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1

1. Introduction to Interaction

Learning

The trick to forgetting the
big picture is to look at

everything close up

Palahniuk [9]

Fig. 1.1.: Robotic co-workers that work along-side humans are a great vision of robotics. Robots that
are able to anticipate human motions could potentially change the environment we work in. They
could for example release the physical load burdened on a human worker and in doing so increase
their production efficiency. For that however human motions need to be constantly monitored and
robot responses need to be seamlessly blended with that of the human co-worker. The figure shows
typical interaction scenarios that are pursued in this thesis.

1.1. Robotic Co-Workers and Workplaces of the

Future

Manufacturing companies have long sought for robots to aid manual production pro-
cesses and lower fabrication costs. Over the last decade a number of applications
emerged where robots are embedded in assembly processes, successfully transforming
traditional workplaces into robot-aided assembly lines. Most facilities, however, rely
almost exclusively on human operators to trigger robot motions and collaborations be-
tween humans and robots often proceed sequentially. As it stands, most human-robot
collaborations are structured in a stop-and-go fashion, inducing delays, and following a
rigid command-and-response pattern [10]. Despite notable benefits, there is a variety of
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tasks where these widely used turn-taking implementations are infeasible. Hand-overs,
joint assemblies and product transports are prominent examples where it is insufficient
to play back prerecorded robot motions. Instead, they require continuous adaptation
of the robot’s motion to the human co-worker in order to be executed successfully.

Giving a robot this ability and allowing it to work side-by-side with humans would
increase the number possible application scenarios and, more importantly, reduce the
effort burdened on the human co-worker. In a joint transportation task for example, the
physical load is typically shared among a group of workers and it could be significantly
reduced by introducing a robotic assistant to carry most of the weight. Robots able to
engage in such collaborations, have consequently the potential of improving workplace
ergonomics and offer substantial reductions in injury and serious health hazards.

However, these seemingly simple and repetitive behaviors appear automatable at
first, yet they are often done manually and robots are caged wherever people work
among them. The reason for that results from the extensive set of skills, required
to participate in interactions safely. Among others, human-aware responses and spa-
tiotemporal awareness of the robot tend to be the most important aspects of a human-
robot interaction. Traditionally, a skilled programmer is required to implement all
possible interaction parameters with control routines. Unfortunately, this approach
is intractable even for a small number of interactions as they are inherently hard to
foresee beforehand. This disadvantage becomes considerably important in low-volume
production processes. Often, assembly lines are altered and changed for new products
in short intervals, requiring the robot to be re-configured to the new situation. As a
result, interaction parameters need to be re-implemented regularly which clearly in-
creases maintenance and production costs. Hence, efficient programming techniques
are called for that allow fast and reliable skill acquisition, so that even untrained users
are able to make efficient use of their new robotic co-worker.

Newly programmed robot behaviors need to be blended seamlessly with the user’s
motion during a collaborative task while at the same time being demonstrably safe.
This requires a high level of coordination of the robot, so that it is able to produce
well-synchronized actions with human co-workers. The human-centered environment
in which the robot operates further depends upon dynamic timing of behaviors and
appropriate motion plans.

A work place of the future, where robots work jointly with humans displaying the
kind of fluency that humans are accustomed to, is envisioned in this thesis (see Fig. 1.1).
For this vision to become reality, however, an algorithmic foundation is needed that
allows efficient training of robots by non-professionals while providing flexible and
adaptive motion generation mechanisms.

1.2. From Imitation Learning to Interaction Learning

Leveraging human knowledge to train robots is a fundamental problem in robotics.
Inspired by nature imitation learning has emerged as a valued tool for bootstrapping
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motor skills in various anthropomorphic structures [11]. It is generally referred to as
the concept of learning the actions and postures required to do a task by observing a
human teacher.

So far however, imitation learning is dominated by studies of individuals acting alone
and it is mostly regarded as single agent approach. Yet, many day-to-day behaviors
require the ability of two or more individuals to coordinate their motions concurrently
to interactions such as in dances, collaborative transportations or hand-overs. These
cooperative interactions are constantly influenced by contextual cues, e.g. postures of
interaction partners or object positions. Still, humans are able to engage in them re-
markably fluent. They tend to anticipate future actions of their interaction partners
and adapt their behavior accordingly. In doing so they continuously reduce the dis-
crepancy between the intended goal and the actual situation by changing temporal and
positional courses [12]. In a high-five interaction for example, the individual movement
of both interactants naturally changes in each repetition due to varying muscular acti-
vations. However, the interaction can be easily carried out, retaining the intent of the
joint behavior, i.e. to clap the other’s hand. The reason for that is the underlying mu-
tual understanding of both partners, which often results in visible body synchrony and
entrainment [13]. This leads to the hypothesis that the imitation of a single behavior by
robot is not sufficient enough in order to engage in human-robot interactions. Instead,
it stands to reason if imitation can be used to imitate the interaction by learning from
two demonstrators instead of focusing on a single trainer.

Mimicking the behavior of one human during a two-person interaction is challenging
problem for a robot. It requires continuous prediction of the other’s behavior and in-
terdependent motion planning as each action influences the outcome of the respective
other. Giving a robot this ability would change how it is able to interact with people,
allowing a wide range of application scenarios. Imitation learning seems to be a promis-
ing methodology to achieve that goal, as it offers a number of valuable properties that
render it suitable for learning joint actions1.

First, it allows the design of robot actions based on a trainers understanding of
how the interaction should look like [14]. The underlying hypothesis is that humans
would prefer to interact with robots the same way as they do with other people [15].
By imitating human motions in a human-robot interaction, no additional instructions
would be required to train users as the robot’s behavior would appear intuitive and
inherently natural.

Second, it enables robots to mimic human behavioral patterns during a joint task.
Psychological studies suggest that for coordinated actions between robots and humans
to emerge, human-like trajectories are essential [16]. By adopting the role of one of
the demonstrators, the robot would able to imitate postures and temporal properties
to coordinate its action with the user. This would benefit its acceptance, seeing that
its actions appear not only functional but also predictable [17, 18].

1In this context a joint action is considered a goal-directed action of two interactants that requires
precise manipulation towards a Cartesian coordinate, such as hand-overs or collaborative trans-
portations.
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From a demonstrator’s point of view, imitation learning provides a powerful know-
ledge-transfer tool. In contrast to low-level control techniques, the concept of teaching
someone by demonstrating a task is deeply rooted in the human learning process.
The resulting efficiency with which knowledge is transferred is the main reason for its
growth of popularity. Skills that can take weeks to master by oneself are often learned
by observing a teacher, reducing the cumbersome trail-and-error process to a mere set
of failed attempts.

From a computational point of view there is a general consensus that pre-imposing a
programmer’s design to a robot’s control structure is counterproductive as researchers
strive towards adaptive robots [19]. Within this context imitation is an intriguing
concept as it can be seen as learning tool on a behavioral level. Instead of explic-
itly defining motor commands abstract motion templates that allow for adaptation in
unseen situations can be trained [11].

Recent advances in sensing technologies also encourage the use imitation learning
for human-robot interactions. The latest developments of motion capture hardware
has impacted professional systems that target film industries as well as consumer-
grade devices. New capturing systems give users the ability of capturing gestures and
movements with high quality and low latency. Some of the system even allow the
recording of several people at the same time [20–22]. This offers additional insight into
behavior patterns and correlation structures of several interactants. One key aspect of
these parallel recordings is that they provide information about body synchrony and
spatiotemporal relationships, features that are not available in single actor recordings.
It is hypothesized that, instead of explicitly programming the robot for each foreseeable
situation, these two-person recordings can be used to learn interactive behaviors.

Despite notable benefits, imitation also presents a number of difficulties that need to
be addressed. Consider the reproduction of a single human movement on a robot for
example. It can be easily assumed that the human’s skeletal structure and the robot’s
kinematic chain differ from each other. As a result, motions cannot be transferred with-
out further optimization, a problem that is generally referred to as the correspondence
problem [23].

In addition to that, imitation by itself requires a significant amount of perceptual
and cognitive abilities [19]. A skill that is to be imitated needs to be observed, rec-
ognized and internally represented. The optimal implementation however is still an
open research question and it is actively discussed in the community. Yet, one com-
mon understanding it that it requires efficient integration of visual, memory and motor
systems so that a robot is able to infer actions during runtime [24]. In a hand-over task
for example, a robot needs to detect objects, anticipate hand-over locations and adapt
the learned behavior to new positions. For that the skill of spatial reasoning about the
user’s intent, i.e. the hand-over location, as well as the prediction of temporal prop-
erties, i.e. when the hand-over will take place is required. In other words, the robot
needs to generalize demonstrated behaviors spatially and temporally so that motions
can be inferred for varying environmental conditions.
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Fig. 1.2.: Overview of interaction structures. Day-to-day tasks such as hand-overs and object trans-
portations fall in the category of interdependent, concurrent, cooperative tasks. In contrast to turn-
based interactions, interdependent behavior planning requires continuous adaptation of one’s body
movement and its implementation in robotic assistants is the primary goal of this thesis. The figure
is adapted from [28, p.2]

1.3. Interdependent, Concurrent and Cooperative

Human-Robot Interaction

Similar to imitation as being seen as an approach focused on a single agent, dyadic
interactions among humans have also been examined mostly from a single perception
point of view in neuroscience [25, 26]. Here, interactions are regarded as the individ-
ual’s motion simultaneously or sequentially executed that affect the immediate and
future outcomes of the other individuals involved in the situation [25]. In these, stand-
alone roles dominate the field and surprisingly few physical human-human interaction
analyses exist. More recently, however, a shift in perspective can be observed and neu-
roscientists are also beginning to asses neuro-cognitive mechanisms, investigating what
enables humans to coordinate actions. Instead of seeing interactions as individual mo-
tions with interaction-relevant properties, joint actions are given priority, focusing on
both behaviors at the same time. Interestingly, many properties of the joint action rest
on the team members’ cognitive processes, such as motor-based simulation, prediction
and behavior anticipation [27]. Resulting from this, it is argued that interactions should
be differentiated into several distinguishable groups, moving towards a two-person neu-
roscience [28]. Following this argument and thereby emphasizing the importance of the
second-person, it is proposed that interactions between humans can be differentiated
by three properties: (1) interaction structure, (2) goal structure and, (3) task structure.
In this taxonomy each property assumes one of two values as illustrated in Fig. 1.2.

The interaction structure is divided into concurrent and turn-based interactions.
Here, the agents’ motions are executed either simultaneously or as sequential actions
that influence the immediate and current outcome of both individuals. In concurrent
interactions both agents strive towards a common goal simultaneously, such as in races
or martial arts whereas turn-based interactions follow a sequential order similar to a
game of chess.
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Fig. 1.3.: Overview of the interaction learning methodology. Based on human-human task demonstra-
tions, an interaction model is learned that captures how the interactants moved during task demon-
stration. The model allows a robot to continuously adapt its own motion during a human-robot
interaction spatially as well as temporally to that of its huat of its human interaction partnerr.

The goal structure of a two-person interaction is separated into cooperative and com-
petitive scenarios. Here, agents may expedite the goal achievement of others, resembling
cooperation or impede it competitively.

The task structure of an interaction defines whether motions are independent or in-
terdependent. The first denotes interactions where each individual’s behavior influences
the task independently, such as in a race or a bowling game. Only the outcome of each
behavior impacts the interactive task. Interdependent interactions on the other hand
require adaptation of each individual’s behavior in order to affect the outcome of the
task, such as in carrying an object, dancing or martial arts. The most visible property
of interdependent interactions is body synchrony.

The interaction learning approach presented in this thesis directly addresses concur-
rent interactions, that exhibit interdependent tasks structures and cooperative goals
(see red highlight in Fig. 1.2). As outlined earlier, these tasks include but are not
limited to hand-overs, collaborative transportations and assembly tasks, i.e. joint be-
haviors that emerge often in day-to-day life. By their nature these tasks require, in
contrast to turn-based actions, continuous spatiotemporal coordination of the individ-
uals’ behavior and its outcome since both agents act simultaneously. On top of that
both interactants operate on the same task, e.g. they carry an object jointly or hand-
over items. This renders the task structure interdependent and each movement has to
be planned with respect to the current situation.

For a robot to collaborate in these tasks with a human interaction partner, it is
necessary to anticipate the human’s behavior and adapt motor commands continuously.
At the same time, the amount of possible interaction scenarios should not be limited
to single behavior but rather feature a broad repertoire.

1.4. Problem Statement

There is a clear need for interactive robots that are able to interact with humans seam-
lessly and imitation learning might be the concept for achieving that goal. Despite its
success, not much research has been conducted to extend it from single-actor imitation
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to two-person interactions. In this thesis, it is proposed that by building upon task
demonstrations of two human users, interaction skills of robots can be bootstrapped.
Within this context, the challenge is how interaction dynamics, such as spatial rela-
tionships and body synchrony among the interactants should be gathered, represented
internally and adapted during runtime.

The questions addressed in this thesis can further be formulated as follows:

• What steps are required to extend imitation learning to two-person interactions?

• Using motion capture, what additional knowledge about a joint task can be gath-
ered and used by a robot during runtime to optimize human-robot collaboration?

• How can spatiotemporal generalization of demonstrated behaviors be achieved?

To address the above research questions, a methodology is presented in this thesis
that utilizes motion capture recordings of two users (see Fig. 1.4 ). Based on these
two-person task demonstrations, interaction dynamics are represented in several low-
dimensional spaces, efficiently compressing motions while preserving intrinsic details.
Spatial relationships of both interactants are captured in a topological space that allows
for efficient optimization of robot responses during runtime. A novel data structure
is developed that utilizes data of two interaction partners in single unified interaction
model. Using the model during runtime a robot’s response is inferred by aligning
observed user motions spatially and temporally, before a robot’s response is adapted
spatially at each frame. The robot’s motion is thereby seamlessly blended into the joint
task with the human user and provides instant and safe responses. Using the proposed
methodology a robot is able to participate and engage in interdependent cooperations,
such as hand-overs or assembly tasks.

1.5. Contributions

In the following methodical and applicationr-related contributions made by this thesis
are summarized.

Methodical Contributions

• An efficient approach for extracting human-robot interaction from human-human
demonstration

• Data-driven fusion of methods for human behavior recognition and robot response
generation

• Definition of a joint interaction model that generalizes the dynamics of trained
behaviors spatially and temporally

• Introduction of triadic human-robot interactions based on intrinsic information
in motion capture recordings
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Application-related Contributions

• General framework for robot and virtual character in human-agent interactions

• Extensive behavior repertoire for interactive virtual characters

• Complex behaviors skills for collaborative robots in human-robot assembly tasks

1.6. Overview Over the Main Chapters

In chapter 2 current interaction learning approaches are reviewed. The survey starts
by structuring and classifying each based on interaction types, real-time capabilities
and action recognition features. In chapter 3 important mathematical concepts that
are essential for the development of this thesis are introduced. Chapter 4 is the core
of this thesis and presents a framework for learning human-robot interactions from
human-human demonstrations (see Fig. 1.4). In subsequent chapters, the proposed
methodology is evaluated in different scenarios. Beginning with chapter 5 interaction
models are applied in a virtual agent setting to demonstrate how previously recorded
motion capture templates are adapted to new situations. Then, the approach is utilized
in a human-robot interaction setting in chapter 6. Here, a robotic arm learns to jointly
assemble objects and coordinate its own motions with that of a human interaction
partner. It will be demonstrated that, despite the different kinematic chains, a robot
is still able to adapt human motion capture recordings to new situations. In chapter 7
the methodology is employed in a triadic human-robot handover setting. The triadic
scenario allows, in addition to action recognition and body synchrony between both
interactants, object rotations and positions to be represented during task demonstra-
tion. As a result, the robot is able to account for variations of such during runtime
which results in more natural and intuitive human-robot handovers. The performance
of the approach is evaluated in a within-subject study and compared to state-of-the-art
handover methodologies.
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Fig. 1.4.: Overview of the main chapters. Based on related work on imitation learning in chapter 2
and the mathematical concepts in chapter 3 a novel interaction learning framework is developed (see
chapter 4). The methodology is evaluated with virtual characters in a controlled virtual environemnt
in chapter 5. Chapter 6 adopts the approach in complex human-robot interactions that involve body
synchrony and spatiotemporal adaptation. In chapter 7 the framework is employed in a triadic human-
robot handover setting.
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2. Related Work

The extensive body of research in the field of Human-Robot Interaction (HRI) started
to evolve around turn-based scenarios featuring cooperative goals. More recently this
focus shifted to continuously planning robots that collaborate with people and ap-
proaches emerged that directly target concurrent behavior execution. The amount of
open research questions and the increasing number of publications suggest that con-
current and interdependent interactions are the most difficult ones to implement, as
they require continuous situation monitoring and motion adaptation in realtime. A
similar shift can be observed in Virtual Reality (VR) research even though it is ded-
icated to character animation. Both fields seek control algorithms that enable agents
to engage in seamless interactions with people and in doing so they focus on the same
research topics such as motion recognition and response generation. Since the aim of
this thesis is the development of an interaction learning methodology that is applicable
in both areas, the following literature review introduces existing approaches from both
fields. Their applicability to interaction learning, i.e. the learning from two-person
task-demonstrations is discussed in detail and key benefits as well as limitations are
highlighted.

2.1. Learning Human-Character Interactions

In the field of computer animation various methods have been proposed for animating
virtual characters in interactions with users [29–33]. Despite these results most exist-
ing techniques require a skilled animator to control the animation and they rely on
conventional input devices such as mouse or keyboard to trigger pre-defined motions
interactively. More recently however, the advent of cost-effective depth sensors such as
the Microsoft Kinect camera, enabled researchers to capture live user motions. As a
result motion capture became accessible to a broad audience. With the rise of these sys-
tems traditional speech and gesture input paradigms gave way to adaptive animation
techniques showing the growing interest in seamless human-agent interactions.

When developing such methods, however, one import necessity is the classification
of human behavior during an ongoing interaction with the character. A successful
classification allows an agent to react in a believable manner and, thus, provides a
more intuitive and natural interaction experience to the user. At the same time the
requirement for online motion adaption emerges. In order to react to human motions
appropriately, the agent not only needs to classify the observed behavior but also
adapt its own motion to best fit the current situation. Towards that end different
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example-based methods have been introduced. In [34] for example the authors propose
a framework for online action recognition using histograms. Here, live user motions
are mapped on motion capture samples using Dynamic Time Warp (DTW). Additional
temporal properties are preserved using dynamic programming.

Also based on motion capture recordings, Camporesi and colleagues [35] describe
a character animation framework for real-time motion blending. For that, several
example motions are captured using a reduced marker set. During runtime agent
motions are generated by blending example motions to new situations. The underlying
minimization problem, i.e. motion blending, is efficiently solved which allows for real-
time motion generation.

Xiao and colleagues on the other hand propose a human-agent interaction system
that relies on trained user gestures [36]. During training motion capture in conjunction
with a data glove is used to extract user poses. Then a k-dimensional tree (k-d tree)
is constructed based on the resulting 32-dimensional feature vector. During runtime a
nearest neighbor search is employed to classify live user postures which in turn trig-
ger agent responses. Since the classification accuracy highly depends on the employed
distance metric, the authors argue for a general Mahalanobis-metric [37] in contrast tra-
ditional Eulclidean distances. In doing so higher classification accuracies are achieved
for large data sets. However, as the method proposed by Camporesi [35] as well as
Xiao [36] rely on exhaustive training data it is the user’s responsibility to forsee all
possible interaction scenarios. At the same time Xiao et al. do not optimize agent
responses which increases the amount of required training data further. These limita-
tion render both approaches unfeasible in real-world settings, i.e. when the amount of
interactions increases.

To study the influence of interaction on human perception Taubert and colleagues [38]
present an approach based on a hierarchical probabilistic model. Each layer is com-
posed of a Gaussian process latent variable model (GP-LVM) with a Gaussian process
dynamical model (GPDM) on top. At first, each kinematic marker of both interac-
tants is mapped onto a latent variable in a bottom layer. The interaction between both
actors is then computed in the second layer, called interaction layer and a mapping
between three latent variables and the bottom layer is constructed. In a final layer,
named dynamic layer, a GPDM encodes dynamic dependencies such as velocities and
accelerations. During runtime interactive motions are inferred by back projecting the
user’s current hand position into latent space, yielding an interaction variable in the
interaction layer which is in turn projected down to extract joint angles for charac-
ter animation. However, due to the computational expensive nature of the underly-
ing probabilistic algorithm and the requirement for exhaustive training data, model
learning is a time consuming process. At same time only a single interaction can be
synthesized during runtime limiting the system to one scenario.
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2.1.1. Approaches based on Two-Person Demonstrations

Towards the goal of motion recognition and response generation, Vogt et al. learn a
continuous mapping function between user poses and agent responses [3]. In contrast
to the above techniques, the authors use motion capture data of two interactants.
After recoding two-person interactions, a low-dimensional space is computed for each
interactants’ joint angle data using PCA. The problem of inferring an agent’s response
during runtime is interpreted as a mapping problem. It is argued that for each point of
user’s posture space a corresponding point the agent’s posture space can be extracted.
The required mapping function is approximated with an Artificial Neural Net (ANN).
Querying the net during runtime using the user’s motion as input, seamless agent
responses are computed.

Due to the generalizing nature of the network, poses that are not part of the initial
recording are still mapped to character responses. Also, the authors argue that by using
a recurrent neural network instead of a traditional feedforward net, past user poses are
incorporated allowing for various interactions to take place. One drawback is however
that joint angle data is used for model learning which naturally yields a mapping
function in joint angle space. The problem that arises is that a robot’s posture might
be optimal with respect to joint angle values but suboptimal in task space, i.e. tool
center point coordinates. The lack of goal-driven optimization in task space renders
the approach impractical in scenarios where precise manipulation is required.

The need for distance preservation has also been recognized by the computer graphics
community, which eventually lead to Interaction Meshes (IMs). First proposed in non-
realtime environments, IMs [39] are an adoption of Laplacian Mesh Editing (LME) [40]
to virtual character animation. For that a mesh is constructed between the joints of
both interactants as well as points sampled on their surface. Using LME the net is
deformed to fit the animators’ requirements, such as motion styles, character heights
or varying skeleton proportions. It is thereby important to note that the net’s topology
has a strong influence on its overall generalization capability. A thorough analysis of
this is presented in chapter 5.

The method has later been adopted to human-agent interactions [41]. For that
additional constraints such as foot contact constraints and velocity constraints have
been included into the optimization procedure. However, in order to react to ongoing
human motions an appropriate reference IM has to be selected at each time step. For
this, Ho and colleagues use a k-d tree classification to store all postures of the active
interactant, i.e. the user. The k-d tree is queried during runtime with the user’s current
posture as input, yielding a motion capture frame from the initial recording as well as
the corresponding IM.

