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1 Introduction 

1.1 Background 

Gasification of carbonaceous compounds has been applied commercially around the world for years 

as it offers significant environmental advantages over competing technologies. With a lot of technical 

improvement and development on going, gasification provides potential pathways for producing 

commodity chemicals, synthesis of fuels and power generation. The process routes begins with the 

synthesis gas or syngas generation step, which can be through autothermal non-catalytic partial 

oxidation of natural gas (Gas-POX), autothermal catalytic reforming (ATR) of natural gas, or 

autothermal non-catalytic gasification of liquid hydrocarbons (Oil-POX). The produced syngas during 

gasification mainly consist of CO and H2. Components like H2O, CO2, CH4, N2, trace compounds such 

as H2S, COS, NH3, HCN and others are present in the product synthesis gas (hot gas), which must be 

removed up to a certain threshold.  

The studies of raw synthesis gas will be unfinished without thorough elucidation of trace components, 

which can impact on the downstream processes for raw gas treatments [Higman et al., 2003], [Stiegel 

et al., 2006] and [Miller et al., 2008]. Trace component analysis in gasification processes are important 

part of elemental component balances in order to understand the fate of these participating 

compounds in the feedstock. Depending on the feedstock composition and process parameters 

[Furimsky, 1999] and [Reed et al., 2001], these trace components can vary as they exist in the feed 

(e.g. as sulphur, nitrogen etc.) and / or are produced during gasification (e.g. as COS, HCN etc.). 

Although, there is a dearth of literatures on trace compounds studies relating to the gasification of 

natural gas processes. Trace components formation can occur as by-products of gasification for 

example during partial oxidation of natural gas at elevated temperature, the impact of raw synthesis 

gas water quench process can lead to the formation of organic acids like formic acid and several other 

components [Pitchai et al., 1986] and [Brüggemann, 2010]. 

Furthermore, research in the area of trace components studies in gasification processes with respect 

to hot synthesis gas quenching and raw synthesis gas are:  

a) the studies of the influence of different operating parameters and the performance of the 

quench during pressurised black liquor gasification combined with catalytic process, which 

focuses on the final raw synthesis gas composition was done by [Wiinikka et al., 2012]. The 

major gas components (CO, H2, and CO2) of the final raw synthesis gas were influenced by the 



 

2 
 

system pressure (15 – 30 bar) in the gasifier and after cleaning in a counter current condenser 

gas cooler. The effects of the raised system pressure led to the increase in the concentration 

of minor gas components H2S and COS in the gasifier [Wiinikka et al., 2012]. 

b) [Hoekman et al., 2013] developed characterization methods for sampling of organic and 

inorganic trace components in the raw synthesis gas produced from thermal conversion of 

biomass (rice hull and wood chip feedstocks). These traces were detected to be in the low ppb 

range. Cost-effective innovations are been developed in the cleaning and conditioning of hot 

gas in one reactor by integrating it with the fluidized bed steam gasification of biomass 

operating at 800 – 900°C. The purpose of this is to produce syngas, which is required for use 

in fuel cells. The finding shows that H2S and alkali concentrations (inorganic traces) present in 

the hot gas from the gasifier can be limited to values above 100 ppbv and values below 100 

ppmv respectively [Stemmler et al., 2013]. 

c) Straw char and glycol were gasified in a 60 kW pilot-scale atmospheric entrained flow gasifier 

[Pudasainee et al., 2014] to measure trace metals emission concentration, distribution into 

particle and gas phase in syngas. In the Sasol – Lurgi MK IV FBDB gasifier [Bunt et al., 2008], 

[Bunt et al., 2009] and [Bunt et al., 2010], Fact-Sage thermodynamic equilibrium modelling 

was used to simulate the trace metal elements behaviour under coal gasification process. 

These metals were distinctly categorized into volatile, semi-volatile, and non-volatile 

elements. It is possible for these volatilized metals to condensed on various components of 

the gasifier and results to reduction in the life of the gasifier [Bucko Z. et al., 2000], [Nishiyama 

et al., 2006], [Mondal et al., 2011] and [Cui et al., 2013] especially during the exposure of steels 

and alloys to carbon monoxide (CO)-rich gases at 450 – 700 °C [Stahl et al., 1996]. 

d) [Öhrman et al., 2014] analysed and measured H2S, benzene, acetylene, ethylene, methane, 

soot and other traces present in the synthesis gas and the waste water during high 

temperature (1130 – 1340 °C and at 2 bar absolute pressure) gasification of milled soft stem 

wood powder from a pilot scale pressurized entrained flow oxygen blown biomass gasifier. 

The black residues collected from the surface of the quench water were dried and analysed 

in a thermo gravimetric analyser connected to a mass spectrometer. It was observed that the 

soot, quench water and cold synthesis gas have low amount of naphthalene, phenanthrene, 

fluoranthene, pyrene and other materials. Also, an earlier research from a pilot scale 

pressurized black liquor gasifier [Öhrman et al., 2012] indicates a reduction of COS from 400 
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ppm in the gasifier to 100 ppm after the quench, leading to an increase in the concentration 

of H2S in the quench water due to the hydrolysis of COS. Particles comprising of Fe, S and Ni 

were detected to ensue from the corrosion of stainless steel piping and process equipment in 

the plant [Öhrman et al., 2012]. 

e) A new development to collect, identify and quantify traces in hot gas stream generated from 

biomass gasification was achieved [Woolcock et al., 2015]. The method applied time-

weighted average (TWA) passive sampling with retracted solid-phase microextraction (SPME) 

and gas chromatography. The amount of trace tar compounds were quantified for a single 

analyte (for benzene at 115 °C) and at temperatures approaching 300 °C standard gas stream, 

validated on a pilot scale gasification and gas cleaning process with accurate prediction of gas 

stream concentrations in the ppb range at higher temperatures [Woolcock et al., 2013]. 

f) Based on some assumptions, a mathematical model of a column for retaining NH3 and CO2 

into condensing water in a counter current organic solvent scrubber during biomass 

gasification at temperatures between 850 – 900 °C was developed [Pröll et al., 2005]. 

Decrement in NH3 and CO2 concentration in hot synthesis gas was realized. The goal was to 

reduce the amount of NH3 in the hot synthesis gas by adjusting operating parameter in order 

to avoid additional gas cleaning steps [Pröll et al., 2005]. Gas-liquid equilibrium interaction 

between the condensate and the hot synthesis gas in the scrubber was applied based on NH3-

CO2-H2O model studies by [Edwards et al., 1975]. 

g) The controlling of the pH of water applied to quench and to scrub raw synthesis gas was 

reported during the production of synthesis gas by partial oxidation of hydrocarbons as raw 

synthesis gas exit the reaction zone between 700 – 1650 °C [Kimberly et al., 1989]. The patent 

gave claims to the formation of acidic compounds (formic acid) during quench operation and 

basic compounds (ammonia) during partial oxidation. 

h) [Chih-Hao et al., 2003] employed the use of ammonia injection to minimize waste water 

treatment in order to have fewer amounts of metal contents in the effluent (grey water) of 

the quench water during the non – catalytic partial oxidation reaction of hydrocarbonaceous 

fuels (with preferred operating temperature of about 1200°C – 1500°C and most preferred 

pressure from 20 – 90 bar). This approach allows the recovery and recycling of more of the 

effluent water during gasification. [Anindra et al., 2015] utilized a carbon dioxide injector 

source to adjust the pH of the quench water. This was achieved by a configuration of pH 
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sensor to measure the pH of the grey water with a control valve to adjust the flow of the 

acidified water into the grey water. The process treats the black water from the quench 

chamber to generate grey water and soot. 

 

Taking a critical look at the several gasification process plants operating world-wide and those at 

the planning stage [Shoko et al., 2006] and [Mondal et al., 2011], the total syngas production 

capacity was reported to be around 428,866,510 Nm3/day [IGO et al., 2003]. The amounts of 

traces that are formed during gasification of natural gas are at low level in ppm. But the yearly 

consumption of natural gas for gasification is large, which provides the potential for these traces 

into the environment and calls for concerns. 

In spite of all these, understanding of traces formation during gasification and quench operations 

can help in the choice of the downstream syngas treatment and utilization processes. 

Consequently, the corrosion effects on plant facilities, poisoning of catalysts and most importantly 

their discharge via effluents and their presence, which results from the accumulated build-up of 

these trace compounds could be mitigated and controlled when their sources and sinks are 

analytically identified. 

 

1.2 Objective of the Work 

The task of the present work is to investigate the effects of quenching operation on the trace 

components before and after the water quench operations during the autothermal non-catalytic 

reforming of natural gas (Gas-POX). In order to achieve this, Aspen Plus simulation model of the 

quench chamber of the HP POX (high pressure partial oxidation) plant at the Institute of Energy 

Process Engineering and Chemical Engineering (IEC), TU Bergakademie Freiberg was developed to re-

calculate the quench chamber input amount of different trace compounds from their output amount 

measured during test points of the Gas-POX campaigns. As these traces are undesired, the 

assessment of the results in this work should lead to the improvement in the understanding of trace 

components and concepts that could be employed to influence their formation and reduction. 
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1.3 Overview of the Work 

Presented in Chapter 2 are the process and test conditions during the test campaign of the Gas-POX. 

The HP POX test plant features, gaseous feedstock characteristics including natural gas, methods used 

to analysed the gaseous product and aqueous phase products were discussed. After that, Chapter 3 

emphasizes on the simulation and concepts that were utilized to develop the HP POX quench water 

system model with the support of tools like Visual Basic for Applications (VBA), and Python as an 

interface between Aspen Plus and Microsoft Excel. In addition, Chapter 3 gives detail information 

about the thermodynamic consideration with respect to the property methods and sensitivity 

analysis studies. Chapter 4 reviews some trace components present in the quench water. It discussed 

their dissolution as well as vapour-liquid equilibria properties as their distribution were influenced by 

quench water pH values and quench water temperature variations. In order to investigate the 

formation of organic acids that were analysed from the quench water effluent samples, chapter 5 

focuses on the formation of formic acid and acetic acid in the quench water. Chapter 6 looks at the 

formation of nitrogen compounds in the gasifier during gasification and their resultant effects when 

hot synthesis gas was quench-cooled in the quench chamber. The last is chapter 7, which discussed 

the possible causes and effects that could be responsible for the formation of traces such as BTEX, 

PAHs and soot in the quench water effluent during gasification of natural gas and the results of the 

analysed quench water effluent samples during the test campaigns under review. 
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2 Process and test conditions 

 

2.1 HP POX test plant 

The HP POX (high pressure partial oxidation) test plant has been in operation for research since 

summer 2004. This semi-industrial scale test plant is located on the site of the Institute of Energy 

Process Engineering and Chemical Engineering (IEC), Technische Universität Bergakademie Freiberg. 

It belongs to the university and it was designed and erected by Lurgi GmbH (now a part of the Air 

Liquide group) [COORAMENT report, 2010]. Its operation modes includes: autothermal catalytic 

reforming (ATR) of natural gas at pressures up to 70 bar (g), autothermal non-catalytic partial 

oxidation of natural gas (Gas-POX) at pressures up to 100 bar (g), which is the focus of this work and 

autothermal non-catalytic gasification of liquid hydrocarbons (Oil-POX), which is known as Multi-

Purpose Gasification (MPG) at pressures up to 100 bar (g). Presented in Fig. 2.1 is the HP POX test 

plant´s flow chart with the main plant facility and material flow. 

 

Figure 2.1: HP POX test plant main facility components and material flow courtesy of [Lurgi GmbH, 
2008] 

The HP POX test plant was specially designed to allow modification in its reactor geometry. Its 

combined pressure vessel in Fig. 2.2 consist of the reaction chamber (gasification unit) situated at the 

upper part of the pressure vessel and the quenching chamber below. The equipment allows for the 

variation of process parameters (pressure, temperature and quenching temperature) exceeding the 
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range generally employed in industrial practice [COORAMENT report, 2010]. During the ATR mode of 

operation, common reforming catalysts are usually filled in the lower part of reaction chamber. Also, 

natural gas is the feedstock during ATR and Gas-POX mode while liquid hydrocarbons are the 

feedstock in the MPG mode. In all these modes of operation, the feedstock mixes and reacts with 

oxygen and moderating steam. The oxygen is supplied as liquid oxygen which is pumped to the 

required pressure, evaporated and preheated before it is fed into the gasifier. Steam is supplied at 

high pressure from the water treatment facility after the production of deionized water that is used 

for the quenching process. The product synthesis gas which is also known as hot gas stream leaving 

the reactor is rapidly quench-cooled with quench water while the saturated raw synthesis gas is 

separated from the liquid phase in the quench chamber. Depending on the purpose of the experiment 

or test campaign, the product synthesis gas is flared at the flue gas chimney after sampling and 

measurements or used as feed for the gasoline synthesis test plant. The test plant has had over 8000 

hours of operation over the years since installation. Furthermore, the test plant has a maximum 

thermal capacity of 5 MW, which corresponds to at the most 500 m3 (STP)/h natural gas, or 500 kg/h 

liquid feed and it generates up to 1500 m3 (STP)/h synthesis gas. An optical probe system (in Fig. 2.2) 

may be used to have visual access to the flame. This probe needs nitrogen flushing to keep the optics 

clear. This additional N2 stream enters the reactor. The optical probe is mounted at the preheating 

burner port after heating the reactor refractory walls.  

 

Figure 2.2: Simplified scheme of HP POX plant (including quench system) [Lurgi GmbH, 2008] 
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2.2 Test campaign procedure  

The experimental results obtained during the test campaign activities on the HP POX test plant from 

April 2014 to March 2016 were used for these studies. In these periods, a total of 47 test points in the 

Gas-POX mode were obtained, they shall be the basis of this work and discussed in the later chapters. 

Measurement and sampling of feedstock, product synthesis gas, raw synthesis gas and quench water 

effluent were carried out during the test campaigns. In addition to all these measurements, the flows, 

temperatures, pressures and online analysis data of feeds, products and water cycles measured at 

the HP POX test plant were recorded and visualized using a DCS system. The data required for 

evaluating the test runs and for closing the balances were recorded every second and stored on an 

SQL server [Richter et al., 2015]. More information about other modes of operation of the HP POX 

test plant as well as the feedstocks analysis, gaseous phase products and aqueous phase product 

analysis can be found in [Meyer, 2007] and [Brüggemann, 2010]. 

 

2.2.1 Gas-POX operating parameter range 

 

The Gas-POX operation mode of the HP POX ranges between 30 – 100 bar. Product synthesis gas 

outlet stream temperature goes up to 1450 °C. The feedstocks are natural gas, O2 and steam. The 

natural gas is supplied at 12 bar via local gas distribution network and it is compressed (at most 113 

bar) and preheated to 380 °C before entering the reactor.  

 

Table 2.1: Outline of Gas-POX mode operating parameter range 

Operating pressure 30 – 100 bar 

Operating temperature  
1450 °C 
up to 1450 °C 

Free space temperature 

Outlet temperature 

Feedstock  
from 190 m3/h Natural gas 

Additional gases  
up to 110 m3/h CO2 

N2 up to 130 m3/h 
Oxygen from 80 m3/h 
Steam from 35 kg/h 
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2.2.2 Gas-POX experiments  

The test runs in these studies focus on the variation of throughput of the natural gas residence time 

and the effect of the listed parameters on the synthesis gas composition as well as trace component 

formation:  

 Pressure  

 Temperature 

 Feed ratio O2 : Cf  

 Feed ratio H2O : Cf  
 

Before the Gas-POX operation commences, it is possible to adjust the volume of the reactor by the 

addition of refractory bricks on the reactor wall.  

Table 2.2: Outline of test runs operating mode and parameters of chosen test campaigns 

Pressure  
bar (g) 

H2O : Cf 

mol / mol 
N2 : Cf 

mol / mol 
Points of investigation 

50 – 60 0.2 – 0.5 0 – 0.007 O2: Cf (T) variation 

 

 

2.2.3 Net reactions of partial oxidation 

Partial oxidation (POX) process is the reaction of carbonaceous compounds (natural gas) and oxygen 

to be converted to synthesis gas according to following overall reaction: 

𝐶𝑛𝐻𝑚 + 
𝑛

2
 𝑂2 ⇌ 𝑛𝐶𝑂 + 

𝑚

2
 𝐻2  (2.1) 

 

The methane and other hydrocarbons in natural gas like ethane, propane and butane in Table 2.3 

react with a limited amount of oxygen which is not enough to completely oxidize the natural gas into 

carbon dioxide and water [Huff et al., 1994]. The reaction (2.1) can be summarized into series of basic 

chemical reactions such as partial oxidation of methane:  

𝐶𝐻4 +  
1

2
 𝑂2 ⇌ 𝐶𝑂 + 2 𝐻2               ∆𝑅𝐻298 𝐾

∘  = -35.7 kJ/mol (2.2) 

 

Partial oxidation of natural gas is an autothermal process involving in-situ partial combustion of 

natural gas at sufficiently high temperatures. The stoichiometry of the reaction is maintained to yield 

syngas mainly containing H2 and CO and a H2 : CO ratio of 2 [Curry-Hyde et al., 1994]. It is possible to 
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have other reactions to take place where the feed gas reacts with CO2 [Uchijima et al., 1994] to 

produce more syngas according to reactions (2.3)  

𝐶𝐻4 + 𝐶𝑂2 ⇌ 2 𝐶𝑂 + 2 𝐻2                ∆𝑅𝐻298 𝐾
∘   = 247.3 kJ/mol (2.3) 

 

Reaction (2.3) is also called dry reforming or carbon dioxide reforming of methane. 

 

𝐶𝐻4 + 𝐻2𝑂 ⇌ 𝐶𝑂 + 3 𝐻2                ∆𝑅𝐻298 𝐾
∘  = 206.2 kJ/mol  (2.4) 

 

Reaction (2.4) is known as steam methane reforming; it is an endothermic reaction which means it 

requires heat supply to the process. This reaction offers the highest molar ratio of H2/CO [Pitchai et 

al., 1986]. The reaction (2.2) occurs with the methane as the main constituent of the natural gas, 

steam and / or carbon dioxide combined to have the exothermal partial oxidation as well as the 

endothermal reforming reactions (2.3) and (2.4). In the instant that the gas is considered for 

subsequent synthesis, the water gas shift reaction (2.5) becomes important for adjusting H2: CO ratio. 

Water gas process is used to produce hydrogen due to its economic benefits in Haber ammonia 

synthesis process with other types of water gas reported in [Smirniotis et al., 2015]. 

Carbon monoxide and steam reacts via shift reaction to produce an equimolar mixture of carbon 

dioxide and hydrogen. 

𝐶𝑂 + 𝐻2𝑂 ⇌ 𝐶𝑂2 + 𝐻2                ∆𝑅𝐻298 𝐾
∘  = -41.2 kJ/mol  (2.5) 

 

The reaction (2.6) is the total oxidation of methane and other hydrocarbons (in the natural gas), which 

is the main reaction in the zones of stoichiometric mixture in the flame. 

𝐶𝐻4 + 2 𝑂2 ⇌ 𝐶𝑂2 + 2 𝐻2𝑂                ∆𝑅𝐻298 𝐾
∘  = -802.3 kJ/mol (2.6) 

 

 

Figure 2.3: Overview of reactions of methane 
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Gasification processes for liquid feeds can be applied with little modification for partial oxidation of 

natural gas and other possible gaseous feedstocks [Higman et al., 2003]. But some considerations 

relating to feed preheating and the burner tends to differ. Generally, commercial production of 

syngas has been predominated by steam methane reforming (SMR) technology [Wilhelm et al., 2001] 

and partial oxidation of methane is an alternative technology especially the catalytic partial oxidation 

due to the fast heterogeneous reactions at lower temperatures [Zhou et al., 2010]. Although it 

requires high temperature [Pena et al., 1996], the unrequired catalyst cost associated with non-

catalytic partial oxidation of methane gives it a great advantage. The concerns relating to the 

formation of carbon or soot and possible deposition on catalyst leading to the coking and deactivation 

of the catalyst in the steam reforming and catalytic partial oxidation processes have made non-

catalytic partial oxidation of methane to be of great interest industrially over the former [Aasberg-

Petersen et al., 2001] and [Zhou et al., 2010]. Although, the non-catalytic partial oxidation combines 

the catalytic steam reforming in an autothermal reforming (ATR) process [Aasberg-Petersen et al., 

2003]. 

To improve the know-how relating to key process parameters in the production of syngas by non- 

catalytic partial oxidation of natural gas, several published researches [Konnov et al., 2004], [Zhou et 

al., 2010], [Guo et al., 2012], [Li et al., 2013], [Xu et al., 2014], and [Guiberti et al., 2016] have 

suggested a lot of findings and progress focusing on the upstream part of the gasification processes. 

 

2.3 Gaseous feedstock characterization 

The relevant properties of the feed input are discussed in this section. The feeds are natural gas, 

oxygen, and steam. The liquid oxygen and steam are of 99.5% purity and they serve as the gasification 

agents. The rest of the 0.5% liquid oxygen is assumed to be argon. As earlier stated, nitrogen is fed 

into the gasifier for the purpose of the optical probe apart from the negligible amount present in the 

natural gas as shown in Table 2.3 (see Appendix Table 9.1: Natural gas feed analysis method). 

2.3.1 Natural gas feedstock composition 

The natural gas used is supplied from two sources. Table 2.3 give the typical composition of the 

Russian and North Sea natural gas supplied to feed the HP POX test plant. 
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Table 2.3: Natural gas feedstock compositions 

 Gas 1 (Russian) Gas 2 (North Sea) 

Molar composition (%)   

CH4 97 – 99 88 – 90 
C2H6 0.8 – 1.1 4 – 5 
C3H8 0.3 – 0.4 0.5 – 1.0 

∑(C4H10 and higher) 0.1 – 0.2 0.1 – 0.2 
N2 0.6 – 0.8 2 – 4 

CO2 < 0.03 1 – 2 

2.4 Analytical methods for gaseous products 

2.4.1 Hot gas sampling  

During operations, the product synthesis gas or hot gas stream exit the gasifier and it is cooled in the 

quench chamber. Moreover, for the sake of gas sampling, a part of the hot gas is sampled after 

indirect cooling in a water-cooled tube. Table 2.4 presents the analysis methods for products 

synthesis gas before quench operation. 

Table 2.4: Product synthesis gas analysis method (hot gas before quench) [Brüggemann, 2010] 

Sample Anaylsis method  and sampling time 
interval 

Result 

Product 
synthesis gas or 
hot gas before 

quench 
operations 

GC-TCD (offline), MS5A column,  
Carrier gas: Argon, 

2 hours 

concentration of CH4,N2, 
H2 

(LOQ 100 ppmv) 

GC-TCD, PPU column,  
Carrier gas: Helium, 

2 hours 

CO2, C2H6, C2H4, C2H2, C3H4, 
H2S, COS (LOQ 20 ppmv) 

Absorption in aqueous H2SO4 
solution for 2 – 6 hours per run, 

aqueous NH3 concentration with IC  
according DIN EN ISO 14911 

concentration of NH3 

Absorption in aqueous NaOH 
concentration  

according DIN 38 405-D13 

concentration of HCN 

Absorption in aqueous C4H6CdO4(aq), 
aq. concentration  

according DIN 28 405-D26 

concentration of H2S 

Dräger tube according 
expected concentration range, 

2 – 6 hours 
 

approximate 
concentration of H2S (LOQ 

0.2 ppmv), NH3 
(LOQ 0.25 ppmv),  
HCN (LOQ2ppmv) 
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2.4.2 Raw synthesis gas analysis after quench 

The composition of the raw synthesis gas was analyzed by the online and offline gas chromatography 

(multi-channel micro-GC 3000A). The online GC measures gas samples directly from the plant while 

the offline GC located in the laboratory analyses gas samples collected in gas bags from the plant at 

the same sampling location at intervals during the plant operation (see Table 2.5). Both online and 

offline GC were used to analyze raw synthesis gas with respect to CO2, CO, H2, CH4, N2, H2S and COS. 

Table 2.5: Analysis methods for raw synthesis gas [Brüggemann, 2010] 

Sample Analysis method  and sampling time 
interval 

Result 

Raw synthesis 
gas after 
quench 

operations 

GC-TCD (online), MS5A column,  
Carrier gas: Argon, 

Continuous sampling 

concentration of H2 
(LOQ 100 ppmv) 

GC-TCD (online), MS5A column,  
Carrier gas: Helium, 

Continuous sampling 

concentration of CH4, N2, 
CO, O2 (LOQ 100 ppmv) 

GC-TCD (online), PPU column,  
Carrier gas: Helium, 

Continuous sampling 

CO2, H2S, COS  
(LOQ 20 ppmv) 

GC-TCD (offline), MS5A column,  
Carrier gas: Argon, 

2 hours 

concentration of CH4, N2, 
CO, 

H2 (LOQ 100 ppmv) 

GC-TCD (offline), PPU column,  
Carrier gas: Helium, 

2 hours 

CO2, H2S, COS  
(LOQ 20 ppmv) 

Dräger tube according 
expected concentration range, 

2 – 6 hours 
 

approximate 
concentration of H2S (LOQ 

0.2 ppmv), NH3 
(LOQ 0.25 ppmv),  

HCN (LOQ 2 ppmv) 

Absorption in aqueous H2SO4 
solution for 2 – 6 hours per run, 

aqueous NH3 concentration with IC  
according DIN EN ISO 14911 

concentration of NH3 

Absorption in aqueous NaOH 
concentration  

according DIN 38 405-D13 

concentration of HCN 

Absorption in aqueous C4H6CdO4(aq), 
aq. concentration  

according DIN 28 405-D26 

concentration of H2S 

The raw gas samples were cooled and dried before online and offline GC sampling. It takes the offline 

GC a minimum of 4 minutes to analyze a gas bag and this was repeated 3 times for the two raw 
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synthesis gas sample bags making a total of 6 analyses for the offline GC at each of the chosen time 

points (time interval: 2 hours) within the test point. The average value of the 6 analyses of each of the 

chosen time points was taken for the offline GC. In order to ensure accuracy in the measurements, 

the final raw gas sample measurement was derived from the average of both the measured offline 

and online GC. 

 

2.5 Aqueous phase product analysis 

The analysis of the aqueous phase was carried out with the aid of ion chromatography (IC) (see Table 

2.6). Section 2.5.1 gives the detail procedures for measuring CN-, S2- and NH4
+ ions. 

Table 2.6: Analysis methods for aqueous phase products [Brüggemann, 2010] 

Samples Analysis method Sampling 
time interval 

Result 

Quenching water IC-CD,  
DIN EN ISO 14911 

2 hours concentration of NH4
+, HCOO-, 

CH3COO-, Na+, K+, Mg2+, Ca2+, 
Cl-, SO4

2 -, NO3
-, NO2

-, PO4
3--, 

S2O3
2-, etc. in stabilized 
water phase 

Quenching water IC-AD, 
DIN 38405-D26 (S2-), 
DIN 383405-D13(CN-) 

2 – 6 hours CN- and S2- after distillative 
preparation 

Quenching water DOC,  
DIN EN 1484 

selected 
experiments 

dissolved organic carbon 
(DOC) 
concentration in water phase 

The measured values (in blue) were used for the back calculation in the Aspen Plus set up for the HP 
POX test plant quench water system in Fig. 3.2 as well as chapter 4, 5 and 6. 

 

2.5.1 Molecularly dissolved trace compounds and their ions trace analysis 

The measurement represents the trace content according to quench water effluent stream for the 

overall NH3, H2S and HCN (see Table 2.6). Analyses of quench water samples were performed to 

check for the amount and constituent compositions of cations (NH4
+) and anions (CN- and S2-) 

during the test campaign. Three different analytical procedures were used for NH4
+

, CN- and S2-. 

Quench water was collected in three different laboratory sample flasks with one being filled with 

a stabilizer solution of zinc acetate (for S2- analysis), another flask with tablets of NaOH as stabilizer 

(for CN- measurement) and an empty sample flask without stabilizer (for NH4
+ and other ions).  
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The flask content used for analysis of NH4
+ and other ions was filtered via a cartridge and then 

transferred into small sample test bottles and placed in the ICS – 2000 (for anions analysis) and ICS 

– 1500 (for cations analysis) coupled with the integrated system, which performs all types of ion 

chromatography separations using an electrical conductivity detector.  

In the case of S2-, the sampled solution (quench water sample with zinc acetate stabilizer) was 

consecutively pH value adjusted and cold stripped with nitrogen stream and then, the stripped H2S 

is trapped in the absorption flask (high pH value) to stabilize the trapped species of H2S as S2-, 

which is then ready to be analyzed. The zinc acetate is reduced to zinc sulfide by H2S present in 

the quench water sample. The use of zinc acetate to trap H2S were widely reported in [Pomeroy 

et al., 1954], [Shanthi et al., 1996] and [Cassella et al., 1999]. 

In the case of CN-, the sampled solution (quench water sample with NaOH stabilizer) was 

consecutively pH value adjusted, and then hot stripped at 158 °C in a laboratory distillation 

column. The stripped HCN is trapped in the absorption flask (high pH value) to stabilize the trapped 

species of HCN as CN-, which is then ready to be analyzed. This method enables the analysis of 

trace HCN present in the aqueous phase to be carried out with new experimental findings by [Mai 

et al., 2010]. 

The separate samples of CN- and S2- were analyzed in the ion chromatography ICS – 3000 with 

amperometric detection with the support of Dionex Chromeleon data processing, data 

management and instrument validation software.  

 

2.5.2 Other trace analysis 

Information about the analysis made for other trace compounds like BTEX, PAHs and soot etc. shall 

be discussed later in chapter 7.  

 

2.6 Limit of accuracy in measurement systems  

In pilot scale or demonstration plants like the HP POX test plant, the designs are flexibility driven in 

order to have representative data collections during operation. Such flexibility provides the 

opportunity for new units to be added or quick modification with reconfiguration of the existing plant 
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and the possibility to test several operating conditions over a wide range. Regarding commercial-scale 

plants [Rietema et al., 1961], they are designed for the production of defined products quality at 

certain volume in order to maximize profit and minimize cost. Having the knowledge of the 

measurement errors associated with the plant facility or the measurement systems during 

experiment in the pilot scale plant is as important as the process itself. Then, estimate uncertainties 

of conversions or yields [Langensiepen et al., 1979] can lead to good assessment in the mass and 

energy balance with reduction of errors. 

 

In the light of this, there are measurement errors that can be identified in different parameters 

relating to quantities measured, sampling, test and analysis in these kinds of experiments.  

The steam or water content of the product synthesis gas leaving the reaction chamber cannot be 

measured directly and must be inferred as part of the calculatory reconciliation [Richter et al., 2015] 

between the reaction chamber elemental input and output. For example in biomass-to-liquid (BtL) 

process, the raw synthesis gas leaving the quench chamber contains some amount of steam different 

from that of the product synthesis gas from the gasifier [Trippe et al., 2011]. In the HP POX plant, the 

measured value of the raw gas volume flow rate was slightly corrected with the assumption that there 

was steam saturation according to quench water temperature [Richter et al., 2015]. 

 

The temperatures inside the gasification chamber were measured by R-type thermocouples. Due to 

differences inferred from multiple measurements, an estimated uncertainty of ±10 K [Brüggemann, 

2010] was used as the absolute temperature at the reactor outlet. Also, the aging of these 

thermocouples were due to several test campaigns, which affects the tolerance of their 

measurements. 

 

Presented below is Table 2.7, which gives an overview of relative accuracy for the measured value for 

temperature, pressure and flow of each feed and product stream as well as GC calibration for the 

measured main product synthesis gas compounds. 

 

 



 

17 
 

Table 2.7: Relative accuracy for the measured value for temperature, pressure and flow of each feed 
and product stream [Meyer, 2007] and [Brüggemann, 2010] 

Measurement Relative 
accuracy 

Remarks 

Flow of natural gas and 
product synthesis gas 

0.3 % Vortex flowmeters used for natural gas and 
product synthesis gas has a relative 
accuracy of 0.3 % 

Flow of oxygen 2 % Oxygen supply was measured by a Coriolis 
mass flowmeter has a relative accuracy of 2 
%. 

Flow of steam 1 % The steam feeds by restrictors has a 
relative accuracy of 1 %. 

Flow of nitrogen 2.5 % The nitrogen that is used in flushing the 
optical probe in Fig. 2.2 was measured via a 
variable flowmeter has an approximated 
relative accuracy of 2.5 %. 

Natural gas temperature 0.75 % The natural gas temperature was 
measured by K-type thermocouple has a 
relative accuracy of 0.75 %. 

Steam and oxygen 
temperatures 

0.6 %. The steam and oxygen temperatures were 
measured by resistance thermometers 
have relative accuracy of 0.6 %. 

Pressure measurements 0.3 % The pressure measurements were 
measured by pressure transducers has a 
relative accuracy 0.3 %. 

GC calibration for the 
main product synthesis 

gas compounds 

Concentration 
range 

The evaluation of the GC calibration and its 
tolerances that were given by the 
manufacturer of the gas calibration system 
provided the relative accuracy values for 
the measured product synthesis gas 
compounds in the concentration range of: 
H2 ±2 %, CO ±2 %, CO2 ±2 %, CH4 ± 5%, and 
N2 ±5 %. 

H2 ±2 %, 

CO ±2 % 

CO2 ±2 % 

CH4 ± 5% 

N2 ±5 %. 

