. This e�ect becomes especially pronounced
in case of a nonconducting mold wall resulting in a highly transient and asymmetric �ow
pattern. The strong velocity perturbations are associated with distinct �uctuations of the jet
angle, whereas the jet oscillations on both sides of the SEN are almost opposite in phase. The
situation in an electrically conducting mold is characterized by a comparatively stable �ow
without remarkable perturbations of the jet position. A sequence of vortices is formed inside
the jet and conveyed toward the narrow face.
The application of a DC magnetic �eld on the �ow of any electrically �uid exerts an elec-

tromagnetic damping e�ect. A main feature of the Joule dissipation is the anisotropy, which
produces a redistribution of the turbulent energy by a selective damping of turbulent struc-
tures depending on their spatial alignment. As a consequence, velocity di�erences along the
magnetic �eld direction will be eliminated. This mechanism may act as a local source of mo-
mentum, vorticity, and kinetic energy [76, 14], and it is not covered by conventional turbulence
models.
The following requirements have to be taken into account for an adequate numerical simu-

lation of the magnetic �eld e�ect on the steel �ow in a continuous casting mold:

1. It must be guaranteed that the mesh size of the numerical grid resolves the Hartmann
boundary layers of thickness δ = O(Ha−1). An improper handling of the boundary
layers leads to wrong predictions of the circuits of the induced electrical currents in the
melt and, consequently, to an incorrect Lorentz force.

2. The electrical conductivity of the mold wall or the solidi�ed shell, respectively, has
a large impact on the induced currents. An accurate consideration of the electrical
boundary conditions is necessary to calculate the accurate Lorentz force.

3. The speci�c properties of the MHD turbulence have to be taken into consideration by
an appropriate turbulence model. Such a model must contain respective information
about the dimensionality of the turbulence and the energy distribution in the spectral
space.

4. The wall conductance ratio plays a signi�cant role for the �ow structure. The new non-
dimensional parameter we proposed has the potential capability to design and optimize
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the �ow structure in a continuous casting mold subject to an EMBr.

Within this chapter, we followed the concept suggested by Widlund et al [89] to describe the
anisotropic character of the MHD turbulence by a scalar dimensionality anisotropy parameter
αµ. The respective calculations delivered better predictions compared to the corresponding ex-
perimental results than comparative simulations based on the conventional turbulence models.
Nevertheless, subsequent improvements of the model are necessary considering an extension
to include main shear, strain, and nonlinear e�ects. The transport equation (2.85) for the
development of αµ is currently based on phenomenological reasoning [89]. However, the data
available so far from DNS or experimental investigations do not support a serious calibration
of the model. This handicap also underlines the necessity of future experimental activities
using model experiments, in particular measurements of the velocity �eld and corresponding
turbulent �uctuations in the mold, to collect a relevant database for the validation of the
numerical models.
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5 Study of a bubble-driven �ow under the

in�uence of a DC magnetic �eld

An appropriate two-phase model combined with magneto-hydrodynamic equations is indis-
pensable to begin with investigating the e�ect of an EMBr on the gas-melt two-phase �ow in
the continuous casting process. The non-isotropic nature of MHD turbulence for single-phase
�ow has been implemented successfully by speci�c modi�cations of the turbulence model in
chapter 3. In this chapter, the calculations were performed by means of the commercial
software package CFX using the Euler-Euler multiphase approach and the URANS-SST tur-
bulence model. The numerical models are validated with recent nontrival bubble-driven �ow
experiments.
The scope of the present chapter is concerned with the same con�guration as investigated ex-
perimentally by [95] with its surprising observation of some magnetically enhanced oscillating
�ow structures. All parameters and the geometry of the problem have been chosen according
to the reported experimental conditions. The motivations are to verify the modi�ed turbu-
lence model in investigating non-trivial phenomena under the in�uence of a longitudinal and a
transverse DC magnetic �eld and to reproduce the experimentally observed magnetic �eld ef-
fects. As the Euler-Euler approach is adopted, the values (current density,Lorentz force, drag
force, etc.) acting on �nite control volume are the results from phase-weighted averaging, the
interface between gas dispersed phase and liquid continua phase can not be tackled, then the
physical modeling error and the spatial discretization error are unavoidable. Therefore it is
indispensable to make a validation of two-phase model, in particular, with the application of
magnetic �eld.

5.1 Computational domain and boundary conditions

The problem under consideration is shown in �gure 5.1. Gas bubbles are blown into a pool
with a liquid metal being at rest without gas �ow. The gas injection is realized through a
single ori�ce located at the centre of the container bottom. The �uid vessel is situated within
a homogeneous DC magnetic �eld, which can be aligned in either vertical (longitudinal) or
horizontal (transverse) direction. The calculations were performed using the same parameters
and dimensions as stated in the respective experimental studies by [94, 95]. The authors in-
vestigated the bubble-driven �ow inside a cylinder with electrically insulating walls. Through
a single nozzle at the container bottom, Argon gas bubbles were injected into an eutectic
GaInSn alloy covered by a 10 mm acid on the top. The �uid vessel had a diameter of 90 mm,
and the height of the liquid column was 220 mm.
Figure 5.2 shows a typical mesh system used for a cylindrical column. Increasing the mag-
netic �eld strength, it is known that speci�c boundary layers occur at the container walls,
so-called Hartmann layers δ = O(Ha−1) perpendicular to the �eld direction and side-layers
δ = O(Ha−1/2) parallel to the �eld. The thickness of the Hartmann layer is de�ned as
δH = R0/Ha. The numerical mesh must be accordingly adapted in order to provide a suf-
�cient resolution of those layers, in particular the Hartmann boundary layers. The distance
between the �rst node and the side face is 0.001 mm and 15 nodes in the Hartmann layer.
Boundary conditions:
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Fig. 5.1: Schematic view of the bubble-driven �ow under consideration

Fig. 5.2: Exemplary mesh used for the simulations
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� At the inlet, void fraction of gas is 1 and the gas �ow rate (QG) is speci�ed (0.33 cm3/s,
0.83 cm3/s, 3.67 cm3/s).