One problem that arises is that similar user postures should trigger different re-
sponses of the virtual character depending on the current situation. The beginning of
a high-five interaction for example might very well suggest a hand-shake interaction.
However, using the k-d tree a character’s response alternates between the behaviors
depending on the closest match of the user’s pose. This leads to visually unpleasing
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results. At the same time Ho et al. synthesize a character’s motion solely based on
a single user posture and the last neighbor search result. This limits the temporal
context of the response generation to two poses and long-range temporal dependencies
are not considered. In order to distinguish between interactions that share similar
segments, larger memories have to be taken into account to animate the character
in a believable/contextual manner. Since the required contextual information is not
incorporated, the method thus fails to compute reliable results for varying interactions.

The above algorithms indicate an interest in adaptive motor control schemes that
allow for seamless human-agent interactions. A common goal among researchers is an
increase in user immersion which is achieved by generating agent responses tailored to
the current situation. In doing so, motion capture is a key technology as it is used
to track user motions in the real world while at the same time enhancing the user’s
experience as no traditional input devices such as key boards are required [38]. An
important insight is that by utilizing one’s own motion as the main way of interacting
with the agent more intuitive and natural interactions emerge. Also, adaptive responses
that take the specifics of the current situation in to account are in general perceived
more natural in contrast to predefined animations. This increases the user’s experience
further.

Focusing on the same naturalness and intuition, roboticists strive for similar goals
in human-robot collaboration research. However, whereas virtual characters operate
in simulated worlds, robots need to consider physical limitations and constraints of
the real world. This increases the complexity of response generation algorithms by a
magnitude. Nevertheless a number of approaches have been proposed and the following
section presents an excerpt of them.

2.2. Learning Human-Robot Interactions

The previous section introduced character animation techniques that allow virtual
agents to respond to human motions in a natural and intuitive way. A key aspect
was that by using human motion capture data intuitive and adaptive agent responses
can be triggered. Pursuing the same responsiveness in robots, roboticists proposed
various control approaches which are reviewed in the following. The survey is struc-
tured by the underlying learning algorithm and each method is discussed regarding its
benefits and limitations in interdependent human-robot interactions.

2.2.1. Approaches based on DMPs

Generalizing robot motions from task demonstrations is a long sought goal of roboti-
cists. With the advent of Dynamic Movement Primitive (DMP) a novel learning ap-
proach has been proposed that allows movement planning under uncertainty and allows
inference in unseen situations [42]. The concept follows the assumption that complex
behavior skills are composed of several building blocks and DMPs are considered the
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mathematical representation of such. They are fundamentally based on dynamical sys-
tems, i.e. point attractors. A combination such can be used to model movements over
time. Several lines of work have spun from this approach.

In [43] for example, the concept of DMPs is used and extended to human-robot
handovers. Here, Prada and colleagues update target positions of a attractor continu-
ously during runtime to generalize to unseen positions. In a similar fashion, Ben Amor
and colleagues propose a mixture of interaction primitives, a variation of DMPs for
robot arm control in human-robot interactions [44, 45]. By maintaining a distribution
over DMP parameters, inherent correlations of the joint task are encoded. In doing
so, a robotic arm learns to react to human motions such that behaviors can be exe-
cuted jointly. Unfortunately, interaction primitives require several past user poses as
observations before reliable inferences about the robot’s motion can be generated [46].
This increases the delay and the risk of generating responses that are unsuitable in
the current situation. So far, interaction primitives have only be generated based
on kinesthetic teaching. This can be cumbersome and not very efficient for complex
interactions.

2.2.2. Approaches based on GMMs

Other approaches for learning human-robot collaboration use force measurements to
anticipate human intentions. Rozo and colleagues for example propose a time-dependent
method to mimic forces and positions in the context of transportation tasks [47]. Here
a robotic arm is kinesthetically trained to match a user’s hand while carrying an object.
A GMM is computed to approximate task-specific parameters. The model is later em-
ployed during runtime to infer velocities, positions and forces in ongoing interactions.

GMMs are also used in dressing scenarios [48] where a robot learns to assist a human
to put on a jacket. In this context the GMM models user joints captured from several
depth images. During runtime the learned model is employed to recognize user motions
and adapt pre-defined robot gripper poses to new positions.

Tanaka et al. [49] estimate user positions in an assembly line setup and implement
a control scheme so that a robot passes objects and tools to the user whenever they
are needed. Using a laser scanner the area of interest, i.e. the region in which the user
operates, is first sampled from task demonstrations and then discretized equidistantly.
To obtain binned data for training a Markov chain the positions are approximated by
a set of predefined Gaussian distributions yielding a GMM. During runtime the user’s
position is captured by a laser scanner and the most likely distribution of the GMM
is inferred. A robot trajectory is computed that specifically targets the mean position
of the inferred Gaussian with an additional user-set offset. The underlying timing, i.e.
when to pass the next object or tool, only depends on the previous state of the trained
Markov chain. Whenever an object is picked up by the user, a timer is started and the
next object is fetched and delivered.

While the approach shows interesting results in the considered assembly line setup,
the static order of steps encoded in the Markov chain is restrictive in dynamic envi-
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ronments. Situations might arise in which the user approaches its work place from a
different angle and, thus, a different distribution in the GMM is inferred. Since the
robot’s motion and the corresponding timing are planned independently, the robot’s
behavior might be unsuitable or even obstructive in a given context.

Another force based approach is proposed by Evrard and colleagues [50, 51]. They
present a dyadic haptic collaboration scenario in which a bipedal humanoid robot
carries an object with a human user. These transportation tasks typically require an
action strategy on how to perform the task collaboratively, i.e. a plan where motion
directions and operation roles (leader/follower) are negotiated. In order to create such
a plan, Evrard et al. compute a GMM over correlations of joint velocities, positions
and forces of both the human and the robot. Unfortunately, the robot is controlled
remotely during training, which is unintuitive especially for high degree-of-freedom
robots such as robotic arms.

During runtime the robot interprets forces as guidance for a one dimensional lifting
motion by utilizing the learned GMM. Doing so, Gaussian Mixture Regression (GMR)
is employed to analyze perceived joint forces to compute suitable motor commands
that best fit the current situation. Interestingly, the robot is able to seamlessly switch
between leader and follower roles. However, only a single scenario can be modeled,
rendering the approach unfeasible for settings with varying interactions.

2.2.3. Approaches based on HMMs

Similar to [50], Kulvicius et al. [52] address physical transportation tasks. Instead
of modeling the forces directly, both interactants are treated as two point particles
coupled by a virtual spring. The forces applied by the interaction partner and, thus,
to the particles, tell the robot how to adapt its own trajectory. In the early learning
phase, the robot uses the measured force values to follow the human guidance during
task execution. Perceived force and motion patterns are then used to incrementally
learn a HMM that predicts the human’s next action. Over time the robot learns to
take over a more active role in the interaction.

Instead of using forces to differentiate between phases of an interaction, HMMs are
also used to classify tracking data. In [53] for example human motions are mapped
to high-level actions. Each of them corresponds to an HMM that encodes the robot’s
response. In order to generate a suitable robot behavior that take the current situa-
tion into account, direct marker control is used. For that pre-recorded motion capture
samples are adapted to the robot’s kinematic chain by attaching virtual springs to the
robot’s extremities which in turn pull joints towards recorded marker positions. Dur-
ing physical human-robot interaction an additional virtual spring is placed between
the leading hand of the user as well as the robot and in doing so the robot is able to
spatially adapt its behavior. Due to the temporal features of HMMs, interactions such
as high-five or waist-turns can be created seamlessly at every frame. However, based
on the single connection between both interactants only a limited amount spatial gen-
eralization is incorporated. This contrasts to the approach developed in the presented
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Fig. 2.1.: Left: A graphical model of a Path Map HMM. It relates time-series behavior of a cue-system,
to an internal node system (depicted white). In contrast to traditional HMMs two observable nodes
are connected (depicted red and blue). Here, joint angle data is observed from the human interaction
partner (red) and mapped to corresponding joint angle data of the robot (blue). Right: A latent space
of a high-five motion reduced in dimensionality using PPCA. Each point resembles a pair of poses
reduced to 2 dimensions. Even if only one posture is observed during the interaction with a robot,
response poses can still be inferred. The figures are adapted from [54, p. 3259]

thesis where additional relationships and, thus, more complex multi-joint interactions
that involve body synchrony of both agents are trained.

To model the mutual dependency between two interactants Path Map Hidden Markov
Models (pm-HMMs) are proposed by [54]. Typically, an HMM is defined in such a way
that each hidden node is connected to one observable node only. In [54] however a
different graph structure is assumed. Here, a path map relates the time-series behavior
of a cue system to that of a target system. This is achieved by connecting each hidden
node to two observables nodes: one observable for the cue system and one observable
for the target system. A path map for the task of interaction modeling can be seen in
Fig. 2.1.

As stated by Ben Amor et al. the HMM-based learning algorithm provides a rich set
of tools for recognizing and estimating the current state of the interaction [54]. Yet,
it comes at the price of high computational demands as well as limited generalization
abilities. Using the HMM, no control over the robot’s response posture is provided and
only the most similar pose from the recording is inferred. Given an optimal output of
the HMM, further optimization might be required in order to adapt the response to
the current situation. For example, a high-five motion might be optimal in joint angle
space, given the inference of the HMM, but it might also be suboptimal in tool center
coordinates. What this results to is that optimization and response inference should be
carried out in task space rather then joint angle space. This is in generally not the case
in [54] which renders the approach unsuitable for precise and goal directed motions.

Another HMM-based approach is proposed by Medina et al. [55]. In contrast to the
above methods, the model is utilized in a hierarchically clustered fashion to incremen-
tally learn form human-robot interactions. It utilizes several channels of communication
to gain experience in a unsupervised manner. In the beginning, the robot passively
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follows user forces using a first order admittance controller while continuously storing
forces in a database. If an input force occurs recurrently, the user is tasked to attribute
that segment with a semantic description. This knowledge is used during runtime to
ask about desired motion trajectories. Whenever a recognition is successful, either by
querying it from the database or with additional certainty from human feedback, a
response motion is generated by controlling gains of the admittance controller.

Targeting human-robot handovers, HMMs have also been used in [56]. Here, a two-
stage process is implemented that, first handles the physical aspect of the hand-over
tasks using the HMM, and, second, reasons about the user’s commitment to the given
task using a higher-level cognitive layer. The latter evolves from the behaviour expected
from the human user. In contrast to other methods the HMM learned in [56] models
states of the robot on a higher-level, e.g. robot is picking up object and user grabs
object. During a live interaction, the user’s overall commitment to the task is inferred
by evaluating the current state of the HMM in addition to gaze directions and head
orientations. In doing so, the robot is able to evaluate if the user is ready to receive
the object and, if so, executes pre-defined motions accordingly.

However all actions of the robot follow the same motion providing no adaptations
in joint angle space. For example, the pick-up location and the hand-over position of
the object are assumed static, i.e. they remain unchanged throughout all interactions.
Relying on the user’s ability to accommodate for that limitation, e.g. by moving towards
the robot, can be counterintuitive. While the above approaches present valuable insight
for effective motion recognition, they still lack adaptation of such to account for spatial
variations. As a result, additional optimization techniques are called for that allow
online alternation of robot motions so that the current user pose can be taken into
account.

2.2.4. Approaches based on IMs

In order to adapt robot responses to new situations while preserving spatial relation-
ships between the interactants, IMs have been proposed [39]. To compute optimal
paths for a robotic arm in semi-dynamic environments Ivan et al. [57] propose a dy-
namic variant of IMs. Here, proximities between the robot and its environment are
modeled with IMs at frame level and their spatial relationships are maintained dur-
ing motion execution so that the robot is able to adapt to changes in its surroundings.
However, they are only incorporated offline, rendering the approach unsuitable for real-
time human-robot interactions. At the same time, human motions are not taken into
account and the interaction with them is not supported.

In a similar fashion, Ho and Shum [58] utilize IMs and create various net topologies
between a humanoid robot and its constrained environment. In doing so they are able
to compute a robot behavior that successfully avoids contact with obstacles while at the
same time retaining the original shape of the motion. The control program, however,
is computed offline and experiments are only shown in simulated worlds. This is due
to the fact that the method requires vertices sampled on the robots surface and its
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surrounding environment, which is unfeasible in real-world settings.
In contrast to the above Yang et al. [59] present an HRI scenario, where a lightweight

robotic arm is avoiding human contact while executing a behavior. During task execu-
tion the robot’s motion is encoded in IMs and net topologies are dynamically computed
by evaluating distances between the robot’s joints, its motion targets and detected ob-
stacles. By planning the motion incrementally the robot’s behavior is adapted during
runtime and obstacles, such as users entering the workspace, are safely avoided. The
task structure of the presented experiments can be considered independent and the
robot essentially follows its own goal, i.e. continuing its motion. As a result the ap-
plicability to interdependent human-robot interactions is limited since these dynamic
scenarios do no provide long-term targets for the robot to reach for. Similar observa-
tions hold true for the IM variants in [57] and [58].

The above approaches show the feasibility of IMs in the field of robotics. They
do however lack user detection and state estimation which prohibits the robot to dif-
ferentiate or react to user poses. This renders current IM methods inapplicable in
interdependent HRI settings.

2.2.5. Hybrid Approaches for Modeling Human-Robot

Interaction

In [60] Donner et al. propose a force-based approach for cooperative swinging of ob-
jects. Cooperative swinging is, in contrast to the applications scenarios pursued in this
thesis, a repetitive and cyclic interaction. It features a very visible amount of body syn-
chrony and requires precise timing as well as motion control to maintain certain energy
levels, i.e. swinging heights. To manipulate this energy during an interaction with a
human partner, the methodology shown in [60] continuously extracts pulse forces from
a simplified pendulum model. This approach is, due to its low computational complex-
ity and load during runtime, very suitable for cyclic time-dependent interactions. It
scales, however, unfavorably to interaction structures that do not feature high degrees
of periodicity. The application scenarios pursued in this thesis not only depend upon
body synchrony but also task-space behavior coordination. This is not provided in the
approach of Donner et al. which renders it unsuitable in the considered human-robot
collaboration tasks.

From a more cognitive point of view Nikolaidis and Shah [61] show the advantages of
cross-training for HRI. It is essentially a technique often used in human team training
where all team members assume the others’ role in a joint task iteratively. They thus,
experience the collaborative plan hands-on from different perspectives. The authors
argue that this is beneficial for a robot as it is able to better understand its human
interaction partner. In order to do so, however, a shared model of the joint task is
required. As the computational teaming model of the robot and the mental model of
the human interaction partner converge, it is expected that the same pattern of internal
states are visited. The similarity of both models is computed by evaluating the overlap
of executed actions and the more actions are taken by both interaction partners the
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better the computational model performs. In an extensive survey the authors highlight
the increased interaction performance in terms of fluency. Here, a human user and a
robot are tasked to drill a hole and insert a screw jointly . In the end an increase
in concurrent motions by over 70 percent and a reduction of human idle times of 40
percent clearly shows the benefits of the shared model.

Addressing human-robot interaction timing, [62] present a robotic assistant scenario
where a robot delivers parts and tools to a human worker. In contrast to the above
approaches the robot’s behavior is planned independent from that of the human in-
teraction partner and objects are handed over passively with a tray. In a survey the
authors compare interaction times of human-robot with human-human trials. They
conclude that human-robot interactions last significantly longer, compared to human
standards, despite the robot being noticed much earlier during an interaction. This is
arguably not due to the robot’s saliency, but rather the human’s comfort which affects
its perception. It stands to reason if the observed degradation of fluency during the
joint task can be decreased by planning the robot’s behavior interdependently from
the human’s motion. The authors state that this could be achieved with imitation
learning, limiting the effects of discomfort through intuitive and legible motions.

In an earlier work, Sakita et al. [63] also address timing and interruption during
human-robot collaboration. The scenario is developed around three ways of engaging
in a Lego assembly task: (1) executing the action simultaneously with a user, (2)
disambiguating a situation or (3) taking over for the human. The robot’s action during
runtime is inferred by estimating the user’s intent using gaze directions and fixation
times. While the interaction relies on nonverbal communication symbols, the approach
is still strictly turn-based and it does not offer anticipatory motor control for the robot.
More recently, Awais and Henrich [64] propose an intention estimation approach based
on finite state machines for more ambiguous situations in which a human’s behavior is
not obvious. Instead of waiting for the situation to become clear, a proactive action
is triggered and adapted to the most likely intention. Both methodologies, [63] and
[64] do not include interdependent motor movement coordination or timing of the joint
task.

Also focusing on fluency in human-robot collaboration, Cakmak et al. [65] directly
address coordination timing in hand-over tasks. To suggest that a robot is ready to
hand-over an object, several poses are defined. These are distinct from other things
that the robot might be perceived to be doing when it has an object in its hand. This
postural difference is called spatial contrast. In a similar vein the underlying timing
during the hand-over is named temporal contrast. Cakmak and colleagues found that
this positively effects the human’s perception of the task and improves the readability
of the robot’s behavior. However, despite that finding, no elaboration on the robot’s
motion is given, focusing on its final posture instead. It is reasonably save to assume
that motion has a similar effect on the robot’s readability but further investigation is
required to validate that hypothesis.

Timing in human-robot interactions has also been addressed in [66]. Here a Time
Petri Net (TPN) is employed to model actions for a tower of Hanoi game, which is well
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known for its ability to structure knowledge from various input channels, such as in
multi-modal communications. Within this context, interaction fluency is interpreted as
the robot’s ability to shift from different actions and, thus, offering smooth recoveries
after task interruptions.

In similar vein [67] and colleagues focus on timing in human-robot collaboration.
They propose a probabilistic approach for user action recognition and time-sensitive
planning of robot behaviors in an assembly task. Here, a robot is programmed to place
and replace several boxes depending on the current progress of an assembly task. For
that user actions as well as the state of the task have to be estimated to minimize
the time spent on waiting for the next container. They propose a sensor model to
heuristically infer the time when a robot has to switch boxes and they conclude that
correctly estimating a sensors reliability is key to fluent human-robot collaboration.

Despite the results regarding motion and interaction timing the above approaches
suffer from the lack of motion adaptation mechanisms. This limits the applicability of
the methods but also indicates the need for optimizations techniques.

Similar to [59], Ceriani et al. [68] implicitly address timing in human-robot col-
laboration by proposing a collision avoidance methodology based on automatic task
constraint extraction and temporal adaptation at frame level. In their approach the
authors harness joint redundancies of a robotic arm and optimize a given trajectory to
avoid human contact using additional distance sensors attached to the robot. The un-
derlying velocity constraints of each actuator belong to one of the following types: (1)
hard constraints, i.e. instantaneous constraints that possibly over-constrain the system,
(2) skill constraints, i.e. constraints that can be relaxed without causing the system to
fail (such as temporary suspension) and (3) soft constraints, i.e. constraints concerning
the position and velocity of redundant actuators. Using a state machine template and
the extracted constraints, a safety strategy is then automatically generated. During
runtime a collision avoidance trajectory is computed for the robot based on the in-
teraction danger assessment and Cartesian control [69]. In contrast to [59] no active
tracking of human motions is incorporated and the system purely reacts at frame level
by evaluating distance sensors. While this approach is suitable in the considered in-
dustrial applications, i.e. for avoiding human contact while continuing a given task, it
is nevertheless unfeasible in physical human-robot collaborations where adaptive robot
responses need to be triggered in order to retain a joint interaction goal.

2.2.6. Comparison of Methods

Many of the above approaches program robot behaviors explicitly (see Tab. 2.1 Learning-
based). Despite the great progress in recent years, this paradigm still remains unintu-
itive and unfeasible especially for non-experts. The reason for that is the complexity
and the dynamic nature of human-robot interactions. Many parameters cannot be fore-
seen beforehand which renders the problem inherently hard to program. As a result
most approaches focus on a specific interaction, such as handovers, and do no scale to
different scenarios (see Tab. 2.1 Multiple Scenarios).
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Similar observations can be made with respect to learning-based approaches. In
contrast to explicit programming however the generation of adaptable robot motions
is not the limiting factor. Instead, recognizing user actions is the most difficult feature
to incorporate. Besides the author’s own results in the field, i.e. [3] and [54], only [47]
and [45] allow varying interactions with the robot. Other approaches feature only a
single interaction skill for the robot, such as handovers or reach motions. The reason
for that is the difficulty in estimating the phase of an interaction when several scenarios
are considered. Quite often similar user postures are obtained in several interactions,
rendering contextual analysis a necessity. On the other hand, it is interesting to note
that most learning methods feature interdependent motion generation and concurrent
task execution, a benefit not present in explicitly programmed interactions. This is of
course due to the inherently complex nature of two-person interactions.

While the presented methods produce impressive results they do not utilize temporal
and spatial relationships of two interactants and they focus on a single agent instead,
viz. [45, 47, 52]. In all reviewed approaches, the robot is trained kinesthetically in
such way as to mimic human motion. While manually operating the robot circumvents
the correspondence problem, it can be tedious and error prone task especially for high
degree of freedom robots. Motion capture on the other hand offers the benefit of
tracking two interacting partners simultaneously and consequently provides additional
insight into body synchrony and dynamics. Also, users are captured unobtrusively and
they are able to interact naturally. This in turn comes at the price of an additional
optimization step required to project the human motions onto the robot’s kinematic
chain.

Adapting robot motions to new interaction scenarios with users can be achieved with
various methods. Currently, there are two main research direction opposing each other.
On one side DMPs have been proposed to model motor control using probabilistic
models [70] and on the other side IMs that explicitly model proximities between the
interactants. Both methods are able to adapt previously recorded behaviors to unseen
situations. The latter however has the benefit that it can be applied instantly whereas
DMPs require several past user postures to before robot responses can be inferred.
This increases latencies of DMPs as pointed out by [46]. Also, DMPs extract GMMs
from several task demonstrations in order to be able to generalize to new situations
which in turn increases the amount of training data required to learn the model. IMs
are generated from a single motion capture recording while still offering a reasonable
degree of spatial generalization. In the end IMs seem to be superior in terms of training
efficiency but their ability to generate seamless robot motions in varying interactions
has yet to be confirmed.