 

2.7 Summary 

The HP POX test plant operations and test campaign parameters were discussed. Series of chemical 

reactions relating to partial oxidation of methane were explained. The procedure for analyzing hot 

gas, raw gas and quench water samples during plant operations were reviewed. Also, discussed are 

the relative accuracy for the measured value for temperature, pressure and flow of feed and hot gas 

stream as well as GC calibration for hot gas components. 
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3 Simulation and methods 

 

3.1 Test points calculation of the HP POX test campaign  

The focus of this investigation is on the water quench operation processes during the Gas-POX 

operating mode of the HP POX test plant. This chapter describes the simulation tools employed for 

calculation and how results with the data from the test campaigns were used for the development of 

the models as well as considerations used in these studies. The first action is to simplify and take into 

account all aspect of the quench operations based on the quench chamber of the HP POX test plant 

in Fig. 2.2. The streams and their parameters were identified and implemented in the Aspen Plus 

model. In this, calculations were made for all the 47 test points of the considered campaigns using 

Microsoft Excel, Aspen Plus and the interface between Excel and Aspen Plus was via Visual Basic for 

Applications (VBA). On the other hand, the same approach was employed for Python, Microsoft Excel, 

and Aspen Plus. The interface between Excel and Aspen Plus was Python. Details of all these shall be 

discussed in later sections of this chapter. 

 

Figure 3.1: Simplified scheme for HP POX quench water system 

The simplified process scheme of the quench chamber of the HP POX test plant can be seen in Fig. 

3.1. The quenching of the hot gas stream is carried out by stream F103, which is a mixture of quench 
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water outlet and deionized water. Hot gas stream from the gasifier is quenched by stream F103 in 

the quench vessel. Leaving the quench vessel is the raw synthesis gas stream and the quench water 

outlet. The deionized water is mixed with the quench water outlet, pumped and cooled to have 

stream T104. Stream T104 splits into stream F103 and quench water blowdown stream F136PRESS. 

After cooling stream F136PRESS, this stream was depressurized and splits into stream F136, which is 

the depressurized quench water blowdown stream and Degas stream, which is gaseous evolution 

during depressurization and will be burnt in the flare.  

 

3.1.1 Aspen Plus model for HP POX quench water system 

This section contains an overview of original model, assumptions and a description of the model in 

Aspen Plus. Aspen is a process modelling tool that simulates industrial processes. It has a GUI for 

setting up the flowsheet, defining all the streams and units input and output parameters, and for 

running the simulation. More details about Fig. 3.2 can be found in Appendix Fig. 9.1 and Table 9.11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Aspen Plus flow diagrams of simulated HP POX quench water system 

 



 

20 
 

Table 3.1: Description of blocks used in Aspen Plus simulation. 

Unit Name Description 

Flash Quench  Rigorous 2 phase (vapour-liquid) equilibrium calculations. 

RStoic Reactor Stoichiometric reactor based on known functional conversions or 

extent of reaction for the considered organic acids formation. 

Pump P105 Calculates the outlet pressure of the stream. 

Cooler W106 Calculates the enthalpy change of the stream for a given outlet 

temperature. 

Splitter SPLITOUT Combines material streams and divides the resulting stream into two 

streams. 

Cooler COOLER Calculates the enthalpy change of the stream for a given outlet 

temperature. 

Design 

specification 

DS – H2S  Calculates the hot gas of H2S inlet stream based on experimental 

data of S2- concentration in the quench water sample (see Table 2.6 

and Section 2.5.1). 

Design 

specification 

DS – NH3 Calculates the hot gas of NH3 inlet stream based on experimental 

data of NH4
+ concentration in the quench water sample (see Table 

2.6 and Section 2.5.1). 

Design 

specification 

DS – HCN Calculates the hot gas of HCN inlet stream based on experimental 

data of CN- concentration in the quench water sample (see Table 2.6 

and Section 2.5.1). 

Design 

specification 

DS – F136 Specifies the deionized water flow based on measured value from 

F136. 

Design 

specification 

DS – F103 Specifies the flow of stream F103 based on measured value from 

F103. 

 

Design specifications for the calculation of the content of H2S, NH3 and HCN in the hot gas after 

quench were implemented in Aspen Plus Design Spec functionality available in the flowsheeting 

options to meet the real measured trace in the quench water outlet data obtained from the HP POX 

test plant. These real data include laboratory analysis of some of the traces described earlier in 

Chapter 2 (Section 2.5.1). 

The Electrolyte NRTL (ELECNRTL) equation of state embedded in the Aspen Plus software was used 

as the model`s property method for the calculation of the HP POX test plant quench water system 

cycle as illustrated in Fig. 3.2. ELECNRTL model can calculate activity coefficients for ionic species and 

molecular species in aqueous electrolyte systems likewise in mixed solvent electrolyte systems. Many 

new models developed for thermodynamic modelling of electrolyte solutions are mostly based on 
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Electrolyte NRTL model. The model gives an extensive excess Gibbs energy expression to represent 

the liquid-phase non-ideality for aqueous and mixed-solvent electrolyte systems [Chen et al., 2004], 

over the entire concentration range from pure solvents to saturated solutions or fused salts 

(extended to multicomponent solutions) [Jaretun et al., 1999] and [Jaretun et al., 2000]. 

 

The quench water outlet stream to be studied is a complex mixture or system, which contains 

dissolved gases and their ions. The electrolyte NRTL equation provides thermodynamically consistent 

model for aqueous electrolyte systems. This equation was developed with the local composition 

concept. This concept is similar to the NRTL (Non-Random Two Liquid) model for nonelectrolyte 

systems [H. Renon et al., 1968]. The explanation for local composition activity coefficients for 

multicomponent electrolyte systems can be seen in the Aspen physical property system manual 

[Aspentech manual: property method, 2012]. It is suitable for aqueous and mixed solvent application. 

With the initiation of electrolyte wizard in Aspen Plus, lists of aqueous species, salts, and possible 

reactions are displayed and can be chosen. 

 

In electrolyte NRTL activity coefficient property method with only binary parameters, the equation 

satisfactorily represents physical interactions of true species in aqueous single electrolyte systems 

and multicomponent electrolyte systems over broad ranges of concentrations and temperatures. This 

property method can also represent infinitely dilute electrolyte systems (where it reduces to the 

Debye-Hückel model), nonelectrolyte systems (where it reduces to the NRTL model), and pure fused 

salts. The equation has been extended to model mixed solvent electrolyte-systems [B. Mock et al., 

1984]. 

The electrolyte NRTL activity coefficient model comprises of three main contributions that enhances 

its capabilities. The first is the long-range force, which accounts for the electrostatic interactions of 

ion especially at low concentration and this implies a Pitzer – Debye – Hückel model. The second 

aspect of electrolyte NRTL activity coefficient model is known as Born contribution, which gives it the 

possibility to mixed aqueous – non aqueous electrolyte solvents. The third aspect is the local 

composition NRTL contribution, which is applied for short-range forces effective at higher 

concentrations of ions [Haghtalab et al., 2004]. 
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Two fundamental assumptions of the model are: “The like-ion repulsion assumption” and “The local 

electroneutrality assumption”. These led to adding the NRTL expression for the local interactions, the 

Pitzer-Debye-Hückel expression, and the Born equation to have equation (3.1) for the excess Gibbs 

energy: 

 

𝐺𝑚
∗𝐸

𝑅𝑇
=  

𝐺𝑚
∗𝐸,𝑃𝐷𝐻

𝑅𝑇
+

𝑛𝐺𝑚
∗𝐸,𝐵𝑜𝑟𝑛

𝑅𝑇
+ 

𝐺𝑚
∗𝐸,𝐿𝐶

𝑅𝑇
 (3.1) 

 

Solving equation (3.1) gives the main mathematical expression for Electrolyte NRTL activity coefficient 

model as in equation (3.2). 

 

ln 𝛾𝑖
∗ = ln 𝛾𝑖

∗𝑃𝐷𝐻 +  ln 𝛾𝑖
∗𝐵𝑜𝑟𝑛 +  ln 𝛾𝑖

∗,𝐿𝐶 (3.2) 

 

The complete form of the model can be found in [Chen et al., 1982], [Chen et al., 1986] and 

[Aspentech manual: property method, 2012]. γ∗
i denotes the unsymmetrical activity coefficient of 

ionic species i and the first, second and third terms on the right side of equation (3.2) are the activity 

coefficients introduced by the Pitzer – Debye – Hückel (PDH), Born and NRTL local composition 

models (LC) respectively. 

 

Also, in the activity-coefficient approach for computing vapor-liquid equilibrium, Henry's law is used 

to represent the behavior of dissolved gases or other supercritical components. Aspen Plus has built-

in Henry’s law parameters for a large number of component pairs. The solvents are water and other 

organic compounds.  

These parameters are used automatically on the properties parameters binary interaction HENRY-1 

form when one specifies or designates these components as Henry's components on the Components 

Henry-Comps form.  

Dissociation occurs in the electrolytic system of the quench water effluent and can be enhanced as a 

result of the interactions among the various species present. 
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3.2 Gas-POX 201 VP1 quench water system model simulation by Aspen Plus 

Presented in this section is the calculation for test point Gas-POX 201 VP1 which is the first of the 47 

test points. Fig. 3.1 and Fig. 3.2 give general schematics of the model in Aspen Plus. This chosen test 

point VP1 was further considered for the presentation of species distribution. Calculations of species 

distributions during sensitivity studies originating from this test point were analysed. The trace 

components molecule and ions are presented in Chapter 4. More information about the results of 

these studies shall be discussed in Chapter 4. 

3.2.1 Measured and calculated input parameters 

The measured and calculated streams for the HP POX test plant quench water system cycle streams 

are presented in Table 3.2. The operating parameters of the streams measured during the test point 

Gas-POX 201 VP1 (*) and the results obtained from the quench water system model in Aspen Plus 

(**) were used for the purpose of further studies especially the sensitivity analysis. 

Table 3.2: HP POX test plant quench water cycle parameters Gas-POX 201 VP1* 

Streams Operating parameters 

(* Measured values , ** Calculated values) 

Phase 

Flow rate 

(t/h) 

Temperature 

(°C) 

Pressure 

(bar) 

Hot gas (HG) 0.82 ** 1172 * 71 ** Gas 

Raw gas (RG) 0.77 * 177.4 ** 71 * Gas 

Degas  

(Quench water blowdown) 

0.002 ** 20 ** 1 * Gas 

Quench water outlet 5.4 ** 177.4 * 71 ** Aqueous 

Stream T104  

(Quench water cooled) 

6.0 ** 79.9 * 72 ** Aqueous 

Stream F103  

(Quench water inlet) 

5.3 * 79.9 ** 72 ** Aqueous 

Stream F136PRESS  

(Quench water blowdown) 

0.7 * 79.9 ** 72 ** Aqueous 

Stream F136  

(Quench water blowdown) 

0.7 ** 20 °C * 1 * Aqueous 

Deionized water 0.6 ** 105 * 72 ** Aqueous 

 

The measured values (in blue) were used for the back calculation in the Aspen Plus set up for the HP 
POX test plant quench water system in Fig. 3.2 as well as chapter 4, 5 and 6. 
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3.2.2 Calculated sensitivity studies of species and their distribution for test point (VP1) 

The sensitivity analysis tool results elucidate the behaviours of different traces between raw synthesis 

gas and quench water, which were influenced by quench water temperature variations from 130 °C 

to 220 °C at constant pressure (79.9 bar) and quench water pH values variation. Also considered are 

the influence of organic acids such as formic acid (HCOOH) and acetic acid (CH3COOH). The selected 

components under consideration were CO2, H2S, NH3 and HCN. The distributions of their molecularly 

dissolved and ionic species were studied.  

 

The operating parameters of the streams as shown in Fig. 3.1 and Fig. 3.2 were used to develop the 

Aspen Plus simulation model based on the test point VP1 data of the campaign Gas-POX 201 from HP 

POX test plant during operation. While the addition of the pH regulation input into stream F103 was 

used for sensitivity analysis. 

Beforehand, a combined configuration of the quench water system cycle Aspen Plus model, VBA and 

Microsoft Excel was used to make the calculations for all the 47 test points of the Gas-POX test 

campaigns. Test point VP1 data of the Gas-POX 201 test campaign were then chosen for sensitivity 

studies. 

The simulation model was applied to conduct sensitivity analyses for CO2, H2S, NH3 and HCN amounts 

in raw gas, degas, and F136. These amounts were related to the hot gas. Changing parameters are: 

quench water temperature and quench water pH values. pH value changes were realized with an 

additional stream comprising of sodium hydroxide (20 mass-% NaOH, 80 mass-% H2O) or sulfuric acid 

(20 mass-% H2SO4, 80 mass-% H2O) in two different sensitivity studies (see Table 3.3 and pH regulator 

via stream F103 input in Fig. 4.2). The initial calculated pH value of the quench water outlet stream 

was 6.17 for this test point. 

Table 3.3: pH regulator parameters 

Streams Operating parameters Phase 

Flow rate varied during sensitivity 

studies (t/h) 

Temperature 

(°C) 

pH regulator – NaOH From 0 – 0.20 20 Aqueous 

pH regulator – H2SO4 From 0 – 0.20 20 Aqueous 

 
The other sensitivity studies done were on varying quench water temperature and the effects on the 

trace components distribution in the streams (raw gas, degas, quench water outlet, stream T104, 

stream F103, stream F136PRESS and stream F136) and are presented in chapter 4. 
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3.3 Used calculation tools related to the work 

3.3.1 VBA in Excel  

Visual Basic for Applications (VBA) via Microsoft Excel provides the interface to link Aspen Plus and 

Microsoft Excel. VBA is a high level programming language that is oriented around an object 

framework and event driven execution. It is a large sub-set of the Visual Basic language. It is a macro 

language that is integrated tightly into supporting applications. The syntax and functionality is 

identical to straight Visual Basic [Aspentech manual, 2008]. 

 

Figure 3.3: Integration of information and functions in VBA via Microsoft Excel to Aspen Plus model 

Interfacing a process simulation tool like Aspen Plus and others with VBA in Microsoft Excel is widely 

applied in the industry, research and academics to simulate chemical process designs and operational 

changes. This creates the possibility to optimize the performance of a process. Consequently, the 

output data after the calculation can be saved in Microsoft Excel for further analysis [Rangaiah et al., 

2016].  

The approach in this work is to transfer the HP POX experimental data obtained during the test 

campaign into the developed Aspen Plus model in Fig. 3.1. For steady state simulation, Aspen Plus 

does not have an integrated function to perform the calculation of all the 47 test points along with 

their several parameters belonging to the streams and units at once. So, a need to implement the 

possibility of such functionalities arises. Therefore, the repeatability of calculation was major factor. 

Aspen Plus results are transferred back to Excel via the interface. 

This approach had been in use by many engineers around the world as a possibility for the challenges 

faced when developing optimisation concepts for processes or improving facility operations with 

respect to huge databank of the system or a process under consideration. The need for flexible, 

intuitive and powerful tool to reduce the time consumed when performing monotonous calculations 

so as to increase accuracy and time for evaluation of results [Querol et al., 2011] and analysis are 
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inevitable. Thus, the VBA application was accessed via the development tool of Microsoft Excel. The 

information to be transferred in these cases were the operating parameters of components, streams 

and units, which were to be ran on the Aspen Plus model. 

The Microsoft Excel file organizes and sends this information via VBA script in Excel to Aspen Plus. 

Then the result of the calculation goes back into Excel via VBA script. The process continues until the 

end. Fig. 3.3 presents the connectivity of VBA, Microsoft Excel and Aspen Plus: It is possible to use 

tools of Aspen Plus for optimization and sensitivity analysis during the calculation. 

 

3.3.2 Python as interface between Aspen Plus and Microsoft Excel 

During the course of this work, several attempts were made with the use of Python for the calculation 

of the 47 test points with the connectivity of Microsoft excel and Aspen Plus model. As earlier stated, 

the interface for this calculation was via Python.  

The reason for the use of Python was due its high-level, interpreted, interactive and object-oriented 

scripting language. It was applied to calculate heat and mass transfer model for a catalyst particle to 

create a dynamic state scenario with a backward finite difference scheme [Durante et al., 2014]. 

 

Figure 3.4: Integration of information and functions in Python via Microsoft Excel to Aspen Plus 
model 

Python offers comfortable scripting, prototyping as well as interfacing environment. It is free open-

source and it has a wide usage in the scientific community [Akesson et al., 2010]. The variable explorer 

in Aspen Plus model provides the Aspen Plus unit and stream variable node names, which must be 

implemented in the codes in Python. After transferring the variable values the Aspen Plus model can 

be ran. The results are transferred to Microsoft Excel after calculation for each test point. 
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3.3.3 Aspen Simulation Workbook 

Aspen Simulation Workbook (ASW) provides easy and robust integration between AspenTech’s 

process simulators and Microsoft Excel. It allows one to rapidly deploy models to a wider range of 

users without writing a single line of code [Aspentech: white paper, 2012]. In model building, it is 

necessary to ensure that the models are vigorous over a reasonably wide range of conditions. 

Relevant engineering judgement must be applied to keep the model as simple as possible for the 

intended application or purpose, resulting in a robust and interactive experience for the casual Excel-

based user. ASW provides an easy mechanism for Excel connectivity to plant databases, allowing plant 

data to be retrieved on demand and applied to the simulation model.  

 

Figure 3.5: ASW enables Excel users to rapidly run scenarios using the underlying rigorous models to 
analyze plant data, monitor performance, and make better decisions. 

 

ASW helps to link simulation models to plant data within the same Excel sheet allows the model user 

to: 

 Populate simulation cases with measured plant data 

 Send simulation results back to the plant information system using tags 

 Overlay model predictions with plant data in plots and tables 

The plant data tags can be linked to Excel using the standard features of most process historians such 

as Aspen InfoPlus. 21® [Aspentech: ASW in Aspen HYSYS, 2014]. The tuned models are then used in a 

predictive mode for what-if studies and other operational improvement scenarios. Consequently, the 

plant data tags can be updated each time a process simulation case is run from within ASW. 
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Subsequently, the simulation is complete, and then the tags mapped to model variables are updated 

with calculation results from the simulation. 

The procedures for the use of ASW in this work are: 

 The model must be ready, converged with no errors. 

 Then initiate the ASW via Microsoft Excel organizer in the development tool tab. 

 Configure the Aspen Plus model into the ASW simulation tab. 

 Click the activate button to allow all configuration ready for scenario analysis. 

 Then copy and paste the model variables from Aspen Plus to be considered for the 

calculation into the scenario analysis table. 

 In the selection of the variables, at least one of both specified variable and model variable 

must be selected and copied into the scenario analysis table. 

 Next is to right click on the Excel worksheet to initiate the scenario study wizard. 

 On the scenario study wizard run active scenario and modify the table to ensure for a 

well-organized result after running the model. 

ASW makes it easy to run hundreds of scenarios through the model to analyse historical data, analyse 

process sensitivity, check design cases, evaluate operating conditions, or evaluate a range of 

feedstocks. The scenario feature sets up is a table where the user can enter the values of several 

model inputs (columns) for several cases (rows). The scenarios are executed sequentially, with key 

simulation results filling in additional columns. The resulting table makes it very easy to compare a 

large number of cases. When used with historical plant data, the scenario feature makes it easy to 

identify changes in plant performance (e.g., changes caused by exchanger fouling over weeks or 

months), monitoring equipment, inferring properties, and more [Aspentech: white paper, 2012] and 

[Aspentech: ASW in Aspen HYSYS, 2014]. Moreover, due to the time consumption for configuration 

and running all the 47 scenarios, coupled with unavailable options in ASW to make calculations for 

Design-Specs, the ASW was not used for the calculation in this work. The configuration freezes up the 

computer, which makes the Microsoft Excel to crash and the entire ASW. Starting the entire process 

of configuring, copy and pasting several variable data make the whole process inefficient due to the 

sudden crash of the configured ASW, Microsoft Excel and Aspen Plus model. 
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3.4 Summary 

 

The model of the HP POX plant was developed in Aspen Plus and configured with VBA in Microsoft 

Excel. The calculations for the 47 test points were made and the sensitivity analysis of Gas-POX 201 

VP1 was further elaborated to study the effect of quench water temperature and pH value variations. 

Other tools used for the calculation in this work were discussed. The use of Python is promising, with 

further know-how, it is possible to develop more comprehensive sensitivity studies on all the 47 test 

point based on the knowledge from Gas-POX 201 VP1. Creating diagrams from the calculation directly 

from these configurations would save time spent on the development and analysis of profiles and 

results.  
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4 Trace components in quench water system 

 
The usage of water in any gasification plant relies upon the type of feedstock and the downstream 

operations. For gasification plants that utilize heavy residues or coal feedstock, there will be net water 

consumption while in gasification plant that uses natural gas as feedstock, there can be a net 

production of water (especially in the autothermal reforming (ATR) mode) [Higman et al., 2003]. The 

gasification process that applies water to quench product synthesis gas or water scrubbing for raw 

synthesis gas are known to produce some wastewater effluent with dissolved H2S, NH3, HCN, heavy 

metals, and other specific trace components like chlorine and fluorine from coal feedstock [Gräbner, 

2015]. This chapter focuses on the result of the sensitivity analysis performed on the Gas-POX 201 

VP1 for the distribution of selected components namely H2S, NH3, HCN, and CO2. 

 
CO2                 NH3                 H2S                  HCN                        H2O               vapour (gas phase) 
↿⇂                       ↿⇂                       ↿⇂                      ↿⇂                             ↿⇂ 
CO2                 NH3                 H2S                 HCN                         H2O         liquid (aqueous phase) 
                                                                                                 molecularly dissolved 
𝐶𝑂2 (𝑎𝑞) +  𝐻2𝑂 ⇌ 𝐻𝐶𝑂3 

− +  𝐻  
+                                                                    (4.1) 

 
𝐻𝐶𝑂3 

− ⇌ 𝐶𝑂3 
2− +  𝐻   

+                                                                                       (4.2) 
 
𝑁𝐻3 (𝑎𝑞) + 𝐻2𝑂 ⇌  𝑁𝐻4 

+ +   𝑂𝐻    
−                                                                (4.3) 

 
𝑁𝐻3 (𝑎𝑞) +  𝐻𝐶𝑂3

− ⇌  𝑁𝐻2𝐶𝑂𝑂− +  𝐻2𝑂                                                     (4.4) 

 
𝐻𝐶𝑁(𝑎𝑞) 

⇌  𝐶𝑁− +  𝐻   
+                                                                                   (4.5) 

 
𝐻2𝑆 (𝑎𝑞) ⇌ 𝐻𝑆    

− + 𝐻 
+                                                                                      (4.6) 

 
𝐻𝑆    

− ⇌ 𝑆      
2− +  𝐻   

+                                                                                              (4.7) 

 

𝐶𝑂 (𝑎𝑞) +  𝐻2𝑂 ⇌ 𝐻𝐶𝑂𝑂𝐻 (𝑎𝑞) ⇌  𝐻𝐶𝑂𝑂− + 𝐻  
+                                      (4.8) 

 
2𝐶𝑂2 (𝑎𝑞) + 4𝐻2 (𝑎𝑞) ⇌ 𝐶𝐻3𝐶𝑂𝑂𝐻(𝑎𝑞) +  2𝐻2𝑂                                         (4.9) 

 

𝐶𝐻3𝐶𝑂𝑂𝐻(𝑎𝑞) ⇌  𝐶𝐻3𝐶𝑂𝑂− +  𝐻  
+                                                             (4.10) 

Figure 4.1: Vapour-liquid equilibria system of CO2, H2S, NH3, HCN and organic acids in the quench 

water and extended mechanisms according to [Kamps et al., 2001], [Alvaro et al., 2000], [Kuranov et 

al., 1996], [Xia et al., 1999] and [Edwards et al., 1978]. 
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In these studies, considerations to the presence of organic acids like formic acid and acetic acid were 

included in the quench water. These organic acids shall be discussed in chapter 5. CO2 is not a trace, 

its amount in the quench water effluent and its contribution to the formation of other ions and by-

products cannot be neglected. Presented in Fig. 4.1 are equations (4.1) – (4.10). These equations are 

the reactions leading to the molecular dissolution of CO2, H2S, NH3 and HCN from the hot gas into the 

quench water and the dissociation of their corresponding molecularly dissolved species that were 

considered in these studies. These components shall be discussed in the next session of this chapter. 

Table 4.2 – 4.5 represent the parameters of individual trace components and the calculated amount 

of traces originating from the measured ammonium, cyanide and sulfide from the quench water 

blowdown that were discussed earlier in chapter 3 for test point VP1 in Fig. 3.1 and Table 3.1.  

Figures 4.6, 4.7, 4.9, 4.10, 4.12, 4.13, 4.15 and 4.16 represent the outcome of Aspen Plus sensitivity 

studies. The effects of varying quench water temperatures and pH values were calculated regarding 

the distribution of the trace components in the streams: raw gas, degas, quench water outlet, stream 

T104, stream F103, stream F136PRESS and stream F136 in Fig. 4.2. 

The Sankey Diagrams shown in Figures 4.5, 4.8, 4.11 and 4.14 are the pictorial representation of each 

trace component flow present in the HP POX test plant quench water system cycle streams for test 

point VP1. Although, these diagrams are not drawn to scale collectively, each stream gives a visualized 

overview of the amount of traces present in them in relation to the entire quench water system cycle.  

4.1 Physico-chemical parameters of quench water 

 

The HPPOX quench is a direct quenching. The product synthesis gas from the gasifier enters the 

quench chamber at 1172 °C, and then quench-cooled. Leaving the quench chamber is the raw gas, 

which is saturated with water. The cleaning of raw gas and the further downstream processes (e.g. 

CO-shift) give syngas that may be used for synthesis for example methanol production or gas-to-

liquids processes. The quench water effluent is collected in the chamber, split for discharging via the 

quench water blowdown stream and recycled according to Fig. 4.2. In addition to water quench, other 

types of direct quenching methods applied in gasification processes include gas and chemical quench. 

High cooling rate is achieved in all these direct quenching methods [Qian Zhu et al., 2015]. 
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4.1.1 Quench water pH adjustment 

It is important to note that the pH values variation is also known as pH adjustment in the chemical 

process industry or at times pH control. Due to the recycling of the quench water effluent to add up 

with the deionized water during the quenching process of the hot gas, there are possibilities to have 

changes in the pH values of the quench water effluents. These call for a need to look into the concept 

of pH adjustment in consideration to what is obtainable in the industry and reported by [Kimberly et 

al., 1989], [Chih-Hao et al., 2003] and [Anindra et al., 2015]. 

The concentration of traces in the recycled waste water is important when the reused water is 

introduced into the quenching process. Apart from water savings issues, the concentration of salts 

and the presence of organic compounds are critical to the improvement of the quenching process. 

Although, the HP POX plant quench cycle has no salt formation in the system. Depending on the 

particular process, the objectives of quenching includes: temperature control, prevention of 

consecutive reactions, retention of product compositions and impact on the process efficiency 

[Moulijn et al., 2013]. The capability to analyze the reuse effluent provides the opportunity to take 

precautions with respect to the presence of solids, acidic and corrosion reactions resulting from the 

effluent with metallic surfaces of plant facility [Ávila Filho et al., 2015]. As quench water retains these 

traces in the quench water cycle, dissolved ions may exceed the solubility product of some salts and 

form precipitation of inorganic particles (metallic salts). Although, these components were analysed 

to be in trace quantities, but they have the possibility to change the physiochemical property of the 

quench water system. Some industrial plants are designed to emit no waste water effluent streams 

due to the environmental risk assessment of the contaminants and effects on the ecosystem. This 

types of industrial plant are mostly located at the arid regions, where additional heat is applied to the 

effluent to be concentrated to form brine from the water treatment plant by evaporation process 

[Gräbner, 2015] with solid waste salt as residues. pH adjustments systems are manufactured and 

installed by many companies around the world for the neutralization of acid and base from any 

industrial wastewater source (See Appendix Fig. 9.6 for calculated pH values and Table 9.2: pH scale 

with examples of solution [NALCO 2008]).  

Furthermore, at some point in many gasification processes especially, when coal or heavy residues 

are the feedstock, there is a need for washing water during the syngas treatment process. In coal 

gasification, chlorides, ammonia and other constituents of the gases are captured. While in heavy 

residues gasifiers, water is used for the removal of soot and the water is known to contain some 
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certain amount of hydrogen cyanide, ammonia and hydrogen sulfides. In any of the situations, the pH 

of the water needs to be adjusted especially in the overall effluent water treatment and flocculation 

step [Higman et al., 2003]. The controlling of quench water effluent pH [Kimberly et al., 1989] was 

proved in the recycling of quench water with an unacceptable acidic pH during partial oxidation of 

hydrocarbon feedstocks. This was achieved by retaining some amount of ammonia present in the 

water-quench scrubber that was used to cool synthesis gas and to remove the solid particulates of 

ash and soot. In the same studies [Kimberly et al., 1989], the formation of acidic compounds (formic 

acid) and basic compounds (ammonia) were reported during the quenching process. Another 

example of the pH adjustment was reported in [Anindra et al., 2015] when reducing impurities within 

the syngas using water and the quench chamber to produce black water. A carbon dioxide injector 

source to adjust the pH of the quench water was applied. The configuration was reported to consist 

of pH sensor to measure the pH of the grey water with a control valve to adjust the flow of the 

acidified water into the grey water (carbon dioxide injector). The process treats the black water from 

the quench chamber to generate grey water and soot [Anindra et al., 2015]. [Chih-Hao et al., 2003] 

employed the use of ammonia injection into the stream of soot water after filtering the soot. This was 

to minimize waste water treatment in order to have fewer amounts of metal contents in the effluent 

(grey water) of the quench water. This approach allows the recovery and reuse of more of the effluent 

water during gasification. 

The results of the influence of quench water pH regulation on the trace components distribution will 

be presented in this chapter. This was achieved with the aid of the sensitivity analysis tools in Aspen 

Plus (pH regulator input in Figure 4.2). The simulation model was extended with an additional stream 

comprised of sodium hydroxide (20 mass-% NaOH, 80 mass-% H2O) or sulfuric acid (20 mass-% H2SO4, 

80 mass-% H2O) in two different sensitivity studies (see Table 3.3). The calculated pH value of the 

quench water outlet stream given in Fig. 4.2 is 6.17 (for Gas-POX 201 VP1). 

In the first case, 20 % NaOH solution input according to Figure 4.2 was used to increase the initial pH 

value of the quench water from 6.17 to 8, which resulted in more basicity in the quench water as the 

flow rate of the solution of NaOH was introduced from 0 – 200 kg/h. A similar procedure was done 

for the 20 % H2SO4 solution in water, and the resulting pH value of the quench water was reduced 

from 6.17 to 0.14. In both cases, the quench water temperature was kept constant at about 177.4 °C.  
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Figure 4.2: HP POX quench water system with pH regulator for sensitivity studies 

Figures 4.7, 4.10, 4.13, and 4.16 present, the influences of changes in the quench water pH on the 

trace components distribution. The trace ratios in relation to the respective trace inlet via hot gas 

were included to study their characteristics.  

4.1.2 Henry constant  

In order to have the phase distribution of species, temperature dependent equation for volatile, weak 

electrolyte waste water containments like CO2, NH3, H2S, HCN etc. were presented base on ionization 

and Henry's law constants [Yoo et al., 1986]. Several approaches are used to describe the solubility of 

a gas in water. Henry ´s law constant can be defined via concentration:  

𝐻𝑒 =    
𝑃𝑖

𝑋𝑖

 
(4.11) 

He is the Henry volatility defined via aqueous-phase mixing ratio, Pi is the partial pressure of that 

species in the gas phase and Xi is the molar mixing ratio in the aqueous phase [Sander, 2015]. 