� At the bottom-face and side-face, free-slip wall and no-slip wall are adopted for gas and
liquid metal, respectively.

� Two types of outlet conditions are displayed in �gure 5.3. The degassing outlet condition
stands for the case of a completely �lled container and a vanishing static pressure of
the gas phase at the upper solid wall, whereas the opening outlet boundary condition
stands for a free surface inside the container with a corresponding gas volume on top
of the melt and gas phase is allowed to re-enter into container. Zero �ux of the electric
�eld is set on the top face.

� Electrically insulating boundary condition for the walls, which means that the current
density normal to the walls is zero. At the presence of a strong magnetic �eld, MHD
turbulence tends to be laminarized. However, the induced turbulence by bubbles can
not be eliminated by the external magnetic �eld. Considering laminarization of MHD
turbulence, a Low-Reynolds-Number method is used to resolve the details of the bound-
ary layer pro�le by using very small mesh length scales in the direction normal to the
wall (very thin in�ation layers). In the CFX solver, it is implemented by Automatic
Near-Wall Treatment.

Fig. 5.3: Schematic representation of the liquid metal column showing two di�erent types of outlet boundary
conditions: degassing outlet condition (left) and opening outlet condition (right)

Furthermore, on the assumption that bubbles with mean equivalent diameter are injected
through a single nozzle of diameter din, the breakup or coalescence of bubbles are neglected.
The equivalent diameter of bubbles can be estimated by a relation proposed by [31]:

dB = 1.25 [6QG/ (1.06π)]1/12 [γ/ (ρLg3
)]1/12

(ρL/ρG)1/15
[
din
(
Q2
G/g

)1/5]1/6
(5.1)

with the surface tension γ = 0.533 N/m. In this work, calculations were carried out for gas
�ow rates QG of 0.33 cm3/s, 0.83 cm3/s and 3.67 cm3/s leading to mean bubble diameters
of 4.4 mm, 5.5 mm and 8.2 mm, respectively.
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5.2 Results

5.2.1 Bubbly �ow without magnetic �eld

At �rst, two types of outlet boundary conditions are compared for the case of a 0.83 cm3/s
gas �ow rate without magnetic �eld. Contour plots of the time-averaged axial velocity at
the longitudinal mid-center plane of the cylinder are shown in �gure 5.4. The liquid-phase
driven by bubbles ascends upwards at the core region and goes down in the bu�er region. A
boundary layer region exists close to the wall. Below the free surface, the strongest downward
�ow can be observed. The pro�les of axial velocities of the liquid phase at the center line are
plotted in �gure 5.5 varying for the two di�erent outlet boundary conditions. The velocity
increases from the bottom, reaches a maximum at z/H = 0.35 and then reduces gradually
with the increase of z/H in the case of a degassing outlet boundary condition. On the other
hand, the velocity rises continuously for the opening outlet boundary condition except for the
region close to the free surface. Obviously, the opening outlet boundary condition reproduces
the experimental data much better than the degassing boundary condition. Therefore, the
opening outlet boundary condition was used in all further simulations.

(a) degassing outlet (b) opening outlet

Fig. 5.4: Contour plots of the liquid vertical velocity at the vertical mid-plane, QG = 0.83 cm3/s

Next, the e�ect of bubble-induced turbulence on the �ow was studied comparing the Sato
bubble-induced turbulence model (named Sato model hereafter), and the source term mod-
i�cation model of bubble-induced turbulence (named correction model hereafter) which is
mentioned in chapter 2. Corresponding pro�les of axial velocity along the radius r/R = 0.87
are presented in �gure 5.6. For both boundary conditions, the maximum of the downward
�ow can be observed beneath the free surface. The bubble-induced turbulence models make
a better prediction than the case without BIT (bubble-induced-turbulent) model. The ten-
dency of numerical results are in good agreement with the experiment except for the failure to
capture the small counterrotating vortex in the lower corner. Moreover, the deviation of peek
position and velocity amplitude are signi�cant owing to the weighted-averaging of Euler-Euler
approach.
Figure 5.7(a) shows axial velocity pro�les along the axial direction at r/R = 0.87 for a gas
�ow rate of 0.33 cm3/s. Both calculations of the Sato bubble-induced turbulence model and
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Fig. 5.5: Pro�les of the axial liquid velocity for both outlet boundary conditions at QG = 0.83 cm3/s

(a) degassing outlet (b) opening outlet

Fig. 5.6: Pro�les of the vertical liquid velocity along a line at r/R = 0.87 for two turbulence models and two
outlet boundary conditions at QG = 0.83 cm3/s
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the source term modi�cation model of bubble-induced turbulence are in agreement with mea-
surements. The correction model captures the measured maximum downward �ow below the
free surface slightly better than the Sato model. The same is true for the case of the bubble
column, as shown in �gure 5.7(b), where the axial liquid-phase velocity distributions along
the diameter at half height obtained with Sato and correction models are compared with
measurements. The calculations are very close to the experimental data.