2.3. Conclusion

The above literature review and amount of articles published in recent years clearly
indicate an interest in interactive learning schemes. This research activity also suggests
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Authors
Learning-

based
Multiple
Scenarios

Interdep.
Motions

Concurr.
Actions

Real-
Robot

Maeda et al. [70] • • • • •
Ewerton et al. [45] • • • • •

Rozo et al. [47] • • • • •
Vogt et al. [3] • • • • •

Ben Amor et al. [54] • • • • •
Kulvicius et al. [52] • ◦ • • •

Grigore et al. [56] • ◦ • ◦ •
Nikolaidis and Shah [61] • ◦ • • •

Gribovskaya et al. [71] • ◦ • • ◦
Medina et al. [55] • ◦ • • •
Evrard et al. [50] • ◦ • • •

Yang et al. [59] ◦ • • • •
Gao et al. [48] ◦ ◦ • • •

Chao and Thomaz [66] ◦ ◦ • • •
Donner et al. [60] ◦ ◦ • • ◦

Goto et al. [72] ◦ ◦ • • •
Cakmak et al. [65] ◦ ◦ • ◦ •

Awais and Henrich [64] ◦ ◦ ◦ • •
Unhelkar et al. [62] ◦ ◦ ◦ • •

Ceriani et al. [68] ◦ ◦ ◦ • •
Tanaka et al. [49] ◦ ◦ ◦ • •
Sakita et al. [63] ◦ ◦ ◦ ◦ •

Tab. 2.1.: A comparing overview of recent human-robot interaction methodologies which are closely
related to the approach developed in this thesis. The table differentiates learning and model–based
approaches that feature single or multi-task scenarios with interdependent/independent actions that
are executed either concurrently or turn-based. The last column indicates if real-world experiments
have been conducted or if results have been achieved only in simulation.

that no ideal approach has been found so far and that the community still strives
for algorithms that allow intuitive skill transferal to robots. Reflecting that interest,
several approaches have been put forward and learning from demonstration emerged
as the most promising methodology. Imitation learning in particular is of significant
importance as it utilizes the effectiveness of human teaching. The ease with which
knowledge can be transferred to agents is the main reason for its popularity.

To evaluate the performance of these approaches several scenarios are envisioned
and the field of robotics centers around industrial applications. Current settings range
from collaborative assembly to transportation tasks.

Computer animation research on the other hand targets wider application areas.
Whereas roboticists focus on programming for cooperating robots, computer animation
scenarios are also diversified to competitive gaming setups through to disaster training
systems. Nevertheless, the main vision - and to some extent the requirements - of the
two research fields are similar. Both seek seamless human-agent interactions regardless
of their individual task structure.
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While recent results are encouraging, there are still various methodological short-
comings and limitations that need to be addressed. Most notably, recent literature
lacks insight into problems that arise from the imitation of two-person interactions.
Whereas current methods almost exclusively focus on a single agent, not much re-
search has been presented that concentrates on two-person interaction skills. This
thesis aims at improving on these limitations by generalizing the concept of imitation
learning to interaction learning, so that synthetic artifacts can learn how to engage in
seamless human-agent interactions. Special interest is put on interdependent interac-
tions where both actors pursue a common goal and their behavior is influenced by the
respective other. These interactions tend to be the most difficult ones to anticipate
as their complex spatial and temporal relationships prohibit playback of recorded mo-
tions. Existing methods do not capture interaction dynamics or body relationships of
the interactants, with the result that an agent’s response does not take the ongoing
situation into account. This increases the cognitive load burdened on the user and
yields unintuitive interactions as he has to adopt to the robots behavior instead. Us-
ing human-human demonstrations it is hypothesized that physical interactions can be
imitated by a robot, providing more intuitive and human-readable behaviors during
runtime. Addressing a fundamental drawback of current methods, where only a single
agent is observed, special emphasis is put on smooth and instant responses of the agent.

Also, existing methods for interaction learning are bound to a single kinematic struc-
ture which is the robot or virtual character at hand. They are, as a result, not applica-
ble in human-character and human-robot interaction settings. In the presented work,
virtual characters as well as anthropomorphic robots are controlled in various scenar-
ios using the same learning framework. One key aspect is thereby that the method is
purely data-driven and combines discrete action recognition with continuous movement
control in a one-shot learning approach. Whereas existing methods require extensive
training phases the presented methodology demands only a single task demonstration.
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3. Mathematical Foundations

For a robot to learn from human-human demonstration it is essential that the com-
plex relationships between interactants and their corresponding dynamics effects are
captured. In this chapter core data representations that allow modeling of the various
parameters are introduced. They are essential for the development of the interaction
learning framework of this thesis.

Before learning an interaction, the behavior of two people demonstrating a collab-
orative task is captured in Cartesian coordinates. The representation of poses and
kinematic chains is discussed in section 3.1. The resulting motion capture recordings
are inherently high-dimensional and, thus, require Dimensionality Reduction (DR).
A technique often employed in literature is PCA. Its mathematics and implications
to tracking data is elaborated in section 3.2. Given a set of motion capture record-
ings, a robot needs to extract relevant information about joint relationships between
the interactants in order to be able to generalize a demonstration to new situations.
These relationships have been successfully extracted for character animation settings
using differential coordinates. Their underlying mathematical concept is introduced in
section 3.3.

Trajectories in Cartesian and low-dimensional space are essentially low-level rep-
resentations of motions. However, some of the considered human-robot interaction
scenarios are composed of several subtasks which require high-level recognition capa-
bilities. In order to recognize human motions in these situations, HMMs are used.

Cartesian Coordinates

Section 3.1

Motion Tracking

Low-Dimensional Coordinates

Section 3.2

Dimensionality Reduction

Relationship Information

Section 3.3

Interaction Meshes
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Chapter 3: Mathematical Foundations

Fig. 3.1.: The figure visualizes coordinate representations that are introduced in this chapter. Each
has its own advantages and limitations which are discussed in the corresponding section.
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Overall, the chapter is structured in such a way as to give the reader a general
overview of the mathematical concepts and representations involved (see Fig. 3.1).
Each section features a broad introduction to the concept at hand. It provides by
no means an exhaustive view on the matter and it is instead meant to highlight key
aspects. The interested reader is referred to the respective publications, which are
listed at the end of each section.

3.1. Motion Tracking and Representation of

two-person Interactions

The human body is a highly articulated structure composed of a hierarchical system
of joints. A posture is defined as a vector of joint rotations and positions with respect
to a reference coordinate system (see Fig. 3.1 left). Motions are time series of postures
and they can be different with various motion capture technologies.

Optical tracking systems, such as A.R.T. ARTRACK5 [73] and Vicon Bonita [22]
for example are based on markers attached to the users’ bodies to record the movement
of joints. Others reconstruct poses based on depth images, e.g. the Kinect depth sensor
[74] or compute joint positions based on infrared video streams, e.g. organic motion
BioStage [75]. In all of these systems a user pose or posture p is expressed in Cartesian
coordinates as a vector of N joint positions. A motion R is then naturally defined as
a time series of poses p1:T over T timesteps:

p = (x1, . . . , xN , y1, . . . , yN , z1, . . . , zN) x, y, z ∈ IR (3.1)

R = p1:T = [p1, . . . ,pt, . . . ,pT ] t ∈ {1, . . . , T} (3.2)

An interaction between two users is defined as two motions Roa and Rco for the first
and second interactant respectively.

When using marker-based tracking systems for motion capture, it is noted that
marker positions do not correspond to joints directly. During calibration however,
relative translations and rotations with respect to a human limb can be extracted and
stored in a transformation matrix. The resulting affine transformation is applied at
each motion capture frame, yielding recovered joint locations.

In order to record two-person interactions, two interactants are tracked simultane-
ously and their poses are extracted at each frame. When doing so, twice the amount
of markers is required even though single person tracking already suffers from the their
limited number. As a result, the human’s highly articulated joint structure is captured
only partially1. Nonetheless, when sparse maker set-ups are used, joint locations can be
recovered using Inverse Kinematics (IK). Literature distinguishes between analytical
and numerical approaches. The former are inherently hard to derive since high De-
gree of Freedom (DOF) kinematic chains are underconstrained. In general, there is an

1A.R.T. ARTRACK3 systems for example are able to track 18 makers at 100Hz.
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infinite number of joint angle configurations that match a tracked marker set. As a
result, the numerical reconstruction methods are used in real-world situations where a
analytical closed form solutions are infeasible [76, 77].

In the proposed two-person interaction model framework, motions can be represented
either based on joint or marker locations. As marker set-ups are typically sparse, the
latter often yield more compact representations. Using IK, it is however always possible
to convert a motion defined via marker positions into a motion based on joint positions,
if considered beneficial in the respective application.

3.2. Dimensionality Reduction of Motion Capture

Data

Motion capture often yields very large datasets which is due to the large number
of markers required to track the human body. Quite often 16 markers or more are
tracked, resulting in 48 individual measurements per motion capture frame (3 Cartesian
coordinates for each marker). However, it is known that human motion intrinsically lies
on low-dimensional manifolds and Dimensionality Reduction (DR) should be applied to
strip off redundant information [11]. The goal of DR is to reduce the number of required
components to represent data, while retaining the information within it. Minimizing
the amount of memory needed to store motion capture data is just one benefit of
DR. More importantly, it can be seen as a tool for limiting a learning algorithm’s
search space. As these algorithms tend to be computationally expensive, reducing the
search space improves runtimes, which in turn is of particular importance in real-time
applications.

3.2.1. Principal Component Analysis

Over the years, different DR techniques have been experimented with and PCA2 is
a widely used linear DR variant. The main reason for its popularity results from
the well founded mathematical concept as well as its low computational complexity.
As compression of data is achieved with a single matrix operation, computational
efficient solutions can be implemented, rendering the approach suitable in real-time
applications.

Ben Amor and colleagues showed that the number of dimensions required to repre-
sent tracking data can be reduced to 2 to 3, while retaining up to 98 percent of the
information [11]. This indicates that for most motion capture datasets two to four
dimensions retain enough information to reconstruct motions without visible degrada-
tion. In addition, no hyper-parameters often found in other DR techniques are required.

2PCA is also known as Karhunen-Loève transform with the difference that it is also applied on non-
centered data. In literature PCA and Karhunen-Loève transform are considered equivalent when
applied to centered data sets.



3. Mathematical Foundations 27

As PCA balances compression and computational load favorably in most applications,
it became one of the most commonly used DR methods for motion capture data.

From a mathematical point of view PCA reduces the dimensionality of a dataset R
based on the covariance matrix Σ of modeled variables. DR is achieved by finding a
small set of orthogonal linear combinations (the Principal Components (PCs)) of the
original variables depending on the largest variance. For that the mean µk of each
dimension k and the corresponding covariance is computed

µk =
1

T

T
∑

i=1

Rk,i (3.3)

Σi,j =
1

T − 1

T
∑

k=1

(Rk,i − µi)(Rk,j − µj) . (3.4)

The diagonal terms of Σ capture the variance of the individual features, whereas
off-diagonal terms store the covariance between corresponding features. The key idea
of PCA is to transform the data so that the covariance terms are zero.

Using eigenvalue decomposition Σ can be written as

Σ = UΛUT , (3.5)

where U is an orthogonal matrix containing the eigenvectors of Σ and Λ is diagonal
matrix with ordered eigenvalues λi of Σ. The eigenvectors hold the PCs, whereas
the eigenvalues store the variance of R. Using the eigenvalues the contribution of
each dimension to the overall information is computed and evaluated. Essentially, the
largest eigenvalue corresponds to the PC with the most information. The cumulative
proportion of the variance that is captured by the first L dimensions is computed as
follows

∑L
i=1 λi

∑N
j=1 λj

. (3.6)

In order to compress the data while retaining the information within it, different
amounts of eigenvalues have to be evaluated. In most applications the amount of
original dimensions N is significantly higher than the number of dimensions L of the
reduced space. The relation L ≪ N thus holds true and only a few eigenvalues are
required in order to describe the variance of the data sufficiently.

PCA is a linear DR technique and the PCs describe an orthogonal sub-system. As a
result, points in R are transformed into lower dimensions with a single matrix operation

p̂ = WT (p− µ) . (3.7)

Here, W denotes a matrix containing the first L eigenvectors column-wise of the data R

with the mean vector µ. p is a point in R which is subject to DR. Reprojecting p̂ from
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low-dimensional space into its original dimension is achieved by rewriting equation 3.7
into

p̃ = µ+Wp̂ . (3.8)

It should be noted that p̃ holds an error that results from the loss of information dur-
ing DR. Overall, the square reconstruction error ǫ of all points is the sum of eigenvalues
of those eigenvectors that were not considered for the construction of W

ǫ = E{‖p− p̃‖2} =
∑

i

λi , i ∈ {i ∈ N : i 6∈ L} . (3.9)

Thus the largest eigenvectors not only account for the largest variance of the data
but also minimize its reconstruction error.

3.2.2. PCA and Motion Capture Data

When applied to motion capture data, PCA creates a so called posture space [11] where
each point corresponds to a posture and a trajectory to a motion when projected back
to its original dimension. They are used in this thesis to compress motion capture data
of two person interactions. In Fig. 3.2 for example a posture space of the giver’s motion
during a handover gesture is illustrated. The underlying motion capture data contains 6
optical motion capture markers and has been reduced to a 3, 2 and 1 dimensional
posture space retaining 98%, 97% and 71% of the information respectively. Color is
used to illustrate how points correlate in each low-dimensional space. Even though
the space has been drastically reduced in dimensionality, a large portion of the initial
information is retained. This is of particular importance for learning algorithms (see
chapter 4).

The increased information density however is not the only benefit of PCA. Another
advantage arises from the orthogonal linear sub-space that is created. It allows tradi-
tional distances metrics such as Euclidean distances to remain applicable. A typical
application scenario where this feature is harnessed are motion capture databases where
a vast number of postures are stored and queried during runtime. Here, a pivotal ques-
tion is what motion capture frame resembles a given query pose most. For this a
comparison to existing postures has to be computed. But instead of calculating dif-
ferences in high-dimensional Cartesian space, low-dimensional representations can be
used, reducing the computational load significantly [78].

3.2.3. Further Reading

PCA is an often used DR technique that is applicable in various applications and
it is particularly well suited for preprocessing motion capture data for learning algo-
rithms [11]. Yet, other non-linear DR techniques have also been experimented with
and alternate approaches have been put forward. The interested reader is advised to
review [11, 79, 80] for recent developments.
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Fig. 3.2.: When applied to motion capture data PCA yields a posture space. The figure illustrates low-
dimensional embeddings of an assembly subtask (see chapter 6) with 3 PCs (left), 2 PCs (middle) and
a single PC (right). Color is used to indicate the consecutive order and correlation in low-dimensional
space.

3.3. Laplacian Mesh Editing and Interaction Meshes

Laplacian Mesh Editing is a widely used free form and mesh deformation technique
developed by the computer graphics community. First proposed by Sorkine and col-
leagues [40] its focal point is the conservation of geometric surface properties during
modeling tasks. An important characteristic is that local details are preserved while
still following a modeler’s guideline on a global level. At its core, vertices are encoded
in differential or Laplacian coordinates rather than their Cartesian counterparts. Since
this graph-theoretical point of view is uncommon in the robotics community, its benefit
and potential for interaction learning might not be obvious. As a mathematical under-
standing is essential for the development of this thesis, the characteristics of Laplacian
coordinates are summarized in the following section. Subsequently the concept of LME
is applied in a character animation setting. The mathematical additions required for
that are formally known as Interaction Mesh (IM) [39] and they build one corner stone
of the presented interaction learning framework. In chapter 4 a significantly extended
version of IMs will developed to spatially adapt two-person interactions to new situa-
tions in real-time. It is thus important to highlight their inner workings in order to be
able to improve on current limitations.

3.3.1. Laplacian Coordinates

In computer graphics meshes are vertices V = (p1, ..,pN) with Cartesian coordinates
pi = (px, py, pz) and a corresponding connectivity. For modeling operations however
they are interpreted from a graph-theoretical point of view. Here, it is considered
that a net is composed of N vertices that are sparsely connected to their topological
neighbor by edges and thereby forming a bi-directional graph. This naturally allows
formal definitions of neighborhood rings. In this sense, the neighborhood of vertex
pi is denoted by supp(i) whereas the one-ring neighborhood, i.e. the vertices directly
connected to pi, is denoted by N(pi).

Given the neighborhoods of vertices in a mesh, differential coordinates can be derived.
Laplacian coordinates are the simplest form of such and their coordinate representation
is obtained by applying the Laplace operator L(pi). Such an operator encodes the
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variation of a function around the neighborhood of a vertex using a specific weighting
scheme.

Let S(pi) be a scheme of approximating pi by a linear combination with other vertices

pi ≈ S(pi) =
∑

j∈supp(i),i 6=j

wijpj . (3.10)

Essentially, the transformation pi − S(pi) is the linear differential mesh operator
of scheme S(pi). There are various weighting schemes used in literature but uniform
weighting and cotangent weights are the most common forms [40]. Despite the fact
that the cotangent Laplacian best fits the continuous Laplace-Beltrami operator, the
former is often used in real-time applications due to its numerical stability [81]. Using
uniform weighting a Laplacian coordinate p′

i of the Cartesian equivalent pi is defined
as the difference between pi and the average of its neighbors:

p′
i = L(pi) = pi −

1

|N(pi)|

∑

j∈N(pi)

pj (3.11)

Here, |N(pi)| denotes the number of neighbors in the one-ring neighborhood of pi,
i.e. the immediate neighborhood of pi. At its core Equ. 3.11 essentially describes pi as
a linear combination of its topological neighbors and thus encodes local details of the
mesh rather than global metrics.

In order to account for all vertices Equ. 3.11 is reformulated, yielding the mesh
Laplacian L







p′
1
...

p′
|V |






= L







p1

...
p|V |






L =











−1 pj ∈ N(pj)
1

|N(pi)|
i = j

0 otherwise
(3.12)

It is noted that this operation accounts for all Cartesian components of pi and
(p′

i,x,p
′
i,y,p

′
i,z) = L(pi,x,pi,y,pi,z) holds true. This in turn implies that L is a block

diagonal matrix.
In the end, solving Equ. 3.12 yields Laplacian coordinates for all vertices. Reversing

that operation however is computationally expensive (see Equ. 3.13). Since L can be
singular with rank N − 1, it is not invertible and the uniqueness of the solution is not
guaranteed.
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(3.13)

To nevertheless recover Cartesian coordinates assumptions on the initial transfor-
mation have to be made. A technique often employed in literature is the fixation
of vertices. E.g. for computer animation tasks, a skilled modeler is required to in-
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troduce a set of positional constraints C which force selected vertices to user-defined
positions [81, 82]. Given a set of those, vertices are anchored, i.e constrained as follows

pi = ci i ∈ C, ci ∈ IR . (3.14)

Each constraint is added as an additional row to Equ. 3.13 rendering the system
overdetermined. It is essential to know that at least one constraint has to be added
(|C| ≥ 1) in order to ensure full rank and, thus, the uniqueness of the solution. A con-
straint is also attributed a weighting term wi to model its importance. Reformulating
the system in Equ. 3.13 to account for all constraints yields the following System of
Linear Equations (SLE)
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(3.15)

Solving the Equ. 3.15 in a least squares sense is equivalent to minimizing the error
functional

EL(p) =

|V |
∑

i=1

1

2
‖L(pi)− p′

i)‖
2 +

∑

j∈C

wj‖pi − cj‖
2 (3.16)

Using least squares to solve the SLE is often favored in real-world applications due
to its numerical stability [40]. However, the approach holds an error and is generally
ill-conditioned. As a result, if one is to convert the mesh back and forth between the
coordinate representations, low-frequency errors can be visible [83]. To limit these
effects, additional constraints can be added [82, 83]. A typical application scenario
where this is required is Laplacian Mesh Editing (LME). Its operating principle is
introduced in the following.

3.3.2. Laplacian Mesh Editing

The process of modeling is often expressed explicitly in Cartesian coordinates although
it is more desirable to model shapes intrinsically, i.e. as a set of functions, to preserve
local detail during editing. Among others LME [40] established itself as a valuable
framework which features such operations. It does so by interpreting modeling as a
local neighborhood manipulation rather than an explicit global transformation. The
key idea of LME is that translations in Cartesian space are reflected as positional
changes in Laplacian coordinates and, consequently, expressed by weight changes to
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(a) Undeformed mesh (b) Translation (c) Rotation (d) Scaling

Fig. 3.3.: Using Laplacian coordinates the process of modeling is expressed in local coordinates
(see (a)). (b): vertex p1 is translated and its transformation is represented in weight changes to
its topological neighbors. Since p7 is not part of the direct or one-ring neighborhood of p1 its trans-
formation is not reflected in w6

7
and w2

7
. (c) and (d): rotational changes and scaling operations are

not reflected in local coordinates since Laplacian coordinates are only sensitive to linear translations.

topological neighbors. Fig. 3.3 illustrates this and shows how distances change in the
neighborhood of vertex pi during global modeling operations.

During modeling, user-defined translations of vertices are essentially expressed as
constraints and the Laplacian differences to topological neighbors is to be minimized
in order to apply the manipulation to the geometry. In doing so, modifications are
distributed throughout the entire mesh while still preserving local surface details.

The initial error functional that governs the modeling process is at its core the
Laplacian mesh operator

EL(p̂) =

|V |
∑

i=1

1

2
‖L(p̂i)− L(pi)‖

2 +
∑

i∈C

wi‖p̂i − ci‖
2 (3.17)

The current locations of vertices are denoted by p and their new user-intended po-
sitions are indicated by p̂. In essence, Equ. 3.17 captures the difference in Laplacian
coordinates with the first term whereas the second accounts for the validity of added
constraints. As illustrated in Fig. 3.3 Laplacian coordinates are only sensitive to trans-
lations with the result that the local structure of the mesh can not be scaled or rotated.
One way to solve this limitation is to introduce a local transformation Ti for each ver-
tex pi based on the assumed positions of p̂i. The interested reader is referred to [40]
and [81] for a formal derivation of Ti. The key insight is however, that the following
form of T can be used to account for isotropic translations, rotations and scalings can
be used3

Ti =











si −hi,z hi,y ti,x
hi,z si −hi,x ti,y
−hi,y hi,x si ti,z
0 0 0 1











(3.18)

The elements of Ti are derived from p̂ so that they are a linear function of p. In this
sense si, hi, ti denote the unknowns and a valid parametrization of them is obtained

3A formal proof of Equ. 3.18 can be found in [84].
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by solving a SLE, cf. [40]. The final modeling operation is formulated with Ti and the
constraint matrix C, which holds the weights wi in column i (see Equ. 3.19). Solving
the system for p̂ yields new Cartesian coordinates for the vertices.
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(3.19)

Note that the structure in Equ. 3.19 is slightly different compared to Equ. 3.15 to
account for all three Cartesian components. In the following, rotation and scaling oper-
ations are not considered. Character animation problems are typically overdetermined
by the number of positional constraints and feature densely connected meshes. As a
result, rotation and scaling operations affect the one-ring neighborhood of anchored
vertices and their preservation during optimization is already accounted for.