In addition, Henry's law is a limiting law that only applies for dilute solutions. The margin of 

concentration, which it is applied becomes narrower the more the system diverges from ideal 
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behavior. Henry’s constant changes when the temperature of the system changes [Francis L. Smith 

et al., 2007] and [Perry et al., 1984]. This leads to temperature dependency of Henry’s constant and 

why it is usually refer to Henry's law coefficient. The Henry ´s constant used for the studies were 

derived from [Edwards et al., 1978] for CO2, [Alvaro et al., 2000] for NH3, [Kamps et al., 2001] for H2S, 

and [Rumpf et al., 1992] for HCN as it can be seen in Fig. 4.3 and Appendix (Fig. 9.2 and 9.3). These 

Henry´s constants of the considered traces shall be discussed in relation to their behaviors in the HP 

POX quench water system according to Fig. 3.1. (See Appendix for comparison between Henry´s 

constant derived from Aspen Plus and literatures according to Fig. 9.2 and 9.3)  

 

Figure 4.3: Henry´s constant for CO2, H2S, NH3 and HCN derived from [Edwards et al., 1978] for CO2, 
[Alvaro et al., 2000] for NH3, [Kamps et al., 2001] for H2S, and [Rumpf et al., 1992] for HCN 

 

4.1.3 Dissociation constant  

The dissociation constant of a compound is the equilibrium constant for the dissociation of its 

compound into its components. For example water dissociation equilibrium [Tanaka et al., 2010], or 

self-ionization reaction is presented by:  

𝐻2𝑂 ⇌  𝐻+ +  𝑂𝐻−  (4.12) 

Usually, it is expressed with chemical activities in place of concentration. The activity of water is 

generally taken to be 1 or unity [Nic et al., 2009] because most acid-base solutions are very dilute.  
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𝐾H2O =   
𝑎𝐻+

𝑎𝐻2𝑂

. 𝑎𝑂𝐻−   (4.13) 

Equation (4.11) can be written as (when 𝑎𝐻2𝑂 = 1): 

𝐾H2O =   𝑎𝐻+ . 𝑎𝑂𝐻−   (4.14) 

Presented in Figure 4.4 and Appendix (Fig. 9.4 and 9.5) are the dissociation constants derived from 

[Alvaro et al., 2000] for H2O, NH3 and NH2COO-, [Kamps et al., 2001] for CO2, HCO3
-, H2S and HS-, and 

[Edwards et al., 1978] for HCN (See Appendix for comparison between Dissociation constant derived 

from Aspen Plus and literatures according to Fig. 9.4 and 9.5). Fig. 4.4 presents the dissociation 

reaction of CO2, NH3, H2S and HCN. 𝐾H2O denotes the self-dissociation constant of water according to 

equation (4.12), (4.13) and (4.14), 𝐾𝐶𝑂2
 denotes the first dissociation constant of CO2 according to 

equation (4.1) and (4.15), 

𝐾𝐶𝑂2
=   

[𝐻𝐶𝑂3
−]  [𝐻+]

[𝐶𝑂2]
 (4.15) 

𝐾𝐻𝐶𝑂3
−  denotes the second dissociation constant of CO2 according to equation (4.2) and (4.16), 

𝐾𝐻𝐶𝑂3
− =   

[𝐶𝑂3
2−]  [𝐻+]

[𝐻𝐶𝑂3
−]

 (4.16) 

𝐾𝑁𝐻3
 denotes the first dissociation constant of NH3 according to equation (4.3) and (4.17), 

𝐾𝑁𝐻3
=   

[𝑁𝐻4
+] [𝑂𝐻−]

[𝑁𝐻3]
 (4.17) 

𝐾𝑁𝐻2𝐶𝑂𝑂−  denotes the carbamate formation reaction according to equation (4.4) and (4.18),  

𝐾𝑁𝐻2𝐶𝑂𝑂− =   
[𝑁𝐻2𝐶𝑂𝑂−]

[𝑁𝐻3]  [𝐻𝐶𝑂3
−]

 (4.18) 

𝐾𝐻𝐶𝑁 denotes the dissociation constant of HCN according to equation (4.5) and (4.19),  

𝐾𝐻𝐶𝑁 =   
[𝐶𝑁−]  [𝐻+]

[𝐻𝐶𝑁]
 (4.19) 
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𝐾𝐻2𝑆 denotes the first dissociation constant of H2S according to equation (4.6) and (4.20), and  

𝐾𝐻2𝑆 =   
[𝐻𝑆−]  [𝐻+]

[𝐻2𝑆]
 (4.20) 

𝐾𝐻𝑆−  denotes the second dissociation constant of H2S according to equation (4.7) and (4.21). 

𝐾𝐻𝑆− =   
[𝑆2−]  [𝐻+]

[𝐻𝑆−]
 

(4.21) 

 

Figure 4.4: Dissociation constants for CO2, H2S, NH3, HCN and H2O derived from [Alvaro et al., 2000], 
[Kamps et al., 2001], and [Edwards et al., 1978] 

 

Sections 4.2 – 4.4 focus on the behaviour of CO2, NH3, HCN and H2S respectively based on the 

simulation results obtained from the sensitivity analysis for the quench water temperature and pH 

variation. The ratios of individual trace component present in hot gas stream to the following streams 

are given as: Raw gas/Hot gas = (RG/HG) flow rate ratio for raw gas, Degas/Hot gas = (DEGAS/HG) 
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flow rate ratio for degas stream and stream F136/Hot gas = (F136/HG) flow rate ratio for quench 

water blowdown stream.  

 

4.1.4 Organic acids in quench water 

This section is dedicated to give an overview of the organic acid components present in the quench 

water effluent sample (liquid phase) according to equation (4.8), (4.9) and (4.10). Details of these shall 

be discussed extensively in chapter 5. Table 4.1 presents the organic acids that were analyzed in the 

Gas-POX 201 VP1 quench water effluent sample. Aspen Plus automatically calculates the distribution 

of the ions in order to fulfil electroneutrality. The formic acid and it ions amount in the streams are 

given in Table 4.1 while the acetic acid is below threshold of measuring range for this test point.  

Table 4.1: Organic acids distribution in streams for VP1 based on calculation from Aspen Plus. 

Formic acid 

HCOOH +  ⇌  𝐻𝐶𝑂𝑂− + 𝐻+                                                                   (4.22) 

 HCOOH 
(kmol/hr) 

HCOO- 

(kmol/hr) 
Total HCOOH (aq)  

(kmol/hr) 

QUENCH WATER 
( 177.4 °C, 71 bar) 

1.3E-04 2.2E-02 2.2E-02 

T104 
(79.9 °C, 72 bar) 

2.2E-04 2.2E-02 2.2E-02 

F103 
( 79.9 °C, 72 bar) 

2.0E-04 2.0E-02 2.0E-02 

F136PRESS 
(79.9 °C, 72 bar) 

2.4E-05 2.4E-03 2.4E-03 

F136 
(20 °C, 1 bar) 

4.6E-06 2.4E-03 2.4E-03 

Acetic acid 

𝐶𝐻3COOH ⇌  𝐶𝐻3𝐶𝑂𝑂− + 𝐻+                                                          (4.10) 

 CH3COOH 
(kmol/hr) 

CH3COO- 

(kmol/hr) 
H+ 

(kmol/hr) 

QUENCH WATER 
( 177.4 °C, 71 bar) 

0 0 1.0 E-05 

T104 
(79.9 °C, 72 bar) 

0 0 1.8E-05 

F103 
( 79.9 °C, 72 bar) 

0 0 1.6E-05 

F136PRESS 
(79.9 °C, 72 bar) 

0 0 1.9E-06 

F136 
(20 °C, 1 bar) 

0 0 3.7E-07 

 



 

39 
 

4.2 Carbon dioxide (CO2) 

CO2 is one of the principal components of the product synthesis gas generated from the gasifier apart 

from CO, H2, H2O and CH4 [Higman et al., 2003]. It could be produced according to the water gas shift 

reaction in equation (2.5) and total oxidation of methane reaction in equation (2.6). Irrespective of 

the industrial gasification processes, some part of carbon will be converted to CO2. Since CO2 is a 

major by-product of gasification, there are efforts to reduce it from the source of production through 

absorption processes by washing the product synthesis with liquid solvent [Higman et al., 2003], 

[Ordorica-Garcia et al., 2009] and [Salkuyeh et al., 2013] or using solvent based CO2 capture and 

sequestration technologies (CCS) [Kaldis et al., 2004], [Falcke et al., 2011] and [Li et al., 2012]. 

Experimental studies of solubility of CO2 in aqueous solutions of water and organic acid are discussed 

in [Rumpf et al., 1997], [Kuranov et al., 1996], [Alvaro et al., 2000]. Certain formation of traces 

compounds occurs during the gasification process and some trace formation also occurs during 

quenching of the product synthesis gas in the quench chamber. Presented in Fig. 4.1 are the reactions 

(4.1), (4.2) and (4.4) of molecularly dissolved CO2 in the liquid phase. Carbon dioxide from the product 

synthesis gas dissolves in stream F103 in the quench chamber according to Fig. 4.2. Some minute 

amount of formed carbonic acid (H2CO3) is highly unstable and subsequent acid-base chemistry lead 

to bicarbonate (HCO3
-) and hydrogen ion (H+). Bicarbonate dissociates to produces carbonate ion 

(CO3
2-). Ammonia and bicarbonate reacts to form carbamate (NH2COO-).  

The behaviour and the distribution of molecularly dissolved CO2 and its ions in the quench water 

system shall be looked into as one of the gases from the product synthesis gas. In addition, the 

influence of the quench water temperature variation on the CO2 and its species as well as quench 

water pH variation effects shall be discussed.  

Table 4.2 presents the amount of CO2 present in quench water cycle according to the results of the 

sensitivity analysis in the streams in Figure 4.2 for test point VP1. The gaseous streams are degas, hot 

gas and raw gas. The aqueous streams (liquid phase) include stream F103, quench water outlet 

stream, stream F136PRESS and stream F136. The total CO2 around the quench water cycle is the sum 

of stream: F136, degas stream and raw gas stream, which is equal to the CO2 outlet via hot gas. While 

the total amount of molecularly dissolved CO2 is presented in equation (4.23). 
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Table 4.2: The distribution of CO2 and its ions in all the streams 

Stream names 
(Temperature, 

Pressure) 

 
Stream total 

 
CO

2,
 

total
 

 
CO

2,
 
total

 

 
CO

 2, 

molecularly 

dissolved
 

 

HCO
3

- 

 

CO
3

2-
 

 

NH
2
COO

-
 

pH 
value t/h kmol/h kmol/h mmol/l mmol/l mmol/l mmol/l mmol/l 

QUENCH 
WATER 

( 177.4 °C, 71 
bar) 

5.40 299.08 

0.12 
 

0.021 
 0.019 

(94%) 
1.2E-03  

(5%) 
2.4E-08 

(0.0001%) 
3.1E-07 

(0.002%) 

5.73 

T104 
(79.9 °C, 72 bar) 

6.00 332.65 

0.020 
0.017 

(84.5%) 
3.2E-03 
(15%) 

1.1E-07 
(0.0005%) 

7.2E-08 
(0.0004%) 

5.53 
F103 

( 79.9 °C, 72 
bar)  

5.30 296.38 0.11 

F136PRESS 
(79.9 °C, 72 bar) 

0.70 36.26 0.014 

F136 
(20 °C, 1 bar) 

0.70 36.18 4.7E-03 
(0.19%) 

0.007 3.9E-03  
(55.2%) 

3.3E-03  
(45%) 

3.0E-07 
(0.004%) 

5.6E-08 
(0.0008%) 

6.24 
  

DEGAS  
(20 °C, 1 bar) 

0.002 0.09 9.0E-03 
(0.36%) 

0.102 
(mol/mol) 

1

MH2O
= 55500

mmol

kg
≈ 55500

mmol

𝑙
 

HOT GAS 
(1172 °C, 71 

bar) 

0.82 59.74 2.47 
(100%) 

0.041 
(mol/mol) 

RAW GAS 
(117.4 °C, 71 

bar) 

0.77 57.05 2.45 
(99.2%) 

0.043 
(mol/mol) 

 

The overall concentration of dissolved CO2 in the liquid phase is: 

[𝐶𝑂2 (𝑎𝑞) 𝑡𝑜𝑡𝑎𝑙 ]
mol

kg solvent
= [𝐶𝑂2 (𝑎𝑞) 𝑚𝑜𝑙𝑒𝑐𝑢𝑒𝑠] + [𝐻𝐶𝑂3  (𝑎𝑞)

− ] + [𝐶𝑂3  (𝑎𝑞)
2− ] + [𝑁𝐻2𝐶𝑂𝑂(𝑎𝑞)

− ] (4.23) 

 
The Sankey diagram in Figure 4.5 indicates the flow of CO2 and its compounds in the HP POX quench 

water system cycle based on the results obtained from the test point Gas-POX 201 VP1. 

 

Figure 4.5: The flow of CO2 in the quench water cycle (test point VP1). 
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It could be seen that virtually all the CO2 originating from the gasifier with 2.47 kmol/h of CO2 in hot 

gas remains in the raw gas stream with 99.2 % of CO2 (2.45 kmol/h of CO2). 

 

4.2.1 Results of sensitivity study: quench water temperature variation effects on CO2 

The total dissolved CO2 considered in each stream of the quench water cycle is the summation of 

molecularly dissolved: CO2(aq), HCO3
-(aq), CO3

2-(aq) and NH2COO-(aq). The effects of quench water 

temperature variation on CO2 as a result of the Aspen Plus sensitivity study are presented in Fig. 4.6. 

The ratios CO2, F136 / CO2, HG and CO2, DEGAS /CO2, HG decrease with increase in quench water 

temperature as CO2 first dissociation constant HCO3
-(aq) decreases. The Henry’s constant of CO2 

increases with increasing temperature as it can be seen in Fig. 4.3 and also contributes to this effect. 

The ratio CO2, RG / CO2, HG remain almost unitary, almost all CO2 from hot gas remains in raw gas 

stream. The pH value of the quench water decreases with increase in quench water temperature 

which was originally 6.17 at 177.4 °C and 72 bar. One reason for pH decrease in the quench water is 

also the increase of the self-dissociation constant of water with increasing temperature according to 

Fig. 4.3. At this point, it could be concluded that more of the CO2 from the gasifier goes out of the 

quench chamber as the temperature of the quench water increases via the raw synthesis gas stream. 

A very little dissolved amount leaves the quench chamber via F136 while a minute amount is recycled 

into the quench system via F103. The dissolution of CO2 in the quench decreases with increase in 

temperature of the quench water. 
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Figure 4.6: Calculated quench water temperature variation and effects on CO2 distribution 

In consideration to the increase temperature, an accumulation of dissolved CO2 in the quench water 

might not happen in stream F103 over a long period of time when the quench water outlet is recycled 

and mixed with deionized water. 

4.2.2 Results of sensitivity study: quench water pH variation influence on CO2 

Fig. 4.7 presents the influence of changes in the quench water pH on the CO2 as a result of the Aspen 

Plus sensitivity study. It was observed that at low pH values from 0.14 to 7.7 nearly 100 % of CO2 

emanating from the hot gas leaves the quench chamber via the raw gas stream. At the pH value of 

7.8, there was a decrease in CO2 leaving via the raw gas stream. It was noticed that with increasing 

quench water pH values, CO2 in the quench water blowdown stream F136 increase as more CO2 goes 

into dissociation leading to a rise in the HCO3
- formation. In Fig. 4.7, nearly the entire dissolved CO2 

remains in stream F136 exist then as HCO3
- in aqueous solution. Consequently, the degas stream CO2 

content decreases with increasing quench water pH values from 7.8 to 8.  
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Figure 4.7: Calculated influence of pH regulation and effects on CO2 distribution 

The addition of basic pH regulator enhanced the washing down of CO2 from the product synthesis gas 

and further dissociation produces HCO3
- in the quench water chamber. Advancing this process could 

lead to the indirect scrubbing of CO2 from the product synthesis gas and alleviating further concerns 

about CO2 in the downstream process. 

 

4.3 Nitrogen compounds 

An unresolved problem in simplified integrated gasification combine-cycle (IGCC) process and 

processes operating at higher temperatures is the formation of nitrogen compounds especially 

ammonia and cyanides [Leppälahti et al., 1993]. It is important to take a look at these nitrogen 

compounds as they were measured during the test campaign. During operations, nitrogen is supplied 

into the gasifier as part of natural gas feed into the gasifier and for flushing the optical probe system. 

Consequently, the nitrogen is partially converted into NH3 and HCN. In the downstream process of 

methanol production, the utilized catalysts are known to be sensitive to the both nitrogen compounds 

[Hiller et al., 2000] and [Bell et al., 2011]. 
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The NH3 molecules polarity and their ability to form hydrogen bonds enhance their high solubility in 

water. In aqueous solution, ammonia acts as a base by acquiring hydrogen ions from water to yield 

ammonium and hydroxide ions according to reaction (4.3) in Fig. 4.1. The vapour – liquid equilibrium 

behaviour of ammonia trace were investigated in [Hales et al., 1979], [Rumpf et al., 1999] and [Schäfer 

et al., 2007]. The aqueous solubility of ammonia, the ammonia-water thermodynamic constant and 

the generation of standard concentration of gaseous ammonia were reported by [Dasgupta et al., 

1986]. Very high solubility behaviour of ammonia was observed in four different room-temperature 

ionic liquids (RTILs) and demonstrated in terms of thermodynamic excess functions base on [Yokozeki 

et al., 2007] equation-of-state (EOS) model. 

 

HCN could lead to degradation of chemical solvent (used for acid gas removal) [Hiller et al., 2006] 

during raw synthesis gas treatment. Among the organic and inorganic cyano compounds [Dzombak 

et al., 2006], HCN is known to be of high toxicity. Due to varying literature values of HCN Henry 

constant, [Ma et al., 2010] measured the temperature dependence solubility of HCN in water to 

elucidate it equilibrium aqueous solubility. The experiment was carried out under severe precaution. 

The approached that was used to trap HCN in [Ma et al., 2010] was similar to those reported in Section 

2.5.1. 

 

4.3.1 Ammonia (NH3) 

The amount of NH3 in the hot gas inlet to the quench water system, which satisfies the measured 

NH4
+ outlet concentration, was calculated via design specification DS-NH3 (Table 3.1 and Fig. 3.2). The 

total dissolved ammonia present in each stream of the quench water system cycle includes 

molecularly dissolved NH3(aq), NH4
+(aq), and NH2COO-(aq). Reactions (4.3) and (4.4) present the 

chemical reactions of NH3 and water to produce ammonium (NH4
+(aq)) and carbamate (NH2COO-

(aq)). 
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Table 4.3: The distribution of NH3 and its ions in all the streams 

Stream names 
(Temperature, 

Pressure) 

Stream total (t/h) NH
3,

 
total

 NH
3,

 
total

 
NH

3, molecularly 

dissolved
 NH

4

+
 NH

2
COO

-
 pH 

value t/h kmol/h kmol/h mmol/l mmol/l mmol/l mmol/l 

QUENCH WATER 
( 177.4 °C, 71 bar)  

5.40 299.08 

0.042 

6.9E-03 3.7E-03 
(29.2%) 

3.3E-03  
(70.8%) 

1.5E-06 
(0.004%) 

5.73 

T104 
(79.9 °C, 72 bar) 

6.00 332.65 

6.8E-03 
3.3E-05 
(0.49%) 

6.7E-03 
(99.5%) 

7.2E-08 
(0.001%) 

5.53 
F103 

( 79.9 °C, 72 bar)  
5.30 296.38 0.037 

F136PRESS 
(79.9 °C, 72 bar) 

0.70 36.26 4.5E-03 

F136 
(20 °C, 1 bar) 

0.70 36.18 4.5E-03 
(60%) 

7.0E-03 4.8E-06 
(0.07%) 

7.0E-03  
(99.9%) 

5..6E-08 
(0.0008%) 

6.24 
  

DEGAS 
(20 °C, 1 bar) 

0.002 0.09 5.4E-09 
(7.2E-5%) 

6.1E-08 
(mol/mol) 

1

MH2O
= 55500

mmol

kg
≈ 55500

mmol

𝑙
 

HOT GAS 
(1172 °C, 71 bar) 

0.82 59.74 7.5E-03 
(100%) 

1.2E-04 
(mol/mol) 

RAW GAS 
(117.4 °C, 71 bar) 

0.77 57.05 2.9E-03 
(39%) 

5.1E-05 
(mol/mol) 

 

The overall concentration of dissolved NH3 in the liquid phase:  

[𝑁𝐻3 (𝑎𝑞)  𝑡𝑜𝑡𝑎𝑙] mol/(kg solvent) = [𝑁𝐻3 (𝑎𝑞) 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠] + [𝑁𝐻4 (𝑎𝑞)
+ ] + [𝑁𝐻2𝐶𝑂𝑂(𝑎𝑞)

− ]     (4.24) 

 

NH2COO-(aq) is one of the species of NH3 formed from the reaction of bicarbonate and ammonium. 

The total molecularly dissolved NH3 is the summation of NH3(aq), NH4
+(aq) and NH2COO-(aq). Fig. 4.8 

presents the flow of ammonia from hot gas to the quench water cycle system for the test point VP1. 

It can be seen that 39% of the ammonia remains in the raw synthesis gas and the remaining is 

transferred into the quench water. Table 4.3 presents the proportion of the three ammonia 

participating species. It can be seen that more than 99% of molecularly dissolved NH3(aq) is presented 

as NH4
+(aq) except in the quench water outlet stream from the quench chamber, where the 

composition of molecular NH3(aq)and NH4
+(aq) are approximately 29% and 71% respectively. Among 

all these ammonia species NH4
+(aq) is the most dominant in the aqueous phase of the quench water 

system cycle. 
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Figure 4.8: The flow of NH3 in the quench water cycle (test point VP1). 

 

4.3.2 Results of sensitivity study: quench water temperature variation effects on NH3 

The effects of quench water temperature variation on NH3 as a result of the Aspen Plus sensitivity 

study are presented in Fig. 4.9. It was observed that the raw gas ammonia (NH3, Raw gas) content 

increases with increasing quench water temperature. In the quench water blowdown stream (F136), 

NH4
+(aq)were mostly represented, so the NH3, DEGAS / NH3, HG were very low as it can be seen in Fig 

4.9.  

Both the stream F136 and degas streams´ ammonia content decreases with increasing quench water 

temperature. The NH3(aq) molecular solubility decreases with increase in quench water temperature 

as a result of the increase in NH3 Henry constant (Fig. 4.3). The pH value of the quench water 

decreases with increase in quench water temperature, which was originally 6.17 at 177.4 °C and 72 

bar.  

The increase in the amount of NH3 Raw gas was due to the increased temperature of the quench water, 

which enhances the ammonia to be in the vapour phase and thus leaving the quench chamber via 

the raw gas. 
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Figure 4.9: Calculated quench water temperature variation and effects on NH3 distribution 

 

 

4.3.3 Results of sensitivity study: quench water pH variation influence on NH3 

The influence of quench water pH variation on NH3 as a result of the Aspen Plus sensitivity study is 

presented in Fig. 4.10. In comparison to what happened in the case of CO2, the situation here was 

quite different as lower amount of NH3 leaves the quench vessel via the raw gas stream at low pH 

values (between 0 – 6.17) when H2SO4 solution was introduced. On introducing NaOH solution, NH3; 

Raw gas increases, NH3; F136 decreases and NH3 DEGAS remains very minute. The NH4
+ was the most NH3 

species present in stream F136 at low pH values. 
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Figure 4.10: Calculated influence of pH regulation and effects on NH3 distribution 

 

4.3.4 Hydrogen Cyanide (HCN)  

The amount of HCN in the hot gas inlet to the quench water system was calculated via design 

specification DS – HCN (Table 3.1 and Fig. 3.2). The total dissolved hydrogen cyanide present in each 

stream of the quench water system cycle includes molecularly dissolved HCN(aq) and CN-(aq). 

Reactions (4.5) present the dissociation of HCN in water to produce CN-(aq) and hydrogen ion (H+(aq)). 

Approximately 76 % of HCN remains in the raw gas for the test point VP1 (see Table 4.4). HCN 

molecule is highly soluble in water, its solubility decreases with increased temperature according to 

Fig.4.3. The total dissolved HCN in each stream of the quench water system cycle is the sum of 

molecularly dissolved HCN (aq) and CN-(aq) according to equation (4.25). 

The Sankey diagram in Figure 4.11 represents the flow of HCN and CN- in the HP POX quench water 

system based on the results obtained from the Gas-POX 201 VP1. It could be seen that 76 % of the 

HCN hot gas leaves the quench chamber via the raw gas. The remaining HCN remains in the quench 

water mostly as molecularly dissolved species (Table 4.4).  
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Table 4.4: The distribution of HCN and its ions in all the streams 

Stream names 
(Temperature, Pressure) 

Stream total HCN 
total

 HCN 
total

 
HCN molecularly 

dissolved CN
-
 

pH value t/h kmol/h kmol/h mmol/l mmol/l mmol/l 

QUENCH WATER 
( 177.4 °C, 71 bar)  

5.40 299.08 

5.7E-04 

9.5E-05 
 

9.4E-05 
(98.4%) 

1.4E-06 
(1.5%) 

5.73 

T104 
(79.9 °C,  72 bar) 

6.00 332.65 

 
9.3E-05 

9.3E-05 
(99.7%) 

2.5E-07 
(0.3%) 

5.53 
F103 

( 79.9 °C, 72 bar)  
5.30 296.38 5.1E-04 

F136PRESS 
(79.9 °C, 72 bar) 

0.70 36.26 6.2E-05 

F136 
(20 °C, 1 bar) 

0.70 36.18 6.2E-05 
(23.8%) 

9.5E-05 9.5E-05 
(99.9%) 

8.1E-08 
(0.09%) 

6.24 
  

DEGAS 
(20 °C, 1 bar) 

0.002 0.09 5.9E-07 
(0.2%) 

6.8E-06 
(mol/mol) 

1

MH2O
= 55500

mmol

kg
≈ 55500

mmol

𝑙
 

HOT GAS 
(1172 °C, 71 bar) 

0.82 59.74 2.6E-04 
(100%) 

4.4E-06 
(mol/mol) 

RAW GAS 
(117.4 °C, 71 bar) 

0.77 57.05 2.0E-04 
(76%) 

3.5E-06 
(mol/mol) 

 

 

The overall concentration of dissolved HCN in the liquid phase:  

[𝐻𝐶𝑁(𝑎𝑞)𝑡𝑜𝑡𝑎𝑙] mol/(kg solvent) = [𝐻𝐶𝑁 (𝑎𝑞)𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠] + [𝐶𝑁(𝑎𝑞)
− ]     (4.25) 

 

 

Figure 4.11: The flow of HCN in the quench water cycle (test point VP1). 
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4.3.5 Results of sensitivity study: quench water temperature variation effects on HCN 

From the results in Fig. 4.12 and Table 4.4, it could be seen that as quench water temperature 

increases, more HCN from hot gas remains in raw gas (HCN Raw gas / HCN Hot gas   increases) while HCNF136 

and HCN DEGAS decrease with increasing quench water temperature. The Henry constant of HCN 

increases with increase of quench water temperature (See Fig. 4.2).  

Henry´s constant increase is the main dominant effect. In all the liquid phase streams (with respect 

to F103, T104, F136PRESS and F136) of the quench water system cycle, over 98% of the total dissolved 

HCN exist as molecularly dissolved HCN.  

 

Figure 4.12: Calculated quench water temperature variation and effects on HCN distribution 

 

4.3.6 Results of sensitivity study: quench water pH variation influence on HCN 

There were no big changes when H2SO4 solution was introduced but the change mainly occurs when 

NaOH solution was introduced into the quench water via stream F103 (see Fig. 4.2). At this condition, 

HCN Raw gas decreases while dissolved HCN increases as more HCN in the liquid stream goes into 

dissociation leading to an increase in CN- formation (see Fig. 4.13). 
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Figure 4.13: Calculated influence of pH regulation and effects on HCN distribution 

 

 

4.4 Sulphur compounds: H2S 

In the downstream utilization of raw synthesis gas for the production of ammonia, methanol, gas-

to-liquids or Fischer-Tropsch syntheses etc., sulfur compounds are precursor to catalyst poison. In 

methanol production it is applicable to have feed gas with less than 0.1 ppmv of H2S in order to 

avoid poisonous effect on the catalysts [Gräbner, 2015]. 

Sulphur compounds in the natural gas present as H2S are partly converted during gasification into 

COS. There is a relationship between H2S and COS amount [Higman et al., 2003] in the raw synthesis 

gas, this relationship is evaluated based on the hydrogenation and hydrolysis reactions (4.26) and 

(4.27) respectively [Gräbner, 2015]: 

 

𝐻2 + 𝐶𝑂𝑆 ⇌ 𝐻2𝑆 +  𝐶𝑂      (4.26) 

 

𝐶𝑂𝑆 + 𝐻2𝑂 ⇌ 𝐻2𝑆 +  𝐶𝑂2          (4.27) 
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In liquid phase, Henry´s law was reported not to be applicable for H2S in water [Wright et al., 1932] 

but H2S behaves like other gaseous solutes, which undergoes electrolytic dissociation. But further 

experimental works by [Carroll et al., 1989] and [Rumpf et al., 1999] provide a good comparison and 

agreement as an adapted Pitzer model was used to correlate the new data for the excess Gibbs energy 

of an aqueous electrolyte solution. 

 

The amount of H2S in the hot gas inlet to the quench water system was calculated via design 

specification DS – H2S (Table 3.1 and Fig. 3.2). In water, H2S is known to be a weak acid that can go 

through the chemical reactions (4.6) – (4.7). The presence of hydrogen sulfide in the hot gas during 

the quench operations yield molecularly dissolved H2S(aq), HS-(aq) and S2-(aq) in the quench water 

stream after dissociation in water. The total dissolved H2S is the sum of dissolved H2S(aq) 

molecules, HS-(aq) and S2-(aq). 

 

Table 4.5: The distribution of H2S and its ions in all the streams 

Stream names 
(Temperature, 

Pressure) 

Stream total 

 
H

2
S 

total
 

 
H

2
S 

total
 

H
2
S molecularly 

dissolved 

 

HS
-
 

 

S
2-

 
 

pH 
value t/h kmol/h kmol/h mmol/l mmol/l mmol/l mmol/l 

QUENCH WATER 
( 177.4 °C, 71 bar)  

5.40 299.08 

1.8E-05 

2.9E-06 2.5E-06 
(87.2%) 

3.7E-7 
(12.8%) 

4.9E-12 
(0.0001%) 

5.73 

T104 
(79.9 °C, 72 bar) 

6.00 332.65 

2.9E-06 
2.6E-06 
(89.9%) 

2.9E-7 
(10%) 

1.2E-14 
(4E-07%) 

5.53 
F103 

( 79.9 °C,  72 bar)  
5.30 296.38 1.6E-05 

F136PRESS 
(79.9 °C, 72 bar) 

0.70 36.26 1.9E-06 

F136 
(20 °C, 1 bar) 

0.70 36.18 9.5E-07 
(0.7%) 

1.5E-06 1.3E-06 
(86.0%) 

2.0E-7 
(13.9%) 

2.9E-16 
(2.0E-08%) 

6.24 
  

DEGAS 
(20 °C, 1 bar) 

0.002 0.09 9.6E-07 
(0.9%) 

1.1E-05 
(mol/mol) 

1

MH2O
= 55500

mmol

kg
≈ 55500

mmol

𝑙
 

HOT GAS 
(1172 °C, 71 bar) 

0.82 59.74 1.2E-04 
(100%) 

2.0E-06 
(mol/mol) 

RAW GAS 
(117.4 °C, 71 bar) 

0.77 57.05 1.1E-04 
(98%) 

1.9E-06 
(mol/mol) 

 

The overall concentration of dissolved H2S in the liquid phase:  

[𝐻2𝑆 (𝑎𝑞) 𝑡𝑜𝑡𝑎𝑙]mol/(kg solvent) = [𝐻2𝑆 (𝑎𝑞) 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠] + [𝐻𝑆    (𝑎𝑞)
− ] + [𝑆    (𝑎𝑞)

2− ]         (4.28) 

 

The Sankey diagram in Figure 4.14 represents the flow of H2S and its compounds in the HP POX 

quench water system cycle based on the results obtained from the Gas-POX 201 VP1. It could be seen 
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that virtually all the H2S originating from the gasifier with 1.2E-04 kmol/h of H2S in hot gas remains in 

the raw gas stream (98 % of H2S, see Table 4.5). 

 

 

4.4.1 Results of sensitivity study: quench water temperature variation effects on H2S 

Figure 4.15 shows the result of the sensitivity studies regarding temperature change in the quench 

water. H2SF136 and H2SDEGAS ratio with hot gas decrease with increase in quench water 

temperature. This observed change was due to the increase in the H2S Henry constant in Fig. 4.2. The 

amount of the HS-(aq) and S2-(aq) are low compared to that of molecularly dissolved H2S. 

Figure 4.14: The flow of H2S in the quench water cycle (test point VP1) 
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Figure 4.15: Calculated quench water temperature variation and effects on H2S distribution 

 

4.4.2 Results of sensitivity study: quench water pH variation influence on H2S 

H2SHot gas remains nearly complete as H2SRaw gas at low pH values of the quench water in Figure 4.16. A 

pronounced drop in raw gas H2S was observed when the quench water pH was 7.5 and the decrease 

continues as pH value further increases. For degas stream, there were no noticeable changes when 

H2SO4 solution was introduced as pH value regulator but the changes occur when the initial quench 

water pH value was increased from 6.17 to 8 by introducing NaOH solution. In stream F136, H2S 

increases as more H2S goes into dissociation leading to an increase in HS- formation in the aqueous 

solution. 
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Figure 4.16: Calculated influence of pH regulation and effects on H2S distribution 

 

4.5 Summary 

Whenever the quench water temperature increases, the quench water pH values reduce among 

others because of an increasing self-dissociation of water. There is a complex interaction between 

changing Henry constant and dissociation constants of the dissolved species, which led to the 

decreased in the overall solubilities of H2S, HCN, NH3 and CO2 in the blowdown stream F136 and to 

increasing H2S, HCN, NH3 and CO2 content in the raw gas.  

The chosen ELECNRTL model in Aspen Plus also takes into account the activity coefficient of the 

molecularly and ionically dissolved species and the solvent (water). 

The increases in quench water temperature, lead to the increase of CO2, H2S, NH3 and HCN in the raw 

gas stream:  

Whenever the pH value of the quench water inlet F103 was increased with the introduction of a NaOH 
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water blowdown stream increase or reduce respectively. These conversely led to a decrease or 

respective increase in the amount of these components present in the raw gas stream.  

In contrast to the acid compounds (CO2, H2S, and HCN), NH3 decreases in the quench water blowdown 

stream and increases in the raw gas stream when NaOH solution was introduced and contrarily for 

the case of H2SO4 solution. 