(a) r/R = 0.87 (b) z/H = 0.5

Fig. 5.7: Vertical and radial pro�les of the vertical liquid velocity for two turbulence models calculated at
QG = 0.33 cm3/s

5.2.2 Bubbly �ow with longitudinal magnetic �eld

One of the usual purposes of an externally imposed magnetic �eld is stabilization of the
�ow and suppression of oscillatory instabilities. Figure 5.8 shows the contours of the time-
averaged axial velocity at the longitudinal mid-center planes of the column in the presence of
a longitudinal magnetic �eld. It is no surprise that the intensity of the bulk �ow is suppressed
by imposing the magnetic �eld. Compared to the case without magnetic �eld, the former
strong recirculation zone was squeezed into a narrow region close to the bubble plume owing
to the stretching e�ect along the magnetic �eld lines. The �ow in the column remains of a
single cell pattern independent of the magnetic �eld application.
Figure 5.9 illustrates the corresponding radial velocity distributions along the diameter at half
height for two Hartmann numbers. The damping e�ect can be observed clearly. As shown
in �gure 5.9, the axial liquid velocity with two di�erent bubble-induced turbulence models is
compared with experimental data at a gas �ow rate of 0.33 cm3/s. Both predictions are close
to the measurement except for the slight deviation of the velocity peak, which is probably
caused by the highly nonuniform movement of bubbles. However, the deviation of velocity in
the downward region (between wall and core upward �ow) increases with the application of
magnetic �eld in comparison �gure 5.9 to �gure 5.7.

5.2.3 Bubbly �ow with transverse magnetic �eld

The transverse magnetic �eld causes a pronounced an-isotropy in the �ow. Therefore, �g-
ure 5.10 shows the �ow �eld in two half-planes oriented parallel and perpendicular to the
magnetic �eld, respectively. Figure 5.10 depicts the velocity streamline with and without the
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(a) Ha = 193 (b) Ha = 335

Fig. 5.8: Contour plots of the vertical liquid velocity obtained by the correction model for a longitudinal
magnetic �eld at QG = 0.33 cm3/s

(a) Ha = 193 (b) Ha = 335

Fig. 5.9: Radial pro�les of the vertical liquid velocity along the cylinder diameter at z/H = 0.5 for a longitu-
dinal magnetic �eld at QG = 0.33 cm3/s
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modi�cation of the turbulence model for the MHD case (so-called αµ e�ect) at Ha = 271
for two gas �ow rates. To compare the mean �ow from experimental results, the numerical
results are obtained statistically by arithmetic mean method from 40 s to 120 s. As can be
seen, the αµ e�ect has a great impact on the �ow pattern in MHD turbulence. The resulting
�ow structure can not be represented numerically without this modi�cation. The αµ e�ect
was taken into account in all later calculations. In the plane parallel to the magnetic �eld,
the liquid was enforced to ascend by the electromagnetic force. The global recirculation �ow
was broken and reconstructed into several vortices in the plane perpendicular to the mag-
netic �eld. The downward �ow was somewhat intensi�ed in the lower region of the bubbly
column compared to the case without magnetic �eld. Typical distributions of velocity (green
vector), Lorentz force (blue vector) and electrical current (brown line) on the cross-section at
z/H = 0.5 are demonstrated in �gure 5.11. Under transverse magnetic �eld, currents pass
through the core of the jet and close in the Hartmann layer. The �ow ascends in a narrow
area along the magnetic �eld direction and descends in the other parts (see �gure 5.11(b)). A
similar phenomenon with respect to MHD �ows has been discussed by Davidson (1995, 2001).
However, the electric current distribute in the way of concentric circles (see �gure 5.11(a)).
Another important issue is that the application of a transverse magnetic �eld causes the �ow
to become transient. As is shown in �gure 5.12, the liquid velocity quasi-periodically moves
up and down in the bu�er region. As expected, the vortex is elongated along the direction of
the magnetic �eld. This vortex stretching leads to a decrease of the radial length scale of the
associated vorticity. As a consequence, the corresponding velocity is intensi�ed due to the
conservation of angular momentum. On the other hand, this process probably origins from
the instability of the side-layer boundary (see �gure 5.12(b)), where an inverse small eddy
occurs in the vicinity of the wall. With the evolution of the inverse eddy, the �ow structure
was modi�ed and separated. Consequently, the �ow becomes transient and oscillating. More-
over, the gas-liquid slip velocity increases as a result of the damping e�ect of the magnetic
�eld. This, in turn, continuously feeds the turbulence of the liquid-phase to counteract the
damping e�ect in the core region of the bubble column.
Local velocity time series are shown in �gure 5.13. The data were acquired at the position
r/R = 0.87, z/H = 0.5 in the center-plane perpendicular to the magnetic �eld. Contrary to
the global damping e�ect with the imposition of a longitudinal magnetic �eld, a signi�cant
oscillation can be observed for the application of a transverse magnetic �eld. Obviously, the
local �ow was reinforced in comparison to the case without magnetic �eld. The velocity am-
plitude varies with the intensity of the magnetic �eld and reaches a maximum at Ha = 271 in
these calculations. For larger Ha the damping e�ect of the magnetic �eld dominates. As seen
in �gure 5.13 the numerical results are in good agreement with the experiments, except for the
high frequency �uctuations due to the limitation of the Reynolds time-averaged turbulence
model.
The time-averaged volume fraction of bubbles at the free surface are depicted in �gure 5.14.
Without magnetic �eld, the bubble plume shows isotropic distribution in the center-core.
With magnetic �eld the dispersion of bubbles is suppressed and concentrated in the core.
Increasing the magnetic �eld to Ha = 271, the distribution of bubbles has a tendency to
anisotropy. The bubble dispersion is mainly suppressed in the direction parallel to the mag-
netic �eld which is closely related to the an-isotropic MHD turbulence under the in�uence of
a transverse magnetic �eld.
The relationship between the total kinetic energy of the liquid in the cylinder and the Hart-
mann number is illustrated in �gure 5.15. The total kinetic energy is obtained by means
of volume integral of computation domain. For moderate Hartmann numbers, the total ki-
netic energy was surprisingly increased. Further increasing Hartmann number, the damping
in�uence dominates and the total momentum decreases gradually.
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Fig. 5.10: Streamlines of the time-averaged liquid velocity in a transverse magnetic �eld for Ha = 271: (a
and c) QG = 0.83 cm3/s, (b and d) QG = 3.67 cm3/s. (a and b) conventional turbulence model, (c and d)
modi�ed turbulence model taking into account the anisotropy coe�cient as described in the text
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(a) (0, 0, B0) (b) (0, B0, 0)