3.3.3. Interaction Meshes

LME is also used in the character animation community to retarget motions. Consider
a kick interaction and the adaptation of such to new heights for example. Since the in-
teraction naturally involves a large portion of the kinematic chain of both interactants,
several joints have to be considered during retargeting. This includes the position of the
kicking foot and the arms of the defending character. However, it also requires changes
to knees, elbows and pelvises. Using traditional methods such as inverse kinematics
to adapt the animation might results in visually unappealing results. Potential side
effects include misalignment of joints, e.g. the defending hand not meeting the foot at
the correct height, foot skating and collisions with the surrounding environment [39].
The reason for that result from the amount of joints and their complex spatial rela-
tionships that need to be adapted to retain the visual appeal of the animation. This in
turn requires a skilled animator that fine-tunes each joint individually at each frame.

This a time consuming and tedious task that eventually led to the development of
Interaction Meshes [39]. Proposed by Ho end colleagues, IMs are an interpretation
of LME for close virtual character interactions. Instead of treating each joint and its
relationship to others individually, IMs connect them to a mesh which is deformed
to match an animator’s requirement. Joints, points on body parts and environment
contacts are thereby seen as vertices. The connectivity of them is computed by applying
Delaunay tetrahedralization. Since it favors short distances over long ones, vertices in
close proximity are connected by an edge. In doing so, a mesh is created that inherently
focuses on close spatial relationships.

During adaptation the net is then deformed using LME. The spatial relationships
of joints are encoded in differential coordinates, and thus, preserved during editing.
Fig. 3.4 illustrates this for the previously mentioned kick example. Here, different kick
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Fig. 3.4.: An Interaction Mesh is a topological representation of a character animation in differential
coordinates. It has been proposed by Ho et. al [39] for motion retargeting in character interactions
(left) or body scaling operations (right). The Fig. is adapted from [39].

heights have been defined by an animator. As depicted, the overall pair of postures
remains similar, yet, adapted to the new situation. A second example is shown on
the right hand side of Fig. 3.4. Here, body proportions are scaled and the skeletal
structure of the interactants is adapted to different heights. Yet, the overall style of
the interaction is preserved.

Positional Constraints In addition to the general requirement of at least one con-
straint to recover Cartesian coordinates (see section 3.3), IMs feature additional po-
sitional constraints to anchor body parts or joints to specific locations. Here, an an-
imator defines constraints for vertices so that they remain at a given location during
optimization and in consequence do not move during the animation. In the above kick
interaction for example (see Fig. 3.4) the left foot of the yellow character is constrained
to different heights, prompting the IM to adapt the remaining vertices. Doing so, ver-
tices retain their relative distances to neighboring/connected vertices and the overall
shape of the pair of poses is preserved. In a similar vein, feet are positional constraints
to limit the effect of foot skating [39]. Contacts with surrounding objects are also
modeled using positional constraints [41, 57, 59].

They are modeled similarly to LME constraints (see Equ. 3.14) using the following
form:

CP (p̂) = Wp̂−C . (3.20)

In contrast to the definition above however, IM positional constraints are written
in matrix form to account for larger constraint numbers. Here, W is a weight matrix
that stores the weight wi of each vertex p̂i. C denotes the matrix for the value of the
constraints, i.e. their Cartesian position. Similar to the right hand term of the LME
error functional, an energy interpretation is derived

Ep(p̂) =
∑

i∈C

wi‖p̂i − ci‖
2 ci ∈ IR (3.21)

In essence the functional denotes the cumulative difference between a manipulated
vertex position p̂i and its anchor ci.

Bone Length Constraints Satisfying positional constraints during adaptation might
not account for bone lengths and the skeletal proportions of the characters might vary
during the animation. This can cause visual artifacts such as unnatural proportions or
stretching of limbs. These can be limited using bone length constraints [39]. Here, the
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preservation of a distance between two joints, i.e. the bone length, is defined by the
following energy functional

Eb(p̂) =
∑

e(i,j)∈E

(

‖p̂i − p̂j‖ − le(i,j)
)2

(3.22)

E denotes the set of edges/bones and e(i, j) is the edge/bone connecting vertex i

and j. le(i,j) is the distance or length of a bone connecting pi and pj. The error
functional essentially forces the distance between of two joints to a desired length
le(i,j).

However, the distance term exhibits a non-linear component, rendering traditional
least squares solvers are inapplicable. To circumvent this limitation a linearization can
be introduced with the result that iterative Gauss-Newton methods can be employed
to solve the system, cf. [39, 85].

Constraint Energy When animating virtual characters it is reasonable to assume
varying constraint importances. The supporting foot for a kick motion for example
is typically more important for a human-like motion than the precise preservation
of a head position. Towards that end, constraints are separated into soft and hard
constraints.

Fip̂i = fi soft constraint Cip̂i = hi hard constraint (3.23)

The preservation of soft constraints during optimization is modeled with a weighting
term wi for each joint. The overall constraint energy which accounts for the amount
of violation is defined as follows

Ec(p̂) =
1

2
p̂TFTWp̂− fTWF p̂+

1

2
fTWf (3.24)

F denotes the constraint matrix which captures the joints that are attributed a soft
constraint and f stores the corresponding constraint value. To weight the importance
of each a weighting matrix W is introduced. It contains the weighting terms wi for
each constraint at column i.

Hard constraints on the other hand are equivalent to LME positional constraints
(see Equ. 3.14). In typical application scenarios, bone lengths and one positional
constraint (the supporting foot for example) are attributed a hard constraint whereas
all remaining constraints are treated as soft constraint depending on their weight wi.

Given the above constraints the problem of deforming an IM from its current Carte-
sian coordinates p to p̂ is equivalent to the following minimization problem

argmin
p̂,1≤i≤|V |

=

|V |
∑

i=1

EL(p̂i) + Eb(p̂i) + Ec(p̂i) (3.25)

Essentially, the above definition accounts for the deformation of the mesh in Lapla-
cian coordinates (EL), the validity of hard constraints (EL), the preservation of bone
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lengths (Eb) and the additional soft constraints (Ec). Similar to LME the problem is
finally transformed into an SLE

(

MTM+ FTWF CT

C 0

)

(

p̂

)

=

(

MTb+ FTWf

h

)

(3.26)

and solving it yields a set of vertex positions of the adapted IM.
In the resulting optimization problem the transformation T which initially accounted

for isotropic translations, rotations and scalings, is omitted. This simplification is in-
troduced since the amount of constraints that are typically added are sufficient enough
to render the system well-defined. Also, when deformation operations do not feature
scaling or rotation operations to a large extent, positional constraints added by an
animator already preserve local details to a reasonable degree [83].

3.3.4. Further Reading

The concept of IMs is used in various applications ranging from character animation
[39, 86] to robot motion planning [57–59]. The constraint definitions that are presented
above are found in most of these implementations. It is noted however that other
constraint types are also proposed. In [39] for example velocity constraints for limiting
joint movement between frames or collision constraints that guard environment contact
are implemented. Since the formal definition of IMs does not account for rotations
explicitly, Maciel and De et al. [86] add rotational constraints.

The applicability in real-time applications, such as in human-character or human-
robot interaction, has also been addressed. In [41], for example a online IM retrieval
system is presented that optimizes a character response given a human pose. Since
this system is closely related to the methodology presented in this thesis, a thorough
comparison is presented in chapter 5.

3.4. Hidden Markov Models

Hidden Markov Models were originally developed in the context of natural language
processing and speech recognition [87] but they are now a recurring theme in many
pattern recognition and classification applications [88]. The thematic context in which
they are employed focuses primarily on measurements and interpretations of sensor
readings in terms of patterns that evolve over time. HMMs are trained with sequences
of data and they model sequential information using probabilities. They are thus par-
ticular well suited for time series such as motion capture recordings and allow extraction
of temporal contexts that are not easily accessible with other data representations.

In this thesis an HMM will be used for classifying human motion during human-
robot interaction tasks. Towards that end an introduction to their general concept and
working principle is given in the following.
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3.4.1. Introduction

The key idea of an HMM is to model the statistical regularities that govern a process as
exactly as possible. Its purpose is to infer information about the process it models and
the future development of such. This applies to questions whether a data sequence is
produced by the process or which state sequence has the highest probability. Consider
the following human motion classification problem. For each observed pose sequence
there is an internal state that corresponds to the behavior type such as a handshake
gesture or high five. This type is not directly visible. What is observable are joint posi-
tions provided by a motion capture system. Given training data, that is an association
of recorded poses to behavior types, an HMM is able to extract the probabilities of
observing a behavior for a given sequence of poses. During runtime the user’s current
behavior is unknown but observed joint position and the internal model, i.e. the HMM
reveal a belief what it could be. This allows the computation of the probability of
transitioning between behaviors and the sequence of poses required to do so.

From a more mathematical point of view an HMM is essentially a stochastic process
with an underlying second stochastic process that is not visible. The first process
describes that for every point in time an observation is made. The probability of the
observation occurring with it only depends on the current state. The second process
is a Markov chain model which describes the random transition between model states
using a transition probability. Each state depends only on its predecessor, a property
that is known as the Markov assumption [87]. The state space of the model is finite
and stationary. Also, the sequence that generated the observations is not visible from
the outside view.

Formally, an HMM Θ is described as

Θ = (S, Pi, Pj→i, pi(o)) (3.27)

where S is a set of finite states and Pj→i is a matrix containing transition probabilities
for transitioning from state j to i. Pi is a vector of start probabilities and pi(o) is a
matrix containing the probabilities of observing o in state i. o is typically modeled as
a finite set of discrete observations.

As mentioned above, HMMs are, similar to their origins in Markov chains, based on
two simplifying assumptions. First, the probability of a particular state depends only
on its predecessor (Markov assumption)

p(si|s1, . . . , si−1) = p(si|si−1) si ∈ S (3.28)

And, second, the probability of observing an output o only depends on the current
state.

p(oi|s1, . . . , si, o1, . . . , oi) = p(oi|si) (3.29)

Fig. 3.5 illustrates the structure of a three state HMM graphically.
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Fig. 3.5.: The figure illustrates a discrete HMM with three internal states s{1,2,3}, an additional start
state s0 and several outputs oi, . . . , om.

3.4.2. Three Problems Related to HMMs

Given the above definition of an HMM three computational problems can be formalized
and solved. The interested reader is encouraged to review Rabiner [89] for a more
thorough and comprehensive definition.

• Likelihood estimation Given an HMM Θ, the likelihood P (o|Θ) of observing the
sequence o is to be determined

• Decoding Given Θ and o, the sequence of hidden states is to be computed

• Learning Estimation of improved HMM parameters Θ̂ given S and a sequence of
observations o

Likelihood estimation targets the problem of computing the probability P (o|Θ) of
a observation sequence o. This means with respect to the above behavior classification
example, that the question how likely a sequence of poses is, can be computed. The
probability of a posture is thereby seen as the likelihood of the data given every possible
series of states. This generally requires summation over all possible state sequences,
where P (o,S|Θ) is the output probability of a single path

P (o|Θ) =

|S|
∑

i=1

P (o, si|Θ) si ∈ S (3.30)

Since this requires marginalization over all state sequences, the computational costs
grow exponentially (O(|S|T )). However, using dynamic programming Equ. 3.30 can be
efficiently computed using the forward algorithm [89]. The algorithm harnesses the fact
that all HMMs are strictly time-synchronous due to the Markov assumption. Given Θ

and a state it is irrelevant for future states on which path this state has arrived from.
It is therefore sufficient enough to consider only possible states at time step t for the
computation of future states.
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The algorithm starts by defining an auxiliary variable αi for the total probability of
the observations through t time steps in state si

αi(t) = P (o1, . . . , ot, st = si|Θ). (3.31)

This yields the probability that the first part of o up to time step t is generated and
that the model Θ is in state si. Then, given this definition the probability of P (o|Θ)

is represented as

P (o|Θ) = P (o1, . . . , oT |Θ) =

|S|
∑

i=1

P (o1, . . . , oT , sT = si|Θ) =

|S|
∑

i=1

αi(T ). (3.32)

The algorithm starts at αi(1) = Pipi(o1), i.e. the probability of generating the first
observation element o1 at the initial point in time t = 1 and for reaching state si. Based
on the induction principle αi(t) can be computed at each recursion step by evaluating

αi(t) =

|S|
∑

i=1

αi(t− 1)Pi→jpi(ot) , j = 1, . . . , |S|, t = 1, . . . , T. (3.33)

In the end, the probabilities αi(t) are obtained for each time step and the total
output probability P (o|Θ) is computed by summarizing over them

P (o|Θ) =

|S|
∑

i=1

αi(T ) (3.34)

As a result of this, only O(|S|) operations have to be computed at each time step,
resulting in a final complexity O(|S|T 2) to compute P (o|Θ). This is significantly lower
than initially assumed.

Decoding can be seen as estimating the believe state, i.e. the probability of being in
a state at specific point in time given a sequence of observations o. With respect to
the above behavior classification problem, the believe state is the assumed behavior of
the human given a set of observed postures. In chapter 4 for example decoding will be
used to recognize human motions during a human-robot collaboration.

Mathematically speaking, the state sequence s∗ with maximal posterior state prob-
ability is sought

s∗ = argmax
s

P (s|o,Θ) (3.35)

By applying Bayes’ rule, the posterior state probability is written as

P (s|o,Θ) =
P (o, s|Θ)

P (o|Θ)
(3.36)

Since the total output probability P (o|Θ) of the model is constant the equation is
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simplified to
s∗ = argmax

s

P (s|o,Θ) = argmax
s

P (o, s|Θ) (3.37)

The optimal path s∗ consequently corresponds to the path that maximizes the prob-
ability of the observation sequence o. Computing s∗ can be achieved using brute force
but the Viterbi algorithm is used in real-world applications due to its computational
advantages (O(|S|T 2)). In contrast to the above forward algorithm, the Viterbi al-
gorithm utilizes a maximization step instead of summation over the probabilities of
predecessor steps. The initial step before starting the recursive procedure is to define
probabilities for partially observed sequences up to ot with maximal probability and
end state i

δi(t) = max
s1,...,st−1

P (o1, . . . , ot−1, s1, . . . , st−1, st = si|Θ) (3.38)

Since the optimal path may change over the period of T time steps backward pointers
ψj(t) are defined along the partial paths. These store the optimal predecessor state for
every corresponding δjt

ψj(t) = argmax
∀i∈{1,...,|S|}

δi(t− 1)Pi→j (3.39)

Starting in reverse order, i.e. at time step T , the final path is then recursively recov-
ered by evaluating

s∗T = argmax
i

δT (i) s∗t = ψt+1(s
∗
t+1) (3.40)

The globally optimal state path s∗ is only known when the observation sequence is
considered in its entire length. This is disadvantageous in real-time applications where
only a subset can be evaluated at any point in time. As a result the optimal path
might vary when new observations are made.

Learning or parameter estimation refers to the process of iteratively optimizing initial
estimates of transition, emission and start probabilities following an optimality crite-
rion. The probabilities that describe these are extracted from training samples where
the association between an observations and its the corresponding state are known.
With respect to the above motion classification problem, learning can be described as
the process of refining an initially estimated HMM to best fit the statistic relationships
between poses and behavior types. Such an HMM is for example trained in chapter 4
to recognize user motions during human-robot cooperation tasks. It allows the robot
to infer the current user behavior and react accordingly.

Over the years different methods emerged to train HMMs in such a data-driven
fashion. Most prominent examples are the Baum-Welch algorithm, Viterbi training or
segmental k-means and to some extent the brute force method forward-backward algo-
rithm. In literature the Baum-Welch algorithm is the most common form of optimizing
HMMs. It uses the total production probability P (o|Θ) as an optimality measurement
and optimizes model parameters based on example data o. In more general terms it
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can be seen as a variant of expectation maximization, which computes optimal parame-
ters of a multi-stage stochastic process based on the maximum likelihood of data. The
core idea of learning is to optimize a given or assumed model Θ so that its optimized
parameters Θ̂ yield a greater output probability.

P (o|Θ) ≤ P (o|Θ̂) (3.41)

The Baum-Welch algorithm is based on the assumption that the forward and back-
ward variables allow inference of internal states given a sequence of observations. It
requires the posterior probability P (st = si|o,Θ) for the occurrence of state si at time
step t and the probability P (st = si, st+1 = sj|o,Θ) for transitioning from state si to sj
at time step t to t+1. The first probability is denoted γt(i) and the second is indicated
by γt(i, j) [88].

γt(i) = P (st = si|o,Θ) =
αt(i)βt(i)

P (o|Θ)
(3.42)

γt(i, j) = P (st = si, st+1 = sj|o,Θ) =
αt(i)Pi→jpj(ot+1)βt+1(j)

P (o|Θ)
(3.43)

In Equ. 3.43 αt(i) denotes the posteriori probability, i.e. the probability that the
model is in state si given the observations. βt(j) on the other hand is the backward
variable representing the probability for generating ot+1, . . . , oT from time step t + 1

onward starting at state j

βt(j) = P (ot+1, . . . , oT |st = sj,Θ) (3.44)

The numerator in Equ. 3.43 refers to the probability of generating output o under
the constraint that a transition from state si to state sj occurs at time step t. The
model Θ is learned by replacing parameters with their respective conditional expected
values. Optimized transition probabilities for example are obtained by computing the
statistical average over individual transition probabilities γt(i, j) for all points in time
t = 1, . . . , T .

P̂i→j =

∑T−1
t=1 P (st = si, st+1 = sj|o,Θ)
∑T−1

t=1 P (st = si|o,Θ)
=

∑T−1
t=1 γt(i, j)
∑T−1

t=1 γt(i)
(3.45)

Optimized start probabilities are interpreted as special cases of transition proba-
bilities and they are collected by evaluating P̂i = P (st=1 = si|o,Θ). The individual
probabilities can be obtained in a similar vein.

Improved output probabilities are obtained by evaluating the expected number of
outputs for a given state st = j and the occurrence of the symbol ok at ot. Naturally,
this number has to be normalized with respect to the total amount of symbols.

p̂j(ok) =

∑T
t=1 P (st = sj, ot = ok|o,Θ)

∑T
t=1 P (sj|o,Θ)

=

∑

t:ot=ok
γt(j)

∑T
t=1 γt(j)

(3.46)
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Fig. 3.6.: Different types of HMMs. Left: The parameter space is divided into partitions using a
vector quantizer yielding discrete probabilities for each observation. Middle: Continuous densities
model observation probabilities. Each state of the HMM has its own set of mixtures. Right: A shared
GMM models the observation probability globally for all states of the HMM.

The resulting parameters of the HMM Θ̂ = (S, P̂j, P̂i→j, p̂i(o)) exhibit at least the
same the overall output probability P (o|Θ̂) as the start solution Θ (see Equ. 3.41).

3.4.3. HMM Variants

Modeling emission probabilities in HMMs can be achieved using various distributions,
depending on the problem at hand. Traditionally, discrete observation probabilities are
assumed. Some applications however might require real valued observations in stead
of symbolic inventories [87] due to complex relationships. Consider the aforementioned
motion classification problem for example.

When the user’s poses are tracked by the motion capture system it can be easily
assumed that real-valued measurements are recorded.

There are two common alternatives to handle continuous observations. One option
is to convert the multivariate observation vector into discrete univariate samples using
clustering (see Fig. 3.6 left). In order to deal with arbitrary distributions of observations
however continuous emission probabilities should be used, cf. see [88, chapter 5]. These
model observation probabilities with continuous density functions.

Several realizations of such are reported in literature. The most simplistic continu-
ous HMM variant is a Gaussian Hidden Markov Model (g-HMM). Here, the emission
probability is modeled using a single Gaussian distribution at each state. Based on the
assumption of a Gaussian distribution more complex probability density functions can
be derived.

Continuous Hidden Markov Models (c-HMMs) for example employ a mixture of
Gaussian in each state. They are able model complex observation patterns by varying
mixture weights and component amounts (see Fig. 3.6 middle). Semi-continuous Hid-
den Markov Models (sc-HMMs) on the other hand use a single GMM for all states. For
both variants the emission probability is inferred by accumulating over all components
of the GMM. In order to train continuous HMMs the Gaussians are adapted to best
fit the data. This naturally requires optimization of several parameters such as means,
covariances and mixture weights. As a result, more training data is required in contrast
to discrete HMMs.
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In order to balance the amount of training data needed to learn a model with its
modeling capabilities sc-HMM are often used literature, cf. see [88]. Tab. 3.1 compares
the mentioned HMM variants with respect to their emission probabilities.

Tab. 3.1.: HMM variants ordered by their computational complexity (from least to most complex).

HMM

Variant

Emission

Probability

Observation

Symbols

d-HMM categorical discrete
g-HMM 1 Gaussian per state continuous

sc-HMM 1 GMM for all states continuous
c-HMM 1 GMM per state continuous

3.4.4. HMMs for Motion Capture Data

Training HMMs requires data sets that capture the statistical properties of the problem
one seeks to model. Selecting appropriate features that resemble these in an optimal
way is a crucial step towards reliable and robust models. Determining the most suitable
features heuristically can be an error-prone and tedious task [88]. Adding additional
features to an already existing model might seem suitable given a certain metric or
characteristic, but it requires additional training data to learn the model. As this de-
mand can often not be satisfied, modeling quality decreases. This situation is generally
referred to as the curse of dimensionality [90]. In literature there is still an ongoing
debate how to determine whether a feature is important and what insight it actually
adds to the statistical properties of a given problem [88]. Nevertheless, there is a gen-
eral consensus that improving data quality is an important step towards high-quality
models. The key question is how data should be optimized, so that it is beneficial for
model learning.

In the field of motion recognition, elbow markers often feature a strong correlation
to hand makers, which is due to the human skeletal structure. Decorellating these by
means of transformation into alternate representations, improves model quality as fea-
ture independence is a necessity [88, 91]. A common approach to do so is PCA [91–95].
As introduced in chapter 3.2.2, decorrelation of data is achieved by orienting coordinate
axes so that they build a new orthogonal basis system maximizing the data’s variance
on each axis. In the context of real-time applications special restrictions are further
burdened onto the computational demand of an HMM. During runtime the Viterbi al-
gorithm correlates with the observation sequence length polynomially (O(|S|T 2)). As a
result the required amount of computations increases with each additional observation
and time step. As time progresses the amount of observation increases till a point
where a Viterbi path can not be computed interactively anymore, i.e. the calculation
of s∗ requires more than 25ms. This renders the algorithm unsuitable in real-time
applications as the amount of observations increases continuously. It also considers
the behavior of an HMM over a finite length of observations and their entirety. The
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assertion of the final internal state can thus only be inferred once all observations are
captured.