To design an optimum quench operation process, the solubility of weak electrolyte gases like basic 

gas (ammonia) and sour gas (carbon dioxide, hydrogen sulphide and hydrogen cyanide), their vapour 

– liquid equilibria (VLE) behaviour and other physiochemical properties such as Henry´s constants are 

important. Henry’s constants of the trace gases and chemical reaction equilibrium constants in the 

solvent mixtures of the quench water must be studied on individual bases to have a better 

understanding of the behaviour of these trace gases and their species. Although, it is complex to 

describe the behaviours of all the trace components present in the quench water system together 

but an individual approach will guide to come to an optimum decision especially when other test 

points are further investigated. 
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5 Organic acids trace studies in quench water  

The formation of the traces of formic acid (HCOOH) and acetic acid (CH3COOH) shall be discussed in 

this chapter. The quenching of the hot gas leaving the gasifier unit is a direct quenching method, 

which takes place in the HP POX quench chamber. This provides the interaction between the 

components of the hot gas (at 1172 – 1444 °C and from 51 – 81 bar) and quench water (stream F103: 

liquid phase at 141 – 194 °C) in the quench chamber during the test campaigns according to Fig. 3.1. 

Also discussed are possible reaction mechanism that might be responsible for the formation of these 

organic acids and how they interact with other components present in the quench water. 

In gasification processes, the high partial pressure of CO favours the formation of formic acid in the 

liquid phase [Higman et al., 2003], which results in the lowering of the pH of the aqueous medium. 

Consequently, the presence of formic acid and acetic acid for example may influence the corrosivity 

of alkanolamine solvents employed for cleaning and purifying natural gas or in the CO2 capture [Kittel 

et al., 2012] as well as their effects when they are accumulated around process plant surfaces. These 

lead to the increase of corrosion rate and results to increase of acid in the aqueous medium [Pearson 

et al., 2016]. In addition, several methods were developed to purify significant amount of water in 

Fischer-Tropsch process. Apart from benzene, toluene, xylenes, styrene, acetaldehyde and so on, 

formic acid and acetic acid were among the acid contaminant that were required to be removed from 

the process water or cooling water in the reaction section of the Fischer-Tropsch synthesis [David et 

al., 1973] and [William et al., 2010]. These hydrocarbons were formed during the Fischer-Tropsch 

synthesis. The treatment comprises of a liquid-liquid extraction in order to remove some fraction of 

these organic acids from the water stream [Luis et al., 2004], [Lino et al., 2008] and [Ivan et al., 2014]. 

Although, all these cases are typical examples that occur in the aforementioned industrial processes 

based on facts from literatures. They are not part of what happens in the HP POX test plant. 

5.1 Organic acids interaction with ammonia compounds in the quench water 

The presence of traces of formic acid species (HCOOH, HCOO-), acetic acid species (CH3COOH, 

CH3COO-), other acid species and ammonia species (NH3, NH4
+) in the quench water effluent mixed 

with the deionized water provides the medium for acid-base chemical reactions during the quench 

operations. These interaction enhance neutralization effects [Wang et al., 2005], which is common to 

industrial waste water effluents for examples in coal gasification at about 60 bar [Higman et al., 2003]. 

Test point VP1 has a calculated pH value of 6.17 (see Appendix Fig. 9.6: Calculated pH values, 

temperature range and species). The calculated pH values change from test point to test point as a 
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result of the acid-base interactions in the quench water and changes in the distribution of various 

molecularly dissolved components as well as their ions and due to different quench water 

temperatures. The ammonia formed in the gasifier partly goes into dissolution in the quench chamber 

and interacts with these organic acids and other acid species. Experiments on formic acid and acetic 

acid interaction with ammonia and water were reported by [Becker et al., 1963] and [Rablen et al., 

1998] with peculiar aggregation properties [Imberti et al., 2010] at molecular level in consideration 

to the strong hydrogen bond formation they exhibit [Soffientini et al., 2015]. 

The figures discussed in this chapter are based on reactions (4.8), (4.9) and (4.10) as well as the results 

derived from the calculations from the Aspen Plus model of the quench water system (see Appendix, 

Fig. 9.7: Aspen Plus flow sheet setup for organic acid compounds calculations and Table 9.12). Part of 

these organic acid dissociate in the quench. The formation of formic acid according to equation (4.8) 

was also report by [Brüggemann, 2010] together with kinetic mechanisms for the formation of formic 

acid. 

𝐶𝑂 (𝑎𝑞) +  𝐻2𝑂 ⇌ 𝐻𝐶𝑂𝑂𝐻 (𝑎𝑞) ⇌  𝐻𝐶𝑂𝑂− + 𝐻  
+                                      (4.8) 

 
2𝐶𝑂2 (𝑎𝑞) + 4𝐻2 (𝑎𝑞) ⇌ 𝐶𝐻3𝐶𝑂𝑂𝐻(𝑎𝑞) +  2𝐻2𝑂                                         (4.9) 

 

𝐶𝐻3𝐶𝑂𝑂𝐻(𝑎𝑞) ⇌  𝐶𝐻3𝐶𝑂𝑂− +  𝐻  
+                                                             (4.10) 

 

The equilibrium (m_eq) denotes the concentration of the acid calculated in Aspen Plus separately in 

an equilibrium reactor. The calculated equilibrium concentrations (m_eq) do not influence the 

calculated quench water species distribution based on analysed values and are only compared with 

the real values (m_real). While the so called real (m_real) denotes reaction quotient, which is the 

concentration of the acid or base formed based on the amount of these component measured and 

analysed in the laboratory and re-calculated in Aspen Plus with the help of design specification tools. 

Fig. 5.1 and 5.2 present the concentration of formic acid, the concentration of ammonia and the 

quench water temperature in the quench chamber during the hot gas quenching. These profiles are 

based on the result from the Aspen Plus model of the quench water system for the 47 test points 

under consideration (see Appendix Table 9.3: Gas-POX test campaigns and with designated serial 

numbers). 
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Figure 5.1: Aspen Plus back-calculated (real) formic acid concentration, quench water temperature 
and the calculated equilibrium formic acid concentration against back-calculated (real) ammonia 
concentration for the 47 test points (using amongst others sampled HCOO- and NH4

+ values according 
to Table 2.6). 

 

From Figure 5.1, it could be observed that there is a correlation (see Appendix: Table 9.4; r = +0.81) 

between the increase of the real formic acid concentration and the increase in the concentration of 

ammonia in the quench water. The calculated equilibrium formation of formic acid decreases with 

increasing temperature of the quench water (see Fig. 5.2). It can be observed that both the 

equilibrium and real formation of formic acid becomes closer as ammonia concentration increases. 

Figure 5.2 show the dependency of the real ammonia formation as temperature of the quench water 

increase. It could be observed that the real formation of formic acid and ammonia show a correlation 

from 140 °C to 195 °C (see Appendix: Table 9.4). In this, it could be concluded that there is a buffer 

characteristics of the species present in formic acid (HCOOH is a weak acid and HCOO- a weak base) 

and ammonia (NH4
+ is a weak acid and NH3 is a weak base). According to [Alexander et al., 1948], 

during these kinds of interaction in the aqueous phase of the quench water, ammonium formate as 

an ammonium salt might be formed and decompose when there is further increase in temperature. 

Although, the quench water system under consideration in this dissertation is a dilute system with no 

salt formation during or after the quench operation. In the literature studies of the mechanism of the 

Leuckart reaction [Alexander et al., 1948], the appearance of ammonium formate at 120 °C to 130 °C, 

the elimination of water by ammonium formate to form formamide when heated and the possibilities 
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of reaching equilibrium at 165 °C was reported. These types of reactions (Leuckart) occur during the 

conversion of carbonyl compounds to form amino derivatives [Alexander et al., 1948]. Also, the 

decomposition of formamide formed from ammonium formate produces carbon monoxide (CO) and 

ammonia at temperatures above 120 °C [Gibson, 1969]. More comment about formamide and other 

traces formation from its decomposition can be found in [Nguyen et al., 2013], [Becker et al., 1963] 

and [Gibson, 1969] in the Appendix (see comment on formamide). 

 

 

Figure 5.2: Aspen plus back-calculated (real) formic acid concentration, back-calculated (real) 
ammonia concentration and the calculated equilibrium formic acid concentration against quench 
water temperature for the 47 test points (using amongst others sampled HCOO- and NH4

+ values 
according to Table 2.6). 

 

Fig. 5.3 and 5.4 present the concentration of acetic acid, the concentration of ammonia and the 

quench water temperature in the quench chamber during the hot gas quenching. In the analysed 

quench water to detect the presence of acetic acid, it was observed that the amount of the acetic 

acid in the first thirteen test points were below the threshold of measuring range. This led to have 

the real concentration of acetic acid which is based on the laboratory analysis of the quench water 

and implemented in Aspen Plus to be unseen for the first thirteen test points (see Appendix Table 

9.3: Gas-POX test campaigns and with designated serial numbers and see also Fig. 5.9).  
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It can be seen in Fig. 5.3 that the concentration of the equilibrium and real acetic acid are far apart 

from each other. The calculated equilibrium concentration of acetic acid produced in the quench 

water is between 0.0465 mol/kg and 0.0826 mol/kg. While the real concentration of acetic acid is 

produced in the quench water is between 1.34E-10 mol/kg and 0.0009 mol/kg. 

 

 

Figure 5.3: Aspen plus back-calculated (real) acetic acid concentration, quench water temperature 
and the calculated equilibrium acetic acid concentration against back-calculated (real) ammonia 
concentration for the 47 test points. 

 

There is a correlation between the between the increase of the real acetic acid concentration and the 

increase in the concentration of ammonia in the quench water (see Appendix: Table 9.4; positive 

moderate correlation r = +0.60). 
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Figure 5.4: Aspen plus back-calculated (real) acetic acid concentration, back-calculated (real) 
ammonia concentration and the calculated equilibrium acetic acid concentration against quench 
water temperature for the 47 test points. 

 

In Fig. 5.4, there is positive weak correlation between the increase of real acetic acid concentration 

and increasing temperature of quench water (see Appendix: Table 9.4; r = +0.49). 

The acid-base correlation between equilibrium acetic acid concentration, ammonia concentration 

and temprature are negative weak correlation on like that of the formic acid, which are negative weak 

or strong correlations as in Fig. 5.2 (see Appendix: Table 9.4). Although, ammonia concentration 

increases as quench water temperature increases (see Appendix: Table 9.4 and Section 4.3.2).  

There are measured concentrations of total formic acid and total ammonia in quench water systems 

but hot inlet gases from two different feedstocks in [Brüggemann, 2010], which can be compared 

with Fig. 5.2 in this chapter. 

 

5.2 Formic acid 

Several reaction mechanisms leading to the formation of formic acid in high temperature water had 

been proposed in the literature [Pitchai et al., 1986] with free radicals playing important role in 

oxidation of methane. CO is known as a precursor for the formation of formic acid [Gräbner, 2015]. 
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discharge in partial oxidation gasification, [Webster et al., 2000] reports that the CO present in the 

product synthesis gas reacts with water under high temperature and high pressure condition in the 

scrubber to form formic acid based on reaction (4.8). 

In the production of hydrogen, formic acid can be used as a raw material due to it readily soluble 

behaviour in water especially at high temperature, where the decarboxylation pathway strongly 

predominates [Lu et al., 2011]. The formation of formic acid begins with the dissolution of CO gas 

present in the hot gas in the quench according to the summarized reaction (4.8). 

Decarboxylation and dehydration are pathways for the decomposition of formic acid in the 

temperature range from 175 °C to 260°C [McCollom et al., 2003] based on reaction (5.2) and (5.3) 

respectively. 

𝐻𝐶𝑂𝑂𝐻 (𝑎𝑞) ⇌ 𝐶𝑂2 (𝑎𝑞) +  𝐻2 (5.2) 

 

𝐻𝐶𝑂𝑂𝐻 (𝑎𝑞) ⇌ 𝐶𝑂 (𝑎𝑞) +  𝐻2𝑂 (5.3) 

 

Studies on aqueous-phase oxidation of formic acid and formate by [Bjerre et al., 1992] indicated that 

when there is dissolution of formic acid in water, decarboxylation is strongly dominant [Yu et al., 

1998]. The dehydration is dominated in the gas phase [Akiya et al., 1998] and [Maiella et al., 1998]. 

The conjugate base of fomic acid is formate. Both are known to be the simplest form of organic acid 

and acid anions. Formate is formed by any of the reduction of molecularly dissolved HCO3
- or CO2 or 

hydration of CO or by the acid–base reaction of formic acid and ammonia [McCollom et al., 2003]. 

𝐻𝐶𝑂𝑂−
 (𝑎𝑞) +  𝐻2𝑂 ⇌ 𝐻𝐶𝑂3

− +  + 𝐻2 (5.4) 

 

𝐻𝐶𝑂𝑂−
 (𝑎𝑞) + 𝐻  

+ ⇌ 𝐶𝑂2 (𝑎𝑞) +  𝐻2 (5.5) 

 

𝐻𝐶𝑂𝑂−
 (𝑎𝑞) + 𝐻  

+ ⇌ 𝐶𝑂 (𝑎𝑞) +  𝐻2𝑂 (5.6) 
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𝐻𝐶𝑂𝑂−
 (𝑎𝑞) +  𝑁𝐻4 (𝑎𝑞)

+ ⇌ 𝐻𝐶𝑂𝑂𝐻 (𝑎𝑞) +  𝑁𝐻3 (𝑎𝑞) (5.7) 

 

Although, most of the reaction discussed above occurs within similar temperature range of the HP 

POX quench water but they are enhanced by the presence of specific catalysts over a long period of 

time (800 hours) [McCollom et al., 2003]. In geologic environments, the longer period of time suggest 

that the system attained equilibrium between CO2, H2 and formate at a temperature of about 260 °C 

[McCollom et al., 2003]. 

The HP POX quench water residence time after quenching the hot gas in the quench chamber last for 

5 minutes and there is no catalyst involvement but there are possibilities to have the metallic wall or 

surface of the quench chamber acting as catalyst.  

5.2.1 Trace of formic acid in quench water 

Fig 5.5 present the calculated concentration of the equilibrium and real formation of formic acid 

present in the quench water for the 47 test point and quench water temperature. Lesser amount of 

the formic acid is formed in the back calculated real concentration in comparison to the equilibrium 

calculation. 

 

Figure 5.5: Concentration of formic acid (Aspen plus calculated m_eq and back-calculted m_real) 
formation in the quench and quench water temperature for the 47 test points.  
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Figure 5.6 illustrates the formic acid concentration in the quench as a function of quench water 

temperature. The real formic acid formation increases slowly as quench water temperature increases 

(r = +0.79). On the other hand, the calculated equilibrium formation of formic acid sharply decreases 

with the increase in the quench water temperature (r = -0.83). 

 

Figure 5.6: Concentration of formic acid (Aspen plus calculated m_eq and back-calculted m_real) in 
the quench against quench water temperature for the 47 test points (as in Fig.5.2). 

 

The formation of formic acid is kinetically limited in the temperature range of the quench water 

system. It is possible for the real formation of formic acid to attain equilibrium if there is a further 

temperature increase beyond 195 °C. This fact could be inferred from the hydrothermal experiments 

conducted by [McCollom et al., 2003] to investigate organic acid formation in aqueous geologic fluids, 

which play significant role in a variety of geochemical processes. 
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Figure 5.7: Comparison between formic acid equilibrium constant (Keq), reaction quotient (Kreal) and 
the quench water temperature for the 47 test points. 

 

From equation (4.8) at equilibrium and neglecting the activity coefficients and setting activity of water 

to 1 (𝑎𝐻2𝑂 = 1): 

𝐾𝑒𝑞 =   [
[𝐻𝐶𝑂𝑂𝐻]

[𝐶𝑂]
]

𝑒𝑞

   (5.8) 

 

For the back calculated real formation of formic acid (real or reaction quotient)  

𝐾𝑟𝑒𝑎𝑙 =  [
[𝐻𝐶𝑂𝑂𝐻]

[𝐶𝑂]
]

𝑟𝑒𝑎𝑙

 (5. 9) 

 

Figure 5.7 shows the Keq and Kreal values for formic acid for each test point and the quench water 

temperatures. 
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Figure 5.8: Comparison between formic acid equilibrium constant (Keq) and reaction quotient (Kreal) 
against quench water temperatures for the 47 test points. 

 

It can be observed from Fig. 5.8 that the equilibrium constants inferred from Aspen Plus calculations 

remain the same throughout the increase in quench water temperature (r = -0.97). While the reaction 

quotients increases steadily as temperature increases (r = +0.83). This indicates the formation of more 

formic acid as temperature increases from 140°C to 190 °C. 

 

5.3 Acetic acid 

Acetic acid is a weak acid, which can dissociate and form ions [Park et al., 2006]. Reports on its 

dissociation mechanism and how it enhances the corrosion rate of mild steel at metal surface of 

industrial plant facilities by accelerating the cathodic reaction was previously discussed by [Tran et al., 

2014]. Due to its presence in industrial cooling water, acetic acid changes the pH, BOD and COD of 

the water. Experimental studies to remove acetic acid from industrial waste water by means of 

sorption was proposed by [Dar et al., 2013] and by means of catalytic distillation [Xu et al., 1999] 

shows the high efforts required in the removal of dilute acetic acid from water. Several adsorption 

experiments for the removal of acetic acid were reported by [Zhang et al., 2016] and [Özcan et al., 

2013] as alternatives to the problem encountered in the process to extract acetic acid from aqueous 

solutions of water. This is due to the close boiling point of two compounds (water and acetic acid) 
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and research in this field has gained significant importance over the past decades. In the 

petrochemical and fine chemical industries, the recovery of dilute acetic acid from aqueous stream 

has been one of the major challenges as conventional distillation [Lei et al., 2004] system remains 

uneconomical for it recovery [Gangadwala et al., 2008]. A theoretical study for removal of acetic acid 

from waste water via reactive distillation process was proposed earlier by [Gangadwala et al., 2007]. 

The outcome show the complexity required to maintain steady state and better improvement than 

the azeotropic distillation model. The formation of acetic acid in the quench water is represented in 

reaction (4.9) and (4.10). The CO2 from the hot gas undergoes hydrogenation in liquid phase to form 

acetic acid.  

Other methods leading to the formation of acetic acid in aqueous phase from the reactions involving 

any of CH4, CO2, H2 and catalyst are widely reported in [Wu et al., 2013], [Li et al., 2002], [Wang et al., 

2004], [Wieringa et al., 1939] and [Iglesia et al., 2001]. 

 

The thermal decarboxylation of aqueous solutions of acetic acid is expected to occur in contact with 

various surfaces of catalyst between 335 °C and 355 °C [Bell et al., 1994] based on reactions (5.10) 

and (5.11) to form bicarbonate. 

𝐶𝐻3𝐶𝑂𝑂𝐻 (𝑎𝑞) ⇌  𝐶𝐻4 +  𝐶𝑂2 (5.10)  

 

𝐶𝐻3𝐶𝑂𝑂(𝑎𝑞)
− + 𝐻2𝑂 ⇌  𝐶𝐻4 + 𝐻𝐶𝑂3

− (5.11)  

 

Also experiments from [Bell et al., 1994] informed that some significant fraction of acetic acid 

decomposition may occur through oxidation based on reaction (5.12).  

𝐶𝐻3𝐶𝑂𝑂𝐻 + 2𝑂2 → 2𝐶𝑂2 +  2𝐻2𝑂 (5.12)  

 

[Zhang et al., 2017] investigated a complete reaction of acetic acid steam reforming for hydrogen 

production based on catalytic activity (Ni and Co) with CH3COCH3, CH4 and CO as the main by-products 

as represented in the following reactions [Basagiannis et al., 2007] occurring at higher temperatures 

above 850 °C:  
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𝐶𝐻3𝐶𝑂𝑂𝐻 +  2𝐻2𝑂 → 2𝐶𝑂2 + 4𝐻2                 (5.13)  

 

2𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻3𝐶𝑂𝐶𝐻3 +  𝐻2𝑂 + 𝐶𝑂2 (5.14)  

 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻4 +   𝐶𝑂2 (5.15)  

 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 2𝐻2 +   2𝐶𝑂 (5.16)  

Reaction (5.13) was suggested to be one of the decomposition reactions of acetic acid [McCollom et 

al., 2003]. Other formation and decomposition of acetic acid were proposed by [Bennett et al., 2007] 

as acetic acid is categorized amongst astrobiologically important molecules. Reaction (5.16) occurs 

with the influence of La2O3 and Al2O3 materials acting as catalyst [Basagiannis et al., 2007]. 

 

5.3.1 Trace of acetic acid in quench water 

Fig 5.9 present the calculated concentration of the equilibrium and the concentration of the 

calculated real acetic acid present in the quench water for the 47 test point and quench water 

temperature.

 

Figure 5.9: Concentration of acetic acid (Aspen plus calculated m_eq and back-calculted m_real) in 
the quench and quench water temperature for the 47 test points. 
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It could be observed in Fig. 5.9 that lesser amount of the acetic acid concentration is formed in the 

calculated real values in comparison to the equilibrium values. 

 

 

Figure 5.10: Concentration of acetic acid (Aspen plus calculated m_eq and back-calculted m_real) in 
the quench against quench water temperature for the 47 test points (as in Fig.5.4). 

 

Figure 5.10 illustrates the concentration of acetic acid in the quench. The real acetic acid formation 

increases slowly as quench water temperature increases (r = +0.49). On the other hand, the calculated 

equilibrium formation of acetic acid decreases with the increase in the quench water temperature (r 

= -0.30). 

 

In this, the formation of acetic acid is limited by the temperature of the quench water. There is a weak 

approach between the calculated real and equilibrium concentration of acetic acid with increasing 

quench water temperature. Reaction (4.9) represents the formation of acetic acid in the quench 

water as implemented in Aspen Plus. 
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Figure 5.11: Comparison between acetic acid equilibrium constant (Keq), reaction quotient (Kreal) 
and the quench water temperature for the 47 test points. 

From equation (4.9) at equilibrium:  

𝐾𝑒𝑞 =   [
[𝐶𝐻3𝐶𝑂𝑂𝐻]

[𝐻2]4 [𝐶𝑂2]2
]

𝑒𝑞

 (5.17) 

 

For the formation of acetic acid not at equilibrium (real or reaction quotient)  

𝐾𝑟𝑒𝑎𝑙 =  [
[𝐶𝐻3𝐶𝑂𝑂𝐻]

[𝐻2]4 [𝐶𝑂2]2
]

𝑟𝑒𝑎𝑙

 (5.18) 

 

Figure 5.11 indicates Keq and Kreal for acetic acid for each test point and their quench water 

temperature. There is temperature dependency observed for the Keq as the equilibrium constants 

increase as quench water temperature reduces in the range between 140 °C to 190 °C (Fig.5.12). 

It can be observed from Fig. 5.12 that the equilibrium constant inferred from Aspen Plus simulation 

decreases gradually as the increase in quench water temperature increases (r = -0.62). While the 

reaction quotient tends to increase steadily as temperature increase (r = +0.56). This indicates the 

formation of more acetic acid in the non-equilibrium calculation as temperature increases from 140°C 

to 190 °C (see Appendix: Table 9.4). 
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Figure 5.12: Comparison between acetic acid equilibrium constant (Keq) and reaction quotient (Kreal) 
against quench water temperatures for the 47 test points. 

 

5.4 Summary 

The formation of organic acids in the quench water during the hot gas quenching was discussed based 

on results obtained from Aspen Plus. Meanwhile, there are no published works on formic acid and 

acetic acid formation in non-catalytic partial oxidation of natural gas and the product synthesis gas 

quench operations. These organic acids formation are widely reported in many hydrothermal process 

conditions in aqueous geological fluid specifically in the geochemical processes and in the presence 

of minerals or metals (acting as catalyst) [McCollom et al., 2003]. 

 

Sequel to the literature studies, there are possible reactions that may occur leading to the formation 

of these trace compounds after quench operation especially after the end of each test campaign or 

plant shutdown. This period provide the longer residence time for the formation to take place. The 

presence of phenolic compounds in the quench water need to be investigated as their reactions are 

pathways to the formation of both formic acid and acetic acid as reported by [Man et al., 2011].  

 

Acid-base interaction between acid compounds and basic compounds present in the quench water 

must be further looked into as the salt produced from these reactions can cause damage to the plant 

facility as well as other possible corrosion effects for other system than the investigated quench water 
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system. The salt formation is not to be expected in the HP POX quench where the ionic species are 

diluted. 

The interaction between traces of organic and inorganic compounds present in the quench water 

must be further investigated, as there is buffering benefit that could be derived from the trace 

amount of organic acid to regulate the pH of the quench water against basic compounds 

(neutralization). 
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6 Temperature approach studies for NH3 and HCN formation in gasifier 

The focus of this chapter is to discuss conversion of fuel-nitrogen into nitrogen compounds in the 

gasifier during gasification based on the results from the Aspen Plus simulation (see Appendix Fig. 9.8: 

Aspen Plus flow sheet setup for nitrogen compounds calculations and Table 9.12). There are two 

possible ways nitrogen enter into the gasifier during the test campaign. Nitrogen stream is used to 

keep the optical probe clear, which is applied to visualize the flame during plant operations. Also, 

nitrogen is supplied into the gasifier as a component in natural gas feedstock input (see Table 2.3). N2 

is partially converted into NH3 and HCN. These two compounds constitute important consideration 

for the downstream utilisation of the syngas. 

 

6.1 Nitrogen compounds: NH3 and HCN 

In several gasification processes, bound nitrogen in the complex structure of different fuels is 

liberated and reacts. The consequence of these different homogeneous and heterogeneous reactions 

led to the formation of these nitrogen compounds [Leppälahti et al., 1995]. In terms of natural gas, 

there are no chemically bound fuel nitrogen present [Higman et al., 2003] when compared with coal, 

biomass or sewage sludge. It is generally assumed that bound nitrogen in aromatic rings is released 

as HCN and the nitrogen from amines appears as NH3 [Gräbner, 2015]. There is a dearth of data and 

published works on autothermal gasification of natural gas relating to the conversion of the fuel-

nitrogen during gasification. But there are many facts that have been published about nitrogen 

compounds formation for other gasification feedstock especially fuels like coal [Chang et al., 2006], 

biomass [Simell et al., 1996], [Hansson et al., 2004], heavy residue [Abdul R.  et al., 2004], with recent 

findings about sewage sludge [Schweitzer et al., 2017], [Liu et al., 2017], [Ma et al., 2017] and 

[Thomsen et al., 2017]. Nitrogenated aromatic compounds present in sewage sludge has been linked 

to the formation of PAHs and nitrogenated PAHs by [Fullana et al., 2003] and [Cao et al., 2010].  

Nitrogen is sometime used in some gasification process to moderate the temperature by adding it to 

the oxygen [Higman et al., 2003]. Irrespective of the gasification process, there are studies that has 

proved that all fuels produced more NH3 than HCN [Leppälahti et al., 1995] under all the conditions, 

whereas less HCN [Cao et al., 2013] and [Xu et al., 2012] is produced. Although, this fact varies with 

respect to the fuel`s characteristics and composition. In the work of [Hämäläinen et al., 1996] during 
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pyrolysis and gasification of coal, between the two nitrogen compounds produced, HCN is liberated 

as a major product with high concentration of NH3 measured, which was believed to be formed from 

HCN during devolatilization reaction [Hämäläinen et al., 1996]. The major identified factor responsible 

for the formation of coal-nitrogen components in the gas phase and within the solid particles was the 

presence of H radicals when coal particles are heated in a fluidized-bed / fixed-bed reactor, which was 

reported in an experiment by [Chang et al., 2006]. It is observed that N radicals from char-nitrogen 

and the H radicals from H2O and the rupture of the nitrogen containing heteroaromatic ring systems 

contribute to the formation of NH3 and HCN [Chang et al., 2006]. 

In non-catalytic autothermal reforming of natural gas, the formation of these nitrogen compounds is 

as a result of the thermal HCN and NH3 formation, which is reported to be a function of the actual 

temperatures in the flame zone and burner performance in the gasifier [Higman et al., 2003]. When 

the hot gas is quenched, some traces of ammonia and hydrogen cyanide remains in the quench water 

effluent as ammonia has a very high solubility in water. Trace of ammonia in the syngas is highly 

undesirable as it can lead to the formation of amines on catalyst during methanol synthesis. Trace of 

HCN is know to be one of the catalyst posion in Fisher-Tropsch process. In general, there is a lot of 

capital and operating cost [Hongrapipat et al., 2014] for gas cleaning and removal that are associated 

with the presence of these nitrogen compounds in the treatment of raw gas or syngas before further 

utilization. 

Futhermore, several experimental results show that the mechanism and formation of NOx (nitrogen 

oxides) precursors during the pyrolysis of coal gave better understanding about the formation of NH3 

and HCN [Kambara et al., 1993], [Hämäläinen et al., 1994], [Chang et al., 2003] and [Liu et al., 2017]. 

Although, care must be taken as nitrogen oxides are know to form resin with unsaturated 

hydrocarbons in the gas phase especially in the liquid nitrogen wash of ammonia plant [Higman et al., 

2003]. These formed resins are prone to extreme unplanned explosions [Slack et al., 1973]. But in the 

process where there is raw gas shift are applied; NOx (nitrogen oxides) and the unsaturated 

hydrocarbons are hydrogenated on the catalyst [Higman et al., 2003]. 

Also, [Cataldo et al., 2009] investigated the thermal decomposition of formamide in gas phase to 

produce HCN polymer and further prolong heating at 185°C or 220°C formed an insoluble black 

product while the gaseous product released during the decomposition of formamide were CO2, CO 

and NH3 (see Appendix: comment on formamide).  
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Figure 6.1: Mole fraction of gas compoents in the hot gas outlet out of gasifier against hot gas 
temperature for the 47 test points 

 

Figure 6.1 present the gas component mole fractions of the gasifier outlet gas (hot gas) against the 

hot gas temperatures from 1150 °C to 1450 °C for all the 47 test point. It could be observed that mole 

fraction of hydrogen (𝑌𝐻2
) range from 0.44 to 0.49, which make it the most dominant of all the 

product synthesis gases. After hydrogen, the next is carbon monoxide (CO) with the mole fraction 

from (𝑌𝐶𝑂) range from 0.19 to 0.22. Next to CO is water (steam), as the yield of gases in the gasifier is 

refered to as wet gas, the 𝑌𝐻2𝑂 range from 0.33 to 0.22. The mole fraction of CH4 follows a sharp 

decrement from 0.11 to 0.0006. This strong drecrease in CH4 is due to its increasing consumption 

leading to the formation of H2, CO, H2O and CO2 based on the reactions in Section 2.2.3. 
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Furthermore, the mole fraction of nitrogen (𝑌𝑁2
) range from 0.001 to 0.009. N2 is partly conversed 

into NH3 and HCN.  𝑌𝑁𝐻3
is 20 times lesser than 𝑌𝑁2

 while 𝑌𝐻𝐶𝑁 is over 600 times lesser than 𝑌𝑁2
. This 

confirms the formation of more NH3 than HCN as the nitrogen compounds. 

6.2 Ammonia (NH3) formation in the gasifer 

Figure 6.2 presents, the calcuated reaction quotient of NH3 formation (real or non-equilibrium) from 

the gasifier as one of the component of the hot gas and the hot gas temperature for all the 47 test 

point under consideration, as well as the equilibrium constant of the NH3-formation. Based on 

equation (6.1), some part of N2 in the gasifier reacts with hydrogen and convert into NH3.  

1

2
𝑁 2 +  

3

2
𝐻2 ⇌ 𝑁𝐻3 (6.1)  

 

From equation (6.1), the forward reaction is exothermic and the backward reaction in endothermic.  

 

 

Figure 6.2: Calculated reaction quotient (Q) and equlibrium constant (Keq) for NH3 against hot gas 
temperature for the 47 test points (see Fig. 9.10 in Appendix)  

 

Since the component under consideration are in the gas phase, the Q and the Keq of NH3 formation 

can be express in terms of partial pressure as in equations (6.2) and (6.3). From a general observation, 

it could be seen that the calculated equlibrium constant (Keq) of NH3 gradually decreases as the hot 

gas temperature increases (see line Poly. Keq NH3, a consequence of the exothermic forward reaction 
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of the considered equation (6.1)). The calculated reaction quotients are unexpectedly mostly larger 

than the equilibrium constants at the same respective hot gas temperature. This indicates that in 

most considered test points there is unexpectedly more NH3 present than at equilibrium condition. 

 

𝐾𝑒𝑞 =   [

𝑃
𝑁2

1
2⁄  𝑃

𝐻2

3
2⁄

𝑃𝑁𝐻3

]

𝑒𝑞

 (6.2) 

 

𝑄𝑁𝐻3
= [

𝑃
𝑁2

1
2⁄  𝑃

𝐻2

3
2⁄

𝑃𝑁𝐻3

]

𝑟𝑒𝑎𝑙

 (6.3) 

 

 

Figure 6.3: NH3 temperature approach against hot gas temperature for the 47 test points (see Fig. 