Fig. 5.11: Distributions of the electrical current density (streamlines) and the velocity (cones) over the cross
section at z/H = 0.5

(a) (b) (c) (d)

Fig. 5.12: Vector plots of the liquid velocity at the center plane perpendicular to the direction of the transverse
magnetic �eld for QG = 0.83 cm3/s and Ha = 271
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Fig. 5.13: Time series of the local liquid velocity for various Hartmann numbers (QG = 3.67 cm3/s, r/R = 0.87,
z/H = 0.5)
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Fig. 5.14: Contour plots of the void fraction at the free surface in a transverse magnetic �eld at QG = 0.83
cm3/s

Fig. 5.15: Total kinetic energy of the liquid motion as
a function of the Hartmann number

Fig. 5.16: Schematic drawing of the Lorentz
force and the liquid velocity in the mid-plane
parallel to the direction of the transverse
magnetic �eld
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5.3 Summary and discussion

The present chapter deals with numerical simulations considering a bubble-driven liquid metal
�ow in a cylinder exposed to a DC magnetic �eld. The calculations were carried out using the
commercial �ow solver CFX with the implemented Euler-Euler multiphase model. The turbu-
lent �ow was considered by a RANS-SST turbulence model, wherein the anisotropy variable
as proposed by [89] was implemented in order to take into account the peculiar properties of
the anisotropic MHD turbulence. The proper modeling of the MHD turbulence is still a chal-
lenge. Many studies were concerned with numerical and experimental investigations of MHD
�ows in a straight duct (see for instance [8, 67, 41, 58, 43]). Turbulent MHD duct �ow in a
transverse magnetic �eld becomes laminar if the applied �eld is su�ciently strong. The ratio
Ha/Re turned out to be the relevant criterion for that phenomenon. Several studies report
that the transition from a turbulent to a laminar �ow occurs approximately at Re/Ha from
220 to 400. In our case considered here this ratio varies approximately between 16 and 42.
Obviously, it could be concluded that the �ow might be laminar, which is why the question
arises whether our approach to use the RANS-SST turbulence model within the numerical
calculations is appropriate.
The most striking feature of the experiment reported by [95] was the destabilization e�ect
of the global �ow due to the DC magnetic �eld. This phenomenon was veri�ed by mea-
surements of the local velocity in the bulk of the liquid. Depending on the gas �ow rate
and the Hartmann number di�erent transient �ow patterns were observed showing strong
velocity oscillations with predominant frequencies. This �nding appears to be contradictory
with respect to the classical studies of the MHD duct �ow and is a strong indicator that the
relaminarization process of an originally turbulent �ow by an applied DC magnetic �eld is
not fully understood yet for �ow con�gurations deviating from the standard duct �ow. [19]
showed that the installation of local turbulence promoters in form of a grid inside the duct
can lead to turbulent MHD duct �ows in the range of Re/Ha form 10 to 220. The rising gas
bubbles may act as a kind of turbulence promoters, too. Moreover, the e�ect of a distinct
agitation of the melt �ow by a transverse DC magnetic �eld was also observed by [83] for the
situation of a submerged jet.
The damping e�ect of a static magnetic �eld on the electrically conducting liquid is strongly
dependent on the direction of the magnetic �eld with respect to the liquid recirculation. Our
simulations demonstrate that the mean �ow was signi�cantly damped in case of a longitudi-
nal magnetic �eld, whereas the application of a transverse magnetic �eld results in a rather
complex �ow structure of the liquid phase. The global �ow recirculation loses its symmetry
and is decomposed into two parts with respect to the centerplane parallel to the magnetic
�eld. An ascending �ow of the liquid metal is established in the narrow center region paral-
lel to the magnetic �eld, whereas the recirculating downward �ow is intensi�ed in the other
area, see �gure 5.10. The schematic view in �gure 5.16 shows the distribution of the Lorentz
force along the center plane parallel to the magnetic �eld. In the bu�er region, the Lorentz
force accelerates the �ow. In the core region, the bubble buoyancy is dominant to drive the
�ow upwards. Thus, the Lorentz force has essentially two e�ects in this bubble-driven �ow:
accelerating and damping. Velocity gradients along the magnetic �eld lines are reduced. At
a moderate magnetic �eld, the accelerating e�ect becomes dominant so that the �ow was
intensi�ed. As seen in �gure 5.15, for a moderate magnetic �eld the total energy increases
for increasing Hartmann number. If the Hartmann number reaches a certain value the damp-
ing e�ect becomes dominant, and the total energy starts to decrease with further increasing
Hartmann number. The transverse �eld does not only cause a signi�cant redistribution of
the mean �ow structure, it also gives rise to magnetically induced oscillations of the �ow as
shown in Figs. 5.12 and 5.13.
The correct reproduction of those phenomena can be considered as a challenge for correspond-
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ing numerical simulations. It turned out that the magnetic �eld action must be taken into
account not only as the resulting Lorentz force, but in particular, it has also to be considered
in the turbulence model. In this chapter we used the so-called anisotropy factor al proposed
by [89]. We are aware about the fact that here we have only done the very �rst and simple
step to achieve an appropriate model for such complex MHD �ows. Nevertheless, the paper
demonstrates that this approach gives a certain progress, because corresponding test calcula-
tions without and with this type of modi�ed turbulence model demonstrated its signi�cance
to achieve a qualitative agreement with the experimental data.
Moreover, two types of outlet boundary condition were tested for bubbly �ow simulations. In
comparison to the experiments, both of them are able to obtain the correct global recircula-
tion �ow structure, but the opening outlet condition showed better agreement with the �ow
measurements from [95]. Therefore, the opening outlet boundary condition is recommended
for the simulation of the bubble-driven �ows considered here.
The analysis of this generic MHD two-phase �ow case is considered as a necessary basis for
simulations of more complex two-phase �ow problems as they occur, for instance, in contin-
uous casting processes with argon injection and the application of electromagnetic �elds for
�ow control.
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6 Two-phase �ow in a continuous casting