To improve on the aforementioned limitations different extensions have been pro-
posed. In [96, 97] for example a sliding window approach is used to limit the Viterbi
path length. Here, the key idea is keep a fixed amount of previous observations in
memory and compute a Viterbi path accordingly. For the new path the start prob-
ability Pi of starting in state si is set to probability of reaching state i following the
optimal path s∗. However, the length of the window has to be set in an application-
specific manner and requires manual fine tuning. A more general approach uses fusion
points to merge Viterbi paths [96]. The algorithm increases the amount of observations
constantly until all possible paths converge to a single point in the graph, the so called
fusion point. The states prior to the fusion point are then considered decoded and a
new path started at the fusion point.

3.4.5. Further Reading

There is an extensive line of research around the general concept of HMMs. The
interested reader is encouraged to review Rabiners introduction [87]. Based on that
[88] is a valuable starting point for a more recent view on pattern recognition.

3.5. Conclusion

In this chapter several representations of motion capture data have been introduced
each offering benefits as well as limitations. Whereas Cartesian coordinates offer unfil-
tered and raw information about joint movements, their sheer dimensionality often pro-
hibits direct utilization in learning algorithms. Representing motions in latent spaces
on the other hand avoid that drawback by expressing information with fewer dimen-
sions. This makes data more accessible for learning techniques since intrinsic details
are uncovered. However, topological relationships such as neighborhoods or relational
properties are not represented. This is where differential coordinates have proven ad-
vantageous. By expressing joint positions as a set of functions with respect to their
neighbors, topological information is inherently captured. Harnessing this benefit IMs
have been introduced to encode two-person motion capture data in differential coor-
dinates. By using LME, an IM can be adapted to best fit an animators requirements
while preserving spatial relationships, and thus, the shape of the motions.

HMMs are a well-established method for motion recognition. In the framework for
two-person interaction models introduced in the next chapter, they can be used for
classifying user motions in case of longer interaction scenarios consisting of several
subtasks.

Combining the benefits of different data representations a learning from demonstra-
tion framework is developed in the following that enables virtual characters and robots
to learn from human-human interactions. Spatial and temporal dynamics are thereby
captured in a single interaction model.
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4. Two-Person Interaction Models:

From Human-Human

Demonstration to Human-Robot

Interaction

4.1. Introduction

Imitation learning has proven to be a valued robot programming paradigm and it is
used in several scenarios (see chapter 2). In this chapter, a novel approach is introduced
where this fundamental learning concept is applied to human-robot interactions where
a great amount of additional difficulties need to be addressed. On top of learning motor
skills required to execute an action, interactions depend upon continuous adaptation of
one’s behaviour during a joint task. They involve complex dynamics in each situation
including temporal aspects of coordination and joint action understanding. Imitating
these properties is unfeasible by focusing only on a single agent. Instead, they require
consideration of both interactants to allow for mutual coordination.

Consider a high-five scenario for example. If the motions of both interactants were
occurring independently, slight variations in the individual joint velocities and positions
would instantly lead to changing hand positions and, most likely, to a failing interaction.
Humans, however, naturally compensate for these muscular variations by adapting their
individual behavior interdependently with the interaction’s goal in mind, i.e. to clap
the other’s hand. Using perception, each interactant accommodates variations and
adjusts to the respective interaction partner. Neuroscience studies of human-human
interactions show that this is due to the shared mutual understanding of people [98, 99].
It is argued that humans tend to know how day-to-day interactions, such as high-fives,
should take place and interactants become a coupled unit where moment-to-moment
mutual adaptation takes place continuously [100]. This is one of the main reasons
why humans are able to engage in a variety of situations so seamlessly and fluently.
Removing this adaptation layer by blindfolding for example, condemns the interaction
task to fail at once as the interactants have no means of synchronizing their behaviors.
As a result, one can see the importance of continuous adaptation and joint temporal
coordination.

Another key aspect that arises from the aforementioned mutual understanding is
the ability to anticipate the behavior of an interaction partner. It enables humans
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to recognize motions and engage in interactions early on without observing an action
being fully carried out. In the high-five scenario for example, one interactant typically
initiates the interaction by raising his hand, where as his partner recognizes the mo-
tion and reacts slightly delayed. Naturally, he will compensate for the delay by moving
faster, so that both hands meet at the right time and position. Due to mutual under-
standing, high-five positions and relative timings are anticipated and the interaction
can be carried out successfully.

Giving robots the ability to anticipate human behavior and adapt their own motion
so they are able to collaborate with humans effortlessly, would clearly increase their in-
teraction capabilities, smoothing the way for fluent and seamless human-robot teaming.
Following that vision, the aim of this chapter is to develop a methodology that

enables robots to imitate coordinated actions by means of learning from

demonstration. For this however, two key challenges have to be addressed. First,
the robot has to be programmed in such a way that it is able perceive and recognize
user motions. Second, adequate responses need to be generated continuously to take
the specifics of the current situation into account.

A prevalent approach to solving this task is to use machine learning algorithms,
such as reinforcement learning or neural networks, to identify the intention of observed
movements and then trigger a programmed behavior as a response, cf. chapter 2. This,
unfortunately, does not scale when the number of interaction scenarios increases. The
amount of training data that is required in order to learn tasks becomes increasingly
prohibitive, since it is, for interactions in particular, often not available. In addition,
continuous human-robot interactions require robot responses to be computed in a lim-
ited amount of time so that unnatural delays are avoided. This contrasts to single actor
imitation learning that does not require online user perception and motion adaptation.

What all this amounts to, is a general need for efficient interaction learning algo-
rithms satisfying the following requirements:

• An efficient training scheme, requiring only a few task demonstrations while al-
lowing even unskilled users to train the robot

• Spatiotemporal adaptation of robot motions during the course of an human-robot
collaboration

• Robot response generation at interactive rates to allow for instant responses

Addressing these requirements, the core of the proposed methodology is based on
imitation learning of two-person interactions. One distinct feature is that the approach
utilizes parallel behavior demonstrations of two human partners to learn a joint interac-
tion model. This differs from other methods since correlations among low-level actions
of both interaction partners are explicitly captured. The interaction model encodes how
each interactant adapted his/her behavior during task demonstration (see Fig. 4.1). It
encapsulates spatial relationships of joints and temporal properties of the collaborative
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Fig. 4.1.: Based on parallel behavior demonstrations, a two-person interaction model is learned that
captures how each interactant moved during task demonstration. Using the model at runtime a robot
is able to adapt its behavior during a joint human-robot task while producing seamless and smooth
responses.

behavior independently of the robot structure. In the end, inter-personal (between-
person) dynamics of the interaction and intra-personal (within-person) motor skills are
unified in a central model.

Utilizing the model during human-robot interaction, robot motions are produced
efficiently while being spatiotemporally adapted to the current situation. In doing
so, continuous human-aware responses are generated and complex sequences of joint
actions are executed.

4.2. Methodology

Similar to the imitation of a motor skill, imitating human-human interactions roots
upon observation, representation and reproduction. However, in contrast to the im-
itation of a single-person behavior, imitation of human-human interactions requires
human-aware adaptation during runtime, in order to ensure the safety of the human
collaboration partner as well as the success of the joint task. Towards that end, in-
teraction learning as presented in this thesis, is composed of an offline learning and
online adaptation phase as illustrated in Fig. 4.2.

During training, an interaction model is learned that describes how the two interac-
tants synchronize their movements. First human-human demonstrations of two users
performing cooperative tasks are recorded using motion capture. Here, several tasks
can be demonstrated but only one example demonstration per task is necessary. Using
the recorded demonstrations an interaction model is learned, which encodes spatial
and temporal information of the parallel behavior demonstration.

At runtime, the model is used to continuously adapt the robot’s movements to that of
the human interaction partner. Generally, a leader-follower type scenario is assumed,
where one person acts as an assistant. During human-robot interaction, the robot
will assume the role of the assistant. For notational clarity, following [54] the first
interaction partner, i.e. the human, is referred to as the observed agent, while the
second interaction partner, i.e. the robot, will be called controlled agent.

The proposed methodology builds upon previous work from computer animation



4. Two-Person Interaction Models:From Human-Human Demonstration to Human-Robot Interaction 48

Fig. 4.2.: The proposed methodology is composed of an offline learning and an online adaptation
phase. Using the learned interaction model robot poses are continuously inferred based on the current
user motion and adapted at each frame to match the situation.

and provides a significantly extended version of the initial IM approach [39] for spatial
adaptation of interactions. Here, instead of manually adjusting the topology and con-
straint settings of the IM at each frame, two-person task demonstrations are used to
automatically extract relevant parameters.

The temporal properties of the demonstration are captured in low-dimensional spaces,
varying IM constraints and an optional HMM. Previous work has shown that HMMs
are well suited for modeling sequences of data [97, 101, 102]. However, recent re-
sults also indicate that models based on HMMs alone do not generalize sufficiently to
postural changes in typical human-robot interaction tasks [54]. As a result, further
optimizations to the robot’s posture and movement are required to ensure efficient and
safe physical interaction.

Using posture spaces for estimating the state of an interaction and IMs for spatial
adaptation, an interaction model, learned from two-person task demonstrations is in-
troduced in the following. Processes involved in the creation are discussed in detail and
application examples in the field of character animation (see chapter 5), human-robot
collaboration (see chapter 6) and triadic human-robot handovers (see chapter 7) are
provided subsequently.

4.3. Learning Two-Person Interaction Models

The interaction model presented in this section serves to generate a controlled agent’s
response to the movement of the observed agent in cooperative tasks. From a method-
ological point of view, the model provides a means of estimating the state of an ongoing
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Fig. 4.3.: Based on human-human demonstrations an interaction model is learned that captures how
each person moved during the joint execution of a physical collaboration. Using the learned model
in a human-robot interaction the robot’s role is inferred and controls are computed continuously.
The interaction is first derived and then temporally aligned locally in low-dimensional space. Spatial
adaptation based on matched interaction demonstrations is achieved using context dependent IMs.

interaction and spatiotemporal adaptation of behavior demonstrations.
Structurally, the interaction model consists of the following components (see Fig. 4.3):

• a global posture space for state estimation,

• a set of local posture spaces for temporal alignment

• and, a database of context-dependent IMs for spatial adaptation.

During model learning the global posture space is computed based on all demon-
strations. Then, for each interaction a low-dimensional local posture space is defined
and further segmented into smaller parts before finally an IM is constructed for each
motion capture frame. The posture spaces allow the selection of the best matching
IM during an ongoing human-robot interaction. Each IM represents a pair of postures
of the human-human demonstration at a single time step and it captures the spatial
relationships of the interaction. A context-based variant of IMs is proposed that fo-
cuses on the most relevant joints of the two human demonstrators in order to increase
postural generalization.

At runtime, a suitable human-human interaction is first selected in global posture
space and then temporally aligned in the matching local posture space using DTW.
Then, a robot’s pose is optimized to best-fit the current situation using the match-
ing IM. Subsequently, details of the various components of the interaction model are
explained in more detail.

4.3.1. Data Acquisition: Human-Human Demonstration

Imitating motor skills requires the perception of a demonstrator’s motion. Interaction
data for HRI is typically gathered using kinesthetic teaching and single-person motion
capture, e.g. in [45, 53, 103]. In kinesthetic teaching the robot’s joints are manually
operated by a user and its joint angles are stored in intervals. At the same time, the
human interaction partner is recorded using motion capture. In the end, the data
of both interactants is represented independently in separate datasets. This hinders
optimization of a robot’s pose since motions have to be transformed into a joint task-
space in order to be accessible for learning techniques [2]. Also, operating the robot’s
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joints manually has the potential of being physically demanding and, thus, unfeasible
even for moderately sized robots.

Instead of manipulating the robot’s joints manually interaction data can also be
gathered using two-person motion capture. To differentiate between the interactants
professional tracking systems often build upon markers attached to the interactants’
bodies. They capture joints and their movements with very high accuracies (<1mm) for
up to 15 persons simultaneously [22]. While these systems found widespread acceptance
in movie production environments, they are still expensive and cumbersome to setup.

Advances in sensing technologies however gave rise to consumer-grade capturing
devices. Depth sensors such as the Kinect camera gained ubiquitous distribution in
robotics research due to their ease of use and low acquisition costs. They track users
based on a time-of-flight sensor and, thus, do not rely on tracking markers. A benefit
of these devices is that people can be recorded unobtrusively in their natural uncon-
strained environment. This releases the burden of wearing markers and favors the ease
with which new motions can be recorded. They are on the other not as accurate and
often suffer from line of sight problems [104].

Nevertheless, consumer-grade as well as professional motion capture systems offer ad-
vantages over kinesthetic teaching and single actor tracking. One eminent feature is the
smoothness of the recordings. Whereas kinesthetic teaching can lead to jerky data sets,
motion capture creates inherently smooth recordings for both interactants. But more
importantly, it captures users in a joint coordinate frame and, thus, circumvents the
need for additional transformations. The resulting recordings are particularly suitable
for optimization techniques since they offer a great amount of insight into the inter-
person dynamics of interactants. Among others, body synchrony, spatial constraints
and temporal relationships are readily available for learning. Also, kinesthetically
trained goal-directed behaviors, as mainly focused on in motion planning research, are
often considered unpredictable and non-engaging for humans. Surveys indicate that
this is mainly due to users’ not being confident about the robot’s intent [18]. Using
two-person motion capture minimizes these effects by creating inherently natural and
human-like robot motions, allowing collaborators to quickly infer a robot’s goal. It also
has the advantage of being physically undemanding whilst allowing both interactants
to move freely. Two-person motion capture harnesses the human’s natural ability of
demonstrating tasks unobtrusively since no robot has to be manipulated during task
demonstration. This results, from a psychological and neuroscientific point of view, in
more efficient communication and knowledge transfer between the interactants. Studies
suggest that, information of a specific task is preferably transferred by demonstration
and, when imitated by a robot, more understandable robot motions are created [15].
This benefits human-robot collaborations as more fluent physical interactions emerge.
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Mathematically, a motion capture recording is a time series of postures at T time
steps, where each posture is a vector of joint positions or motion capture markers

p = (x1, . . . , xN , y1, . . . , yN , z1, . . . , zN) x, y, z ∈ IR (4.1)

R = p1:T = [p1, . . . ,pt, . . . ,pT ] t ∈ {1, . . . , T} (4.2)

A two-person recording is defined as a pair of single actor recordings in a global
coordinate system. N denotes the amount of joints that are tracked for each interactant.
It is noted that the interaction learning approach presented in this thesis does not
assume a specific tracking hardware and it has been tested successfully with optical
tracking systems (A.R.T. DTrack), time of flight cameras (Kinect One) as well as
structured light depth sensors (Kinect 360/Asus Xtion). Examples using different
tracking system are presented in the subsequent chapters. However, due to the number
of available systems and the resulting variety of skeletal configurations an intermediate
kinematic structure is assumed. Joints that contribute most to a behavior including
feet, hands, elbows, head and torso are attributed a motion capture marker. Using
this mapping scheme benefits interoperability as it is also used in the majority of
motion capture frameworks, e.g. OpenNI, Kinect SDK and Motion Builder. Joints
such as knees, vertebras and wrists, i.e. links that are not captured, are reconstructed
using IK. For that each marker is linked to a IK controller to drive the subsequent
reconstruction. The interested reader is referred to [105] for a detailed introduction
into IK.

Using the recording of two demonstrators a model of the joint task demonstration is
learned as described in the following.

4.3.2. Global Posture Space

An integral part of an interaction model is the ability to select an interaction recording
during HRI. It is based on the assumption that human motion intrinsically lies on
low-dimensional manifolds and that it can be represented with fewer dimensions. To
reduce the dimensionality of motion capture data PCA is employed (see chapter 3.2).
It defines a set of principal components that maximize the variance over joint motions
and consequently their importances along an axis. The linear subspace that is created
allows traditional metrics such as Euclidean distances to remain applicable. Using these
and the fact that a point in low-dimensional space corresponds to a pose, differences in
the posture space resemble postural variations in Cartesian space. As a result, similar
human poses lead to close points in the low-dimensional embedding. In the end, PCA
not only reduces the search space’s complexity but also decreases the required amount
of memory to store motions.

A latent embedding for all motions of the observed agent (·)oa is computed and
denoted global posture space G. It captures motions executed during all task demon-
strations in a single posture space and it provides a compact search space for estimating
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the state of the interaction during runtime.

Roa PCA
7−−−→ G, |Roa| = |G| (4.3)

H(Roa) = H(G) + ǫ (4.4)

G represents user motions with fewer dimensions while retaining the amount of in-
formation within (denoted by H). DR is achieved at the expense of information lost ǫ.
The balance, i.e. the amount of latent dimensions, is to be set depending on the prob-
lem at hand. As general rule of thumb, motion capture recordings with 8 markers,
yielding a 24-dimensional state space, require on average 3 − 6 dimensions to provide
reliable results (ǫ < 0.05).

The global posture space might be composed of interaction demonstrations that share
similar poses among them. These situations often occur when users retract to a rest
pose during motion capture. As a result, the recordings feature similar start and end
points in low-dimensional space. Ambiguities might arise when similar poses are also
adopted during the course of different interactions. A single posture by itself might
be part of several recordings and, thus, sequential information is necessary in order
to distinguish between interaction candidates. To improve state estimation in these
situations the global posture space can be enriched with an HMM (see section 4.4.1).
Here, key poses are extracted and sequences of such can be used during runtime to
infer an interaction demonstration.

4.3.3. Local Posture Spaces

The global posture space captures spatial information of the interaction demonstra-
tions. In order to account for temporal variations and changes in joint importances,
an interaction model includes several local posture spaces Li. A local posture space is
computed for each interaction demonstration and it allows fine grained temporal adap-
tation during runtime (see chapter 4.4). It also retains subtle details and fine nuances
of motions that are not well preserved in G.

Consider the high-five scenario for example. The leading hand is of high importance
since it steers the interaction. In contrast, feet balance the user on the ground, and
their motion is considered less important, hence, a lower importance would be assigned
to them. The relevance of maintaining certain spatial relationships between joints may
however change during an interaction, e.g. when switching the leading hand. If the
motion would be considered as a whole, alternations in the relationship of correlating
joints would not be taken into account. To capture these shifts in importance during
different phases of the interaction, each local posture space Li is segmented using
Hotellings T -squared statistics. A segment Qk with k ∈ {1, . . . , K} is defined as a
sequence of consecutive points poa

r:v and denoted by

Qm = poa
r:v = [poa

r ,p
oa
r+1, . . . ,p

oa
v ] (4.5)
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Fig. 4.4.: Left: An IM computed using a fully connected graph. Middle: An IM created using Delaunay
triangulation. Right: In the proposed context-dependent IMs connections are added based on joint
correlations in motion capture recordings. As it can be seen sparse topologies are created which allow
for more joint movement during optimization and, consequently, increasing postural generalization.

with r, v ∈ {1, . . . , T} and r ≤ v. The K segments are created by finding a set of
sub-principal components that minimize the cost function

Φm =
1

v − r + 1

v
∑

j=r

pjp
T
j , pj ∈ Qk. (4.6)

In addition to allowing for varying joint correlations (and, thus, enabling the gen-
eration of IMs with varying topologies and constraint weights, see chapter 4.3.4), the
segmentation of local posture spaces has the advantage of lowering the computational
load of performing optimizations. On average 2− 4 dimensions provide enough infor-
mation to reliably account for temporal and spatial variations of user motions.

4.3.4. Context-based Interaction Meshes

In order to achieve spatial generalization of the controlled agent’s response a novel
variant of IMs is developed. IMs have been extensively used in the computer animation
community for adaptation of motion capture data [41, 57]. One eminent feature of IMs
is the ability to adapt full body behaviors to new situations. So far, however, proposed
methods rely on fully connected graphs [57] or Delaunay tetrahedralization [41] for
net generation. These approaches include all joints equally into the topology yielding
densely interconnected nets as shown in Fig. 4.4, left. Also, additional vertices are
sampled on the skeleton’s surface and increase the overall amount further, cf. [39].
Since the computational complexity of IM adaption significantly increases with larger
numbers of vertices, only a few vertices should be used to ensure optimal response times
during runtime. Moreover, joint weights and optimization constraints such as foot or
hand contacts are usually modeled manually, thus requiring intervention of a human
editor in the IM generation process. Furthermore, dense connection structures hinder
joint movement during optimization, whereas manual modification of constraints and
weights can be labor-intensive and error prone.
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To improve on these limitations the following extensions to IMs are proposed:

• context-based topology generation at frame level for varying correlation structures
and sparse marker setups

• data-driven optimization of weights to avoid manual labeling, and,

• an algorithm for automatic soft- and hard constraint generation based on motion
capture data.

In the proposed methodology, an IM provides a topological and spatial representation
of two humans during a motion capture recording at each time step. An IM topology
is constructed using the Cartesian coordinates p

oa,umin

t and p
ca,lmin

t of the closest pairs
of captured joints u and l at each timestep t

umin
t , lmin

t = argmin
(u,l)

∥

∥

∥
p
oa,u
t − p

ca,l
t

∥

∥

∥
(4.7)

and their correlating neighboring markers j1, j2 of the controlled agent ((·)ca).

j1 = argmax
j

corr(plmin

,pca,j)

j2 = argmax
j 6=j1

corr(plmin

,pca,j)
(4.8)

Joints that exhibit correlation and are in close proximity are connected through
a tetrahedron. A tetrahedron Tt is defined as a tuple of connected vertices
Tt = (umin, lmin, j1, j2) where u is an index into the joint table of the observed agent
M and l,j1 and j2 correspond to the controlled agent’s joints N .

The topology Tt of an IM at time step t is consequently defined as a set of tetrahedra
Tt = {T 1

t , . . . , T
P
t }, where P denotes the amount of created tetrahedra. The process of

adding tetrahedra to the IM is repeated, with previously used joint pairs being excluded
from consideration, as long as a pair with correlation above threshold Ψ exists. A good
choice of Ψ depends on the velocity of the motion and the frame rate with which the
demonstration has been captured. Also Ψ has a strong influence on the density of the
topology. As dense connection structures hinder mesh deformation during optimization
sparse topologies are desired. IM topologies should however not be too sparse as too
sparse connections structures may fail to preserve spatial relationships to a reasonable
degree.