9.11 in Appendix)   

 

Since the kinetic data for NH3 formation are not available from the literatures, the temperature 

approach was used. The forward reaction (6.1) is exothermic and the backward reaction is 

endothermic. Hence, temperature approach (Tapp) less than zero according to Figure 6.3 

correspends to larger calculated reaction quotients than the equilibrium constants at the respective 

hot gas temperature according to Figure 6.2. Mostly, all the test points have negative approaches 

with the exception of few test points, which includes: test points 1, 4, 5, 8, 9 and a few others. 
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6.3 Hydrogen cyanide (HCN) formation in the gasifier 

Equation (6.4) present the reaction between carbon monoxide and ammonia leading to the formation 

of HCN. The Q and the Keq of HCN formation (the reaction quotient and the equilibrium constant) can 

be expressed in terms of partial pressures as in equations (6.5) and (6.6). Figure 6.4 presents the 

calulcuated reaction quotients and the equilibrium constants of HCN from the gasifier. 

 

𝐶𝑂 +  𝑁𝐻3 ⇌ 𝐻𝐶𝑁 +  𝐻2O (6.4)  

 

 

 

Figure 6.4: Calculated reaction quotient (Q) and equlibrium constant (Keq) for HCN against hot gas 
temperature for the 47 test points (see Fig. 9.13 in Appendix) 

 

 

𝐾𝑒𝑞 =   [
𝑃𝐻𝐶𝑁 𝑃𝐻2𝑂

𝑃𝐶𝑂 𝑃𝑁𝐻3

]
𝑒𝑞

 (6.5) 

 

 

𝑄𝐻𝐶𝑁 =   [
𝑃𝐻𝐶𝑁 𝑃𝐻2𝑂

𝑃𝐶𝑂 𝑃𝑁𝐻3

]
𝑟𝑒𝑎𝑙

 (6.6) 
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Figure 6.5: HCN temperature approach against hot gas temperature for the 47 test points (see Fig. 
9.14 in Appendix) 

 

From Figure 6.4, it could be seen that the calculated Keq of HCN formation increase gradually with 

increaseing hot gas temperatures (a consequence of the endothermic forward reaction of equation 

(6.4)) and are mostly above the reaction quotient QHCN except for few test points between hot gas 

temperature ranging from 1176 °C and 1217 °C. This indicates that in most considered test points 

there is as expected less HCN present in the reaction quotient QHCN than at equilibrium condition. 

From equation (6.3), the forward reaction is endothermic and the backward reaction is exothermic. 

Similarly to Figure 6.3 (for Tapp NH3), most of the test points have negative temperature approaches 

(Tapp HCN) in Figure 6.5 with the exception of a few test points between hot gas temperature ranging 

from 1176 °C and 1217 °C. But in case of HCN formation according to equation (6.4)these negative 

temperature approaches indicate that there is mostly less HCN present than at equilibrium condition, 

contrary to the NH3-formation in Section 6.3 of this chapter, where the negative temperature 

approaches in Figure 6.3 for reaction (6.1) imply more NH3 present than at the respective equilibrium 

conditions (see Figure 6.2). The reasons are the exothermic forward reaction of equation (6.1) and 

the resulting decrease of Keq NH3 with temperature in Figure 6.2, contrary to the endothermic forward 

reaction of equation (6.4) and the resulting increase of Keq HCN with temperature in Figure 6.4. A 

consequence of the different Keq inclinations are negative NH3 temperature approaches in Figure 6.3 

for Q NH3 > Keq NH3 in Figure 6.2 and negative HCN temperature approaches in Figure 6.5 for Q HCN 

< Keq HCN in Figure 6.4. 
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6.4 Discrepancies between back-calculated reaction quotients and equilibrium constants 
of the NH3 formation 

During the course of the investigation about the nitrogen compounds formation in the upstream part 

of the quench process (i.e. in the hot gas leaving the gasifier), the simulation work had found 

discrepancies between back-calculated reaction quotients and equilibrium constants of the NH3 

formation according to equation (6.1). The calculated reaction quotients of the NH3 formation are 

unexpectedly mostly larger than the equilibrium constants at the same respective hot gas 

temperature (see Section 6.2). In the following Sections 6.4.1 and 6.4.2 the calculated equilibriums 

constants (see equations (6.2) and (6.5)) of the reactions according to equations (6.1) and (6.4) as 

displayed in Figures 6.2 and 6.4 are used to calculate imaginative hot gas equilibrium mole parts of 

the nitrogen components under different constraints: 

1. The equilibrium constants according to equations (6.2) und (6.5) for reaction equations (6.1) 

and (6.4) are used to calculate the equilibrium distribution between N2, NH3 and HCN. As a 

constraint, the gasification reactions between the other hot gas components according to 

Section 2.2.3 do not succumb to an equilibrium approach. That means the calculated 

equilibrium distribution between N2, NH3 and HCN according reaction equation (6.1) and 

(6.4) leads only to a marginally calculated change in the hot gas H2, CO, H2O and also N2 

amount and the hot gas bulk component mol parts because of the low hot gas N2, NH3 and 

HCN mol parts (see. Fig. 6.1) and the low amount of conversion of N2 into NH3 (negligible 

change in N2 amount respective mole fraction according to Fig. 6.6). 

2. As a further constraint only the equilibrium constants according to equation (6.5) for 

reaction equation (6.4) are used to calculate the equilibrium distribution between NH3 and 

HCN (i.e. without achieving equilibrium distribution between N2 an NH3 according to 

reaction equations (6.1)). In this case even the change between real and calculated 

equilibrium NH3 mol amount and mol parts is marginally low because of the the low amount 

of conversion of NH3 into HCN (compare YNH3 in Figures 6.1 and 6.7, negligible change in 

NH3 amount respective mole fraction). 

 

6.4.1 Case 1: calculated equilibrium distribution between N2, NH3 and HCN 

 

Presented in Figure 6.6 are the calculated equilibrium mole fractions and real mole fractions for N2, 

NH3 and HCN (equilibrium mole fractions according to equations (6.2) und (6.5)). The discrepancies 
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between back-calculated reaction quotients and equilibrium constants of the NH3 formation 

according to equation (6.1), i.e. mostly Q NH3 > Keq NH3 in Fig. 6.2, also render the discrepancies YNH3 

> YNH3, eq for most test points (in Fig. 6.6). Unexpected relations YHCN > YHCN, eq (YHCN, eq resulting from 

concomitant and complementary calculated YNH3, eq values) also occur for many test points for the 

HCN formation according to reaction equation (6.4).  

 

Figure 6.6: Comparison between calculated real and equilibrium hot gas N2, NH3 and HCN mol 
fractions against their respective hot gas temperature (case 1). 

 

 

Figure 6.7: Relations between back-calculated real and equilibrium hot gas N2, NH3 and HCN mol 
fractions (for chemical equilibrium according to equations (6.1) and (6.4)) against their respective hot 
gas temperature (see Case 1, Section 6.4.1, and Fig. 6.6) 
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6.4.2 Case 2: calculated equilibrium distribution between NH3 and HCN 

Presented in Figure 6.8 are the calculated equilibrium mol fractions and real mol fractions for NH3 

and HCN (equilibrium mol fractions according to equation (6.5)) without achieving equilibrium 

distribution between N2 an NH3 according to reaction equations (6.1). 

Relations YHCN < YHCN, eq (YHCN, eq resulting from assumed real YNH3 values) occur for most test points for 

the HCN formation according to reaction equation (6.4). That means, if the Aspen Plus back- 

calculated hot gas NH3 mol fraction YNH3 really exceed YNH3, eq (i.e. hot gas YNH3 > YNH3, eq) than the 

expected relations YHCN < YHCN, eq are mostly fulfilled. For an overview of each of the 47 test points see 

Fig. 9.9 and Fig. 9.12 in Appendix. 

 

 

Figure 6.8: Comparison between calculated real and equilibrium hot gas HCN mol fraction against 
their respective hot gas temperature (case 2).  
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Figure 6.9: Relations between back-calculated real and equilibrium hot gas HCN mol fractions, and 
change in NH3 mol fractions (for chemical equilibrium according to equation (6.4)), against their 
respective hot gas temperature (see. Case 2, Section 6.4.2 and Fig. 6.7) 

 

6.5 Summary 

Based on the findings in this chapter about the formation of more NH3 and HCN in the reaction 

quotient than equilibrium condition, these are indications showing the formation of more NH3 after 

the hot gas exit the gasifier. Consequently, NH3 reaction with CO leads to the formation of HCN 

(equation (6.4)). The question in this situation is to ask where the unexpected increase in the 

formation of NH3 comes from. 

The NH3 and HCN content in the hot gas outlet out of the upstream POX reactor were back-calculated 

via Aspen Plus Design Specifications using as constraint, the ammonium and cyanide content in the 

quench water samples from the quench water system (as explainend in Sections 2.5 and 2.5.1). This 

implies the possible hypothesis that this back-calculation not only encompasses the NH3 content in 

the hot gas from the POX gasifier but also include a possible supplementary amount of NH3 formation 

according to equation (6.1) in the gas phase of the quench chamber itself. NH3 formation according 

to equation (6.1) is a moderately exothermic process (see Table 9.5, Fig. 9.15 and Fig. 9.16 in the 

appendix) which is favoured by temperature decrease according to Le Chatelier’s principles. The 

possibility of another reaction, the moderately exothermic homogeneous water–gas shift reaction 

during water quench processes of hot gas outlets from gasifiers, was for example studied and 

presented in the literatures [Uebel et al., 2016a] and [Uebel et al., 2016b]. In analogy to this 
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mentioned water–gas shift reaction during water quench processes, it could be postulated by the 

hypothesis that the moderately exothermic homogeneous gas reaction of ammonia formation 

according to equation (6.1) also takes place in the water quench processes (at least in the first 

moment of these quench processes, as long as the concomitant temperature drop does not lead to 

too much deceleration of the reaction kinetics of the equation (6.1) reaction) and (see Section 4.3.2 

and Section 4.3.3). 

Figure 6.10 presents the gas concentration of nitrogen, ammonia, HCN and hot gas temperature 

against the 47 test points. In these are the comparsion between the reaction quotient and equilibrium 

constant of ammonia and HCN for case 1 and case 2 (see Section 6.4.1 and 6.4.2) for each test point 

with their respective hot gas temperature and nitrogen concentration.  

 

 

Figure 6.10 Comparison between NH3 and HCN formation (mole fraction) calculated equilibrium 
constant (Keq) and calculated reaction quotient (Q), N2 consumption and hot gas temperatures for the 
47 test points (case 1 and case 2). 

 

1100

1150

1200

1250

1300

1350

1400

1450

1500

0.000001

0.00001

0.0001

0.001

0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

H
o

t 
ga

s 
te

m
p

er
at

u
re

 [
°C

]

G
as

 c
o

n
ce

n
tr

at
io

n
s 

o
f 

N
2
, N

H
3
, H

C
N

 [
m

o
l/

m
o

l]

Test points

YN2_real YNH3_real YNH3eq, Case 1

YHCN_eq, Case 2 YHCN_real YHCNeq, Case 1

Hot gas temperature



 

86 
 

7 Traces of BTEX, PAHs and soot in quench water 

 

The objective of this chapter is to discuss the results of the laboratory analysis of the quench water. 

The quench water samples from the HP POX test campaigns Gas-POX 203 – 207 (See laboratory 

analysis results in Appendix Tables 9.7 for BTEX, Tables 9.9 for PAHs and Table 9.10 for soot) were 

analysed by an accredited laboratory. Also discussed in this chapter are the processes that could be 

responsible for the formation of the product synthesis gas trace particulates of soot and traces of 

organic compounds of BTEX and PAHs in the quench water. 

BTEX, PAHs and soot are often present in wastewater [Dórea et al., 2007] from chemical and 

petrochemical industries as well as hot gas stream from biomass gasification [Torretta et al., 2015]. 

The degree of the formation of these compounds differs based on the feedstock for a particular 

gasification process. The fossil-based solid feeds like coal, petroleum residue as well as renewable 

feedstocks such as the lignocellulosic biomass [Bhavya et al., 2015], [Hermann et al., 2007], [Wiinikka 

et al., 2006] and [Wiinikka et al., 2004], waste from chemical pulp and paper production are known 

to produce more BTEX, PAHs and soot than gaseous feedstock like natural gas [Raimondi et al., 2009], 

[Lederer et al., 2015] and [Steynberg et al., 2006]. In the partial oxidation of natural gas, a very little 

amount of carbon is formed and this carbon is free of metals [Higman et al., 2003], which simplify the 

soot capture [Higman et al., 2002]. 

The difference in the amount of BTEX, PAHs and soot formed in many gasification processes can be 

from the effect of different operation conditions, feedstock and / or feed preparation processes, the 

design of their burners, and product synthesis gas quenching methods. Usually, gasification processes 

does not only produce the main constituent of syngas alone but a large number of intermediate by-

products of decomposition and oxidation formed, which are then not further decomposed.  

Due to the high toxicity of these compounds to human health and the environment, many stringent 

regulations have been imposed on concentration of these compounds inside wastewaters for the safe 

discharge [Lin et al., 1999]. Several methods like condensation, catalytic oxidation, adsorption, 

thermal oxidation, membrane separation and absorption have been employed for removing these 

organic compounds from wastewaters. 
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The thermochemical processing of coal and production of chemically complex wastewater were 

reported by [Jin et al., 1999] and [Parkhurst et al., 1981] to evaluate and identify the toxicity of the 

effluent discharged and effect on the aquatic ecosystems. It was confirmed that volatile phenols and 

ammonia were the major chemicals that led to the toxicity of the effluent discharged from the coal 

gasification plant. PAH compounds as constituent of coal tar [Yang et al., 2006] and [Zhang et al., 

2006] was removed by its acidification demulsion during the pre-treatments of coal gasification waste 

water.  

High concentration of PAHs and other undesirable compounds were confirmed [Gai et al., 2008], 

[Pinto et al., 2014] and [Hsu et al., 2016] in emissions and waste water relating to the gasification of 

coal. In response to the operating parameter during the thermochemical conversion of biomass, 

several tar species were created [Asadullah et al., 2014], [Woolcock et al., 2013] and [Torres et al., 

2007]. In order to reduce the tar content from the hot gas obtained from an experimental gasifier, 

thermal cracking was applied. Large part of the tar and other CxHy compounds were converted to soot 

by polymerization [Houben et al., 2002]. In order to remove tar from biomass gasification during 

experiment, a comprehensive compounds in tar were developed. Toluene, naphthalene, phenol and 

pyrene representing all the one-ring compounds, two-ring compounds: phenolic and other 

heterocyclic compounds and three-rings and higher compounds were included in the comprehensive 

tar compounds [Supawat et al., 2014]. This approach offers the gas clean-up technology that could 

be applied downstream of the gasifier reactor in order to have the syngas quality. 

Presented in the Appendix (Tables 9.7 for BTEX, Tables 9.9 for PAHs and Table 9.10 for soot) are the 

laboratory analysis results obtained from the HP POX quench water effluent samples during the Gas-

POX 203 – 207 test campaigns. Despite the fact that the some amount of traces of BTEX, PAHs and 

soot were below the threshold of measuring range, the next sections of this chapter give a detail 

study of each of the trace compounds that were analysed.  

 

7.1 Quench water behaviour 

Figure 7.1 presents an overview of the HP POX test plant quench water system. All products and by-

products of the gasification process (Gas-POX mode) enters the quench chamber via the hot gas 

stream. The quench chamber has a volume of 1 m3, a liquid level measurement with a mean residence 
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time of about 5 minutes. The hot gas stream temperature during the test campaign under review 

(Gas-POX 201 – 207) range from 1172 – 1443 °C, pressure range from 51 – 81 bar and flow rate from 

0.4 – 0.9 t/h. The analysed quench water samples were collected at the quench chamber´s quench 

water stream outlet every one hour during each test campaign. The quench water outlet stream 

leaves the quench chamber at 5.2 – 5.4 t/h, 141 – 194 °C and pressure range from 51 – 81 bar. Stream 

F103 supplies the quenching water and it enters the quench chamber at the rate of 5.3 t/h, pressure 

range from 61 – 82 bar and temperature range from 79 – 80 °C.  

 

Figure 7.1: HP POX test plant quench water system 

 

7.2 BTEX compounds 

Benzene, toluene, ethylbenzene and xylene (BTEX) are part of the designated chemicals by the US 

EPA [Lin et al., 1999] and [Xu et al., 2003] as priority chemicals that need to be reduced to a very low 

level in industrial wastewaters for safe discharge. The treatment of BTEX-containing wastewater is an 

integral part of wastewater treatment of the chemical and the petrochemical industries. The 

presence of these volatile organic compounds (VOCs) like benzene, toluene, ethylbenzene, and meta- 

(m), para- ( p), and ortho- (o) xylene in industrial processes are continuously monitored following the 

European directive 2002/69/EC in the European Union member states [Zalel et al., 2008]. This is to 

limit the emissions of benzene at national regulations. The International Agency for Research on 

Cancer (IARC) classifies benzene as group 1, ethylbenzene as group 2B, toluene, styrene and xylenes 

as group 3 carcinogens.  
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Table 9.6 (in Appendix) presents the content of the aromatics analyzed in the quench water effluent. 

These aromatics are known to be responsible for the formation of carbonaceous particles similar to 

soot particles [Mohammed et al., 2016] and [Raj et al., 2015] and deactivate catalyst in the low –

temperature multistage catalytic section (beds) of Claus process [John et al., 2001]. They can 

withstand high temperature environment of the Claus furnace [Mohammed et al., 2015]. They are 

present in automobile exhaust, emissions from coal and oil burning as well as petrochemical plants. 

The sources of BTEX ranges from the production of plastics, resins, lubricants, rubber, adhesives, 

detergents, coatings, paint, and so on. A study to understand the fate of BTEX between gaseous and 

aqueous phase in a dynamic system were quantitatively determined [Sostaric et al., 2016], [Am 

Daifullah et al., 2004] and [Allou et al., 2011]. Their dissolution is complicated mainly due to the 

presence of suspended compounds. The findings show that the dissolution is not the only major 

mechanism of gaseous BTEX uptake in aqueous phase but the formation of hydrogen bonds between 

VOCs and atmospheric water [Sostaric et al., 2016] and air–water interfacial adsorption [Kim et al., 

1998]. The atmospheric water may be the gasifier or quench chamber environment and the air-water 

interfacial may be the transition between gas and liquid phase to have aqueous solution. 

The reaction mechanism for the formation of BTEX in gasification and other industrial processes are 

very scares. Many mechanisms have been proposed for the formation of benzene from different 

reacting species, radicals and smaller hydrocarbon fragments. Benzene is the simplest form of the 

BTEX. Reaction (7.1) [Olsvik et al., 1994] happens to be the most important reaction in the formation 

of benzene and mostly leading to the formation of coke [Holmen et al., 1995]. Another formation of 

benzene via chemically activated addition and isomerization reactions have been illustrated by 

[Westmoreland et al., 1989]. [Vourliotakis et al., 2008] indicates that the syngas produced by POX 

reforming is mainly constituted by H2, CO, H2O, CO2 and a non-negligible percentage of C2H2, which is 

considered to be a major soot precursor. The role of propargyl (C3H3) and cyclopentadienyl (C5H5) 

radicals in the formation of benzene in combustion of aliphatic fuels were reported by [Richter et al., 

2000]. In all the available mechanisms that have been proposed for the formation of benzene, 

reaction (7.1) is highly significant among several reaction mechanisms [Holmen et al., 1995], [Richter 

et al., 2000] and [Olsvik et al., 1994] where (7.1) occurs as the only irreversible reaction among others 

in the model.  

 

𝐶2𝐻2 + 𝐶4𝐻5
. ⇌ 𝐶6𝐻6 + 𝐻. (7.1) 
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7.2.1 BTEX in quench water effluent 

During the test campaigns of Gas-POX 203 – 207, traces of the BTEX were present in the quench water 

effluent samples. Presented in Fig. 7.2 and 7.3 are the measurement results of the test points and 

individual component of the BTEX respectively. The beginning of the test campaigns had witnessed 

the production of BTEX in the analyzed quench water effluent. The profiles in Fig. 7.2: Gas-POX 203 

VP, Gas-POX 204 VP1 and VP4, Gas-POX 205 VP1 and ZP2, Gas-POX 206 VP1 and VP6, and Gas-POX 

207 VP1 provide several hints that could lead to the formation of BTEX that were present in these 

quench water effluent samples.  

These BTEX traces were measured in the entire test point (see Appendix: Table 9.7 for measured 

BTEX) but they were mostly below the threshold of measuring range (< 0.5). The instability in 

operating parameters and incomplete oxidation at the commencement and sometimes at the end of 

each test campaigns could be a major factor that may be responsible for the formation of BTEX 

compounds in the gasifier, which were collected in the quench chamber during the quenching of the 

hot gas. It could be observed that the xylene isomers (p- and m-xylene) were taken as the same due 

to the inseparable of both isomers. They both have close boiling points, which makes them 

impractical to separate by distillation [Peng et al., 2016] and [Wang et al., 2014]. p-xylene has a boiling 

point of 138.35 °C while m-xylene has 139 °C.  
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Figure 7.2: Traces of BTEX measured in the Gas-POX 203 – 207 quench water effluent sample. 

 

Among the entire BTEX compounds, the most obvious is benzene as it can be seen in Fig. 7.3. Toluene 

was dominant in Gas-POX 203 VP, the formation of toluene through benzene reaction is mostly in the 

presence of catalyst and chloroalkane (e.g. chloromethane or chloroethane), which does not stop 

there according to Friedel–Crafts alkylation of benzene [Kim et al., 2014] and [Koltunov et al., 2004]. 

Based on the behaviour of tar compounds in gasification downstream processes [Bassil et al., 2012], 

toluene and other one ring aromatic compounds have been categorized to be in `Class 3´ among light 
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hydrocarbons that are not important in condensation and water solubility issues [Paasen et al., 2004]. 

According to the IARC classifications of carcinogenic agents, `Class 3´ compounds are not classifiable 

as to their carcinogenicity to humans due to the facts that the evidence of their carcinogenicity are 

inadequate in humans but sufficient in experimental animals.  

The partial oxidation of the components of the natural gas could lead to the formation of vinyl free 

radicals leading to the formation of benzene, toluene and other trace of BTEX individual compounds 

with further oxidation or decomposition. Also, based on the reaction conditions, benzene may also 

be a main compound among the BTEX and its high selectivity are usually accompanied by coke 

formation [Collin et al., 1994], which makes it an important precursor of soot, first via PAHs formation. 

 

 

Figure 7.3: Individual component of BTEX measured in the Gas-POX 203 – 207 quench water effluent 
sample. 
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7.3 PAH compounds 

Polycyclic aromatic hydrocarbons (PAHs) serve as precursors and building blocks for soot formation 

[Comandini et al., 2012]. They are mostly significant in combustion processes with low amount 

present in crude oil and are usually formed under fuel-rich conditions [Warnatz et al., 2006]. There 

annular structures are fused with various benzenic rings that can be substituted by alkyl groups. Their 

presence in the environment and different sources of formation make them very important. They 

have two or more fused aromatic rings, which are mainly carbon or hydrogen. PAHs are among the 

priority controlled pollutants in the US EPA and they are most commonly known contaminants in 

sewage sludge and many other thermochemical treatment products [Hu et al., 2014] like the quench 

water effluent. Another type of PAH that exist are called the heterocyclic PAHs because they contains 

other elements like nitrogen, sulphur and oxygen. These kinds of PAHs are seldom measured or report 

in most PAHs studies. Despite many growth mechanisms proposed for the formation of these multi-

ring aromatic, their chemistry are yet to be fully understood. The important precursors to PAHs are 

considered to be phenolic compounds [Gong et al., 2016] and [Zhang et al., 2011]. 

  

(a) (b) 

Figure 7.4: (a) Alkyl radical decomposition and (b) C1 and C2 hydrocarbons oxidation mechanism 
[Warnatz et al., 2000] 
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Based on Fig 7.4 as proposed by [Warnatz et al., 1981] and [Warnatz et al., 2000], the formation of 

acetylene under rich conditions of CH4 – O2 flame [Wagner et al., 1981] is the most important 

precursor of PAHs. It starts with the addition of C2H2 to phenyl radicals to form styryl radical [Bittner 

et al., 1981]. The second addition of C2H2 to styryl radical and the ring closure leads to the formation 

of naphthalene [Frenklach et al., 1991] Equation (7.1) and (7.2) provide a typical even-carbon-atom 

pathway [Frenklach et al., 2000], which involve the addition of acetylene to n-C4H3 and n-C4H5 to the 

form of the first aromatic ring: 

𝑛 − 𝐶4𝐻3 + 𝐶2𝐻2 → 𝑝ℎ𝑒𝑛𝑦𝑙  (7.2) 

 

𝑛 − 𝐶4𝐻5 + 𝐶2𝐻2 → 𝑏𝑒𝑛𝑧𝑒𝑛𝑒 + H. Same as equation (7.1) 

 

Furthermore, acetylene is not the only species that can be envisioned to propagate the growth of 

aromatic rings of the PAHs [Sánchez et al., 2013]. Other proposals have included those involving 

methyl, propargyl, and cyclopentadienyl. Another formation of PAHs commences with C3H4 

decomposition or reaction of CH or CH2 with C2H2 to C3H3 leading to the formation of the benzene; 

the first ring [Stein et al., 1991] after recombination to an aliphatic C6H6 and rearrangement [Melius 

et al., 1992]. Oxidation reaction of C3H3 is known to be very slow [Warnatz et al., 2006]. 

 

Figure 7.5: Recombination of C3H3 to form benzene 
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Among the 16 compounds of PAHs, naphthalene formation commences the path to other PAHs 

formation according to the Diels - Alder reaction mechanism in Fig.7.6. This mechanism provides an 

explanation for the formation these compounds [Cunliffe et al., 1998] and [Zhang et al., 2011]. 

[Bruinsma et al., 1988] reported the mechanism of condensed PAHs-formation, which were derived 

from product distribution and the pyrolytic formation of PAHs from benzene, toluene, ethylbenzene, 

styrene, phenylacetylene and n-decane in the temperature range of 900 – 1250 K. 

 

Figure 7.6: The Diels - Alder reaction for the formation of PAHs 

 

7.3.1 PAHs in quench water effluent 

Presented in Table 9.8 (in Appendix) are the PAH compounds that are present in the quench water 

effluent samples. Gas-POX 205 VP1 produces the most among the PAHs of about 63 µg/l analysed. A 

closer look at Fig 7.7 does provide more questions to the analysed less amount of BTEX in comparison 

to the PAHs present in the quench water effluent samples. The dominant compound type of the PAHs 

(a) Dehydrogenation of alkanes to alkenes 

(b) Cyclization 

(c) An example of the formation of naphthalene and the route leading to the PAHs formation 
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from Fig. 7.8 is pyrene, which is a 4-ring aromatic. Other PAHs such as fluorene, phenanthrene, 

anthracene, fluoranthene, benzanthracene, chrysene, benzo(b)fluoranthene, benzo(k)flouranthene, 

benzo(a)pyrene, dibenz(a,h)anthracene, benzo(ghi)perylene, and indeno(1,2,3-cd)pyren all appear 

more than naphthalene and acenaphthylene. Naphthalene is the simplest form of the PAHs that could 

lead to the others, the correlation between more dominant benzene among the BTEX to the more 

pyrene among the PAHs shows complexities and poorly understood pathways to the formation of 

these traces. In addition, these PAHs were all in trace level while some were detected below the 

threshold (< 0.01, see Appendix Table 9.9 for measured PAHs). [Coll et al., 2001] reports that at 790 

°C when varying the steam-to-carbon ratio during steam reforming of biomass, pyrene conversion 

remains stable and its reactivity is slightly higher than naphthalene. 
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Figure 7.7: Amount of PAHs that were detected in Gas-POX 203 – 207 test points quench water 
effluent samples.  
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Figure 7.8: Distribution of PAH compounds in Gas-POX 203 – 207 quench water effluent samples. 

 

During the formation of benzene (via acetylene (C2H2)), which is the most dominant of the BTEX based 

on the test campaigns under review (Fig. 7.3), the benzene decomposition pathway begins with the 

formation of smaller amounts of naphthalene, acenaphthylene, acenaphthene, fluorine, 

phenanthrene, anthracene, fluoranthene and most dominant amongst the PAHs is pyrene (Fig. 7.8). 

The results of the Gas-POX 205 VP1 quench water effluent analysis shows 50 µg/l of pyrene followed 

by 7.1 µg/l anthracene and 3.4 µg/l of benzo(ghi)perylene. It could be concluded that the dominant 

pathway to the formation of smaller amount of soot via the PAHs is pyrene as it can be seen in Fig. 

7.9 (see Appendix: Table 9.9 for measured PAHs). The formation of smaller amount of soot shall be 

discussed in the next section.  
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7.4 Soot formation  

Soot is generally agreed to be formed from further growth of the PAHs [Wagner et al., 1981] and 

[Homann et al., 1985]. It is mostly carbon with other elements like hydrogen and oxygen in very small 

amount. Aromatic compounds and soot chemistry relating to combustion processes have been 

broadly studied by [Kennedy et al., 1997] and [McEnally et al., 2006]. The formation of soot from gas 

phase hydrocarbons is complicated and it requires multi-step processes (Fig.7.9) that involves the 

formation of the first ring, then the formation of polycyclic aromatic hydrocarbons (PAHs), soot 

inception, and subsequently soot growth [Cuoci et al., 2013]. The soot volume fraction were measure 

in reactor core under gasification condition during the development of a laser-based absorption 

technique [Sepman et al., 2016]. The behaviour of soot during gasification by oxidants like H2O, NO2 

and CO2 were investigated [Stanmore et al., 2001]. It was confirmed that the molecular O2 and the O 

and OH radicals all participate in soot oxidation [Cavaliere et al., 1994]. 

 

Figure 7.9: Some steps in soot formation [McEnally et al., 2006]. 

The problem of particulate matter emissions practically applies to mostly solid fuel combustion and 

gasification processes. Several models provide chemical kinetic description of the fuel and aromatic 

chemistry together with model for soot formation and agglomeration [Seshadri et al., 2011] and 

[D'anna et al., 2008]. The most important gaseous fuel is natural gas, and the methane constituent 

has lesser tendency to form aromatic compounds and soot. This is mainly due to the large methyl 

radical concentrations in methane flames [Cuoci et al., 2013] and the pathways to the formation of 
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PAHs in methane flame are different from those of larger hydrocarbons. Soot formations during 

partial oxidation of natural gas are known to be practically null [Hiller et al., 2000] but the analysed 

quench water effluent sample are seen to have very little suspension of particulates when viewed 

from transparent laboratory flask. Whereas, other constituent of the natural gas in this study 

includes: C2H6, C3H8 and C4H10. It is expected to have other pathways to soot from these other higher 

hydrocarbons apart from methane [Svensson et al., 2013]. 

In catalytic partial oxidation of natural gas [Bharadwaj et al., 1995], unwanted side reaction in the 

combustion was responsible for the formation of soot, later, deposit of coke and deactivate the 

catalyst. These gas phase carbon is also responsible for soot formation on the downstream surfaces 

resulting in heat transfer problem and plant facility damages [Bharadwaj et al., 1995]. 

 

Figure 7.10: Illustration of soot formation path in homogenous mixture [Bockhorn et al., 1994] 

Furthermore, in the production of acetylene and synthesis gas by partial oxidation of natural gas with 

oxygen [Michael Bachtler et al., 1998], soot is reported to be formed in the reaction zones contained 

in the aqueous quench medium after quenching. The formation of soot can nearly be prevented or 
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suppressed by the application of high pressures and relatively long residence times in the process. 

The low pressure and extremely short residence time of a few milliseconds are responsible for the 

production of acetylene, i.e. the incomplete conversion of the reactants to synthesis gas [Michael 

Bachtler et al., 1998]. The investigation of soot formation during isothermal pyrolysis of naphthalene, 

anthracene and pyrene by [Tesner et al., 2010] indicates that particle number densities of the soot 

formed during pyrolysis of PAHs were in higher magnitude and the apparent activation energy of soot 

aerosol formation is two times less than the parameters obtained during pyrolysis of benzene or 

acetylene [Tesner et al., 2010]. The sooting tendency of the hydrocarbons investigated as relative to 

methane can be arranged at 1350 °C in the following order in Table 7.1. 

Table 7.1: Relative sooting tendency [Tesner et al., 2010] 

Hydrocarbon Sooting tendency 

Methane 1 

Ethylene 4 

Acetylene 7.6 

Diacetylene 50 

Benzene 7.4 

Toluene 5.5 

Xylene 4 

Naphthalene 112 

Anthracene 91 

Pyrene 74 

 

7.4.1 Soots in quench water effluent 

The result of the quench water effluent samples that were analysed indicates that the hot synthesis 

gas particulates were essentially composed of smaller soot particles, which was collected in the 

quench chamber during quench operations. The soot was below threshold of measuring range (see 

Appendix: Table 9.10 for measured soots) 

Furthermore, there are close correlations between the amounts of BTEX, polycyclic aromatic 

hydrocarbons (PAHs) and soot in the quench water effluent as benzene and pyrene dominate the 

amount of species present. Based on the results in Figures 7.3 and 7.8 as well as the earlier discussed 

reaction mechanisms from acetylene to benzene (Fig 7.4) and then, the dominant reaction pathway 

for formation of small polycyclic aromatics via naphthalene and subsequently leading to pyrene as a 

major compound among 4-rings PAHs. As one of the larger aromatic hydrocarbons, pyrene can 
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undergo particle inception leading to the formation of smaller soot particles (see Fig.7.9 for steps and 

illustration). 