slab mold under in�uence of an external

magnetic �eld

In steel continuous casting process, generally, Argon gas is injected to prevent SEN from
clogging and to reduce the quantity of inclusions in molten steel by attaching. Therefore, an
applicable two-phase model is required when the investigation of EMBr is made. Validation
of the modi�ed turbulence model on single and two-phase turbulence �ow has been performed
successfully as mentioned in Chapter 3 and 4. In this chapter, the e�ect of gas injection and
EMBr is studied. Both the mono-dispersed model and a poly-dispersed particle model have
been developed on the precondition that the gas phase is treated as bubbles. The mathemati-
cal models have been introduced in Chapter 2. Numerical simulations are performed by using
ANSYS CFX on the hypnos cluster in HZDR.

6.1 Computational domain and boundary conditions

Figure 6.1 shows the full scale computational domain, which is divided into ∼ 2.2 million
hybrid cells on the basis of Mini-LIMMCAST. At the inlet �ow rate of the liquid metal is 0.1
l/s and the �ow rate of argon gas is given by 500 sccm, where sccm denotes cubic centimeters
per minute. In the poly-dispersed particle model, the gas phase is classi�ed by ten groups in
which the diameters of the gas phase vary from 0.1 mm to 10 mm. Size group is de�ned as
equal diameter discretization, so that, di, the diameter of group i is calculated from:

di = dmin +
dmax − dmin

Nr
(i− 1

2
), (6.1)

where Nr is the group number, and the bubble size and size fraction are listed in table 6.1.

Tab. 6.1: Bubble size and size fraction

Group Diameter (mm) Size fraction

Group 1 0.595 0.05

Group 2 1.585 0.05

Group 3 2.575 0.1

Group 4 3.565 0.1

Group 5 4.555 0.2

Group 6 5.545 0.2

Group 7 6.535 0.1

Group 8 7.525 0.1

Group 9 8.515 0.05

Group 10 9.505 0.05

The speci�cations of boundary conditions are:
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1. Nozzle Inlet: the inlet velocity of molten steel was calculated by the �ow rate (0.1 l/s).
Standard equations for fully-developed �ow in a pipe were used to describe this velocity
pro�le. The turbulent kinematic energy and the dissipation rate at the inlet are esti-
mated by using the semi-empirical relations [35] κ = 0.01u2

in and ε = 0.09κ1.5/dnozzle,
where dnozzle is the hydraulic diameter of the submerged entry nozzle. The �ow rate of
gas was computed by the e�ective injection area and the volume ratio of molten steel
to gas.

2. Meniscus: At the meniscus, a degassing boundary condition was speci�ed, at which only
the gas phase was allowed to escape. A zero-shear condition is speci�ed for molten steel
without considering the e�ect of mold �ux.

3. Mold cavity outlet: normal gradients of all variables are set to zero. The opening
pressure and direction is speci�ed. Once the �ow direction is into the domain, the
pressure value is taken to be the total pressure based on the normal component of
velocity. While it is leaving the domain, it is taken to be relative static pressure. At
the outlet, the relative static pressure is set to zero.

4. Walls: a no-slip condition for liquid metal, free-slip condition for bubbles and Automatic-
Near-Wall function is used for all walls.

5. Magnetic �eld: the magnetic �eld is static inhomogeneous and obtained from measure-
ments, which is interpolated into ANSYS CFX as a 3D external magnetic �eld. For an
electrically insulating boundary, the gradient of the electrical potential is zero at the
wall. For an electrically conducting boundary, electric current is conserved through the
interface between �uid domain and solid domain (shell). formula is given in Chapter 4.

Moreover, the Hartmann layer is considered by �ning the mesh in the vicinity of the wide and
narrow faces in the mold regarding the implementation of the external DC magnetic �eld.
The location of special points and lines in the mold midplane is shown in �gure 6.2.

6.2 Numerical Results

6.2.1 Mono-dispersed particle model

Among the gas-liquid �ow parameters, the bubble diameter is one of the most in�uential
parameters in predicting the void fraction distribution. Figure 6.3 displays the streamlines
of the time-averaged velocity (left part) and the void fraction distribution of the gas phase
(right part) varying with the bubble diameter without magnetic �eld. The overall streamline
distribution presents a double-roll �ow pattern for all the cases. As is shown in �gure 6.3(a),
most of the bubbles separate from the jets and ascend up in the upper recirculation zone
in the mold. A small amount of bubbles follows the bulk-�ow into the lower recirculation
zone and some of them were entrapped in the lower large eddy in the case of 1 mm diameter
bubbles. For increasing bubble size, the bubbles from SEN ports distribute mainly in the
upper recirculation zone and concentrate in the vicinity of the SEN (�gure 6.3(b)−(d)). The
corresponding void fraction of bubbles on the free surface are plotted in �gure 6.4. Obviously
the bubbles widespread on the whole free surface in the case of 1mm diameter bubbles. The
void fraction of bubbles agglomerates gradually in the vicinity of the SEN with the increases
of bubble size.
On the other hand, the two eddies were restricted to the jet area and a plug-like �ow pattern
is obtained in the lower recirculation zone for the electrically conducting wall condition with
EMBr ruler (�gure 6.5). Di�ering from the case without magnetic �eld, all bubbles from SEN
ports ascend towards the top free surface as a result of a reversed �ow emerged in the upper
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(a) Gemometry (b) Mesh