To allow for varying joint relationships during runtime a correlation-based weight

wca,i=1...N=

{

1− cov(pca,i,poa,j)
σ(pca,i)σ(poa,j)

if ∀j corr(pca,i,pca,j)<Ψ

0 otherwise
(4.9)

is computed for each joint in the segment Qk (see Equ. 4.5). σ2(pca
k ) denotes the vari-

ance over poses pca
k of segment Qk in Cartesian coordinates. Using the weights, each
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Fig. 4.5.: During runtime the observed agent’s motion p̂oa
1:H is projected into the previously created

global posture space G. Then, the corresponding local posture space Li is retrieved (using the HMM
for example) and used to match the observed agent’s motion onto motion segments. This yields a
point from the initial demonstration that best fits the current situation temporally. To adapt the
found reference pose spatially to the new situation the associated IM is optimized.

marker of the controlled agent that does not exhibit a strong correlation is automati-
cally assigned a soft positional constraint according to its weights in each segment Qk.

f ca,i=1...N =

{

1 if ∀j corr(pca,i,pca,j) < Ψ

0 otherwise
(4.10)

The soft constraint weights in Equ. 4.9 range from 0 to 1. A weight close to 1 indicates
a strong tendency to adapt towards the initial demonstration. Weights close to 0
allow for stronger adaptation towards the current situation. Also, a hard positional
constraint cca is added for each joint of the observed agent, as the observed agent’s
pose is not subject to optimization.

coa,i=1...M = 1 (4.11)

In essence, hard constraints are added to the observed agent and soft constraints to
the controlled agent to model the amount of adaptation, depending on joint correlations
during motion capture. This allows the preservation of body synchrony as well as
spatial relationships of the most important joints.

4.4. Computing Responses for the Controlled Agent

To compute an agent’s response to an observed user motion, the interaction model is
used threefold. First, it serves to identify a suitable interaction demonstration from
the pool of all recorded interactions using the global posture space G. Second, it allows
temporal alignment of the user’s motion to the matching interaction Li. This yields
a time frame and a set of poses from the initial recording that best fits the current
situation temporally as well as spatially. And third, the inferred pair of poses from the
demonstration are spatially adapted to the ongoing human-agent interaction using an
context-dependent IM (see Fig. 4.5).

In the following, the steps required to use an interaction model for spatiotemporal
adaptation during runtime are introduced in detail.
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4.4.1. Interaction Selection

To infer a suitable interaction demonstration from the pool of all recorded inter-
actions the global posture space is used. For that each live pose of the observed
agent is reduced in dimensionality by projecting it into G, creating new points
p̂oa
H−S:H = [p̂oa

H−S, p̂
oa
H−(S−1), . . . , p̂

oa
H ] (p̂oa ∈ G). H is an index to the most recent pose

in the sliding window of evaluated poses and S denotes the amount of poses in the
sliding window. Then the state of the ongoing interaction is estimated, i.e. a suitable
interaction demonstration and, thus, a local posture space Li is selected.

Depending on the scenario at hand, some interactions require sequential orders of
subtasks, such as collaborative assemblies for example. For that temporal information
and past user poses have to be taken into account so that the current state of the
ongoing interaction can be estimated reliably. However, pre-imposing a sequential
plan might also be counterproductive. Settings where users decide what action to
take next like in competitive games for example (see Chapter 5) are not based on
preprogrammed action sequences. In order to consider both scenarios, two interaction
selection approaches are proposed. The first method utilizes postural similarities in
global posture space, i.e. Euclidean distances, to select a demonstration on a per-frame
basis. The second approach on the other hand explicitly includes sequences of previous
user poses in an HMM to account for temporal coherences and sequential orders of
tasks. Both interaction selection methods are described in the following.

Distance-based Interaction Selection

In order to estimate the state of an ongoing interaction based on postural similarities
live user poses are compared to recorded demonstrations. For that a distance matrix E

is generated and evaluated for a sliding window of S timesteps. Its elements capture the
distances di , i ∈ {1, . . . , 1, . . . , I} between poa ∈ G and the closest segment centroid of
each interaction i

E = (d1,d2, . . . ,di, . . .dI) , di = (di,1, . . . , di,S)
T (4.12a)

Each row in E stores the distances of the user’s motion to all segment centroids at
each frame of the sliding window. In the end, the column with the lowest mean value
over all S timesteps identifies the most suitable interaction demonstration and, thus,
the local posture space for temporal alignment.

i = argmin
1≤j≤I

(
S
∑

k=1

Ek,j) (4.13)

Using several time steps to estimate the state of the interaction limits the effect
of undesired shifts between potential interaction candidates and increases hysteresis,
i.e. the controlled agent’s commitment to the current interaction. However, situations
might arise in which the correct interaction example can only be determined when
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larger temporal context and sequences of key poses are accounted for. Towards that
end, a HMM-based interaction selection approach is presented in the following.

HMM-based Interaction Selection

The first step towards the creation of the HMM is to identify key poses in the
human-human interaction demonstrations. Key poses have a long history in com-
puter animation and robot control [106, 107]. They are typically defined for the entire
robot/character and a skilled programmer/animator is often required to model them
over time. Recently statistical approaches, such as in Bashir et al. [106], have been pro-
posed to model human motions by estimating their probability density using Gaussians.
One benefit that arises from this methodology is that the mean of each distribution can
be interpreted as a key pose of the underlying motion [108]. However, whereas current
approaches use high-dimensional data to extract key poses, interaction models harness
the global posture space and, in doing require fewer dimensions. This also forces key
poses to focus on joints that contribute to the motion while at the same time reducing
the amount of data required to extract the statistical properties accurately. The global
posture space also removes redundancy in motion capture data and maximizes the
covariance over each latent dimension. The resulting statistical independence is of im-
portance for estimating key poses. Since the covariance matrix of the density estimate
features less correlation elements, i.e. non-zero diagonal elements, less components are
required to approximate the data. Also the dimensionality of the covariance matrix
decreases which reduces the computational load during key pose estimation.

The density of recorded motion trajectories is approximated in the global posture
space G by performing Kernel Density Estimation (KDE). Following the approach
of [109], KDE places a Gaussian kernel over each point in the low-dimensional space,
thereby reconstructing the probability density function. Using moment-matching, a
more compact GMM is extracted which automatically determines the number R of
Gaussian needed to represent the data. The KDE yields a GMM for all poses poa

1:T in
latent space G. It is is defined as a sum of R Gaussians N (poa

1:T |µi,Σi) weighted by w

f(poa
1:T ) =

R
∑

i=1

wiN (poa
1:T |µi,Σi) , poa

1:T ∈ G (4.14)

N (poa
1:T |µi,Σi) =

1
√

2π|Σi|
exp(−

1

2
(poa

1:T − µi)
TΣ−1

i (poa
1:T − µi)) (4.15)

Since the mean of each Gaussian is a key pose, sequences of such encode the tem-
poral properties of the interaction demonstration as illustrated for three interactions
in Fig. 4.6 (left). Using the extracted distributions from the GMM, a discrete HMM
is constructed to model the probability distribution over observed key pose sequences.
The GMM acts as the quantizer for continuous observations and provides the codebook
for the HMM. This is a benefit over sc-HMMs and c-HMMs where manual fine-tuning
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Fig. 4.6.: Left: A global posture space is created by applying PCA to the observed agents motion
capture data. The resulting motion trajectories in latent space as well as the computed kernel density
estimate is visualized. Color is used to indicate the probability of each distribution.
Right: A HMM is trained to capture the broad context of an interaction based on recorded motions
in latent space. The Gaussian distributions of the kernel density estimate act as a vector quantizer
and a hidden state si is defined for each interaction subtaks.

of the number of Gaussians of the emission distribution is required. In an interaction
model each hidden state of the HMM corresponds to an interaction demonstration and
is consequently assigned to a local posture space Li. The elements of the transition
matrix thus define the probability of transitioning from one interaction to another.
The emission probability distribution is estimated using the KDE and the probability
of observing a key pose while in state si. The Gaussian with the largest posterior
probability is the observation o of the HMM at time step t:

n = argmax
∀i

Ni(p
oa
t |µi,Σi) , n, i ∈ {1, . . . , R}. (4.16)

The transition and emission probabilities are estimated using sequences of key poses,
i.e. a vector of indices n. It is noted that additional motion capture recordings can be
utilized to train the HMM but only a single demonstration is required. For training,
a unique list of key poses is created by evaluating Equ. 4.16 for each motion capture
frame. An estimate of the transition matrix Pi→j is generated by counting the transi-
tions between interactions in the training data set, i.e. the transition from interaction si
to sj. In the end, the learned HMM encodes sequences of key poses and, consequently,
generalizes their temporal relationships on a sequential level.

Evaluating the posterior probability of each Gaussian distribution per frame yields
a set of key poses that resemble the past S user poses (denoted o1:S, see Equ. 4.16
and Fig. 4.7). Given the key poses, the interaction demonstration that matches the
current situation best can be inferred by computing the posterior state probabilities of
the HMM.

Since each hidden state corresponds to an interaction, the corresponding local pos-
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Fig. 4.7.: The live user motion is recorded and projected into the global posture space G leading to
new points in the embedding (depicted red). By computing the posterior probability of each Gaussian
of the GMM for all user poses a unique sequence of observations is created.

ture space can be retrieved. Using the HMM, the most suitable candidate is computed
without explicit temporal information. Instead, sequential information, in terms of
ordered key poses, is used to to infer a matching demonstration. This renders the
selection of an interaction independent from the speed with which it was performed
during motion capture. To account for additional temporal perturbations and varia-
tions during the course of a interaction, temporal alignment of live motions is enforced
in the selected local posture space. The required steps are introduced in the following.

4.4.2. Temporal Alignment

In order to temporally align user motions to a specific interaction, poses p̂oa
H−S:H are

projected into the local posture space of the selected interaction Li and matched against
the mean of all segments Q1:M using Euclidean distances. The segment Q̂m that
exhibits the smallest distance to p̂oa

H−S:H is on average the most similar motion of the
initial recording and the involved poses resemble the current situation best. Temporal
perturbations of the user’s motions are accounted for by aligning the captured poses
p̂oa
H−S:H to the matched segment Q̂m. For that, a DTW path [110] between Q̂m and

p̂oa
H−S:H is computed. The overall goal of DTW is to generate a warping path along poses

that minimizes the sum of distances between the two motions, i.e. Q̂m and p̂oa
H−S:H .

An n×m cost matrix D is created where each element Di,j corresponds to the squared
distance of the ith element of Qm and jth element of p̂H−S:H respectively. Given
the cost matrix, the optimal path is the path that minimizes DTW (Qm, p̂H−S:H) =

min(
√

∑K
k=1wk). Here wk is the matrix element D

i,j
k that corresponds to the kth

element of the warping path [111]. The end of the optimal path yields an index t̂ to
the motion capture frame of the initial recording that best fits the current situation
temporally and spatially (see Fig. 4.8).

Computing the warping path however is computationally expensive due to its
quadratic time and space complexity (O(n2)). As DTW is applied in low-dimensional
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Fig. 4.8.: During runtime the user’s motion is matched against an inferred interaction demonstration
in local posture space Li. The figure depicts the optimal path that minimizes the sum of distances
between the recording (gray dots) and the live motion (red dots). The end the path is highlighted
green. It is associated with pair of poses from the initial recording that will be used to adapt an agents
response spatially. Due to the computational complexity, only segments whose centroid (orange dots)
are in close proximity are considered for DTW.

space the computational load is reduced. Also, a path is only computed for parts of
the recorded motion, i.e. for segment Qm and p̂H−S:H , rather than the complete tra-
jectory in Li. The optimizations above render it applicable in the considered real-time
applications and allows temporal alignment of user motions during the course of an
interaction. Yet, the user’s motion still varies with respect to the initial recording
and adopting the found pose directly will most likely fail to preserve the interaction’s
intent. As a result additional spatial optimization is required before the pose can be
transfered to the robot. For spatial adaptation, context-dependent IMs are used in the
following.

4.4.3. Spatial Adaptation

After inferring an interaction demonstration and temporally aligning the user’s motion,
the most suitable time frame the initial recording is selected. Given t̂, an associated
pair of poses pt̂ = [poa

t̂
, pca

t̂
], the corresponding IM topology Tt̂, the weights wca,i=1,...,N

t̂

as well as the constraints f ca,i=1,...,N ,coa,i=1,...,M are retrieved. Consider the difference
between poses pt̂ from the training recording with the poses in the current situation
p̂H = [p̂oa

H , p̂
ca
current], where p̂oa

H and p̂ca
current are the postures of the observed and con-

trolled agent in Cartesian space. In order to adapt the retrieved IM to the current
situation, essentially, its deformation energy is minimized

min
p̂H

3(M+N)
∑

i=1

1

2
‖L(p̂i

H)− L(pi
t̂)‖

2 +

3(M+N)
∑

i=1

W
i,i

t̂
‖p̂i

H − pi
t̂‖

2 (4.17)

while at the same time ensuring the validity of its associated constraints (right side
of Equ. 4.17). L denotes the Laplacian operator which deforms poses into local coor-
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dinates using the topology Tt̂ (see chapter 3.3.3). Equ. 4.17 is then reformulated to
a SLE

(

MT
t̂
Mt̂ + FT

t̂
Wt̂Ft̂ CT

t̂

Ct̂ 0

)

(

p̂H

)

=

(

MT
t̂
b+ FT

t̂
Wt̂pt̂

pt̂

)

(4.18)

where Ct̂ and Ft̂ denote the hard and soft constraint matrix respectively. Ct̂, Ft̂ and
Wt̂ are constructed using the following form:

C = diag(coa,1, . . . , coa,M , 0, . . . , 0)

F = diag(0, . . . , 0, f ca,1, . . . , f ca,N)

W = diag(0, . . . , 0, wca,1, . . . , wca,N)

(4.19)

The elements of Ct and Ft are binary matrices that indicate if a joint is attributed
a hard or soft constraint. The matrix Mt̂ is the expanded Laplacian L and transforms
the current pair of poses p̂H into topology coordinates using the Topology Ti. In
essence, this transformation accounts for the conversion from Cartesian space into
neighborhood-preserving differential coordinates using the context-dependent topology
(see chapter 4.3.4). The weight matrix Wt̂ captures the importance of each joint and
it is extracted from the segment weight Wm that contains time step t̂ (see Equ. 4.9).
Ct̂, Ft̂,Wt̂ and Mt̂ are sparse matrices and the system in Equ. 4.17 is overdeter-

mined by at least one hard constraint. As a result, it can be efficiently solved using
least squares. In contrast to other IM approaches, cf. chapter 2, the topologies and
optimization scheme in the presented context-dependent methodology are adapted at
every frame t in order to create the robot behavior based on the current user pose
allowing for context-sensitive and instant responses. Also constraints are updated at
segment level which allows for varying joint weights during the course of an interaction.
Furthermore, it is be noted that other IM methods assume that each joint is attributed
a vertex in the net topology [39, 57, 86]. As a result, a large number motion capture
markers are required to record interactions. This is, in addition the increased computa-
tional costs, often unfeasible as most capturing systems support only a limited amount
of markers. This limitation becomes particular important for two-person recordings
where twice the amount of markers is needed.

The SLE in Equ. 7.9 accounts for the adaptation of a previously recorded poses pt̂ to
the current situation while preserving constraints of the initial demonstration. In the
end, this optimization process yields a pair of poses that minimizes the deformation
energy with respect to the motion capture recording. As the sparse IM topology
features only a subset of all joints of the agents, the final joint angles are generated
by employing an IK solver. Each joint position of the optimized posture is thereby
attached to the target skeletal structure of the agent. Naturally, this mapping becomes
obsolete whenever the two structures resembles each other so that the correspondence
problem can be neglected. This, however, is generally not the case for most humanoid
robots since they still offer less degrees of freedom. For that reason, the optimized
posture needs to be transformed into the kinematic structure of the robot, rendering
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IK indispensable. A benefit of this is however that physical limitations of a robot such
as joint velocities and torques can be accounted for. These features are generally not
captured in IMs, yet they are particularly important for safe human-robot interaction.
Also, using IK to compute the final agent posture provides means of transferability
to other skeletal structure. In chapter 5 for example, virtual characters learn how to
respond to user motions in a human-agent interaction setting. The same interaction
model approach is used in chapter 6 and 7 to control a 6-DOF robotic arm. For that
only the kinematic chain of the IK solver is altered to match the required structure of
the controlled agent.

4.5. Conclusion

In this chapter a novel interaction learning framework has been presented that, at
its core is based on human-human behavior demonstrations. The temporal and spa-
tial body synchrony of two-person interactions are recorded using motion capture and
structured in such a way as to allow a robot to engage in similar interactions with a
human counterpart. Essentially, the model provides a robot the ability to coordinate
its own actions during a joint task with a human. It offers a generation scheme for
instant responses so that seamless human-robot collaboration can take place. It thus
combines behavior recognition as well as response generation in a single model.

Structurally, the interaction model consists of several data representations to effi-
ciently encapsulate task demonstrations and provide different levels of generalization.
First, a global posture space is computed and all interaction demonstrations are pro-
jected into low-dimensional space. Optionally, an HMM can be trained to enhance
state estimation by representing motions on a sequential level based on key poses. The
HMM associates sequences of key poses to interactions for fast and efficient classifi-
cation during runtime. Temporal generalization is achieved in local posture spaces.
Here, each interaction recording is reduced in dimensionality and motion segments are
temporally aligned during runtime in order to extract a pair of poses from the initial
recording that best fits the ongoing human-agent interaction.

Spatial generalization is achieved by deforming context-dependent IMs at each frame.
In contrast to other adaptation approaches the topology of the net is created auto-
matically from motion capture data without the need of additional user interference.
Instead of relying on extensive marker setups, the topology is created only with joints
that contribute to the interaction. As a result, the approach is usable with motion
capture systems that do not track a large amount of markers.

Using a combination of Cartesian coordinates for motion capture, low-dimensional
spaces for motion recognition as well as temporal alignment and topology coordinates
for spatial adaptation, the benefits of each data representation are fused and harnessed
in a single methodology. This allows a robot to recognize human motions efficiently
and select an interaction demonstration accordingly. The ability of spatiotemporally
adapting task demonstrations to new situations is a core feature of interaction models.
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They allow robots to seamlessly interact with people in a natural and intuitive way.
The feasibility of the proposed methodology is evaluated in the following chapters

where several application scenarios are presented. First, in a virtual reality scenario
a character is trained to response to various user interactions in a believable and nat-
ural manner. VR simulations provide unique opportunities for evaluating temporal
and spatial generalization capabilities without additional latencies or hurdles of real-
world robots. Several human-robot collaboration examples are presented thereafter.
In chapter 6, a robot learns to assist during two complex assembly tasks which require
body synchrony and continuous behavior control. Chapter 7 presents the application
of interaction models in triadic human-robot handover settings. Here, the influence
of objects is analyzed in detail and a user study is conducted to reveal the improve-
ments over traditional handover methods that are not based on human-human task
demonstrations.
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5. Behavior Generation for

Interactive Virtual Humans

In this chapter the interaction model approach is applied and evaluated in a Human-
Agent Interaction (HAI) setting. The model is employed in a fully immersive virtual
world to allow virtual characters to respond to human motion in a natural and intuitive
way. One of these application scenarios is depicted in Fig. 5.1, where a virtual agent
reacts to casual high-fives.

Fig. 5.1.: A virtual character’s animation is calculated based on an interaction model. The model
has been generated with human-human task demonstrations. During the course of an interaction
with the virtual agent, the user’s current and previous postures are analyzed to select an interaction
demonstration and temporally align the observed motion. Then, using context-dependent IMs, the
character’s posture is spatially adapted to best fit the current situation, e.g. to match the user’s hand
in a high-five interaction.

5.1. Introduction

Intelligent virtual agents have found widespread applications ranging from computer
games [112, 113], to educational software [114, 115] and shopping assistants [116]. In
order to be able to engage in interactions with a human user, they require, similar
to collaborative robots, intuitive programming interfaces that minimize the amount of
programming. In the following, the interaction model approach is applied in

a VR setting to allow virtual characters to seamlessly respond to human

motions. The application in HAI scenarios offers additional analysis options over real-
world robot experiments. It allows the examination of spatiotemporal generalization
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capabilities without technical hurdles that are typically introduced by robots. Physical
aspects such as control latencies or safety limitations can be avoided which simplifies
the testing procedure. Using the approach in VR applications further highlights its
ability of generating full-body motions. Whereas most robots feature only a limited
set of DOFs, virtual characters are highly articulated and resemble the human skeletal
structures closely.

In the following, steps required to generate an interaction model for HAI scenar-
ios are described. Subsequent sections discuss the specifics for fully-body control and
show the characteristics of the posture spaces as well as context-dependent IMs in
detail. In section 5.4 the model is utilized in different applications. Focusing on spa-
tiotemporal generalization, the adaptation process is thereby evaluated and compared
to traditional IMs.

5.2. Learning an Interaction Model for

Human-Character Interaction

Before an interaction model is learned, human-human interaction demonstrations are
acquired using motion capture. Based on these recordings the library of responses,
i.e. the posture spaces for state estimation and temporal alignment as well as context-
dependent IMs for response adaptation, are computed.

5.2.1. Data Acquisition

To create the library of interactions two humans performing collaborative tasks are
recorded using motion capture. For that, an optical tracking system by A.R.T is used
to capture both interaction partners at 30 frames per second. Markers are attached
to each extremity of the interactants with additional markers on the head, pelvis and
elbows. Each motion capture marker is treated as an IM vertex, which differs from
other methods, i.e. [41] and [117] where additional vertices are sampled on the surfaces
of the characters’ meshes to create required vertices. Using a sparse marker setup
instead of a comprehensive full body capturing system, leads to less computational
load during IM generation as well as during human-agent interaction. The layout of
motion capture markers that is utilized to record two-person interactions is illustrated
in Fig. 5.2.

During a live human-agent interaction the user assumes an active role and its motion
is captured using the aformented marker configuration. Based on these live recordings
the virtual agent reacts to executed user motions. To preserve consistency to earlier
chapters, the user will be referred to as the observed agent whereas the virtual agent
is called the controlled agent.
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Fig. 5.2.: The behavior of both interactants is recorded using motion capture. Left: A marker is
attached to each extremety and additional motion capture targets are placed on the head, pelvis and
the elbows. Middle: The skeletal structure of the virtual characters used for animation. Colored
regions indicate joints that are computed IK. Right: A virtual character that is used for displaying
agent responses.

5.2.2. Posture Spaces Creation and their Segmentation

A crucial part of the interaction model framework is to extract information about
the importance of joints with regard to their contribution to the overall motion. In
a fighting scenario, for example, the leading hand would be attributed with a high
importance because it steers the interaction. In contrast, feet balance the character on
the ground, and their motion is considered less important. Hence, a lower importance
would be assigned to them. Maintaining certain spatial relationships between joints
may, however, change during an interaction, for example, when switching the leading
hand or including a kick.