 

7.5 Summary 

The different results from the analysed quench water effluent samples of these test campaigns 

provide hints to the pathways for the trace amount of BTEX, PAHs and soot formation. The variations 

in operating parameters play a key role and influence the formation of BTEX, PAHs and soot.  

From the analysed quench water effluent samples, it could be deduced that the order of the 

formation, decomposition and oxidation for the trace of BTEX, PAHs and soot formation in during the 

test campaigns is (in deceasing order): 

benzene → toluene → pyrene → fluorene → phenanthrene → anthracene → fluoranthene → 

benzanthracene → chrysene → benzo(b)fluoranthene → benzo(k)flouranthene → benzo(a)pyrene → 

dibenz(a,h)anthracene → benzo(ghi)perylene → indeno(1,2,3-cd)pyren → small particles soot 

formation. 

Soot formation in the Gas-POX test campaigns should not be expected since the larger the number of 

aromatic rings in the PAHs molecule, the stronger the tendency to soot formation. Pyrene with 4 

aromatic rings is the only PAHs that is mostly suspected to lead to the traces of soot. 
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8 Summary and outlook 

 

The HP POX quench water system has been extensively analysed and discussed. The quench water 

outlet stream contains molecularly and ionic dissolved species with complex interactions due to 

molecular trace component gas-liquid distributions according to the gas-liquid phase equilibrium 

between the raw gas and quench water phases. Also, molecular and ionic species distributions within 

the quench water phase according to the dissociations of the traces under electroneutrality condition 

constraint, as well as the temperature dependency of the Henry's and dissociation constant of the 

species. 

The knowledge of the phase distribution of these species during quenching operations with further 

improvement in pH regulator designs could improve the separation process design for raw gas 

cleaning of residual traces in the quench chamber. The concerns from the effects of these trace 

components with respect to corrosion of plant surfaces, poisoning effects on catalyst in the 

downstream processes and complex problems resulting from handling waste water (or reuse) during 

the gasification process could be mitigated. This will ensure compliance toward the growing stringent 

governmental regulations on effluent discharge and to avoid undue environmental burden. 

Moreover, investigation about the activity and reactivity of the surface of the internal wall of the 

quench chamber to act as catalyst and to enhance certain catalytic reaction of different trace 

components present in the quench water during quench and after quench need to be thoroughly 

looked into. It is possible that the remains of used catalyst particles from the ATR test campaigns 

might be washed into the quench system, which results into catalytic reactions leading to the 

formation of organic acid and other species in the quench water system. 

 

Precautionary measure to check corrosion in the quench system is to be put in place, pH monitoring 

device or adjuster and the controller in order to avoid non-supply of the deionized water as this might 

result into adverse quality of the raw gas from the quench chamber. 

 

In addition, reports about nitrogen bound in aromatic rings, which form HCN and nitrogen from 

amines, which releases NH3 [Gräbner, 2015] or NH3 formed during HCN devolatilization reaction in 

[Hämäläinen et al., 1996] or the rupturing of the nitrogen containing heteroaromatic ring systems 

leading to the formation of NH3 and HCN [Chang et al., 2006] are possible pathways. Also 
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nitrogenated PAHs may lead to the formation or release NH3 [Fullana et al., 2003] and [Cao et al., 

2010]. Possibly the formamide in gas phase to produce HCN and it decomposition to form CO2, CO 

and NH3 [Cataldo et al., 2009] (see Appendix, comment on formamide). Reports in [Patnaik 2003] 

explain that ammonium carbamate (NH2COONH4) is usually formed when NH3 reacts with CO2 and 

this ammonium carbamate slowly decomposed on exposure to air at ambient temperatures, or 

rapidly breaks down on heating to NH3, CO2, and water; or liberates CO2 when in contact with dilute 

mineral acids. 

 

Although, many of these categories of traces reported above are not part of these investigation and 

are not to be expected especially salt formation like ammonium carbamate (hot gas from Gas-POX is 

the inlet stream for the investigated quench water system in this work). 

 

Further laboratory analysis to have more information about other traces like acetylene, phenyl, BTEX 

compounds with nitrogen and –OH radicals especial the phenol group and heterocyclic PAHs (those 

PAHs with the addition of either nitrogen, sulphur or oxygen) will give more insights into the possible 

oxidation and decomposition reactions of many of the participating species in the gasifier and during 

quenching operations.  

There is a need to create a comprehensive reaction mechanism for the formation of the dominant 

compounds of BTEX and PAHs from relating specific reaction schemes peculiar to natural gas 

gasification processes especially from the C2, C3 and C4 hydrocarbons. 

A review of the challenges encountered with the ASW design specification calculations and its 

compatibility with Microsoft Excel is inevitable. Being an Aspentech product, it would be interesting 

to see more robustness in ASW in other to perform the same task as with interfaces to Aspen plus 

written in Python and excel VBA. 

It could be helpful to implement these kinds of configurations and interface with Aspen Plus in 

MATLAB software provided it has more room for improved calculations than Python, VBA and ASW. 

 

There is a need for a specialized agenda (or programme) to execute sensitivity studies for the entire 

47 test points in order to investigate all trace components discussed in this work, and those not 

covered in the scope of this work. The approach in the proposed specialized agenda could be used 
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for other feedstocks and other gasification processes in such a way to enhance strategies like raw gas 

cleaning in quench chamber, quench water treatment and re-use. In this work sensitivity studies 

regarding quench water temperature and pH values change were executed for the GasPOX 201 VP 1 

test point (chapter 4), but the trace distributions were calculated for all 47 test points (chapers 5, 6 

and 7). 
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9 Appendix  

 
Chapter 2 
 
Table 9.1: Natural gas feed analysis method [Brüggemann, 2010] 

Feed Analysis method Sampling time 
interval 

Result 

Natural 
gas 

GC-TCD (offline), 
MS5A column,  

Carrier gas: Argon 

2 hours concentration of CH4,N2, H2 
(LOQ 100 ppmv) 

GC-TCD,  
PPU column,  

Carrier gas: Helium 

CO2, C2H6, C2H4, C2H2, C3H4, 
H2S, COS (LOQ 20 ppmv) 

GC-TCD,  
GasPro column,  

Carrier gas: Helium 

C3H8, C3H6, n-/iso-C4H10  
(LOQ 20 ppmv) 

 
 
 
Chapter 3 
 

 
Figure 9.1: Aspen flow sheet set up for HP POX quench system GasPOX 201 VP1 (simplified and 
extension of Fig. 3.2, organic acids not taken into account). Tabulated values are given in Table 9.11. 
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Chapter 4 
 
Table 9.2: pH scale with examples of solution [NALCO 2008] 

 Relative concentration of 
Hydrogen ions compared to 

distilled water 
pH = Examples of solution at this pH 

 10,000,000 pH = 0 Battery acid, strong acid 
1,000,000 pH = 1 Hydrochloric acid secreted by stomach lining 
100,000 pH = 2 Lemon juice, vinegar 
10,000 pH = 3 Grapefruit, orange juice, soda 
1,000 pH = 4 Tomato juice, acid rain 
100 pH = 5 Soft drinking water, black coffee 
10 pH = 6 Urine, saliva 
1 pH = 7 “Pure” water 
1/10 pH = 8 Sea water 
1/100 pH = 9 Baking soda 
1/1,000 pH = 10 Great salt lake, milk of magnesia 
1/10,000 pH = 11 Ammonia solution 
1/100,000 pH = 12 Soapy water 
1/1,000,000 pH = 13 Bleaches, oven cleaner 
1/10,000,000 pH = 14 Liquid drain cleaner 

The pH scale indicates the relative acidity or basicity of water, which runs from 0 – 14 with 0 

representing maximum acidity and 14 representing maximum basicity. Typical solutions and pH range 

are given in Table 9.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More 
Basic 

Neutral 

More 
Acidic 
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Henry´s constant: Aspen Plus and Literatures 
 

 
Figure 9.2: Comparison between the Henry´s constant profiles: Aspen Plus (markers) and Literatures 
(solid lines) ([Edwards et al., 1978] for CO2, [Alvaro et al., 2000] for NH3, [Kamps et al., 2001] for H2S, 
and [Rumpf et al., 1992] for HCN as it can be seen in Fig. 4.3) 

 
Figure 9.3: Henry´s constant profiles derived from literatures ([Edwards et al., 1978] for CO2, [Alvaro 
Pérez-Salado et al., 2000] for NH3, [Kamps et al., 2001] for H2S, and [Rumpf et al., 1992] for HCN as it 
can be seen in Fig. 4.3) 
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Dissociation constant: Aspen Plus and Literatures 
 

 
Figure 9.4: Comparison between the dissociation constant profiles: Aspen Plus (markers) and 
Literatures (solid or dashed lines) [Alvaro et al., 2000], [Kamps et al., 2001], and [Edwards et al., 1978] 
as in Fig.4.4. 

 
Figure 9.5: Dissociation constant profiles derived from literatures [Kamps et al., 2001], and [Edwards 
et al., 1978] as in Fig.4.4. 
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Figure 9.6: Calculated pH values, temperature 
range and species 
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Chapter 5 

Table 9.3: Gas-POX test campaigns and with designated serial numbers 

Serial numbers Test Points 

1 GasPOX 201 VP1 08.04.2014 20:00 

2 GasPOX 201 VP2 09.04.2014 05:00 

3 GasPOX 201 VP3 09.04.2014 14:00 

4 GasPOX 201 VP4 09.04.2014 22:45 

5 GasPOX 201 VP5 10.04.2014 07:30 

6 GasPOX 201 VP6 10.04.2014 16:30 

7 GasPOX 201 VP7 11.04.2014 02:00 

8 GasPOX 202 VP1 04.06.2014 12:00 

9 GasPOX 202 VP2 04.06.2014 22:45 

10 GasPOX 202 VP3 05.06.2014 07:30 

11 GasPOX 202 VP4 05.06.2014 16:15 

12 GasPOX 202 VP5 06.06.2014 03:30 

13 GasPOX 202 VP6 06.06.2014 11:00 

14 GasPOX 203 VP1A 09.12.2014 21:30 

15 GasPOX 203 VP1B 10.12.2014 18:45 

16 GasPOX 203 VP2 11.12.2014 02:30 

17 GasPOX 203 VP3 11.12.2014 06:30 

18 GasPOX 203 VP4 12.12.2014 04:00 

19 GasPOX 203 VP5 12.12.2014 12:30 

20 GasPOX 203 VP6 12.12.2014 21:30 

21 GasPOX 203 ZP3 13.12.2014 06:45 

22 GasPOX 204 VP1 18.03.2015 12:30 

23 GasPOX 204 VP2 19.03.2015 01:15 

24 GasPOX 204 VP3 19.03.2015 10:30 

25 GasPOX 204 VP4 20.03.2015 13:30 

26 GasPOX 204 VP5 21.03.2015 01:00 

27 GasPOX 204 VP6 21.03.2015 12:00 

28 GasPOX 205 VP1 25.06.2015 09:00 

29 GasPOX 205 VP2 25.06.2015 17:30 

30 GasPOX 205 VP3 26.06.2015 01:30 

31 GasPOX 205 VP5 26.06.2015 23:15 

32 GasPOX 205 VP4 27.06.2015 07:45 

33 GasPOX 205 VP6 27.06.2015 14:30 

34 GasPOX 205 ZP2 27.06.2015 20:00 

35 GasPOX 206 VP1 29.10.2015 07:00 

36 GasPOX 206 VP2 29.10.2015 12:30 

37 GasPOX 206 VP3 29.10.2015 19:30 

38 GasPOX 206 VP3 29.10.2015 23:30 

39 GasPOX 206 VP5 30.10.2015 05:00 

40 GasPOX 206 ZP5 30.10.2015 09:00 
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41 GasPOX 206 VP6 30.10.2015 15:00 

42 GasPOX 207 VP1 09.03.2016 05:00 

43 GasPOX 207 VP2 09.03.2016 14:30 

44 GasPOX 207 VP3 10.03.2016 07:15 

45 GasPOX 207 VP4 11.03.2016 08:00 

46 GasPOX 207 VP6 11.03.2016 21:00 

47 GasPOX 207 VP5 12.03.2016 05:45 
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Figure 9.7: Aspen Plus flow sheet setup for organic acid compounds calculations (GasPOX 201 VP1, 
see also Table 9.12) 
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Comment on formamide (Chapter 5) 
Another dehydration pathway for formamide decomposition in the presence of water molecules was 

investigated by [Nguyen et al., 2013]. The investigation by [Nguyen et al., 2013] explains that when 

formamide decomposes, more reactants are produced that lead to formation of more complex 

biomolecules. Small molecules produced as a result of many reactive channels of the decomposition 

of formamides include traces of: H2, CO, H2O, HCN, HNC (hydrogen isocyanide), NH3, and HNCO 

(isocyanic acid) [Nguyen et al., 2013]. [Becker et al., 1963] reports that at 80 °C in aqueous phase, a 

system of methyl substituted formamides with formic acid and ammonia result in the formation of 

stronger additional base compounds like N-methylformamide (NMF) and N,N-dimethylformamide 

(DMF) as these new compounds are regarded as a substituted ammonium formate. In addition, the 

dehydration of formamide by heating over a metallic catalyst at temperature range between 350 – 

600 °C can lead to the formation of some yield of hydrogen cyanide [Gibson, 1969]. 

 
 
Chapter 5: Correlation coefficient (r) 
 
 

𝑟 =  
𝑛𝛴𝑥𝑖𝑦𝑖 − 𝛴𝑥𝑖𝛴𝑦𝑖

√𝑛𝛴𝑥𝑖
2 − (𝛴𝑥𝑖)2√𝑛𝛴𝑦𝑖

2 − (𝛴𝑦𝑖)2  

 
(8.1) 

 
 
Correlation coefficient scale 

Negative correlation No 

correlation 

Positive correlation 

Strong Moderate Weak  Weak Moderate Strong 

-1                       -0.8                      -0.5                         -0.2           0            0.2                        0.5                           0.8                     1 

 
 

Based on of Pearson correlation coefficient, when the r is close to 1, the correlation is described as 

strong. When the value of r is between 0.5 and 0.8, the variables are said be moderately correlated 

and when it is between 0.2 and 0.5, the correlation is said to be weak. r = 1indicates a perfect positive 

correlation and r = -1 a perfect negative correlation. When r is close to zero it is considered that no 

correlation exists between the two variables. 
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Table 9.4: Summary of correlation coefficient (r) from Figures in Chapter 5 
 

Variables Correlation 
Coefficient (r) 

Interpretation Figure 
references yi xi 

1 m_eq [HCOOH + HCOO-] m_real [NH3 + 
NH4

+] mol/kg 
-0.31 Negative weak correlation Fig. 5.1 

2 m_real [HCOOH + HCOO-] m_real [NH3 + 
NH4

+] mol/kg 
+0.81 Positive strong correlation Fig. 5.1 

3 m_eq [HCOOH + HCOO-] T_Quench 
water [°C] 

-0.83 Negative strong correlation Fig. 5.2 & 
5.6 

4 m_real [HCOOH + HCOO-] T_Quench 
water [°C] 

+0.79 Positive strong correlation Fig. 5.2 & 
5.6 

5 m_eq [CH3COOH + 
CH3COO-] 

m_real [NH3 + 
NH4

+] mol/kg 
-0.34 Negative weak correlation Fig. 5.3 

6 m_real [CH3COOH + 
CH3COO-] 

m_real [NH3 + 
NH4

+] mol/kg 
+0.60 Positive moderate correlation Fig. 5.3 

7 m_eq [CH3COOH + 
CH3COO-] 

T_Quench 
water [°C] 

-0.30 Negative weak correlation Fig. 5.4 & 
5.10 

8 m_real [CH3COOH + 
CH3COO-] 

T_Quench 
water [°C] 

+0.49 Positive weak correlation Fig. 5.4 & 
5.10 

9 Keq HCOOH T_Quench 
water [°C] 

-0.97 Negative strong correlation Fig. 5.8 

10 Kreal HCOOH T_Quench 
water [°C] 

+0.83 Positive strong correlation Fig. 5.8 

11 Keq CH3COOH T_Quench 
water [°C] 

-0.62 Negative moderate correlation Fig. 5.12 

12 Kreal CH3COOH T_Quench 
water [°C] 

+0.56 Positive moderate correlation Fig. 5.12 

 
The correlation coefficient for all the considered real trace concentrations and reaction quotients for 

the trace formation (two varibales x and y in Table 9.4) in Chapter 5 show strongly or moderately 

positive correlations.  

Higher temperatures lead to higher amount of organic acid formation (positive correlations). These 

higher amount of organic acids in the quench water phase leads (beside the other dissolved anionic 

species) to a higher amount of dissolved ammonium cations from dissolved NH3 out of the hot gas 

(positive correlations between m_real [NH3 + NH4
+] and organic acids). 

 
 
 
 
 
 
 
 
 
 
 
 



 

145 
 

Chapter 6 

 
Figure 9.8: Aspen Plus flow sheet setup for nitrogen compounds calculations (GasPOX 201 VP1, see 
also Table 9.12, organic acids are taken into account in the aqueous streams of the quench system) 

NH
3 a

nd
 H

CN
 st

ud
ie

s



 

146 
 

 

 

Figure 9.9: Yield of ammonia in gasifier (calculated real) and hot gas temperature against the 47 test 
points 

 

 

 

Figure 9.10: Kreal or reaction quotient for ammonia formation in the gasifier against the 47 test points. 
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Figure 9.11: Temperature approach studies for ammonia and the 47 test points 

 

 

 

 
Figure 9.12: Yield of HCN from the gasifier (calculated real and equilibrium) and hot gas temperature 
and the 47 test points 
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Figure 9.13: Comparison between equilibrium constant and reaction quotient for HCN and 47 test 
points 

 

 

 

Figure 9.14: Temperature approach studies for HCN and the 47 test points 
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Table 9.5: Comparison among reactions temperatures and heat of reactions 

Temperature,  
T [°C] 

25 1000 1200 1400 

 Heat of reaction, ΔHReaction [kJ/mol] 
Reactions     
CH4 + CO2 ↔ 2 CO + 2 H2 
CO2 - reforming of CH4 

247.3 259.6 258.0 255.9 

CH4 + H2OG ↔ CO + 3 H2 
Steam - reforming of CH4

(reverse: methanation with CO) 

206.2 227.5 227.6 227.1 

NH3 ↔ 3/2 H2 + 1/2 N2 
reverse of NH3 formation 

45.9 55.9 56.0 55.7 

H2 + CO2 ↔ CO + H2OG 
reverse of CO - shift reaction / water 
gas shift reaction 

41.2 32.2 30.4 28.8 

NH3 + CO ↔ HCN + H2O 49.7 52.8 53.0 53.1 
 

 
Figure 9.15: Comparison among equilibrium constants of reactions against temperature, T [°C]
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Figure 9.16: Comparison among equilibrium constants of reactions against temperature, 1/T [1/K] 
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Chapter 7 
Table 9.6: Content of BTEX compounds in Gas-POX quench water samples 

BTEX compounds Chemical formula  Structure IUPAC name 
 CAS Number 

Benzene C6H6 

 

 
 

Benzene 
or 

Benzol  

 
 

71-43-2  

Toluene C7H8 

 

 
 

Toluene 
or 

Methylbenzene 
 
 
 
 
 
 

108-88-3 

Ethylbenzene C8H10 

 

 

Ethylbenzene  
or  

Ethylbenzol  
 
 

100-41-4 

m-xylene C8H10 

 

 

1,3-Xylene 

 
 
 
 
 

108-38-3 

p- xylene C8H10 

 

 

1,4-Xylene 

 
 
 

106-42-3 

o-xylene C8H10 

 

 

1,2-Xylene 

 
 
 
 
 

95-47-6 
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Styrene C8H8 

 

 

Ethenylbenzene 

 
 
 

100-42-5 

Cumene C9H12 

 

 

Isopropylbenzene 
or 

(Propan-2-
yl)benzene 

 
 
 
 
 

98-82-8 

Mesitylene C9H12 

 

 

1,3,5-
Trimethylbenzene 

 
 
 
 
 

108-67-8 

 

 
Table 9.7: BTEX in quench water effluent samples results 

Gas-POX 203 (VP1a, VP1b, and VP2b) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1408115 

Date: 05.06 – 12.12. 2014 

Method: DIN 38407-F 9-1 

Gas-POX 203 VP VP1a VP1b VP2b 

Sample name Quench water 
05.06.14 
13:00 p.m. 

Quench water 
11.12.14 
03:30 a.m. 

Quench water 
11.12.14 
00:45 a.m. 

Quench water 
11.12.14 
03:30 a.m. 

Laboratory number 1414926 1414927 1414928 1414929 

Parameter (µg/l)     

Benzene < 0.5 0.89 < 0.5 < 0.5 

Toluene 35 < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l 35 0.89 n.n n.n 
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Gas-POX 203 (VP3, VP6, VP4, and VP5) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1408115 

Date: 05.06 – 12.12. 2014 

Method: DIN 38407-F 9-1 

Gas-POX 203 VP3 VP6 VP4 VP5 

Sample name Quench water 
11.12.14 
10:30 a.m. 

Quench water 
12.12.14 
03:30 a.m. 

Quench water 
12.12.14 
10:00 a.m. 

Quench water 
12.12.14 
18:30 p.m. 

Laboratory number 1414930 1414931 1414932 1414933 

Parameter (µg/l)     

Benzene < 0.5 0.89 < 0.5 < 0.5 

Toluene < 0.5 < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l n.n n.n n.n n.n 

 
 
 
 
Gas-POX 204 (VP1, VP2, and VP3) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1501658 

Date: 18 – 21.03. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 204 VP1  VP2  VP3 

Sample name Quench water 
18.03.15 
18:30 p.m. 

Quench water 
19.03.15 
07:15 a.m. 

Quench water 
19.03.15 
16:30 p.m. 

Laboratory number 1503093 1503094 1503095 

Parameter (µg/l)    

Benzene 1.3 < 0.5 < 0.5 

Toluene < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l 1.3 n.n n.n 
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Gas-POX 204 (VP4, VP5, and VP6) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1501658 

Date: 18 – 21.03. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 204 VP4  VP5  VP6 

Sample name Quench water 
20.03.15 
19:30 p.m. 

Quench water 
21.03.15 
06:00 a.m. 

Quench water 
21.03.15 
18:00 p.m. 

Laboratory number 1503096 1503097 1503098 

Parameter (µg/l)    

Benzene 0.72 < 0.5 < 0.5 

Toluene < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l 0.72 n.n n.n 

 
 
 
 
Gas-POX 205 (VP1, VP2, VP3, and VP5) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1503649 

Date: 27.06. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 205 VP1  VP2 VP3 VP5 

Sample name Quench water 
25.06 15 
13:00 p.m. 

Quench water 
25.06 15 
21:30 p.m. 

Quench water 
26.06 15 
05:30 a.m. 

Quench water 
27.06 15 
03:15 a.m. 

Laboratory number 1506521 1506522 1506523 1506524 

Parameter (µg/l)     

Benzene 73 0.83 0.71 0.76 

Toluene 0.82 < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l 74 0.83 0.71 0.76 
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Gas-POX 205 (VP4, VP6, and ZP2) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1503649 

Date: 27.06. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 205 VP4 VP6 ZP2 

Sample name Quench water 
27.06 15 
09:45 a.m. 

Quench water 
27.06 15 
16:30 p.m. 

Quench water 
27.06 15 
22:00 p.m. 

Laboratory number 1506525 1506526 1506527 

Parameter (µg/l)    

Benzene 1.1 < 0.5 50 

Toluene < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l 1.1 n.n 50 

 
 
 
 
Gas-POX 206 (VP1, VP3, VP5, and VP6) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1506566 

Date:29 – 30.10, 2015 

Method: DIN 38407-F 9-1 

Gas-POX 206 VP1  VP3 VP5 VP6 

Sample name Quench water 
29.10.15 
11:00 a.m. 

Quench water 
29.10.15 
23:30 p.m. 

Quench water 
30.10.15 
09:00 a.m. 

Quench water 
30.10.15 
19:00 p.m. 

Laboratory number 1512043 1512044 1512045 1512046 

Parameter (µg/l)     

Benzene 9.3 0.78 0.72 95 

Toluene < 0.5 < 0.5 < 0.5 < 1.0 

Ethylbenzene < 0.5 < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l 9.3 0.78 0.72 96 
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Gas-POX 207 (VP1, VP2 and VP3) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1601472 

Date: 09 – 12 .03 2016 

Method: DIN 38407-F 9-1 

Gas-POX 207 VP1 VP2 VP3 

Sample name Quench water 
09.03 16 
09:00 a.m. 

Quench water 
09.03 16 
18:30 p.m. 

Quench water 
10.03 16 
23:15 p.m. 

Laboratory number 1603195 1603196 1603197 

Parameter (µg/l)    

Benzene 0.84 < 0.5 50 

Toluene < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l  0.84 n.n 50 

 
 
 
 
Gas-POX 207 (VP4, VP5 and VP6) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1601472 

Date: 09 – 12 .03 2016 

Method: DIN 38407-F 9-1 

Gas-POX 207 VP4 VP5 VP6 

Sample name Quench water 
11.03 16 
11:00 a.m. 

Quench water 
12.03 16 
01:00 a.m. 

Quench water 
12.03 16 
09:45 p.m. 

Laboratory number 1603198 1603199 1603200 

Parameter (µg/l)    

Benzene 0.84 < 0.5 < 0.5 

Toluene < 0.5 < 0.5 < 0.5 

Ethylbenzene < 0.5 < 0.5 < 0.5 

p- / m-xylene < 1.0 < 1.0 < 1.0 

o-xylene < 0.5 < 0.5 < 0.5 

Styrene < 0.5 < 0.5 < 0.5 

Cumene < 0.5 < 0.5 < 0.5 

Mesitylene < 0.5 < 0.5 < 0.5 

Sum of BTEX in µg/l  n.n n.n n.n 
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Table 9.8: Content of PAH compounds in Gas-POX quench water samples 

PAH compounds Chemical formula Structure IUPAC name 
 CAS Number 

Naphthalene C10H8 

 

 

Naphthalene 

 
 
 

91-20-3 

Acenaphthylene C12H8 

 

 

Acenaphthylene 

 
 
 
 

208-96-8 

Acenaphthene C12H10 

 

 

1,2-
Dihydroacenaph

thylene  
 
 
 

83-32-9 

Fluorene C13H10 

 

 

9H-Fluorene 

 
 
 

86-73-7 

Phenanthrene C14H10 

 

 

Phenanthrene 

 
 
 

85-01-8 

Anthracene C14H10 

 

 

Anthracene 

 
 

120-12-7 

Fluoranthene C16H10 

 

 

Fluoranthene 

 
 
 
 

206-44-0 



 

158 
 

Pyrene C16H10 

 

 

Pyrene 

 
 
 
 
 

129-00-0 

Benzanthracene C18H12 

 

 

benz[a]anthrace
ne 

 
 
 
 
 
 

56-55-3 

Chrysene C18H12 

 

 

Chrysene 

 
 
 
 

218-01-9 

Benzo(b)fluoran
thene 

C20H12 

 

 

Benzo(b)fluora
nthene 

 
 
 
 
 

205-99-2 

Benzo(k)flouran
thene 

C20H12 

 

 
 

Benzo(k)floura
nthene 

 
 
 
 
 
 

207-08-9 

Benzo(a)pyrene C20H12 

 
 

 
 

 

 
 
 
 

50-32-8 
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Dibenz(a,h)anth
racene 

C22H14 

 

 

Dibenz(a,h)ant
hracene 

 
 
 
 
 
 

53-70-3 

Benzo(ghi)peryl
ene 

C22H12 

 

 

Benzo(ghi)pery
lene 

 
 
 
 
 
 
 
 

191-24-2 

Indeno(1,2,3-
cd)pyren 

C22H12 

 
 

 

Indeno(1,2,3-
cd)pyren 

 
 
 
 
 
 
 
 

193-39-5 
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Table 9.9: PAHs in quench water effluent samples results 

Gas-POX 203 (VP1a, VP1b, and VP2b) quench water analysis report for PAH 

Quench water analysis / Extraction 

Report number: 1408115 

Date: 05.06 – 12.12. 2014 

Method: DIN 38407-F 18 

Gas-POX 203  VP1a VP1b VP2b 

Sample name Quench water 
05.06.14 
13:00 p.m. 

Quench water 
11.12.14 
03:30 a.m. 

Quench water 
11.12.14 
00:45 a.m. 

Quench water 
11.12.14 
03:00 a.m. 

Laboratory number 1414926 1414927 1414928 1414929 

Parameter (µg/l)     

Naphthalene 0.17 0.032 0.060 0.056 

Acenaphthylene < 0.01 0.013 < 0.01 < 0.01 

Acenaphthene 0.050 0.042 0.032 0.025 

Fluorene 0.043 0.040 0.013 0.012 

Phenanthrene 0.46 0.47 0.38 0.27 

Anthracene 0.065 0.18 0.13 0.15 

Fluoranthene 0.43 1.3 1.2 0.76 

Pyrene 1.1 5.0 3.6 2.9 

Benzanthracene 0.16 0.34 0.26 0.19 

Chrysene 0.11 1.1 1.0 0.92 

Benzo(b)fluoranthene 0.11 0.37 0.25 0.21 

Benzo(k)flouranthene 0.16 0.11 0.071 0.061 

Benzo(a)pyrene 0.026 1.2 0.86 0.77 

Dibenz(a,h)anthracene < 0.01 0.19 0.091 0.024 

Benzo(ghi)perylene 0.14 0.34 0.15 0.16 

Indeno(1,2,3-cd)pyren 0.10 0.21 0.071 0.75 

Sum of PAH in µg/l 3.0 11 8.2 7.3 
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Gas-POX 203 (VP3, VP6, VP4, and VP5) quench water analysis report for PAH 

Quench water analysis / Extraction 

Report number: 1408115 

Date: 05.06 – 12.12. 2014 

Method: DIN 38407-F 18 

Gas-POX 203 VP3 VP6 VP4 VP5 

Sample name Quench water 
05.06.14 
10:30 a.m. 

Quench water 
11.12.14 
03:30 a.m. 

Quench water 
11.12.14 
10:00 a.m. 

Quench water 
11.12.14 
18:30 a.m. 

Laboratory number 1414930 1414931 1414932 1414933 

Parameter (µg/l)     

Naphthalene < 0.01 < 0.01 0.24 0.15 

Acenaphthylene < 0.01 < 0.01 < 0.01 < 0.01 

Acenaphthene 0.027 0.016 0.028 0.028 

Fluorene 0.027 0.014 0.040 0.030 

Phenanthrene 0.21 0.12 0.24 0.18 

Anthracene 0.070 < 0.01 0.076 0.060 

Fluoranthene 0.46 0.13 0.66 0.38 

Pyrene 1.8 0.92 2.9 1.5 

Benzanthracene 0.12 0.085 0.19 0.12 

Chrysene 0.74 0.54 0.92 0.67 

Benzo(b)fluoranthene 0.23 0.13 0.24 0.18 

Benzo(k)flouranthene 0.052 < 0.01 0.060 0.042 

Benzo(a)pyrene 0.058 0.55 0.94 0.72 

Dibenz(a,h)anthracene 0.15 0.24 0.16 0.18 

Benzo(ghi)perylene 0.32 0.42 0.31 0.35 

Indeno(1,2,3-cd)pyren 0.99 0.12 0.088 0.074 

Sum of PAH in µg/l 5.8 3.3 7.1 4.7 
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Gas-POX 204 (VP1, VP2, and VP3) quench water analysis report for PAH 

Quench water analysis / Extraction 

Report number: 1501658 

Date: 18 – 21.03. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 204 VP1 VP2 VP3 

Sample name Quench water 
18.03.15 
18:30 p.m. 

Quench water 
19.03.15 
07:15 a.m. 

Quench water 
19.03.15 
16:30 p.m. 

Laboratory number 1503093 1503094 1503095 

Parameter (µg/l)    

Naphthalene < 0.01 0.11 0.14 

Acenaphthylene < 0.01 < 0.01 < 0.01 

Acenaphthene 0.018 0.024 0.040 

Fluorene 0.011 0.020 0.037 

Phenanthrene 0.79 0.22 0.16 

Anthracene 0.14 < 0.01 < 0.01 

Fluoranthene 0.21 0.029 0.012 

Pyrene 2.7 0.67 0.51 

Benzanthracene 0.26 0.056 0.38 

Chrysene 0.12 0.048 0.072 

Benzo(b)fluoranthene 0.11 0.048 0.027 

Benzo(k)flouranthene 0.066 0.027 < 0.01 

Benzo(a)pyrene 0.37 0.11 0.14 

Dibenz(a,h)anthracene < 0.01 < 0.01 < 0.01 

Benzo(ghi)perylene 0.80 0.96 1.0 

Indeno(1,2,3-cd)pyren < 0.01 0.027 0.025 

Sum of PAH in µg/l 5.2 2.4 2.5 
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Gas-POX 204 (VP4, VP5, and VP6) quench water analysis report for PAH 

Quench water analysis / Extraction 

Report number: 1501658 

Date: 18 – 21.03. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 204 VP4  VP5  VP6 

Sample name Quench water 
20.03.15 
19:30 p.m. 