Fig. 6.1: Computational domain and mesh
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Fig. 6.2: Location of special points and lines in the mold midplane across the wide face
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recirculation zone (left parts of �gure 6.5). As can be seen in �gure 6.6, we can also observe
the similar phenomenon that the void fraction of bubbles has a tendency towards shrinking
in the vicinity of the SEN with the increases of bubble diameter.
Furthermore, a quantitative comparison of the horizontal velocity is performed. Figure 6.7 and
6.8 display time-averaged horizontal velocity plots on the top surface center line at z = 0.328
m with and without magnetic �eld. It is apparent from �gure 6.7 that the injection of gas
increases the surface velocity signi�cantly, especially, for the case of large bubble size. The
�ow is oriented to the opposite under the in�uence of the magnetic �eld for the electrically
conducting wall condition (see �gure 6.8). In comparison to the case without gas injection,
the surface �ow is suppressed globally. Moreover, the velocity is reduced with decreasing the
bubble size in the vicinity of the SEN. The corresponding time-averaged horizontal velocity
distributions on a vertical centerline at x = 0.068 m are shown in �gure 6.9 and 6.10. As can
be seen in �gure 6.9, the impinging intensity on the narrow face is strengthened remarkably
compared to the case without gas injection and the change of bubble size has no signi�cant
in�uence. For the electrically conducting wall condition, the impinging intensity on the narrow
face is reduced remarkably compared to the case without gas injection (see �gure 6.10). In
addition, the in�uence of bubble size on the impinging intensity is similar to that of the no
magnetic �eld case.

6.2.2 Poly-dispersed particle model

In reality, the gas injected into the mold distributes non-uniformly with variation of the bub-
ble size. Therefore, further numerical prediction will be performed using the inhomogenous
MUSIG model. As described above, gas bubbles discharged from the SEN ports will sepa-
rate from the jets. Large bubbles drift up quickly and most of them ascend in the upper
recirculation zone. In addition, small bubbles �oat up slowly due to the in�uence of drag
force and wake. Smaller bubbles can be subsequently carried by �owing downstream and are
easily entrapped into the lower recirculation zone. Gas phase distributions varying with wall
boundary conditions are shown in �gure 6.11. It is clear that the gas plume is remarkably
changed with the application of the magnetic �eld. For the case without magnetic �eld, the
gas bubbles widespread in the upper recirculation zone (see �gure 6.11(a)). In comparison to
the case without magnetic �eld, the gas plume was more restricted to the SEN area under the
in�uence of magnetic �eld (see �gure 6.11(b) and (c)). In particular, gas bubbles are mainly
concentrated in the vicinity of the SEN till they escape from the top surface for the case of
electrically conducting wall (�gure 6.11(c)).
The turbulent kinetic energy is one of the most important variables in gas-liquid �ow, which
is the ratio of the rms (root-means-square) of the turbulent velocity �uctuations and the
mean velocity. The magnetic �eld also in�uences turbulence. Figure 6.12 presents the time-
averaged distributions of turbulent kinetic energy in the mid-plane across the wide face. For
the case of electrically insulating wall, the turbulent kinetic energy is slightly decreased in
comparison to the case without magnetic �eld (�gure 6.12(a), 6.12(b)). On the other hand,
the turbulent kinetic energy is signi�cantly reduced in case of an electrically conducting wall
(�gure 6.12(c)). Vortex cores for the di�erent boundary conditions are shown in �gure 6.13.
The eddies in the mold cavity are oriented parallel to the direction of the external magnetic
�eld. Due to Joule dissipation, some of the eddies are diminished (�gure 6.13(b), 6.13(c))
compared to the case without magnetic �eld. Figure 6.14 displays the distributions of shear
strain rate in the mold. As can be seen, the shear strain rate is intensi�ed on the wide faces
in the jet region with electrically insulating wall and remarkably reduced for the case with
electrically conducting wall.
The corresponding time series of liquid metal velocity at one position in the jet zone is il-
lustrated in �gure 6.15. The braking e�ect is signi�cant with the imposition of the external
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(a) 1 mm (b) 3 mm

(c) 5 mm (d) 7 mm

Fig. 6.3: Streamlines of time-averaged velocity and distribution of time-averaged bubble void fraction in the
mid-plane parallel to the wide face for di�erent bubble diameters, B0 = 0
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(a) 1mm

(b) 3mm

(c) 5mm

(d) 7mm

Fig. 6.4: Escape location of bubbles from the top surface for di�erent bubble diameter over time, B0 = 0
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(a) 1mm (b) 3mm

(c) 5mm (d) 7mm

Fig. 6.5: Streamlines of time-averaged velocity and distribution of time-averaged bubble void fraction in the
mid-plane parallel to the wide face for di�erent bubble diameters. (electrically conducting wall, B0 = 0.31 T )
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(a) 1 mm

(b) 3 mm

(c) 5 mm

(d) 7 mm

Fig. 6.6: Escape location of bubbles from the top surface for di�erent bubble diameter over time. (electrically
conducting wall, B0 = 0.31 T )
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Fig. 6.7: Plot of horizontal velocity on a horizontal center line at z = 0.328 m, B0 = 0

Fig. 6.8: Plot of horizontal velocity on a horizontal center line at z = 0.328 m, B0 = 0.31 T , electrically
conducting wall
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Fig. 6.9: Plot of horizontal velocity on a vertical center line at x = 0.068 m, B0 = 0

Fig. 6.10: Plot of horizontal velocity on a vertical center line at x = 0.068 m, B0 = 0.31 T , electrically
conducting wall
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(a) B0 = 0 (b) B0 = 0.31 T insu. (c) B0 = 0.31 T cond.