In an interaction model this relationship is preserved, allowing for varying joint im-
portances during the course of an interaction. For that PCA and motion segmentation
is applied in several ways. In the first step PCA is applied to all motion capture data
of the observed agent yielding a global posture space G. Naturally, a trajectory in
low-dimensional space corresponds to a fully-body motion when projected back to its
original dimension and when applied to the observed agent’s motion capture data, the
most relevant information H(poa) on how the user moved during all recorded inter-
actions is preserved in low-dimensional space. However, since the transformation into
low-dimensional space results in information lost, i.e. H(R) > H(G), fine details and
nuances of the motions are in general not well preserved. Towards that end, PCA
is then applied in the second step to each recorded interaction yielding several local
posture spaces Li. The global posture space G as well as all local posture spaces
Li are subject to segmentation to allow for varying joint importances (see Equ.4.6).
Transitions between two adjacent segments correspond to the most important postural
changes of the motion in high-dimensional space.
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Fig. 5.3.: The figure shows two IMs created for a punch motion. Left: Delaunay tetrahedralization is
used to compute a mesh topology. Right: The context-dependent mesh generation. Here, joints that
correlate during motion capture are connected by an edge producing a more compact representation
of the mesh.

5.2.3. Interaction Selection

In the considered human-agent interaction scenarios the observed agent retracts to
a rest pose in all motion capture recordings (see chapter 5.4). As a result motion
trajectories in global posture space have similar start and end points. Also, the recorded
interactions do not require a sequential ordering and posture similarities on a per-frame
basis provide enough information to reliably infer an interaction demonstration during
runtime. As a result, the distance-based interaction selection approach is used. For
that the observed agent’s posture poa ∈ R is projected into the global posture space G

during human-agent interaction leading to a new point poa ∈ G. The distances of poa

to all trajectory segments is computed for each frame and added to the distance matrix
E. In the end, the index of the column with the smallest mean value corresponds to
the interaction that is most similar to the poses in the sliding window.

5.2.4. Interaction Mesh Creation

In an interaction model for human-character interactions a context-dependent IM is
computed for each motion capture frame of the human-human interaction demonstra-
tions. Its topology is thereby generated using joint correlations over segments Qm and
distances in local posture space Li (see chapter 4.3.4). In doing so, the joints that
correlate and are in close proximity are connected by an edge, forcing the structure
to focus on the most relevant pairs of joints. Essentially, tetrahedra with a single ver-
tex on the observed agent and 3 vertices on the virtual character are generated. The
resulting topology for a single timestep of a punch motion is depicted on the right of
Fig. 5.3. In comparison to Delaunay triangulation (Fig. 5.3 left), context-dependent
IMs generate sparse net topologies while at the same time allowing for a wider range
of motion (see section 5.4).

In addition to varying net topologies, constraints are automatically defined at seg-
ment level. Joints that are not correlating to other joints are attributed a soft constraint



5. Behavior Generation for Interactive Virtual Humans 68

depending on their amount of correlation (see Equ. 4.9). In the aforementioned punch
interaction, the controlled agent’s feet, head, hip and left arm are attributed a soft
constraint. The right elbow is also assigned a constraint since it naturally correlates
to the right hand. However, its weight is significantly lower as it features a strong
correlation. At the same time all joints of the observed agent are attributed a hard
constraint as they cannot be subject to optimization. The remaining hand joint of
the controlled agent is not attributed any constraint. It is thus freely adapted during
optimization to best fit the current situation.

The topology of the net possibly changes in each motion capture frame and con-
straints vary in each segment. This allows for varying joint importances during the
course of an interaction and enables virtual characters to retain the body synchrony
and spatial relationships of the initial motion capture recording. As a result more
natural and intuitive interactions take place.

The posture spaces and context-dependent IMs are the interaction model. It is used
in the following to generate a controlled agent’s response to an observed agent’s motion.
It thereby accounts for spatial as well as temporal variations of the interaction partner
at each frame.

5.3. Live Human-Agent Interactions

During runtime the learned interaction model is employed in a human-agent setting to
compute a controlled agent’s full-body response in real-time. For that the user’s motion
has to be classified, an interaction has to be selected and the user’s motion has to be
matched against previously recorded motion capture data before a suitable response
can be optimized. The interaction model is thereby utilized in a hierarchical fashion.
First, the user’s live poses poa

H−S:H ∈ R are projected into the global posture space G,
yielding a new trajectory poa

H−S:H ∈ G. Evaluating the distance matrix E, i.e. the
proximity to all segment centroids (see Equ. 4.13), gives the interaction demonstration
that is most similar to the current situation.

When an interaction demonstration has been successfully determined the user’s mo-
tion is projected into the corresponding local posture space Li for temporal alignment.
Within Li, a pair of consecutive segments Q1,Q2 from the initial recording is selected
by computing the Euclidean distances to poa

H−S:H ∈ Li. In order to account for tempo-
ral variations of the user’s motion, poa

H−S:H is matched against the joined segments Q1

and Q2 using DTW. The end of the warping path provides a point - and consequently
a time step t̂ - from the initial interaction recording that best fits the current spatial
and temporal context of the observed agent’s motion.

Since each motion capture frame is associated with a context-dependent IM and a
set of constraints, an optimization problem is formulated that adapts the pose of the
controlled agent to the new situation (see chapter 4.4). The resulting posture is then
transformed to match the controlled agent’s skeletal structure using an IK solver. In
doing so, joint limits and physical constraints of the controlled agent are maintained
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in the virtual world. This contrasts to traditional IM approaches where additional
vertices are sampled on the virtual character’s mesh surface to reconstruct joint angles
[39, 57, 86]. Here, joint velocities and limits are added to the optimization problem
using additional constraints in order to preserve the visual appeal of the final motion.
This, unfortunately, increases the computational demand during runtime since more
restrictions are burdened on the SLE. At the same time the amount of change at each
frame is limited to a user defined threshold which requires manual fine tuning for each
interaction.

5.4. Evaluation

In the following key characteristics of the interaction model are evaluated in different
human-agent settings. The experimental setup and its impact on an interaction model
implementation are discussed first (see section 5.4.1). Then, spatial and temporal
properties of posture spaces (see section 5.4.2) and the generalization capabilities of
context-dependent IMs (see section 5.4.3) are evaluated. Finally, current drawbacks
and limitations are discussed.

5.4.1. Experimental Setup

Spatiotemporal generalization is an important ability of interaction models. In order
to evaluate its capabilities several interactions are recorded using two-person motion
capture. W.r.t. the classification in chapter 1.3, the captured human-human demon-
strations are divided into two groups, which will be introduced first. The visualization
system used to display agent responses and the resulting technical hurdles are described
afterwards.

Human-Human Interaction Demonstrations

To evaluate the proposed method several two-person interactions have been recorded
using an optical tracking system by A.R.T. The human-human demonstrations are
composed of various interdependent behaviors that follow two main goal structures:

• First, a set of collaborative interactions including high fives, a hand clapping
game, waving at each other and a jive dance are recorded.

• And second, competitive interactions including two different kicks, an upper cut,
left/right punches and their appropriate defenses motions are captured.

The motions of both human demonstrators have been tracked at 30 frames per
second, utilizing the marker layout depicted in Fig. 5.2. Fig. 5.4 shows example motion
capture recordings for the cooperative as well as competitive scenario. Each motion
capture target provides a 3-dimensional position - and an unused rotation - leading to
an overall state space of 24 dimensions for each interactant.
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Fig. 5.4.: The figure shows three two-person motion capture recordings. Left and middle: Casual
high-fives and clapping games are recorded. Right: An example kick motion for the competitive
scenario.

Fig. 5.5.: Illustrated is 4-sided CAVE installation that utilizes back projection televisions to generate
a seamless high-resolution image.

Visualizing Agent Responses

During the interaction with a virtual character, agent responses are visualized in a
CAVE environment to allow for natural and intuitive interactions. Composed of 24
Full HD projectors, the XSITE CAVE features high-resolution renderings of agent re-
sponses at almost 50 Mega pixels (see Fig. 5.5). Such a visualization system offers
several benefits over traditional desktop environments. First of all, it allows renderings
of virtual characters at natural heights and in doing so presents a much more realistic
view of the interaction partner. This enhances the perception of the user considerably
and he feels no longer present in the physical world but instead immersed in the virtual
world. The resulting immersion is key for intuitive and natural human-agent interac-
tion [118]. And second, CAVEs - in combination with motion capture - allow users
to move freely without being constrained to traditional desktop settings. Instead of
entering commands with gamepads or joysticks, users are able to use their own body to
control an avatar. Their motions are transmitted and adopted by the character in real-
time, boosting embodiment of the individual in the simulation [118]. This strengthens
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Fig. 5.6.: Interaction models for human-agent interaction are applicable in various visualization sys-
tems. Left: a fighting interaction is displayed in a HMD. Middle: a high-five interaction in a fully
immersive CAVE environment. Here, the contact point between both interactants is on the projection
screen. Right: a fighting interaction where the user interacts with the virtual character through an
avatar.

the user’s feeling of immersion in the scene and improves his performance in achieving
tasks, e.g. high-fifing a virtual character.

An alternative to CAVE installations are Head Mounted Displays (HMDs) which
offer a similar degree of immersion (despite a narrower field of view). In the end both
visualization techniques offer their own benefits as well as limitations and the pre-
sented interaction learning methodology is applicable in both scenarios. For reasons of
availability and presentability all experiments in a fully immersive CAVE environment.

In order to animate the virtual character in either visualization systems using an
interaction model several difficulties need to be taken into account. CAVE installations
typically require several networked computers to render images seamlessly and network
delays as well as transmission times add to the overall latency that is introduced by
an interaction model implementation. At the same time, latencies towards observed
user motions need to be lower than 250ms so that agent responses appear interactive
instead of preprogrammed [119]. In the end, an algorithmic foundation as well as an
efficient implementation is called for in this time critic environment.

5.4.2. Evaluating Interaction Selection

Recognizing and classifying user motions during human-agent interaction is an im-
portant feature of interaction models. The global posture space G that is generated
by applying PCA to the observed agent’s motion capture data is used to infer an in-
teraction demonstration. The corresponding local posture space Li of the matching
interaction is then employed for temporal alignment of observed behaviors.

For the collaborative interaction scenario PCA created a 15-dimensional space G

that resembles how the user moved during all four interaction demonstrations. The
first 3 principal components are depicted in Fig. 5.7. In a live human-agent interaction
a user was tasked to high five the virtual agent. As expected its motion varied from
the initial recording. However, its trajectory in low-dimensional space stills followed
the same direction. This is due to the fact that similar postures were adopted which
in turn lead to neighboring low-dimensional points.
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Fig. 5.7.: In the figure on top the global as well as the selected local posture space is shown. A user
was tasked to high five the virtual agent and its motion is indicated by red dots. Below the normlaized
mean distance to the closest centroid (denoted similarity) of each interaction is visualized. The high
five motion is most similar to the executed user motion. However other motions also exhibit similar
poses especially around frame 50 to 60.

Fig. 5.8.: The virtual agent’s postures are optimized for live human agent interactions. In this example
a user high fives a virtual character successfully. The agent adopts its motion to meet the users hand
at the right time and position.

On the right hand side of Fig. 5.7 the local posture space of the selected interaction is
visualized. Here the closest matching motion segment of the initial recording is marked
(black trajectory). As can be seen, the user motion (indicated by the red trajectory)
also follows the path of the closest segment. After calculating the DTW cost matrix, a
matching point is selected and its associated context-dependent IM is optimized. The
resulting character responses can be seen in Fig. 5.8 for 3 frames.

In a second example the same global posture space is utilized to detect a ongoing
jive dance motion. The projection of current and recent user postures into the global
low-dimensional space are shown in Fig. 5.9 top left. As depicted, its motion matches
the shape of the jive template which has been generated from the initial recording.
Additionally, the local posture space corresponding to the selected interaction is shown.
The most similar segment is highlighted. The similarities of the live user motion to
recorded interaction examples are in Fig. 5.9 bottom. As can be seen other motions
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Fig. 5.9.: The global and local posture space of a Jive dance motion are shown on top. The live
user postures are highlighted red. The normalized mean distance to the closest centroid (denoted
similarity) of each interaction is outlined below.

Fig. 5.10.: The motion of a virtual character is optimized in real-time using the interaction models
approach. As can be seen the agent successfully imitates the behavior shown in the initial recording.

also exhibit similar postures but remain inactive due to their larger mean distance in
the global posture space (c.f. Equ. 4.13). The reason for the large similarities towards
the end of the interactions is that in all recordings, the observed agent returned to a
rest pose. The final character response can be seen in Fig. 5.10.

In a third example a hand clapping game is performed with a virtual character. Here
the same global posture space G from the collaborative interaction demonstrations is
used. As shown in Fig. 5.11 the projected user postures (highlighted red) match the
template created from a clapping game motion. Essentially, the selected interaction
demonstration has been a high five at first (see frame 1 to 20) but changed later
to the correct interaction. The reason for that is that similar postures have been
obtained in both motion capture recordings. It is noted that the HMM-based state
estimation approach could be used to eliminate the initial ambiguity. However, since
the virtual agent’s response posture is similar in beginning of both interactions, no
additional differentiation is required. The final character responses are illustrated for
4 key postures in Fig. 5.12.

For the competitive interaction scenario a 12-dimensional space G was created based
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Fig. 5.11.: The figure shows the global posture space and projected live user postures (highlighted
red). On the right hand side the selected local posture space of a clapping game motion is visualized
with 10 previous user poses for motion matching. Additionally, the normalized mean distance to the
closest centroid (denoted similarity) for each interaction type are illustrated below. As can be seen a
high five motion is selected at first but changed later to the correct clapping game.

Fig. 5.12.: With an interaction model a virtual character can respond to complex interactions like a
clapping game as shown in the figure for 4 key postures. Here the agent’s hand has to meet the users
palm at the right time and at the right position. In contrast to the examples above no avatar is added
to mediate interaction with the virtual character. Instead the human user touches the controlled agent
on the projection screen.

on all 6 interaction demonstrations. It is visualized on left of Fig. 5.13 for the first
3 PCs. On the right of Fig. 5.13 the local posture space of a right-hand punch is
shown. Here, only 2 dimensions are required to represent 98% of the motion. This is
due to the simple nature of the right punch behavior which only involves one extremity
with both feet firmly resting on the ground (see Fig. 5.14 for 6 points in time). In the
figure the left character is controlled by the user and the right agent is animated using
the interaction model. As expected the motion of the controlled agent resembled the
initial motion capture recording while at the same time being spatially and temporally
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Fig. 5.13.: In the figure on the left illustrates the global space for the competitive interaction scenario.
On the right the the local posture space for a left-handed punch is shown. Interestingly, two PCs are
sufficient to represent 98% of the interaction in the local posture space. An excerpt of the live user
motion is highlighted red.

Fig. 5.14.: The figure illustrates different stages of an upper punch motion. The left agent is controlled
by the user whereas the right character is animated using an interaction model. The controlled agent
moves to a crouching stance as soon as the user’s hand moves closer, just as demonstrated during
motion capture.
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Fig. 5.15.: The figure illustrates the global posture space of the competitive interaction scenario. The
user’s motion is highlighted red. The interaction model correcly identified the kick interaction and
the corresponding local posture space (right).

adapted to the current situation.
Fig. 5.15 illustrates the same global posture space but a different live user motion.

Here the user was tasked to kick the virtual agent (see Fig. 5.16). The interaction model
matched the correct interaction demonstration from the pool of all interactions. The
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Fig. 5.16.: In the figure several stages of a kick motion are shown. The left agent is controlled by the
user and the right character is animated using an interaction model. Just as shown during motion
capture, the controlled agent defends the kick with a blocking motion using both arms.

selected local posture space is illustrated on the right of Fig. 5.15. A two-dimensional
local posture space was sufficient to represent 98% of the information.

To summarize the evaluation shows that interaction examples are reliably identified
in the global posture space and temporally aligned in local posture space. For the
cooperative example, local posture spaces of average dimensionality 5 were sufficient,
while for the competitive examples only 2-d local posture spaces were needed.

5.4.3. Evaluation of Context-Dependent IMs

From the recorded example interaction scenarios, two sets of IMs were created: One
set of IMs built with Delaunay triangulation and one set with context-dependent IMs.
In both cases, the vertices of the IM correspond to the markers of the A.R.T. tracking
system. At runtime, for each time-step, the current user posture is queried against the
database of prerecorded interaction examples using the posture spaces, yielding the IM
that is suited best for the current situation.

For the collaborative scenario a clapping game interaction is depicted in
Fig. 5.17 (left). During the interaction, the virtual agent successfully reaches the user’s
hand at the right time and position when context-dependent IMs are used. Joints of the
observed agent that are in close proximity to joints of the controlled agent are attributed
a hard constraint. At the same time, joints of the controlled agent that correlate to
the closest joint of the observed agent are provided a soft constraint (denoted virtual
agent constraint). Overall, the constraints for the left and right hand change regularly.
The most important constraints of both agents are shown in Fig. 5.17 (right). IMs
generated with Delaunay triangulation, failed to preserve spatial relationships when
the user motion differed from the initial demonstration. At the same time, constraints
can only be set for the entire interaction and, thus, fail to preserve the alternating
nature of the game. This resulted in visually unappealing results as highlighted by red
circles in Fig. 5.17 (left).

For the competitive scenario the upper row of Fig. 5.14 shows the controlled agent
(right) successfully defending the user’s punch motion (left). For this example IMs
generated with Delaunay triangulation were attributed a soft constraint on left foot
of the controlled agent to balance the character on the ground. Still, when the user’s
motion differed from the initial recording significantly visually unappealing results
were produced. This can be seen in the second and third row of Fig. 5.18 (left).



5. Behavior Generation for Interactive Virtual Humans 77

Fig. 5.17.: Left: A clapping game between a human and a virtual agent. Due to strong intercon-
nectivity and missing constraints, interaction meshes using Delaunay triangulation failed to preserve
the interaction context. Context-dependent IM automatically attached constraints to both hands. As
result, the virtual agent successfully meets the user’s hands during the live interaction.
Right: The figure illustrates how the two main positional constraints change during the clapping
game. The importance of left and right hands alternates during the interaction.

Here, circles indicate locations where spatial relationships have not been met due to
the strong interconnectivity of the IM. In contrast, with the automatically created
mesh topologies and associated constraints of the proposed method important spatial
relationships of interactions are captured more concisely. Which joints correlate most
in the punching example and, hence, are afforded a constraint, is illustrated in Fig. 5.18
(right). As can be seen, different joints are calculated as most important during the
different phases of the interaction. In the beginning of the punch motion, the user’s left
elbow as well as the reactive interactant’ right hand are closest and, thus, attributed
with constraints that contribute most to the motion adaptation solution. During the
climax of the punching motion, the user’s left hand and the virtual agent’s right elbow
are most important. At the end of the interaction, the correlation changes back to the
initial conditions.

In the same human-agent interaction session the user was tasked to kick the vir-
tual character as shown in Fig. 5.16 for several time frames and different heights in
Fig. 5.19 (left). As expected, IMs created with Delaunay triangulation and the context-
dependent IMs approach performed well, allowing the virtual agent to ward of the kick
motion if the user’s motion resembled the original recording. However, if the kick height
varies significantly Delaunay triangulation tends to fail to produce reliable results (see
Fig. 5.19 left). It leads to motions of the controlled agent that still resemble the ones
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Fig. 5.18.: Left: The user executes right handed punches in varying heights, resulting in corresponding
defenses by the virtual agent. IMs created with Delaunay triangulation fail to produce reliable results
if the user motion varies too much from the initial recording. Circles indicate where errors occurred.
Right: The figure illustrates how the two most important constraints change during a punch interaction
for the user (red dots) and the virtual agent (green dots). As can be seen the main constraints are
set from the right hand to the right elbow for the virtual agent. Joints with smaller correlations
are omitted for reasons of simplicity. Additionally, the minimal distance between joints of the two
interactants is shown.

from motion capture but do not preserve all spatial relationships as indicated by circles.
The context-based optimization approach, in contrast, creates more plausible character
responses as shown on the right. Which joint of the agent has been provided with the
most important constraint is depicted in the right of Fig. 5.19. As in the punching
examples, the relative importance of spatial relationships changes during the kicking
interaction and, hence, different positional constraints are defined during the course of
the interaction.

A feature of IMs is the ability to adapt spatially to different users as indicated in
Fig. 5.20 for a kick behavior. Here, knee bending angles and kick heights that differed
from the initial motion capture recording were adopted. Using the interaction model
the appropriate interaction demonstration and the corresponding context-dependent
IMs were selected so that the characters response matched the user’s particular motion.

5.4.4. Discussion

Due to the sparser mesh topology and fully automated constraint generation, the pro-
posed context-dependent IMs are more susceptible for undesired collisions than stan-
dard IMs based on Delaunay triangulation and manual constraint definition. However,
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Fig. 5.19.: Left: As part of a fight scenario, the user is kicking a virtual agent. The figure shows varying
kick motions and how the virtual character responded. Red circles indicate where optimization errors
occurred (left: second and third row). Right: The figure illustrates how the two main constraints
change during a kick motion for the user (red dots) and a virtual agent (green dots). It can be seen
that user’s right foot is of high importance in the middle part of the interaction. This changes during
the beginning and the end of the motion to each hand since they correlated more.

Fig. 5.20.: The first row in the figure shows a motion capture recording of a kick motion. During
both interactions with the virtual agent users adopted different kick heights and knee bending angles
(see row 2 and 3). Still, the interaction model successfully detected the corresponding interaction
demonstration and suitable character motions that take the specifics of the current situation into
account were created.
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a possible solution to this drawback is the usage of a physics simulation during anima-
tion. Here the agent’s skeletal structure is modeled as kinematic chain and constantly
checked for collision. In doing so, joint movement is limited with plausible natural
constraints avoiding collisions while at the same time ensuring end effector positions
as well as rotations. This strategy is pursued in the traditional non-real-time IM im-
plementation where computational costs play a subordinate role [120].

The interaction model approach for HAI settings utilizes the distance-based approach
for selecting a suitable interaction demonstration. In doing so, the minimal distance
towards a demonstration in global posture space over a sequence of poses yields the
most similar recording. Depending on the sliding window size, it can potentially lock
the agent in one interaction. In the experiments a memory size S of 15 has been proven
to be well suited. This leads to memory length of approximately 0.5 s at 30 frames per
second. Selecting a posture in global posture space as well as motion matching in
local posture spaces takes on average 0.008 s. Optimizing a context-dependent IM
takes 0.01 s which is similar to Delaunay-based IM approaches. In the implementation
used to perform the above experiments, transforming the resulting vertex coordinates
to joint angles utilizing the IK solver takes twice as long (0.016 seconds). All in all
the presented human-agent interaction setup operates at 25 frames per second with a
latency of approximately 230ms on a 2011 MacBook Pro. This includes motion capture,
reference posture search, response posture optimization as well as inverse kinematics
to reconstruct both character poses in order to visualize them in the immersive virtual
environment.