Quench water 
21.03.15 
06:00 a.m. 

Quench water 
21.03.15 
18:00 p.m. 

Laboratory number 1503096 1503097 1503098 

Parameter (µg/l)    

Naphthalene 0.075 0.018 < 0.01 

Acenaphthylene < 0.01 < 0.01 < 0.01 

Acenaphthene 0.022 < 0.01 < 0.01 

Fluorene 0.025 < 0.01 < 0.01 

Phenanthrene 0.43 0.062 0.22 

Anthracene 0.012 < 0.01 < 0.01 

Fluoranthene 0.44 0.053 0.084 

Pyrene 0.49 0.11 0.18 

Benzanthracene 0.28 0.063 0.16 

Chrysene 0.061 0.055 0.15 

Benzo(b)fluoranthene 0.13 0.053 0.065 

Benzo(k)flouranthene 0.066 0.024 0.023 

Benzo(a)pyrene 0.30 0.055 0.16 

Dibenz(a,h)anthracene < 0.01 < 0.01 < 0.01 

Benzo(ghi)perylene 0.69 0.38 0.36 

Indeno(1,2,3-cd)pyren 0.013 0.020 0.012 

Sum of PAH in µg/l 3.0 0.89 1.4 
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Gas-POX 205 (VP1, VP2, VP3, and VP5) quench water analysis report for PAH 

Quench water analysis  

Report number: 1503649 

Date: 27.06. 2015 

Method: DIN 38407-F 9-1 

Gas-POX 205 VP1  VP2 VP3 VP5 

Sample name Quench water 
25.06 15 
13:00 p.m. 

Quench water 
25.06 15 
21:30 p.m. 

Quench water 
26.06 15 
05:30 a.m. 

Quench water 
27.06 15 
03:15 a.m. 

Laboratory number 1506521 1506522 1506523 1506524 

Parameter (µg/l)     

Naphthalene 0.33 0.070 0.041 0.032 

Acenaphthylene 0.015 < 0.01 < 0.01 < 0.01 

Acenaphthene 0.045 0.014 0.013 0.010 

Fluorene 0.20 0.013 0.034 0.037 

Phenanthrene 1.7 0.18 0.22 0.28 

Anthracene 7.1 2.1 1.2 0.48 

Fluoranthene 1.2 0.14 0.073 0.65 

Pyrene 50 2.5 1.2 3.3 

Benzanthracene 0.16 0.060 0.059 0.14 

Chrysene 1.2 0.50 0.34 1.6 

Benzo(b)fluoranthene 0.24 0.15 0.071 0.22 

Benzo(k)flouranthene 0.062 0.038 0.025 0.058 

Benzo(a)pyrene 0.73 0.042 0.26 0.68 

Dibenz(a,h)anthracene < 0.01 < 0.01 < 0.01 0.047 

Benzo(ghi)perylene 3.4 2.8 0.16 1.9 

Indeno(1,2,3-cd)pyren 0.23 0.18 0.13 0.29 

Sum of PAH in µg/l 63 9.2 5.3 9.7 
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Gas-POX 205 (VP4, VP6, and ZP2) quench water analysis report for BTEX 

Quench water analysis  

Report number: 1503649 

Date: 27.06. 2015 

Method: DIN 38407-F 18 

Gas-POX 205 VP4 VP6 ZP2 

Sample name Quench water 
27.06 15 
09:45 a.m. 

Quench water 
27.06 15 
16:30 p.m. 

Quench water 
27.06 15 
22:00 p.m. 

Laboratory number 1506525 1506526 1506527 

Parameter (µg/l)    

Naphthalene 0.089 0.13 0.28 

Acenaphthylene 0.072 0.046 0.074 

Acenaphthene 0.054 0.014 0.018 

Fluorene 0.026 0.027 0.032 

Phenanthrene 1.0 0.29 0.27 

Anthracene 1.0 0.84 0.38 

Fluoranthene 1.1 0.40 0.31 

Pyrene 1.4 4.1 6.2 

Benzanthracene 7.3 0.14 0.089 

Chrysene 0.50 1.4 0.86 

Benzo(b)fluoranthene 4.2 0.33 0.24 

Benzo(k)flouranthene 0.86 0.12 0.093 

Benzo(a)pyrene 0.25 0.98 0.74 

Dibenz(a,h)anthracene 2.7 0.35 0.43 

Benzo(ghi)perylene 7.0 3.9 4.1 

Indeno(1,2,3-cd)pyren 1.2 0.57 0.49 

Sum of PAH in µg/l 28.5 13.6 14.6 
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Gas-POX 206 (VP1, VP3, VP5, and VP6) quench water analysis report for PAH 

Quench water analysis  

Report number: 1506566 

Date:29 – 30.10, 2015 

Method: DIN 38407-F 9-1 

Gas-POX 206 VP1  VP3 VP5 VP6 

Sample name Quench water 
29.10.15 
11:00 a.m. 

Quench water 
29.10.15 
23:30 p.m. 

Quench water 
30.10.15 
09:00 a.m. 

Quench water 
30.10.15 
19:00 p.m. 

Laboratory number 1512043 1512044 1512045 1512046 

Parameter (µg/l)     

Naphthalene 0.51 0.45 0.19 0.40 

Acenaphthylene 0.33 0.17 0.095 0.08 

Acenaphthene 0.023 0.068 0.028 0.010 

Fluorene 0.11 0.062 0.019 0.010 

Phenanthrene 2.3 1.1 0.34 0.22 

Anthracene 0.14 0.46 0.24 0.010 

Fluoranthene 4.6 2.5 0.97 0.39 

Pyrene 24 11 4.24 2.81 

Benzanthracene 0.53 0.32 0.13 0.067 

Chrysene 1.2 1.8 0.95 0.44 

Benzo(b)fluoranthene 0.52 0.40 0.23 0.20 

Benzo(k)flouranthene 0.14 0.11 0.061 0.053 

Benzo(a)pyrene 1.5 1.5 0.85 0.69 

Dibenz(a,h)anthracene < 0.01 < 0.01 < 0.01 < 0.01 

Benzo(ghi)perylene 2.2 2.2 1.16 1.36 

Indeno(1,2,3-cd)pyren 0.22 0.25 0.21 0.20 

Sum of PAH in µg/l 38.3 22.4 9.71 6.94 
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Gas-POX 207 (VP1, VP2 and VP3) quench water analysis report for PAH 

Quench water analysis  

Report number: 1601472 

Date: 27.06. 2015 

Method: DIN 38407-F 18 

Gas-POX 207 VP1 VP2 VP3 

Sample name Quench water 
09.03 16 
09:00 a.m. 

Quench water 
09.03 16 
18:30 p.m. 

Quench water 
10.03 16 
23:15 p.m. 

Laboratory number 1603195 1603196 1603197 

Parameter (µg/l)    

Naphthalene 0.062 0.085 0.15 

Acenaphthylene < 0.01 < 0.01 < 0.01 

Acenaphthene 0.038 0.042 0.053 

Fluorene 0.062 0.061 0.073 

Phenanthrene 0.28 0.23 0.12 

Anthracene 0.22 0.077 0.063 

Fluoranthene 0.35 0.19 0.18 

Pyrene 2.28 1.14 1.05 

Benzanthracene 0.074 0.031 0.041 

Chrysene 0.71 0.31 0.35 

Benzo(b)fluoranthene 0.36 0.093 0.082 

Benzo(k)flouranthene 0.093 0.027 0.028 

Benzo(a)pyrene 1.3 0.38 0.35 

Dibenz(a,h)anthracene 3.1 0.082 0.041 

Benzo(ghi)perylene 0.30 0.85 0.40 

Indeno(1,2,3-cd)pyren 0.81 0.24 0.14 

Sum of PAH in µg/l 10.0 3.84 3.12 
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Gas-POX 207 (VP4, VP5 and VP6) quench water analysis report for PAH 

Quench water analysis  

Report number: 1601472 

Date: 09 – 12 .03 2016 

Method: DIN 38407-F 18 

Gas-POX 207 VP4 VP5 VP6 

Sample name Quench water 
11.03 16 
11:00 a.m. 

Quench water 
12.03 16 
01:00 a.m. 

Quench water 
12.03 16 
09:45 p.m. 

Laboratory number 1603198 1603199 1603200 

Parameter (µg/l)    

Naphthalene < 0.01 0.039 0.050 

Acenaphthylene < 0.01 < 0.01 < 0.01 

Acenaphthene 0.015 0.016 0.018 

Fluorene 0.013 0.015 0.016 

Phenanthrene 0.10 0.17 0.15 

Anthracene 0.094 0.087 0.068 

Fluoranthene 0.39 0.41 0.19 

Pyrene 1.53 1.47 0.73 

Benzanthracene 0.081 0.13 0.041 

Chrysene 0.54 0.98 0.49 

Benzo(b)fluoranthene 0.18 0.15 0.081 

Benzo(k)flouranthene 0.050 0.053 0.031 

Benzo(a)pyrene 0.54 0.57 0.35 

Dibenz(a,h)anthracene 0.059 0.058 0.84 

Benzo(ghi)perylene 0.74 0.85 0.048 

Indeno(1,2,3-cd)pyren 0.26 0.25 0.19 

Sum of PAH in µg/l 4.59 5.29 3.29 
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Table 9.10: Soot in quench water effluent samples results 

Gas-POX 206 quench water analysis report for soot 

Quench water analysis 

Turbidity measurement: GAS-POX  Experiment 

Xion 500 Method                                                                      Measuring range 40 – 400 FAU 

Sample name Water 
05.11.15 
 

Quench 
water 
05.11.15 
12:00 p.m. 

Quench 
water 
05.11.15 
11:00 a.m. 

Quench 
water 
05.11.15 
09:00 a.m. 

Quench 
water 
05.11.15 
19:00 
p.m. 

Measured values FAU -7.49 3.80 0.213 0.924 -2.25 

Turbidity unit FAU < 40 < 40 < 40 < 40 < 40 

Soot fraction (mg/l) < 50 < 50 < 50 < 50 < 50 

Comments Negative 
result 

Below 
threshold 
of 
measuring 
range 

Below 
threshold 
of 
measuring 
range 

Below 
threshold 
of 
measuring 
range 

Negative 
result 

Sample bottle vigorously shaken, 
8 ml pipetted in a measuring cuvette, 
Measuring cuvette was closed for 15 s, 
 
Measurement on the photometer Xion 500 
Determination of carbon black content from calibration curve 50 – 500 mg/l Carbon black content 

FAU (Formazine Attenuation Units) 
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Table 9.11: Aspen Plus flow sheet setup stream details (GasPOX 201 VP1, according to Fig.3.2 and Fig.9.1, organic acids not taken into account) 
 

Units DEGASS DEION
AT 

F103 F136 F136PRES FLASHOU
T 

H2OPUM
P 

HOTGAS HOTGAS2 HOTGAS3 HOTGAS4 HOTGAS5 RAWGAS T104 VALVOUT 

From 
 

SPLITATM 
 

SPLITOUT SPLITATM SPLITOUT QUENCH P105 
 

B2 B2 RGIBBS1 RGIBBS2 QUENCH W106 COOLER 

To 
  

P105 QUENCH 
 

COOLER P105 W106 B2 QUENCH RGIBBS1 RGIBBS2 
  

SPLITOUT SPLITATM 

Substrea
m: MIXED 

                

Phase: 
 

Vapor Liquid Liquid Liquid Liquid Liquid Liquid Vapor Vapor Vapor Vapor Vapor Vapor Liquid Mixed 

Compone
nt Mole 
Fraction 

                

H2O 
 

0.023587
6 

1 0.993158
9 

0.995476
2 

0.993158
9 

0.992391
5 

0.993159
2 

0.186017
3 

0.186017
3 

0.186017
3 

0.152975
3 

0.186017
3 

0.151917
2 

0.993158
9 

0.993158
9 

CO2 
 

0.092830
7 

0 0.000287
86 

6.55E-05 0.000287
86 

0.000392
16 

0.000344
85 

0.041312
9 

0.041312
9 

0.041312
9 

0.029790
7 

0.041312
9 

0.043002
7 

0.000287
86 

0.000286
67 

CO 
 

0.499767
7 

0 0.002276
6 

0.001087
62 

0.002276
6 

0.002531
98 

0.002276
47 

0.236504
9 

0.236504
9 

0.236504
9 

0.261642
3 

0.236504
9 

0.246229
1 

0.002276
6 

0.002276
6 

H2 
 

0.201759
3 

0 0.000483
94 

2.90E-06 0.000483
94 

0.000538
23 

0.000483
92 

0.484168
4 

0.484168
4 

4.84E-01 5.37E-01 0.484168
4 

0.506730
6 

0.000483
94 

0.000483
94 

CH4 
 

0.180650
6 

0 0.003537
93 

0.003114
64 

0.003537
93 

0.003934
79 

0.003537
73 

0.045547
6 

0.045547
6 

0.045547
6 

0.012114
8 

0.045547
6 

0.045450
1 

0.003537
93 

0.003537
93 

H2S 
 

9.22E-06 0 3.82E-08 1.90E-08 3.82E-08 3.85E-08 3.40E-08 1.45E-06 1.45E-06 1.45E-06 1.36E-06 1.45E-06 1.49E-06 3.82E-08 4.09E-08 

NH3 
 

1.42E-07 0 1.41E-06 2.01E-07 1.41E-06 7.34E-05 5.82E-05 1.56E-04 1.56E-04 1.56E-04 1.57E-04 1.56E-04 8.33E-05 1.41E-06 2.01E-07 

HCN 
 

6.81E-06 0 1.72E-06 1.71E-06 1.72E-06 1.84E-06 1.66E-06 4.34E-06 4.34E-06 4.34E-06 9.94E-06 4.33E-06 3.44E-06 1.72E-06 1.72E-06 

N2 
 

0.001381
84 

0 3.31E-06 1.72E-08 3.31E-06 3.68E-06 3.31E-06 6.29E-03 6.29E-03 6.29E-03 5.89E-03 6.29E-03 6.58E-03 3.31E-06 3.31E-06 

COS 
 

5.98E-06 0 6.38E-07 6.26E-07 6.38E-07 7.10E-07 6.38E-07 1.07E-06 1.07E-06 1.07E-06 1.01E-06 1.07E-06 7.18E-07 6.38E-07 6.38E-07 

ACETI-01 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FORMI-01 
 

0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0 0 0.00E+00 0.00E+00 0.00E+00 0 

HCL 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH4+ 
 

0 0 0.000123
8 

0.000125
31 

0.000123
8 

6.59E-05 6.69E-05 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0.00E+00 1.24E-04 0.000125
01 

NA+ 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                 

H3O+ 
 

0 1.47E-
08 

2.26E-08 4.36E-09 2.26E-08 1.21E-08 1.22E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.26E-08 4.35E-09 

NH2COO- 
 

0 0 6.45E-09 5.03E-09 6.45E-09 3.01E-08 2.70E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.45E-09 5.01E-09 

HS- 

 
0 0 1.00E-08 7.24E-09 1.00E-08 1.51E-08 1.42E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-08 7.23E-09 

HCO3
- 

 
0 0 1.24E-04 1.25E-04 1.24E-04 6.56E-05 6.67E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.24E-04 0.000124

95 

OH- 

 
0 1.47E-

08 
3.91E-09 5.58E-10 3.91E-09 1.14E-07 1.00E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.91E-09 5.57E-10 

CL- 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH3COO- 

 
0 0 0 0 0 0 0 0 0 0 0.00E+00 0 0 0 0 
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HCOO- 

 
0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 0 

CN- 
 

0 0 1.07E-08 3.45E-09 1.07E-08 7.50E-08 6.69E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.07E-08 3.44E-09 

S
2-

 

 
0 0 9.48E-16 2.44E-17 9.48E-16 5.05E-13 3.45E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.48E-16 2.44E-17 

CO3
2- 

 
0 0 9.46E-09 2.75E-08 9.46E-09 3.27E-09 3.73E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.46E-09 2.75E-08 

Compone
nt Mole 
Flow 

                

H2O KMOL/H
R 

0.002039
35 

33.571
91 

294.351 36.01186 36.01394 296.8146 330.3839 11.11285 11.11285 11.11285 9.73535 11.11285 8.666328 330.365 36.0139 

CO2 KMOL/H
R 

0.008025
97 

0 0.085314 0.002369
16 

0.010438
2 

0.117290
6 

0.114716
7 

2.468076 2.468076 2.468076 1.895883 2.468076 2.453149 0.095752
2 

0.010395
1 

CO KMOL/H
R 

0.043208
9 

0 0.674734
9 

0.039345 0.082554 0.757289 0.757289 14.12903 14.12903 14.12903 16.65092 14.12903 14.04648 0.757289 0.082554 

H2 KMOL/H
R 

0.017443
7 

0 0.143430
6 

0.000105
047 

0.017548
7 

0.160979
4 

0.160979
4 

28.92469 28.92469 28.92469 34.20107 28.92469 28.90715 0.160979
4 

0.017548
7 

CH4 KMOL/H
R 

0.015618
7 

0 1.048566 0.112673
6 

0.128292
3 

1.176858 1.176858 2.72106 2.72106 2.72106 0.770990
5 

2.72106 2.592768 1.176858 0.128292
3 

H2S KMOL/H
R 

7.97E-07 0 1.13E-05 6.87E-07 1.38E-06 1.15E-05 1.13E-05 8.68E-05 8.68E-05 8.68E-05 8.68E-05 8.68E-05 8.50E-05 1.27E-05 1.48E-06 

NH3 KMOL/H
R 

1.23E-08 0 0.000417
878 

7.27E-06 5.11E-05 0.021945
9 

0.019372
8 

0.009290
62 

0.009290
62 

0.009290
62 

1.00E-02 0.009290
62 

0.004749
98 

0.000469
005 

7.28E-06 

HCN KMOL/H
R 

5.89E-07 0 0.000508
396 

6.19E-05 6.22E-05 0.000551
715 

0.000551
887 

0.000259
099 

0.000259
099 

0.000259
099 

0.000632
722 

0.000258
974 

0.000196
508 

0.000570
599 

6.25E-05 

N2 KMOL/H
R 

0.000119
471 

0 0.000981
566 

6.24E-07 0.000120
095 

0.001101
66 

0.001101
66 

0.375561
1 

0.375561
1 

0.375561
1 

0.375013
1 

0.375561
2 

0.375441 0.001101
66 

0.000120
095 

COS KMOL/H
R 

5.17E-07 0 0.000189
214 

2.26E-05 2.32E-05 0.000212
365 

0.000212
365 

6.41E-05 6.41E-05 6.41E-05 6.41E-05 6.41E-05 4.09E-05 0.000212
365 

2.32E-05 

ACETI-01 KMOL/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FORMI-01 KMOL/H
R 

0.00E+00 0 0 0.00E+00 0.00E+00 0 0 0 0 0 0 0 0 0 0 

HCL KMOL/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH4+ KMOL/H
R 

0 0 0.036691
9 

0.004533
18 

0.004489
27 

0.019697
4 

0.022270
5 

0 0 0 0 0 0 0.041181
2 

0.004533
18 

NA+ KMOL/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H3O+ KMOL/H
R 

0 4.95E-
07 

6.70E-06 1.58E-07 8.20E-07 3.63E-06 4.07E-06 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0.00E+00 7.53E-06 1.58E-07 

NH2COO- KMOL/H
R 

0 0 1.91E-06 1.82E-07 2.34E-07 9.01E-06 8.99E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.15E-06 1.82E-07 

HS- KMOL/H
R 

0 0 2.97E-06 2.62E-07 3.63E-07 4.50E-06 4.71E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.33E-06 2.62E-07 

HCO3
- KMOL/H

R 
0 0 0.036683

8 
0.004530

76 
0.004488

28 
0.019629 0.022202

7 
0 0 0 0.00E+00 0 0 0.041172

1 
0.004530

76 

OH- KMOL/H
R 

0 4.95E-
07 

1.16E-06 2.02E-08 1.42E-07 3.41E-05 3.34E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.30E-06 2.02E-08 

CL- KMOL/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH3COO- KMOL/H
R 

0 0 0 0 0 0 0 0 0 0 0.00E+00 0 0 0 0 

HCOO- KMOL/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CN- KMOL/H
R 

0 0 3.17E-06 1.25E-07 3.88E-07 2.24E-05 2.23E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.56E-06 1.25E-07 
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S2- KMOL/H
R 

0 0 2.81E-13 8.83E-16 3.44E-14 1.51E-10 1.15E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.15E-13 8.83E-16 

CO3
2- KMOL/H

R 
0 0 2.80E-06 9.95E-07 3.43E-07 9.79E-07 1.24E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.15E-06 9.95E-07 

Compone
nt Mass 
Flow 

                

H2O KG/HR 0.036739
4 

604.80
73 

5302.816 648.7638 648.8013 5347.198 5951.959 200.2012 200.2012 200.2012 175.3851 200.2012 156.1263 5951.618 648.8005 

CO2 KG/HR 0.353221
5 

0 3.754655 0.104266
1 

0.459383
2 

5.161937 5.048659 108.6195 108.6195 108.6195 83.43742 108.6195 107.9626 4.214038 0.457487
6 

CO KG/HR 1.210301 0 18.8996 1.10207 2.312372 21.21197 21.21197 395.7599 395.7599 395.7599 466.399 395.7599 393.4475 21.21197 2.312372 

H2 KG/HR 0.035164
4 

0 0.289138
9 

0.000211
763 

0.035376
2 

0.324515
1 

0.324515
1 

58.30871 58.30871 58.30871 68.94525 58.30871 58.27334 0.324515
1 

0.035376
2 

CH4 KG/HR 0.250567
4 

0 16.82189 1.807596 2.058163 18.88005 18.88005 43.65331 43.65331 43.65331 12.36882 43.65331 41.59515 18.88005 2.058163 

H2S KG/HR 2.72E-05 0 0.000385
519 

2.34E-05 4.72E-05 0.000392
637 

0.000385
453 

0.002957
67 

0.002957
67 

0.002957
67 

0.002957
67 

0.002957
67 

0.002898
13 

0.000432
687 

5.06E-05 

NH3 KG/HR 2.10E-07 0 0.007116
69 

1.24E-04 0.000870
729 

0.373751 0.329930
5 

0.158224
4 

0.158224
4 

0.158224
4 

0.170526
7 

0.158224
5 

0.080894
8 

0.007987
42 

0.000123
939 

HCN KG/HR 1.59E-05 0 0.013739
7 

0.001672
26 

0.001681
06 

0.014910
4 

0.014915
1 

0.007002
32 

0.007002
32 

0.007002
32 

0.017099
7 

0.006998
94 

0.005310
77 

0.015420
8 

0.001688
17 

N2 KG/HR 0.003346
8 

0 0.027497 1.75E-05 0.003364
28 

0.030861
3 

0.030861
3 

10.52077 10.52077 10.52077 10.50542 10.52078 10.51741 0.030861
3 

0.003364
28 

COS KG/HR 3.10E-05 0 0.011367
3 

0.001359
75 

0.001390
79 

0.012758
1 

0.012758
1 

0.003850
4 

0.003850
4 

0.003850
4 

0.003850
4 

0.003850
4 

0.002459
61 

0.012758
1 

0.001390
79 

ACETI-01 KG/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FORMI-01 KG/HR 0.00E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HCL KG/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH4+ KG/HR 0 0 0.661847
7 

0.081769
1 

0.080977
2 

0.355302 0.401714
9 

0 0 0 0 0 0 0.742825 0.081769
1 

NA+ KG/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H3O+ KG/HR 0 9.42E-
06 

0.000127
544 

3.00E-06 1.56E-05 6.90E-05 7.74E-05 0 0 0 0 0 0 0.000143
15 

3.00E-06 

NH2COO- KG/HR 0 0 1.15E-04 1.09E-05 1.41E-05 0.000541
196 

0.000539
781 

0 0 0 0.00E+00 0 0 0.000128
898 

1.09E-05 

HS- KG/HR 0 0 9.81E-05 8.67E-06 1.20E-05 1.49E-04 1.56E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.10E-04 8.67E-06 

HCO3
- KG/HR 0 0 2.238365 0.276456

2 
0.273864

6 
1.197721 1.354762 0 0 0 0 0 0 2.512229 0.276456

2 

OH- KG/HR 0 8.42E-
06 

1.97E-05 3.44E-07 2.41E-06 0.000580
119 

0.000568
024 

0 0 0 0.00E+00 0 0 2.21E-05 3.44E-07 

CL- KG/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH3COO- KG/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HCOO- KG/HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CN- KG/HR 0 0 8.25E-05 3.25E-06 1.01E-05 0.000583
906 

0.000579
446 

0 0 0 0.00E+00 0 0 9.26E-05 3.25E-06 

S2- KG/HR 0 0 9.01E-12 2.83E-14 1.10E-12 4.84E-09 3.68E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.01E-11 2.83E-14 

CO3
2- KG/HR 0 0 1.68E-04 5.97E-05 2.06E-05 5.88E-05 7.44E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.89E-04 5.97E-05 

Total 
Mole Flow 

KMOL/H
R 

0.086458
1 

33.571
91 

296.3786 36.17551 36.26202 299.0902 332.6596 59.74098 59.74098 59.74098 63.64002 59.74098 57.04638 332.6406 36.26197 
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Total 
Mass Flow 

KG/HR 1.889415 604.80
73 

5345.543 652.1394 654.0289 5394.764 5999.571 817.2354 817.2354 817.2354 817.2354 817.2354 768.0139 5999.571 654.0289 

Total 
Volume 
Flow 

CUM/HR 2.105579 0.6313
89 

5.62477 0.665031
8 

0.688192
4 

6.193782 6.815753 102.1621 102.1621 102.1621 108.8626 102.1621 30.26388 6.312962 2.770611 

Temperat
ure 

C 20 105 79.99752 20 79.99752 177.4174 170.3033 1172.073 1172.073 1172.073 1172.073 1172.073 177.4174 79.99752 20 

Pressure BAR 1 72.000
3 

72.0003 1 72.0003 71.01355 72.0003 71.01355 71.01355 71.01355 71.01355 71.01355 71.01355 72.0003 1 

Vapor 
Fraction 

 
1 0 0 0 0 0 0 1 1 1 1 1 1 0 0.002384

27 

Liquid 
Fraction 

 
0 1 1 1 1 1 1 0 0 0 0 0 0 1 0.997615

7 

Solid 
Fraction 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Molar 
Enthalpy 

KCAL/M
OL 

-26.56895 -
66.846

2 

-67.00904 -68.20758 -67.00904 -65.19139 -65.35769 -12.15431 -12.15431 -12.15431 -9.678846 -12.15431 -19.07302 -67.00904 -68.1083 

Mass 
Enthalpy 

KCAL/KG -1215.774 -
3710.5

3 

-3715.253 -3783.614 -3715.253 -3614.265 -3623.902 -888.4962 -888.4962 -888.4962 -753.7143 -888.4962 -1416.702 -3715.253 -3776.196 

Enthalpy 
Flow 

GCAL/HR -
0.002297

1 

-
2.2441

6 

-19.86004 -2.467444 -2.429883 -19.49811 -21.74186 -
0.726110

5 

-
0.726110

5 

-
0.726110

5 

-0.615962 -
0.726110

5 

-1.088047 -22.28993 -2.469741 

Molar 
Entropy 

CAL/MOL
-K 

9.52014 -
34.712

1 

-35.72624 -39.14055 -35.72624 -31.25979 -31.58042 9.095839 9.095839 9.095839 9.803593 9.095839 -
0.152300

3 

-35.72624 -39.02453 

Mass 
Entropy 

CAL/GM-
K 

0.435634
1 

-
1.9268

2 

-1.980808 -2.171207 -1.980808 -1.733069 -1.751046 0.664917
7 

0.664917
7 

0.664917
7 

0.763428
6 

0.664917
7 

-
0.011312

5 

-1.980808 -2.163676 

Molar 
Density 

KMOL/C
UM 

0.041061
4 

53.171
49 

52.69169 54.39667 52.69169 48.28879 48.80746 0.584766
4 

0.584766
4 

0.584766
4 

0.584590
4 

0.584766
4 

1.884966 52.69169 13.08808 

Mass 
Density 

KG/CUM 0.897337
6 

957.89
93 

950.3576 980.6139 950.3576 870.9968 880.2507 7.999396 7.999396 7.999396 7.507036 7.999396 25.37725 950.3576 236.0595 

Average 
Molecular 
Weight 

 
21.85352 18.015

28 
18.0362 18.0271 18.0362 18.03725 18.03517 13.67965 13.67965 13.67965 12.84153 13.67965 13.46297 18.0362 18.03622 

Liq Vol 60F 
cum/hr         

 4.56E-03            2.805002 2.805002 2.805002 3.062739 2.805002 2.747557    
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Table 9.12: Aspen Plus flow sheet setup for organic acid and nitrogen compounds calculations for GasPOX 201 VP1 (according to Figures 9.7 and 9.8, 
organic acids are taken into account)  

 
Units DEGA

SS 
DEIO
NAT 

F103 F136 F136
PRES 

FLAS
HOU 

FLAS
HOU
2 

FLAS
HOU
3 

FLAS
HOU
4 

FLAS
HOU
5 

FLAS
HOU
6 

FLAS
HOU
7 

FLAS
HOU
T 

H2OP
UMP 

HOT
GAS 

HOT
GAS2 

HOT
GAS3 

HOT
GAS4 

HOT
GAS5 

RAW
GAS 

S1 S2 S4 S5 S8 T104 VALV
OUT 

From 
 

SPLIT
ATM 

 
SPLIT
OUT 

SPLIT
ATM 

SPLIT
OUT 

QUE
NCH 

DUPL
EX2 

DUPL
EX2 

ACID
SAP 

ACID
SEQ 

QUE
NCH2 

ACID
S 

ACID
S2 

P105 
 

B2 B2 RGIB
BSEQ 

RGIB
BSAP 

QUE
NCH 

B1 QUE
NCH
2 

ACI
DSE
Q 

ACI
DS2 

ACI
DSA
P 

W10
6 

COOL
ER 

To 
  

B1 QUE
NCH 

 
COOL
ER 

DUPL
EX2 

ACID
S 

ACID
SAP 

ACID
SEQ 

QUE
NCH2 

 
ACID
S2 

B1 W10
6 

B2 QUE
NCH 

RGIB
BSEQ 

RGIB
BSAP 

  
P105 

  
B1 

 
SPLIT
OUT 

SPLIT
ATM 

Substream: 
MIXED 

                           

Phase
:  