Fig. 6.11: 3d distribution of gas void fraction over time varying with electrical wall boundary conditions

(a) B0 = 0 (b) B0 = 0.31 T insu. (c) B0 = 0.31 T cond.

Fig. 6.12: Time-averaged contours of turbulent kinetic energy in the mid-plane across the wide face
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Fig. 6.13: Vortex cores for the di�erent boundary conditions: a) B0 = 0; b) B0 = 0.31 T insulating wall; c)
B0 = 0.31 T conducting wall
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(a) B0 = 0 (b) B0 = 0.31 T insu. (c) B0 = 0.31 T cond.

Fig. 6.14: Shear strain rate for di�erent boundary conditions

magnetic �eld. Obviously, the �ow is unstable and asymmetric �ow is observed for the case
without magnetic �eld. Under the in�uence of magnetic �eld, the �uid �ow tends to be oscil-
lating for electrically insulating walls, whereas turbulence is strongly suppressed for the case
of electrically conducting wall.

Fig. 6.15: Time series of liquid metal velocity at one position (0.024 m, 0, 0.229 m)

6.2.3 Poly-dispersed particle model for varying magnetic �eld strength

The right part of �gure 6.16 depicts the distribution of the gas void fraction varying with
magnetic �eld intensity. The gas phase injected into the liquid pool considerably accumulate
in the upper region at the exit of the nozzle port. We can also observe that gas bubbles
mainly �oat in the upper recirculation zone and �nally escape from the top free surface. It is
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obvious that the magnetic �eld has a great in�uence on the distribution of the gas phase by
pushing gas bubbles towards the SEN for increasing magnetic �eld.

(a) B0 = 0 (b) B0 = 0.11 T

(c) B0 = 0.21 T (d) B0 = 0.31 T

Fig. 6.16: Distributions of time-averaged gas void fraction in the mid-plane across the wide face for electrically
conducting wall (left parts: streamlines of bubbles)

Figure 6.17 shows the combined e�ect of gas injection and magnetic �eld on the �ow pat-
tern in the mold. As shown in �gure 6.17, the external static magnetic �eld has a strong
in�uence on the jet penetration. The penetration depth of the jet is remarkably decreased
for increasing magnetic �eld and a plug-like �ow pattern is obtained in the lower recircu-
lation zone when the magnetic �eld approaches 0.21 T . In the upper recirculation zone, a
reversed back �ow is observed and, consequently, it assists in the ascending of gas bubbles.
Comparing �gure 6.17(d) to �gure 6.5, the �ow pattern in �gure 6.17(d) is similar to those in
�gures 6.5(a-c). In addition, the jet �ow is damped with the increase of the intensity of the
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magnetic �ux.

(a) B0 = 0 (b) B0 = 0.11 T

(c) B0 = 0.21 T (d) B0 = 0.31 T

Fig. 6.17: Streamlines and distributions of time-averaged liquid metal velocity in the mid-plane across the wide
face for electrically conducting wall

Figure 6.18 shows the distribution of the bubble size fraction on a horizontal centerline at
z = 0.28 m without magnetic �eld. Two peaks show that bubbles widespread from the SEN to
the narrow face and concentrate in the vicinity of the SEN and the narrow face. The bubble
size fraction decreases with the increase of the bubble diameter. The distribution of the bub-
ble size fraction is mainly in the range from Group 1 to 6. The relative distribution of bubble
size fraction on a horizontal centerline at z = 0.28 m with a magnetic �eld of B0 = 0.31 T is
shown in �gure 6.19. Owing to the reversed �ow near the SEN (Figure 6.17), gas bubbles are
mainly distributed in the vicinity of SEN where breakup and coalesce of bubbles took place.
The relationship between bubble size fraction and bubble diameter has the same tendency as
in the case without magnetic �eld. The distribution of bubble size fraction is mainly in the
range from Group 1 to 5, which supports the similarity of the �ow structure in �gure 6.17(d)
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and �gure 6.5.

Fig. 6.18: Distribution of bubble size fraction on a horizontal centerline at z = 0.28 m without magnetic �eld

6.2.4 In�uence of the electrical wall conductance ratio

The e�ect of the wall conductance ratio on the �ow pattern in the mold is shown in �gure 6.20
and 6.21 for the poly-dispersed particle model. The double-roll �ow around the jets was
restricted to the jet area. Meanwhile, a reversed �ow emerged in the upper recirculation
zone where the shape and position of eddies are dependent on the wall conductance ratio.
In the lower recirculation zone, �ow pattern displays a plug-like structure. The quantitative
comparison of the liquid metal velocity was made on a vertical centerline at x = 0.069 m (see
�gure 6.21). The liquid metal velocity in the lower recirculation zone is larger than that in the
upper recirculation zone. In particular, the liquid metal velocity was increased remarkably
with the increases of the wall conductance ratio. It indicates that low in the region of the
solidi�ed front can be intensi�ed at high wall conductance ratio, which may play a key role
on the strand micro-structure and positive subsurface defects.