 
Vapo
r 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Liqui
d 

Vapo
r 

Vapo
r 

Vapo
r 

Vapo
r 

Vapo
r 

Vapo
r 

Missi
ng 

Miss
ing 

Mis
sing 

Mis
sing 

Mis
sing 

Liqui
d 

Mixe
d 

Component Mole Fraction 
                          

H2O 
 

0.023
5896 

1 0.993
1396 

0.995
4922 

0.993
1396 

0.992
3697 

0.992
3697 

0.992
3697 

0.992
3697 

0.993
0231 

0.992
9947 

0.992
3697 

0.992
3697 

0.993
1398 

0.186
0229 

0.186
0229 

0.186
0229 

0.186
028 

0.186
0229 

0.151
9623 

0.993
1398 

    
0.993
1396 

0.993
1397 

CO2 
 

0.102
3892 

0 0.000
3197

8 

7.22E
-05 

0.000
3197

8 

0.000
3923

9 

0.000
3923

9 

0.000
3923

9 

0.000
3923

9 

0.000
1275 

0.000
1559

5 

0.000
396 

0.000
396 

0.000
3512

5 

0.041
3141 

0.041
3141 

0.041
3141 

0.041
3148 

0.041
3141 

0.043
0238 

0.000
3512

9 

    
0.000
3197

8 

0.000
3198

2 

CO 
 

0.493
8115 

0 0.002
2665

8 

0.001
0738

7 

0.002
2665

8 

0.002
5290

4 

0.002
5290

4 

0.002
5290

4 

0.002
5224

3 

0.001
5981

3 

0.001
5980

8 

0.002
5209

5 

0.002
5209

5 

0.002
2665

1 

0.236
512 

0.236
512 

0.236
512 

0.236
5137 

0.236
512 

0.246
1926 

0.002
2665

1 

    
0.002
2665

8 

0.002
2665

8 

H2 
 

0.198
5742 

0 0.000
4835

2 

2.86E
-06 

0.000
4835

2 

0.000
5377

8 

0.000
5377

8 

0.000
5377

8 

0.000
5377

8 

7.68E
-06 

7.68E
-06 

0.000
5377

8 

0.000
5377

8 

0.000
4835 

0.484
183 

0.484
183 

0.484
183 

0.484
1664 

0.484
183 

0.506
7303 

0.000
4835 

    
0.000
4835

2 

0.000
4835

2 

CH4 
 

0.180
2517 

0 0.003
5342

4 

0.003
1054

4 

0.003
5342

4 

0.003
9308

5 

0.003
9308

5 

0.003
9308

5 

0.003
9308

8 

0.003
9360

9 

0.003
9359

8 

0.003
9308

7 

0.003
9308

7 

0.003
5341

3 

0.045
549 

0.045
549 

0.045
549 

0.045
5497 

0.045
549 

0.045
4522 

0.003
5341

3 

    
0.003
5342

4 

0.003
5342

4 

H2S 
 

1.10E
-05 

0 4.74E
-08 

2.26E
-08 

4.74E
-08 

5.02E
-08 

5.02E
-08 

5.02E
-08 

5.02E
-08 

5.02E
-08 

5.87E
-08 

5.12E
-08 

5.12E
-08 

4.52E
-08 

1.89E
-06 

1.89E
-06 

1.89E
-06 

1.89E
-06 

1.89E
-06 

1.94E
-06 

4.52E
-08 

    
4.74E

-08 
4.91E

-08 

NH3 
 

6.11E
-08 

0 6.12E
-07 

8.60E
-08 

6.12E
-07 

4.50E
-05 

4.50E
-05 

4.50E
-05 

4.50E
-05 

4.51E
-05 

6.76E
-08 

4.06E
-05 

4.06E
-05 

3.17E
-05 

0.000
1248

6 

0.000
1248

6 

0.000
1248

6 

0.000
1390

5 

0.000
1248

6 

5.12E
-05 

3.18E
-05 

    
6.12E

-07 
8.59E

-08 

HCN 
 

6.82E
-06 

0 1.72E
-06 

1.71E
-06 

1.72E
-06 

1.89E
-06 

1.89E
-06 

1.89E
-06 

1.89E
-06 

1.89E
-06 

1.92E
-06 

1.89E
-06 

1.89E
-06 

1.70E
-06 

4.42E
-06 

4.42E
-06 

4.42E
-06 

6.54E
-06 

4.41E
-06 

3.53E
-06 

1.70E
-06 

    
1.72E

-06 
1.72E

-06 

N2 
 

0.001
3599

8 

0 3.31E
-06 

1.70E
-08 

3.31E
-06 

3.68E
-06 

3.68E
-06 

3.68E
-06 

3.68E
-06 

3.69E
-06 

3.68E
-06 

3.68E
-06 

3.68E
-06 

3.31E
-06 

0.006
2866

8 

0.006
2866

8 

0.006
2866

8 

0.006
2786

2 

0.006
2866

8 

0.006
5813

2 

3.31E
-06 

    
3.31E

-06 
3.31E

-06 

COS 
 

5.98E
-06 

0 6.38E
-07 

6.25E
-07 

6.38E
-07 

7.10E
-07 

7.10E
-07 

7.10E
-07 

7.10E
-07 

7.11E
-07 

7.11E
-07 

7.10E
-07 

7.10E
-07 

6.38E
-07 

1.07E
-06 

1.07E
-06 

1.07E
-06 

1.07E
-06 

1.07E
-06 

7.18E
-07 

6.38E
-07 

    
6.38E

-07 
6.38E

-07 

ACETI
-01 

 
0 0 0 0 0 0 0 0 0 0.000

1327
1 

0.000
1326

7 

0 0 0 0 0 0 0 0 0 0 
    

0 0 

FORM
I-01 

 
5.77E

-09 
0 6.62E

-07 
1.28E

-07 
6.62E

-07 
3.50E

-07 
3.50E

-07 
3.50E

-07 
6.97E

-06 
0.000
9346

3 

0.000
8324

4 

4.54E
-07 

4.54E
-07 

3.86E
-07 

0 0 0 0 0 4.00E
-08 

3.87E
-07 

    
6.62E

-07 
1.27E

-07 

HCL 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    

0 0 

NH4+ 
 

0 0 0.000
1245

9 

0.000
1254

2 

0.000
1245

9 

9.42E
-05 

9.42E
-05 

9.42E
-05 

9.42E
-05 

9.44E
-05 

0.000
1393

7 

9.86E
-05 

9.86E
-05 

9.35E
-05 

0 0 0 0 0 0 9.34E
-05 

    
0.000
1245

9 

0.000
1251

1 

NA+ 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    

0 0 

H3O+ 
 

0 1.47
E-08 

5.31E
-08 

1.03E
-08 

5.31E
-08 

2.88E
-08 

2.88E
-08 

2.88E
-08 

2.88E
-08 

2.89E
-08 

2.87E
-05 

3.35E
-08 

3.35E
-08 

3.19E
-08 

0 0 0 0 0 0 3.18E
-08 

    
5.31E

-08 
1.02E

-08 
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NH2C

OO- 

 
0 0 1.33E

-09 
1.01E

-09 
1.33E

-09 
8.01E

-09 
8.01E

-09 
8.01E

-09 
8.01E

-09 
8.02E

-09 
5.16E

-15 
6.31E

-09 
6.31E

-09 
5.97E

-09 
0 0 0 0 0 0 5.98E

-09 

    
1.33E

-09 
1.01E

-09 

HS- 

 
0 0 5.29E

-09 
3.65E

-09 
5.29E

-09 
8.49E

-09 
8.49E

-09 
8.49E

-09 
8.49E

-09 
8.50E

-09 
1.07E

-11 
7.49E

-09 
7.49E

-09 
7.52E

-09 
0 0 0 0 0 0 7.50E

-09 

    
5.29E

-09 
3.65E

-09 

HCO3
- 

 
0 0 5.86E

-05 
5.87E

-05 
5.86E

-05 
2.84E

-05 
2.84E

-05 
2.84E

-05 
2.84E

-05 
2.85E

-05 
1.21E

-08 
2.48E

-05 
2.48E

-05 
2.71E

-05 
0 0 0 0 0 0 2.70E

-05 

    
5.86E

-05 
5.85E

-05 

OH- 

 
0 1.47

E-08 
1.66E

-09 
2.37E

-10 
1.66E

-09 
4.93E

-08 
4.93E

-08 
4.93E

-08 
4.93E

-08 
4.94E

-08 
5.30E

-11 
4.27E

-08 
4.27E

-08 
4.01E

-08 
0 0 0 0 0 0 3.99E

-08 

    
1.66E

-09 
2.36E

-10 

CL- 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

    
0 0 

CH3C

OO- 

 
0 0 0 0 0 0 0 0 0 0 2.71E

-08 
0 0 0 0 0 0 0 0 0 0 

    
0 0 

HCOO
- 

 
0 0 6.60E

-05 
6.67E

-05 
6.60E

-05 
6.57E

-05 
6.57E

-05 
6.57E

-05 
6.57E

-05 
6.58E

-05 
0.000
1679

9 

7.37E
-05 

7.37E
-05 

6.63E
-05 

0 0 0 0 0 0 6.63E
-05 

    
6.60E

-05 
6.66E

-05 

CN- 

 
0 0 4.57E

-09 
1.47E

-09 
4.57E

-09 
3.32E

-08 
3.32E

-08 
3.32E

-08 
3.32E

-08 
3.33E

-08 
3.64E

-11 
2.88E

-08 
2.88E

-08 
2.74E

-08 
0 0 0 0 0 0 2.73E

-08 

    
4.57E

-09 
1.46E

-09 

S2- 

 
0 0 2.13E

-16 
5.22E

-18 
2.13E

-16 
1.28E

-13 
1.28E

-13 
1.28E

-13 
1.28E

-13 
1.28E

-13 
1.83E

-19 
9.79E

-14 
9.79E

-14 
7.69E

-14 
0 0 0 0 0 0 7.52E

-14 

    
2.13E

-16 
5.21E

-18 

CO3
2- 

 
0 0 1.90E

-09 
5.46E

-09 
1.90E

-09 
6.34E

-10 
6.34E

-10 
6.34E

-10 
6.34E

-10 
6.35E

-10 
3.10E

-16 
4.81E

-10 
4.81E

-10 
6.30E

-10 
0 0 0 0 0 0 6.22E

-10 

    
1.90E

-09 
5.45E

-09 

Component 
Mole Flow 

                           

H2O KMO
L/HR 

0.002
0707

7 

33.5
77 

294.3
512 

36.01
433 

36.01
64 

296.8
04 

296.8
04 

296.8
04 

296.8
02 

296.6
042 

296.6
041 

296.8
026 

296.8
026 

330.3
78 

11.11
285 

11.11
285 

11.11
285 

11.11
298 

11.11
285 

8.668
909 

330.3
78 

0 0 0 0 330.3
676 

36.01
64 

CO2 KMO
L/HR 

0.008
9880

5 

0 0.094
7763 

0.002
6104

2 

0.011
5967 

0.117
3577 

0.117
3577 

0.117
3577 

0.117
3577 

0.038
0836 

0.046
5819 

0.118
4385 

0.118
4385 

0.116
8476 

2.468
076 

2.468
076 

2.468
076 

2.468
076 

2.468
076 

2.454
355 

0.116
859 

0 0 0 0 0.106
373 

0.011
5984 

CO KMO
L/HR 

0.043
3483 

0 0.671
7795 

0.038
8496 

0.082
198 

0.756
3991 

0.756
3991 

0.756
3991 

0.754
4197 

0.477
3419 

0.477
3419 

0.753
9776 

0.753
9776 

0.753
9776 

14.12
903 

14.12
903 

14.12
903 

14.12
891 

14.12
903 

14.04
441 

0.753
9776 

0 0 0 0 0.753
9776 

0.082
198 

H2 KMO
L/HR 

0.017
4314 

0 0.143
3065 

0.000
1033

2 

0.017
5347 

0.160
8413 

0.160
8413 

0.160
8413 

0.160
8413 

0.002
2932

3 

0.002
2932

3 

0.160
8413 

0.160
8413 

0.160
8413 

28.92
469 

28.92
469 

28.92
469 

28.92
323 

28.92
469 

28.90
716 

0.160
8413 

0 0 0 0 0.160
8413 

0.017
5347 

CH4 KMO
L/HR 

0.015
823 

0 1.047
493 

0.112
3467 

0.128
1698 

1.175
663 

1.175
663 

1.175
663 

1.175
663 

1.175
663 

1.175
663 

1.175
663 

1.175
663 

1.175
663 

2.721
06 

2.721
06 

2.721
06 

2.721
06 

2.721
06 

2.592
89 

1.175
663 

0 0 0 0 1.175
663 

0.128
1698 

H2S KMO
L/HR 

9.63E
-07 

0 1.41E
-05 

8.17E
-07 

1.72E
-06 

1.50E
-05 

1.50E
-05 

1.50E
-05 

1.50E
-05 

1.50E
-05 

1.75E
-05 

1.53E
-05 

1.53E
-05 

1.50E
-05 

0.000
1128

2 

0.000
1128

2 

0.000
1128

2 

0.000
1128

2 

0.000
1128

2 

0.000
1109 

1.50E
-05 

0 0 0 0 1.58E
-05 

1.78E
-06 

NH3 KMO
L/HR 

5.37E
-09 

0 0.000
1813

8 

3.11E
-06 

2.22E
-05 

0.013
4602 

0.013
4602 

0.013
4602 

0.013
4602 

0.013
4602 

2.02E
-05 

0.012
156 

0.012
156 

0.010
5568 

0.007
4587

4 

0.007
4587

4 

0.007
4587

4 

0.008
3067

9 

0.007
4587

5 

0.002
9183

2 

0.010
5688 

0 0 0 0 0.000
2035

8 

3.12E
-06 

HCN KMO
L/HR 

5.99E
-07 

0 0.000
5102

5 

6.19E
-05 

6.24E
-05 

0.000
5642

7 

0.000
5642

7 

0.000
5642

7 

0.000
5642

7 

0.000
5642

7 

0.000
5741

9 

0.000
5655

9 

0.000
5655

9 

0.000
5651 

0.000
2637

6 

0.000
2637

6 

0.000
2637

6 

0.000
3909 

0.000
2636

3 

0.000
2011

6 

0.000
5651

4 

0 0 0 0 0.000
5726

8 

6.25E
-05 

N2 KMO
L/HR 

0.000
1193

8 

0 0.000
9807 

6.13E
-07 

0.000
12 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.001
1006

9 

0.375
5611 

0.375
5611 

0.375
5611 

0.375
0735 

0.375
5612 

0.375
4411 

0.001
1006

9 

0 0 0 0 0.001
1006

9 

0.000
12 

COS KMO
L/HR 

5.25E
-07 

0 0.000
1890

9 

2.26E
-05 

2.31E
-05 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

0.000
2122

3 

6.41E
-05 

6.41E
-05 

6.41E
-05 

6.41E
-05 

6.41E
-05 

4.10E
-05 

0.000
2122

3 

0 0 0 0 0.000
2122

3 

2.31E
-05 

ACETI
-01 

KMO
L/HR 

0 0 0 0 0 0 0 0 0 0.039
6374 

0.039
6293 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FORM
I-01 

KMO
L/HR 

5.07E
-10 

0 0.000
1963

5 

4.62E
-06 

2.40E
-05 

0.000
1047

6 

0.000
1047

6 

0.000
1047

6 

0.002
0841

2 

0.279
1619 

0.248
6482 

0.000
1358

1 

0.000
1358

1 

0.000
1282

9 

0 0 0 0 0 2.28E
-06 

0.000
1288

8 

0 0 0 0 0.000
2203

8 

4.62E
-06 

HCL KMO
L/HR 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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NH4+ KMO
L/HR 

0 0 0.036
9257 

0.004
5372

7 

0.004
5181

8 

0.028
1852 

0.028
1852 

0.028
1852 

0.028
1852 

0.028
1852 

0.041
6277 

0.029
4899 

0.029
4899 

0.031
089 

0 0 0 0 0 0 0.031
0771 

0 0 0 0 0.041
4439 

0.004
5372

7 

NA+ KMO
L/HR 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H3O+ KMO
L/HR 

0 4.95
E-07 

1.57E
-05 

3.71E
-07 

1.93E
-06 

8.62E
-06 

8.62E
-06 

8.62E
-06 

8.62E
-06 

8.62E
-06 

0.008
5624

1 

1.00E
-05 

1.00E
-05 

1.06E
-05 

0 0 0 0 0 0 1.06E
-05 

0 0 0 0 1.77E
-05 

3.71E
-07 

NH2C

OO- 

KMO
L/HR 

0 0 3.93E
-07 

3.65E
-08 

4.81E
-08 

2.40E
-06 

2.40E
-06 

2.40E
-06 

2.40E
-06 

2.40E
-06 

1.54E
-12 

1.89E
-06 

1.89E
-06 

1.99E
-06 

0 0 0 0 0 0 1.99E
-06 

0 0 0 0 4.42E
-07 

3.65E
-08 

HS- KMO
L/HR 

0 0 1.57E
-06 

1.32E
-07 

1.92E
-07 

2.54E
-06 

2.54E
-06 

2.54E
-06 

2.54E
-06 

2.54E
-06 

3.19E
-09 

2.24E
-06 

2.24E
-06 

2.50E
-06 

0 0 0 0 0 0 2.50E
-06 

0 0 0 0 1.76E
-06 

1.32E
-07 

HCO3
- KMO

L/HR 
0 0 0.017

3612 
0.002
1224

1 

0.002
1243 

0.008
4992

7 

0.008
4992

7 

0.008
4992

7 

0.008
4992

7 

0.008
4992

7 

3.61E
-06 

0.007
4190

8 

0.007
4190

8 

0.009
0097

4 

0 0 0 0 0 0 0.008
9984

3 

0 0 0 0 0.019
4855 

0.002
1224

1 

OH- KMO
L/HR 

0 4.95
E-07 

4.93E
-07 

8.57E
-09 

6.03E
-08 

1.48E
-05 

1.48E
-05 

1.48E
-05 

1.48E
-05 

1.48E
-05 

1.58E
-08 

1.28E
-05 

1.28E
-05 

1.34E
-05 

0 0 0 0 0 0 1.33E
-05 

0 0 0 0 5.53E
-07 

8.57E
-09 

CL- KMO
L/HR 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH3C

OO- 

KMO
L/HR 

0 0 0 0 0 0 0 0 0 0 8.08E
-06 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HCOO
- 

KMO
L/HR 

0 0 0.019
5753 

0.002
4146

1 

0.002
3952

1 

0.019
6646 

0.019
6646 

0.019
6646 

0.019
6646 

0.019
6646 

0.050
1784 

0.022
055 

0.022
055 

0.022
0626 

0 0 0 0 0 0 0.022
062 

0 0 0 0 0.021
9705 

0.002
4146

1 

CN- KMO
L/HR 

0 0 1.35E
-06 

5.30E
-08 

1.66E
-07 

9.94E
-06 

9.94E
-06 

9.94E
-06 

9.94E
-06 

9.94E
-06 

1.09E
-08 

8.62E
-06 

8.62E
-06 

9.11E
-06 

0 0 0 0 0 0 9.07E
-06 

0 0 0 0 1.52E
-06 

5.30E
-08 

S2- KMO
L/HR 

0 0 6.33E
-14 

1.89E
-16 

7.74E
-15 

3.82E
-11 

3.82E
-11 

3.82E
-11 

3.82E
-11 

3.82E
-11 

5.47E
-17 

2.93E
-11 

2.93E
-11 

2.56E
-11 

0 0 0 0 0 0 2.50E
-11 

0 0 0 0 7.10E
-14 

1.89E
-16 

CO3
2- KMO

L/HR 
0 0 5.64E

-07 
1.98E

-07 
6.90E

-08 
1.90E

-07 
1.90E

-07 
1.90E

-07 
1.90E

-07 
1.90E

-07 
9.26E

-14 
1.44E

-07 
1.44E

-07 
2.10E

-07 
0 0 0 0 0 0 2.07E

-07 
0 0 0 0 6.33E

-07 
1.98E

-07 

Component 
Mass Flow 

                           

H2O KG/H
R 

0.037
3054 

604.
8991 

5302.
818 

648.8
083 

648.8
456 

5347.
006 

5347.
006 

5347.
006 

5346.
971 

5343.
407 

5343.
406 

5346.
982 

5346.
982 

5951.
853 

200.2
012 

200.2
012 

200.2
012 

200.2
034 

200.2
012 

156.1
728 

5951.
853 

0 0 0 0 5951.
664 

648.8
456 

CO2 KG/H
R 

0.395
5623 

0 4.171
086 

0.114
884 

0.510
3683 

5.164
89 

5.164
89 

5.164
89 

5.164
89 

1.676
055 

2.050
061 

5.212
454 

5.212
454 

5.142
442 

108.6
195 

108.6
195 

108.6
195 

108.6
195 

108.6
195 

108.0
157 

5.142
939 

0 0 0 0 4.681
454 

0.510
4463 

CO KG/H
R 

1.214
204 

0 18.81
681 

1.088
195 

2.302
399 

21.18
704 

21.18
704 

21.18
704 

21.13
16 

13.37
054 

13.37
054 

21.11
921 

21.11
921 

21.11
921 

395.7
599 

395.7
599 

395.7
599 

395.7
563 

395.7
599 

393.3
896 

21.11
921 

0 0 0 0 21.11
921 

2.302
399 

H2 KG/H
R 

0.035
1397 

0 0.288
8888 

0.000
2082

8 

0.035
348 

0.324
2368 

0.324
2368 

0.324
2368 

0.324
2368 

0.004
6228

8 

0.004
6228

8 

0.324
2368 

0.324
2368 

0.324
2368 

58.30
871 

58.30
871 

58.30
871 

58.30
576 

58.30
871 

58.27
337 

0.324
2368 

0 0 0 0 0.324
2368 

0.035
348 

CH4 KG/H
R 

0.253
8456 

0 16.80
468 

1.802
352 

2.056
197 

18.86
088 

18.86
088 

18.86
088 

18.86
088 

18.86
088 

18.86
088 

18.86
088 

18.86
088 

18.86
088 

43.65
331 

43.65
331 

43.65
331 

43.65
331 

43.65
331 

41.59
712 

18.86
088 

0 0 0 0 18.86
088 

2.056
197 

H2S KG/H
R 

3.28E
-05 

0 0.000
4792

7 

2.78E
-05 

5.86E
-05 

0.000
5113

7 

0.000
5113

7 

0.000
5113

7 

0.000
5113

7 

0.000
5113

7 

0.000
5978

1 

0.000
5215

5 

0.000
5215

5 

0.000
5126

1 

0.003
845 

0.003
845 

0.003
845 

0.003
845 

0.003
845 

0.003
7798

2 

0.000
5128

6 

0 0 0 0 0.000
5379

1 

6.07E
-05 

NH3 KG/H
R 

9.14E
-08 

0 0.003
0890

6 

5.30E
-05 

0.000
3779

7 

0.229
2358 

0.229
2358 

0.229
2358 

0.229
2358 

0.229
2358 

0.000
3440

6 

0.207
025 

0.207
025 

0.179
7891 

0.127
0265 

0.127
0265 

0.127
0265 

0.141
4693 

0.127
0266 

0.049
7005 

0.179
9932 

0 0 0 0 0.003
4670

4 

5.31E
-05 

HCN KG/H
R 

1.62E
-05 

0 0.013
7898 

0.001
6741

6 

0.001
6873 

0.015
2496 

0.015
2496 

0.015
2496 

0.015
2496 

0.015
2496 

0.015
5179 

0.015
2853 

0.015
2853 

0.015
272 

0.007
1282

4 

0.007
1282

4 

0.007
1282

4 

0.010
5643 

0.007
1248 

0.005
4364

6 

0.015
2731 

0 0 0 0 0.015
4771 

0.001
6903

5 

N2 KG/H
R 

0.003
3443

4 

0 0.027
4726 

1.72E
-05 

0.003
3615

2 

0.030
8342 

0.030
8342 

0.030
8342 

0.030
8342 

0.030
8342 

0.030
8342 

0.030
8342 

0.030
8342 

0.030
8342 

10.52
077 

10.52
077 

10.52
077 

10.50
711 

10.52
078 

10.51
741 

0.030
8342 

0 0 0 0 0.030
8342 

0.003
3615

2 

COS KG/H
R 

3.15E
-05 

0 0.011
36 

0.001
3584

9 

0.001
39 

0.012
75 

0.012
75 

0.012
75 

0.012
75 

0.012
75 

0.012
75 

0.012
75 

0.012
75 

0.012
75 

0.003
8504 

0.003
8504 

0.003
8504 

0.003
8504 

0.003
8504 

0.002
4604 

0.012
75 

0 0 0 0 0.012
75 

0.001
39 
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ACETI
-01 

KG/H
R 

0 0 0 0 0 0 0 0 0 2.380
331 

2.379
846 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FORM
I-01 

KG/H
R 

2.33E
-08 

0 0.009
0372

5 

0.000
2127

3 

0.001
1057

9 

0.004
8218

5 

0.004
8218

5 

0.004
8218

5 

0.095
9231 

12.84
862 

11.44
42 

0.006
2508

6 

0.006
2508

6 

0.005
9047 

0 0 0 0 0 0.000
1050

9 

0.005
9316

8 

0 0 0 0 0.010
143 

0.000
2127

5 

HCL KG/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH4+ KG/H
R 

0 0 0.666
0644 

0.081
843 

0.081
4987 

0.508
4044 

0.508
4044 

0.508
4044 

0.508
4044 

0.508
4044 

0.750
8788 

0.531
9382 

0.531
9382 

0.560
7835 

0 0 0 0 0 0 0.560
5672 

0 0 0 0 0.747
5631 

0.081
843 

NA+ KG/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H3O+ KG/H
R 

0 9.42
E-06 

0.000
2993

9 

7.07E
-06 

3.66E
-05 

0.000
1640

5 

0.000
1640

5 

0.000
1640

5 

0.000
1640

5 

0.000
1640

5 

0.162
8798 

0.000
1905

2 

0.000
1905

2 

0.000
2020

6 

0 0 0 0 0 0 0.000
2012

2 

0 0 0 0 0.000
3360

2 

7.07E
-06 

NH2C

OO- 

KG/H
R 

0 0 2.36E
-05 

2.19E
-06 

2.89E
-06 

0.000
1438

2 

0.000
1438

2 

0.000
1438

2 

0.000
1438

2 

0.000
1438

2 

9.25E
-11 

0.000
1133

7 

0.000
1133

7 

0.000
1192

5 

0 0 0 0 0 0 0.000
1195 

0 0 0 0 2.65E
-05 

2.19E
-06 

HS- KG/H
R 

0 0 5.19E
-05 

4.37E
-06 

6.35E
-06 

8.40E
-05 

8.40E
-05 

8.40E
-05 

8.40E
-05 

8.40E
-05 

1.06E
-07 

7.41E
-05 

7.41E
-05 

8.28E
-05 

0 0 0 0 0 0 8.25E
-05 

0 0 0 0 5.82E
-05 

4.37E
-06 

HCO3
- KG/H

R 
0 0 1.059

341 
0.129
5043 

0.129
6196 

0.518
6056 

0.518
6056 

0.518
6056 

0.518
6056 

0.518
6056 

0.000
2204

9 

0.452
6949 

0.452
6949 

0.549
7534 

0 0 0 0 0 0 0.549
0636 

0 0 0 0 1.188
961 

0.129
5043 

OH- KG/H
R 

0 8.42
E-06 

8.38E
-06 

1.46E
-07 

1.03E
-06 

0.000
2510

1 

0.000
2510

1 

0.000
2510

1 

0.000
2510

1 

0.000
2510

1 

2.69E
-07 

0.000
2171

7 

0.000
2171

7 

0.000
2271

1 

0 0 0 0 0 0 0.000
2255

2 

0 0 0 0 9.41E
-06 

1.46E
-07 

CL- KG/H
R 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH3C

OO- 

KG/H
R 

0 0 0 0 0 0 0 0 0 0 0.000
4772

9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HCOO
- 

KG/H
R 

0 0 0.881
2471 

0.108
7017 

0.107
8282 

0.885
2675 

0.885
2675 

0.885
2675 

0.885
2675 

0.885
2675 

2.258
946 

0.992
8823 

0.992
8823 

0.993
2209 

0 0 0 0 0 0 0.993
1945 

0 0 0 0 0.989
0753 

0.108
7017 

CN- KG/H
R 

0 0 3.52E
-05 

1.38E
-06 

4.31E
-06 

0.000
2585

3 

0.000
2585

3 

0.000
2585

3 

0.000
2585

3 

0.000
2585

3 

2.83E
-07 

0.000
2241

8 

0.000
2241

8 

0.000
2369

6 

0 0 0 0 0 0 0.000
2358

8 

0 0 0 0 3.95E
-05 

1.38E
-06 

S2- KG/H
R 

0 0 2.03E
-12 

6.06E
-15 

2.48E
-13 

1.22E
-09 

1.22E
-09 

1.22E
-09 

1.22E
-09 

1.22E
-09 

1.75E
-15 

9.39E
-10 

9.39E
-10 

8.20E
-10 

0 0 0 0 0 0 8.02E
-10 

0 0 0 0 2.28E
-12 

6.06E
-15 

CO3
2- KG/H

R 
0 0 3.38E

-05 
1.19E

-05 
4.14E

-06 
1.14E

-05 
1.14E

-05 
1.14E

-05 
1.14E

-05 
1.14E

-05 
5.56E

-12 
8.63E

-06 
8.63E

-06 
1.26E

-05 
0 0 0 0 0 0 1.24E

-05 
0 0 0 0 3.80E

-05 
1.19E

-05 

Total 
Mole 
Flow 

KMO
L/HR 

0.087
7831 

33.5
7701 

296.3
845 

36.17
741 

36.26
519 

299.0
861 

299.0
861 

299.0
861 

299.0
841 

298.6
881 

298.6
966 

299.0
847 

299.0
847 

332.6
601 

59.73
918 

59.73
918 

59.73
918 

59.73
82 

59.73
918 

57.04
644 

332.6
601 

    
332.6

497 
36.26

52 

Total 
Mass 
Flow 

KG/H
R 

1.939
482 

604.
8992 

5345.
572 

652.1
374 

654.0
768 

5394.
75 

5394.
75 

5394.
75 

5394.
75 

5394.
75 

5394.
75 

5394.
75 

5394.
75 

5999.
649 

817.2
052 

817.2
052 

817.2
052 

817.2
052 

817.2
052 

768.0
275 

5999.
649 

0 0 0 0 5999.
649 

654.0
768 

Total 
Volu
me 
Flow 

CUM
/HR 

2.137
767 

0.63
1485

1 

5.626
738 

0.665
1938 

0.688
4799 

6.194
821 

6.194
821 

6.194
821 

6.195
052 

6.209
748 

6.207
094 

6.194
882 

6.194
882 

6.817
684 

102.1
591 

102.1
591 

102.1
591 

102.1
574 

102.1
591 

30.26
476 

6.817
11 

0 0 0 0 6.315
218 

2.802
96 

Temp
eratur
e 

C 20 105 79.99
752 

20 79.99
752 

177.4
319 

177.4
319 

177.4
319 

177.4
382 

177.4
382 

177.4
382 

177.4
382 

177.4
382 

170.4
049 

1172.
073 

1172.
073 

1172.
073 

1172.
073 

1172.
073 

177.4
319 

170.2
656 

    
79.99

752 
20 

Press
ure 

BAR 1 72.0
003 

72.00
03 

1 72.00
03 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

72.00
03 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.01
355 

71.0
135

5 

71.0
135
5 

71.0
135
5 

71.0
135
5 

72.00
03 

1 

Vapor Fraction 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 
    

0 0.002
4205

9 
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Liquid Fraction 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 
    

1 0.997
5794 

Solid Fraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    

0 0 

Molar 
Enthal
py 

KCAL
/MOL 

-
27.30

369 

-
66.8

4623 

-
67.00

651 

-
68.20

46 

-
67.00

651 

-
65.19

051 

-
65.19

051 

-
65.19

051 

-
65.19

084 

-
65.28

987 

-
65.28

928 

-
65.19

081 

-
65.19

081 

-
65.35

537 

-
12.15

477 

-
12.15

477 

-
12.15

477 

-
12.15

517 

-
12.15

477 

-
19.07

623 

-
65.35

821 

    
-

67.00
651 

-
68.10

559 

Mass 
Enthal
py 

KCAL
/KG 

-
1235.

796 

-
3710
.529 

-
3715.

166 

-
3783.

66 

-
3715.

166 

-
3614.

176 

-
3614.

176 

-
3614.

176 

-
3614.

17 

-
3614.

867 

-
3614.

938 

-
3614.

176 

-
3614.

176 

-
3623.

733 

-
888.5

358 

-
888.5

358 

-
888.5

358 

-
888.5

501 

-
888.5

358 

-
1416.

917 

-
3623.

89 

    
-

3715.
166 

-
3776.

105 

Enthal
py 
Flow 

GCAL
/HR 

-
0.002
3968 

-
2.24

4496 

-
19.85

969 

-
2.467

466 

-
2.430

004 

-
19.49

757 

-
19.49

757 

-
19.49

757 

-
19.49

754 

-
19.50

131 

-
19.50

169 

-
19.49

757 

-
19.49

757 

-
21.74

113 

-
0.726

116 

-
0.726

116 

-
0.726

116 

-
0.726
1277 

-
0.726

116 

-
1.088

231 

-
21.74

207 

    
-

22.28
969 

-
2.469

863 

Molar 
Entro
py 

CAL/
MOL-
K 

9.430
608 

-
34.7

1213 

-
35.72

419 

-
39.13

957 

-
35.72

419 

-
31.25

891 

-
31.25

891 

-
31.25

891 

-
31.25

881 

-
31.32

381 

-
31.32

487 

-
31.25

894 

-
31.25

894 

-
31.57

592 

9.096
026 

9.096
026 

9.096
026 

9.096
041 

9.096
026 

-
0.152
9537 

-
31.58

125 

    
-

35.72
419 

-
39.02

2 

Mass 
Entro
py 

CAL/
GM-K 

0.426
84 

-
1.92

6816 

-
1.980

722 

-
2.171

273 

-
1.980

722 

-
1.733 

-
1.733 

-
1.733 

-
1.732

984 

-
1.734

288 

-
1.734

396 

-
1.732

995 

-
1.732

995 

-
1.750

777 

0.664
9359 

0.664
9359 

0.664
9359 

0.664
9262 

0.664
9359 

-
0.011
3608 

-
1.751

073 

    
-

1.980
722 

-
2.163

569 

Molar 
Densit
y 

KMO
L/CU
M 

0.041
063 

53.1
7149 

52.67
429 

54.38
628 

52.67
429 

48.28
001 

48.28
001 

48.28
001 

48.27
79 

48.09
988 

48.12
181 

48.27
932 

48.27
932 

48.79
371 

0.584
7663 

0.584
7663 

0.584
7663 

0.584
7664 

0.584
7663 

1.884
913 

48.79
783 

    
52.67

429 
12.93

818 

Mass 
Densit
y 

KG/C
UM 

0.907
2469 

957.
8993 

950.0
304 

980.3
72 

950.0
304 

870.8
483 

870.8
483 

870.8
483 

870.8
16 

868.7
551 

869.1
265 

870.8
398 

870.8
398 

880.0
128 

7.999
341 

7.999
341 

7.999
341 

7.999
473 

7.999
341 

25.37
695 

880.0
869 

    
950.0

304 
233.3

521 

Average 
Molecular 
Weight 

22.09
401 

18.0
1528 

18.03
594 

18.02
609 

18.03
594 

18.03
745 

18.03
745 

18.03
745 

18.03
757 

18.06
148 

18.06
097 

18.03
753 

18.03
753 

18.03
537 

13.67
955 

13.67
955 

13.67
955 

13.67
978 

13.67
955 

13.46
32 

18.03
537 

    
18.03

594 
18.03

594 

Liq Vol 60F 
cum/hr         

4.63E
-03 

             2.804
906 

2.804
906 

2.804
906 

2.804
849 

2.804
906 

2.747
468 

 0 0 0 0   

 