6.3 Discussion and summary

In a steel continuous casting process, generally, argon gas is injected in the mold through the
SEN. In this chapter, the e�ects of gas injection and electromagnetic brake on the �uid �ow in
the mold were studied using both the mono-dispersed particle model and the poly-dispersed
particle model. Simulation results show that the distribution of the gas phase is dependent
on the bubble diameter by using the mono-dispersed particle model (see �gure 6.3). Con-
sidering the e�ect of complex �ow, injection method, heat transfer, etc. to the bubble size,
the mono-dispersed particle model is obviously improper to simulate such case. However, the
poly-dispersed particle model treats the gas phase as bubbles with di�erent bubble diameters,
thus providing a new way to simulate the two-phase �ow in the continuous casting process.
Comparing �gure 6.16(a) (poly-dispersed particle model) to �gure 6.3 (mono-dispersed par-
ticle model), the distribution of the gas phase presents pronouncing di�erences. The further



96 CHAPTER VI

Fig. 6.19: Distribution of bubble size fraction on a horizontal centerline at z = 0.28 m. (electrically conducting
wall, B0 = 0.31 T )

(a) CW = 0.0665 (b) CW = 0.133 (c) CW = 0.233

Fig. 6.20: Time-averaged streamlines of liquid metal velocity in the mid-plane for di�erent wall conductance
ratio at B0 = 0.31 T

Fig. 6.21: Time-averaged liquid metal velocity along the vertical centerline at 1 mm to the narrow face for
di�erent wall conductance ratios
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comparison was made, see �gure 6.17(a) and �gure 6.5, in the presence of an external mag-
netic �eld (B0 = 0.31 T , electrically conducting wall). It shows that the �ow structure in
�gure 6.17(d) is closely similar to that in �gure 6.5(b) and extremely di�erent to that in
�gure 6.5(d). It indicates that the breakup and coalesce of bubbles play a great role in this
complex �ow. Moreover, the thickness of the solidi�ed shell (related to the wall conductance
ratio) has a great impact on the �ow structure in the mold, see �gure 6.20. In particular,
the �ow is intensi�ed at the solidi�ed front for increasing thickness of the solidi�ed shell, see
�gure 6.21. To simulate the continuous casting process with EMBr, the e�ect of the solidi�ed
shell can not be neglected.
The overall results show that the gas injection and the magnetic �eld play an important

role on the �ow pattern. Moreover, to optimize the �ow pattern in the industrial casting
process, several crucial factors must be taken into account simultaneously. The conclusions
are drawn as follows:

1. Simulation results show that the distributions of gas phase depend on the bubble di-
ameter by using the mono-dispersed particle model. To deal with the bubble �ow with
di�erent bubble diameters, the poly-dispersed particle model gives rise to more accurate
predictions than the mono-dispersed particle model.

2. The �ow pattern in the mold is sensitive to the strength of a static magnetic �eld and
the wall conductance ratio. An improperly employed magnetic �eld may cause severe
side-e�ects, such as additional large eddies or a deepening of the penetration depth.
Considering the solidi�ed shell in the mold cavity, the electrical wall boundary condition
is of importance to be taken into account in order to get more accurate predictions.

3. Further work will concentrate on numerical simulations in comparison with liquid metal
experiments considering gas injection and electromagnetic �eld application.
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7 Summary

In general, the �uid �ow in a metallurgical plant is highly turbulent and presents a complex
coupling with heat transfer, phase transfer, chemical reaction, momentum transportation, etc.
Owing to the complexity and limits of reliable measuring techniques, computational models
of �uid �ow are useful tools to study and quantify these problems. The overall objective is
concentrated on investigating the e�ects of electromagnetic brake and gas injection on the
�uid �ow in a continuous casting slab mold numerically, and making veri�cations using data
of the small Liquid Metal Model for Continuous Casting of steel (mini-LIMMCAST).
In the current work, a DC static magnetic �eld is implemented on a low meting-point liquid
metal (GaInSn) to control the �ow pattern in the mold cavity (mini-LIMMCAST) with a
so called EMBr. The Hartmann boundary layer of thickness δ = O(Ha−1) is a well-known
property of magnetodydrodynamic (MHD) �ows with electrically insulating walls. Hartmann
layers are numerically considered by re�ning the mesh near the wide and narrow faces in the
mold. Numerical calculations were performed by means of the software package ANSYS CFX
with an implemented RANS-SST turbulence model. One advantage is the possibility to use
the SST k−ω model as a low-Re turbulence model without any extra damping functions. The
SST formulation switches to a k− ε behavior in the free-stream region and thereby avoids the
common k−ω problem that the model is too sensitive to the properties of the inlet free-stream
turbulence. In addition, the SST k − ω turbulence model is considered to predict the �uid
�ow inside the boundary layers more accurately than the k − ε turbulence model provided
that the nondimensional wall distance y+ is less than 1.
The application of a strong DC magnetic �eld gives rise to a magnetic dissipation term called
as Joule dissipation. The turbulent �ow undergoes a reorganization as consequence of the
conservation of angular momentum against the background of a continuous decay of turbulent
kinetic energy. The nonisotropic nature of the MHD turbulence was taken into account by
speci�c modi�cations of the turbulence model as proposed by [89].
The numerical results were validated by �ow measurements at the mini-LIMMCAST facility.
The comparison between our numerical calculations and the experimental results displays
a good agreement; in particular, the peculiar phenomenon of an excitation of nonsteady,
nonisotropic, large-scale �ow perturbations caused by the application of the DC magnetic
�eld is explained successfully. Another important result of our study is the feature that the
electrical boundary conditions, namely the wall conductance ratio, have a serious in�uence
on the mold �ow while it is exposed to an external magnetic �eld.
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