The interaction model used to animate virtual agents does not allow for additional
objects to be included in human-agent interactions in virtual reality. This is due
to lack of tracking capabilities, required to recreate hand shapes. Even so, it is noted
that interaction models are nonetheless capable of reconstructing interactions involving
objects (see chapter 7).

5.5. Conclusion

In this chapter, the interaction model approach from chapter 4 has been applied in
an HAI setting. It is used for generating real-time responses of an interactive vir-
tual human in various scenarios. Using training data acquired from human-human
demonstrations, the model was generated to capture how the interactants moved dur-
ing demonstration. It has been shown that low-dimensional posture spaces allow for
efficient recognition of the observed behaviors during runtime while generalizing to dif-
ferent variations thereof. Based on the same demonstrations, context-dependent IMs
and associated optimization constraints were automatically generated. The topologies
where created for each interaction to preserve spatial and temporal relationships of the
joint behavior. The approach extends previous methods, e.g. [41] to situations where
the temporal context of interactions plays an important role. The generation of the in-
teraction model required no user intervention which also differs form existing methods
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where skilled animators are required to fine tune optimization parameters [39].
Using the interaction model during runtime in full-body interactions between a hu-

man and a virtual character, smooth and instant responses where created in various
scenarios. Thereby, the virtual character’s motions resembled the previously recorded
example interactions between two humans.

Experiments in a fully immersive CAVE environment confirmed that the approach
is able to synthesize context-aware and real-time responses for virtual characters. An
important insight is, that by using human-human demonstration natural and intuitive
virtual character behaviors can be trained. Furthermore, user motions are efficiently
recognized without significant delay due to low-dimensional spaces and sparse marker
setups. A valuable side-effect of this is, that the amount vertices in an IM topology is
reduced, decreasing the computational load during optimization. The approach is thus
suitable for real-time applications such as computer games or interactive assistants.

In the following the methodology will be applied in a HRI setting in order to compute
seamless and natural responses of a robot.
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6. Learning Continuous

Human-Robot Interactions

Building upon the methodology from chapter 4, this chapter applies the interaction
model approach in the field of robotics. A robot is thereby trained to jointly assembly
objects with a human user as depicted in Fig. 6.1.

Fig. 6.1.: In a collaborative assembly task, the robotic assistant continuously coordinates its behavior
with the human co-worker. The robot’s behavior is learned from human-human demonstrations of
the various subtasks.

6.1. Introduction

Collaborative human-robot tasks as shown in Fig. 6.1 require seamless behavior con-
trol and real-time response generation of a robot in order to be successful. It has
been shown in recent literature that the temporal relationships required in these in-
teractions can be efficiently extracted using HMMs for example, c.f chapter 2. These
results also indicate that models based on temporal properties alone do not generalize
sufficiently to postural changes in typical human-robot interaction tasks [54]. Further
spatial optimizations to the robot’s posture and movement are required in order to en-
sure efficient and safe physical interaction. Towards that end, the interaction model

approach is employed in the following in an HRI setting to seamlessly adapt

a robot’s behavior spatiotemporally to that of a human collaboration part-

ner. Whereas other imitation learning methods almost exclusively focus on a single
agent, an interaction model is based on parallel behavior demonstrations by two inter-
action partners. In doing so, it inherently captures important spatial relationships and
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Fig. 6.2.: Overview of the interaction model. It captures, based on human-human demonstrations,
how each person moved during the joint execution of a physical collaboration. Using the learned model
in a human-robot interaction the robot’s role is infered and its controls are computed continuously.
The state of the HRI, i.e. a subtask, is derived and then aligned locally in low-dimensional space.
Spatial adaptation is achieved using context-dependnt IMs.

synchrony of body movements between two interacting partners. It uses a combination
of motion recognition in low-dimensional space and context-dependent IMs for seam-
less pose generation. This allows a robot to respond appropriately to observed human
motions, taking into account temporal and spatial relationships. Spatial generalization
of task demonstrations with context-dependent IMs has been shown in the previous
chapter for human-character interactions.

The contribution of this chapter can be summarized as follows:

• An application of interaction models in complex human-robot assembly tasks

• Quantitative evaluation of interaction models w.r.t their capabilities for spatial
and temporal adaptation of two-person motion capture recordings.

In the following an interaction model is generated for human-robot collaboration.
The differences to human-character interaction are emphasized in section 6.2 and the
generalization capabilities are demonstrated in section 6.3. Here, a robotic arm learns
to build a tube frame and a Lego rocket jointly with a human user. Finally, current
limitations and directions for further research are discussed in section 6.5.

6.2. Learning an Interaction Model for Continuous

Human-Robot Interaction

To generate an interaction model, human-human demonstrations of two users per-
forming cooperative tasks are first recorded using motion capture. Several tasks can
be demonstrated and only one example demonstration per task is necessary. Gener-
ally, a leader-follower type scenario is assumed, where one person acts as an assistant.
During the later human-robot interaction, the robot will assume the role of the assis-
tant. In the training phase, an interaction model is learned that describes how the
two interactants synchronize their movements. At runtime, it is used to continuously
adapt the robot’s movements spatially and temporally to that of human partner (see
Fig. 6.2).
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Fig. 6.3.: The figure illustrates the marker layout used to capture the robot’s motion during a two-
person task demonstrations. In contrast to interaction demonstrations for virtual character animation
less markers are tracked. Here, only the right arm with additional targets on the wrist and thumb are
recorded. The motion of the second interactant is recorded using 6 markers attached to both feet, the
right elbow and hand with an additional marker on the head and the waist.

For consistency with earlier chapters, the first interaction partner, i.e., the human, is
referred to as the observed agent, while the second interaction partner, i.e., the robot,
will be called controlled agent.

In the following key differences of an interaction model for robot control to the one
used for character animation are highlighted.

Motion Capture Similar to an interaction model for character animation, two-person
motion capture recordings are also used to extract interaction dynamics for adaptive
robot control. Each marker provides a position at 30Hz. During human-human demon-
strations and human-robot interactions, each human wears six markers as illustrated
in Fig. 6.3. This contrasts to recordings for character animation where a full humanoid
skeletal structure is captured. Since the robot that will be used in this chapter is
a UR5 robotic arm, 3 markers are attached to the user’s hand so that the gripper
orientation can be reconstructed in the IM. It will be shown during experiments (see
section 6.3) that a total number of 6 markers provides enough information so that a
robot’s response can be seamlessly inferred and adapted in various tasks.

Interaction Selection At the core of an interaction model, several low-dimensional
posture spaces serve to identify relevant interaction demonstrations during HRI. They
are computed by applying PCA to the observed agent’s motion capture data in several
ways. First, a global posture space is computed based on all interaction demonstrations
and, second, for each motion capture recording a local posture space is created.

In contrast to the HAI setting, the considered HRI scenarios are collaborative as-
sembly tasks that require sequential interactions. Whereas experiments in VR showed
that the distance-based selection method reliably determined the correct interaction
in human-character interaction settings, it proved insufficient in HRI settings (see sec-
tion 6.3). If the selection would be based on posture similarities alone, ambiguities
might arise where a single pose of the observed agent leads to different poses of the
controlled agent. This is due to the sparser motion capture marker layout and the
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Fig. 6.4.: The rendering shows 3 stages of a box lifting interaction with their corresponding context-
dependent IMs. The topology changes based on joint correlations as can be seen for the feet for
example. Here, an edge connecting pairs of feet has been added for the last part of the collaboration
(right).

strong posture similarities in the assembly tasks. As a result, the robot would con-
stantly switch between interactions even when the user is not moving. The overall
accuracy with which interactions are selected correctly increases by a magnitude when
sequential information about the order of subtasks is included. Thus, the HMM-based
selection method is used (see chapter 4.4.1). For that the trajectories in the global pos-
ture space are approximated and compressed using a GMM. Each Gaussian represents
a key pose and their sequential order is learned with an HMM. The HMM encodes
sequences of key poses and how they relate to interaction demonstrations (each hidden
node corresponds to an interaction). During runtime the HMM is continuously evalu-
ated, yielding appropriate interaction demonstrations. The corresponding local posture
space is then employed to temporally align the observed user motion (see chapter 4.4.2).

Context-based Interaction Meshes For a human robot interaction to be success-
ful, the motions of the human and the robot partner have to be continuously coordi-
nated. In particular, spatial constraints such as hand contacts have to be retained.
In an interaction model spatial adaptation and coordination is tackled using context-
dependent IMs. For robotic applications, an IM provides a topological and spatial
representation of two humans during a motion capture recording at each time step
and vertices of both interactants are defined as Cartesian positions of motion capture
markers. In contrast to an interaction model generated for character animation, net
topologies for human-robot interactions exhibit less vertices due to the altered mo-
tion capture marker layout. As a result, vertices do not necessarily correspond to
joints of the robot as the kinematic chain may vary with respect to the human’s skele-
tal structure that has been used during recording. However, pairs of motion capture
markers that correlate most are important and their spatial relationship is preserved
in a context-dependent IM.

Fig. 6.4 illustrates the evolution of an IM topology for a box lifting interaction
between two human partners. Most notably, both pairs of feet and the right arms are
considered important and, thus, connected by an edge during net generation.
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6.3. Evaluation

The interaction model for HRI is evaluated in two complex assembly tasks involving
several manipulated objects. In the first example, a Lego rocket is collaboratively
assembled with the help of a robot. In the second example, a tube frame is put together
in collaboration between the user and a robot. During demonstration, a box containing
a set of pipes is first placed on a stand and two pipes are assembled collaboratively,
before the final tube frame is constructed. As illustrated in Fig. 6.6 and Fig. 6.5, the
robot imitates the demonstrated motion successfully and the objects for both examples
are constructed jointly with the user.

Fig. 6.5.: A Lego rocket consisting of four parts is assembled with a user. The figure shows that the
robot imitates the demonstrated behavior successfully while at the same time adopting its poses to
the new situation.

Fig. 6.6.: A tube frame is assembled with a user. Top row: Recording of human-human interactions
using optical motion capture. In the experiments three interactions were recorded, lifting a box, ex-
tracting and assembling a tube before finally constructing a pipe frame. Bottom row: The interaction
model is utilized during human-robot interaction and the robotic arm is continuously reacting to
observed postures.
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Fig. 6.7.: The rendering shows 4 stages for the rocket assembly task. The joint interaction has been
recorded 14 times for 3 heights (A,B,C) at two positions (L,R) on the table each approximately 20 cm
apart. For training the system a single demonstration with medium height B at location R was
utilized.

6.3.1. Experimental Setup

In general, no specific motion capture hardware is assumed and several have been tested
with interaction models successfully. In the experiments presented in this chapter a
tracking system by A.R.T. is used. During human-human demonstrations and human-
robot interactions, each human wears six markers (N o = 6, N c = 6). In the considered
human-robot collaboration tasks marker-based tracking outperformed other capturing
solutions, i.e. Kinect depth sensors, in terms of reliability and accuracy and was, in
consequence, used in the experiments. Below, the main focus is on the Lego rocket
assembly interaction. Similar results have also been obtained for the tube assembly,
but they are omitted for the sake of presentation and readability. In order to evaluate
the generalization capabilities of the system, the rocket assembly task was recorded
14 times at different positions (see Fig. 6.7) resulting in 41000 motion capture frames
(approx. 22min). Using only a single demonstration of each assembly step to learn the
interaction model, 13 repetitions of the joint task are available as validation data. Given
these as input, a robot’s response is compared with that of a human interaction partner.
Based on the training demonstration the preprocessing step created a significantly
reduced state space G from initially 18 dimensions to 6 and 5 dimensions for the Lego
rocket task and the tube assembly, respectively. The dimensionality of Li, i.e. the
local posture space for temporal alignment, was 4 for both assembly tasks. Fig. 6.8
and Fig. 6.9 illustrate G and Li that has been selected based on the user’s motion (red
trajectory) during an interaction.

Approximating the density of user motions in G using KDE yielded K = 15 and
K = 10 GMM kernels which provided reliable results while compressing the motion
to the most relevant key poses (see Fig. 6.10). An HMM with 4 hidden states was
created, corresponding to the 4 subtasks of the complex assembly. Segment matching
as well as temporal pose matching using DTW in Li was performed with a pose history
of H = 30, resulting in a temporal history of approximately one second. This differs
from other approaches where each pose is optimized based on a single observation and,
in doing so, temporal and contextual importances of joints are neglected.
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6.3.2. Interaction Selection

Selecting an appropriate interaction demonstration from the pool of all interactions is
the first step of the interaction model methodology. During runtime the user’s motion
is reduced in dimensionality and the corresponding key postures are inferred based
on Gaussian distributions. As a result a list of key poses of the initial recording are
created that resemble how the user moved in the current interaction. The confusion
matrix in Tab. 6.1 compares the classification accuracy using HMMs (green values)
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Tab. 6.1.: Confusion matrix of the proportion of correct guesses using HMMs and Euclidean distances
(DSTC). Color is used to indicate correct/incorrect classifications. The subtasks correspond recorded
interaction demonstration of the rocket assembly example (see Fig. 6.7)

Actual Class

HMM/DSTC Subtask 1 Subtask 2 Subtask 3 Subtask 4
Subtask 1 0.94 0.15 0.07 0.42 0.04 0.29 0.00 0.38
Subtask 2 0.00 0.00 0.93 0.05 0.00 0.15 0.00 0.42
Subtask 3 0.00 0.22 0.00 0.18 0.96 0.27 0.06 0.25
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ss

Subtask 4 0.06 0.64 0.00 0.35 0.00 0.29 0.94 0.05

with the k-d tree approach (using Euclidean distances in high-dimensional space) as
employed in [39]. As indicated the overall number of false classifications is significantly
higher using the methodology in [39].

As poses at the beginning and the end of each interaction are similar (both arms
resting aside), without incorporating past poses as context, selections of the current
active interaction are unreliable. Using the HMM, sequential information of key poses
is inherently incorporated and, thus, allows selection on a broader contextual level.
This, in turn, has a strong influence on the selection hysteresis, i.e. the robot’s ten-
dency to remain committed to an interaction where the current pose of the human
by itself might indicate a different interaction. In the Lego rocket assembly for ex-
ample, each interaction requires the robot to hold the rocket differently despite that
each starts with similar user motions. Without sequential information, i.e. by using
the distance-based selection method for example (see Chapter 4.4.1), the robot would
switch between interactions and consequently its response poses. As the result the
robot would continuously adapt and align the partially built Lego rocket even when
the user is not moving.
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Fig. 6.11.: An important feature of interaction models is the generalization of learned behaviors to
new situations. To test the generalization capabilities of the system several repetitions of the rocket
assembly task are recorded. The figure shows 3 variations with differing hand-over heights. On the left,
input user motions significantly higher than the original recording are shown. In the middle hand-over
heights similar to the training data and on the right lower hand-over heights are illustrated. The figure
depicts how a frame from the interaction model (red trajectory) is adapted to the new situation (blue
trajectory). The green trajectory shows gripper heights after adaptation. The presented approach
successfully generalizes up to −25 cm to 25 cm in height, outperforming approaches with conventional,
not context-based IMs topologies by a large margin.

6.3.3. Spatial Generalization

Spatial generalization was evaluated for the Lego assembly task using one motion
captured demonstration as well as additional 13 motion capture recordings of human-
human interactions as validation data. Between the 13 task executions, the handover
positions of the manipulated object were varied both in height (see Fig. 6.7 A,B,C)
and location (L,R). In a simulation environment, the recorded motions of the observed
agent were applied to a simulated human while the responses of a simulated robot
were computed using the interaction model. The simulated robot’s motions were then
compared to the motions of the human assistant in the validation cases. Fig. 6.11
depicts the robot’s response in three executions of the assembly tasks. In the figure,
blue trajectories depict the height of the human hand during validation while red
trajectories show hand hight in the demonstration used to train the interaction model.
The robot’s adapted gripper height is shown in green. In almost all examples, the robot
optimized its position to match the human’s hand and reached heights similar to the
validation data. However, in some situations spatial adaptation was insufficient. E.g.
in execution 1, interaction 4, the robot only adapted to a height of about 19 cm where
27 cm would have been required. In all other examples, the robot adapted its behavior
so that the interaction could be completed successfully, i.e. the object was assembled
jointly.

Fig. 6.12 illustrates the variance in spatial generalization for different net topology
generation methods. Compared to alternative topologies, context-dependent IMs ex-
hibit the largest variance and, thus, offer spatial generalization to a larger range of
positions. Since traditional IMs do not focus on important joints, varying user torso
rotations force the reconstruction to adapt and change robot hand positions (−10 cm
to 10 cm) even when user hand positions do not change.

Further, situations emerged where adaptation of more than 10 cm was required, i.e.
height A and C in Fig. 6.7. Here, nets generated with Delaunay triangulation and fully
connected topologies did not provide the required degree of adaptation prompting the
user to adapt to the robot instead. This unnecessarily requires users to match the
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Fig. 6.12.: The figure shows heights that can be generalized to using IM with different topology
generation methods. Delauney triangulation (green area) only allows hand-overs differing up to 10 cm
in height. Using the data-driven topology generation scheme of the interaction model (blue area)
context-sensitive edges and weights are computed. These allow for much wider postural generalization
of up to 25 cm. Interestingly, fully connected topologies (yellow area) provide better generalization
than nets created with Delauney triangulation.
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Fig. 6.13.: The deformation before (orange, red) and after optimization (green, blue) for a box lifting
and tube assembly task. The deformation energy is computed in Laplacian space and corresponds to
the difference between the users current pose and the closest matching motion capture frame from
the initial recording. As it can be seen optimizing the posture to the current situation minimizes
the postural differences drastically. However, poses during the beginning of the interaction already
exhibited a small deformation, thus, less optimization is required.

original motion capture recording closely, in order to interact with the robot success-
fully. The context-dependent topology generation approach in interaction models on
the other hand weight each marker based on its contribution to the overall motion and
adapts only relevant joints. This allows users a broader range of movement and a more
natural interaction.

For the tube assembly task, Fig. 6.13 illustrates the evolution of the IM deformation
energy during two different interactions. As can be seen, postures at the beginning
of the respective interactions do not differ much and consequently less optimization is
required. This changes during the course of the interaction when more optimization
is needed to adapt the IM to the current situation. This is due to the fact that each
interaction started with similar poses but differed more significantly from there.

Reconstruction of robot postures based on optimized IMs is achieved with a physics-
based inverse kinematics solver. For that, joints are modeled using forces in a simulated
environment to stretch the robots skeleton to desired locations, cf. [121]. In doing so,
poles are easily dealt with and the robot can be controlled with respect to its force
limits. This approach for joint angle reconstruction, however, introduces an error since
joints can be stretched when pushed to the limit of the simulated robot’s reach. As
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Fig. 6.14.: The difference between the TCP of the real-world robot and the computed physics-based
inverse kinematics solution is illustrated. Red and blue correspond to end effector locations that are
hard to reach (red) or impossible to move to (blue). Green areas indicate where computed TCPs and
the robots end effector are equal with respect to their position and orientation.

a result the tool center point coordinate of the computed and real world robot differs
as illustrated in Fig. 6.14. Here, blue and red regions indicate target coordinates
which could not be reached due to a large error (ǫ > 50mm). Green and yellow areas
correspond to poses with error below 15mm.

6.3.4. Temporal Generalization

Temporal generalization is achieved using a two stage process. First, the user’s mo-
tion is matched against interaction demonstrations using the HMM and, then, aligned
locally in Li using DTW. Fig. 6.11 shows three repetitions of the Lego assembly task
with varying execution speeds, with a time difference between the slowest and fastest
task completion of ∼20 s. The actual execution time in the validation cases is indicated
by the blue trajectory. As can be seen in the figure, the shapes of the red trajectory
(selection of an appropriate IM) and the green trajectory (adaption of the selected IM
to the current situation) closely match the shape of the blue trajectory. This shows
that the context-dependent generation approach is able to maintain a close tempo-
ral synchrony between the movements of the human and the robot even if the task
execution time is quite different from the training example.

In a similar vein, Fig. 6.15 shows the temporal generalization of three human-robot
interactions of the Lego rocket assembly tasks. Here, each behavior varied in length.
Nevertheless, the correct interaction demonstration has been selected and the motion
has been temporally aligned, so that appropriate IM could be selected.

6.3.5. Computational Performance

As context-dependent IMs use a sparse set of motion capture markers instead of a
comprehensive set of human joints as vertices, an inverse kinematics solver must be
employed to compute the joint angles of the robot’s target pose. Using inverse kine-
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Fig. 6.15.: The figure shows the z-position of the user (orange trajectory) and the robot (blue trajec-
tory). Color is used to highlight the different subtasks of the behavior. As it can be seen the robot
extracted the temporal context of the interaction successfully and moved its gripper at the right time.

matics solvers circumvents the challenge of mapping human data onto a robot (the
correspondence problem) and ensures that joint limits are not violated.

On average, computing the final configuration of the robot using inverse kinematics
accounts for 50% of the computation time (16ms) whereas inferring an interaction and
computing suitable responses using context-based IMs requires an additional 17ms1.
Using the proposed methodology the robot is continuously controlled with a latency
of approximately 150ms towards observed user poses. This results from the employed
sliding window that is used to temporally align user motions as well as communication
overheads.

6.4. Discussion

Training interactive robots by providing human-human interactions as demonstrated
above is a promising approach towards the specification of interaction dynamics. The
experiments, however, have also revealed various technical challenges. For example,
the availability of human-human recordings is very limited and most databases include
only single person movements. Also, recording motion capture data with two humans
is challenging, due to self-occlusions and line-of-sight problems.

The experimental results show a reasonable ability of learned interaction models to
generalize to spatial and temporal changes. However, the system cannot deal with large
spatial adaptations. In these cases, generalization to new positions cannot be achieved
successfully without violating constraints. Overall, spatial adaptations within −25 cm
to 25 cm of the initial demonstration are feasible in most cases.

A general insight of the experiments is that human-robot interaction can greatly
benefit from mesh-based spatial representations. The relationship between two inter-
action partners can be modeled as a mesh between joints, which is then analyzed via
the graph Laplacian, and other well-established graph-theoretic measures. It has also
been shown that the topology of the mesh has a strong influence on the generalization
capabilities of demonstrated tasks. Defining correlations among joints explicitly using
context-dependent IMs has proven to yield good generalization results.

1All experiments were performed on a 2011 MacBook Pro.
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The opening and closing of the hands is currently not captured during human-human
demonstrations and the UR5 gripper is therefore controlled manually. However, this
could potentially be modeled as a binary emission within the HMM.

6.5. Conclusion

In this chapter an application of interaction models for human-robot collaboration has
been presented. In contrast to motion generation approaches based on kinesthetic
training, the learned interaction models inherently capture the important spatial rela-
tionships and temporal synchrony of body movements between two interacting part-
ners. This enables the robot to continuously adapt its behavior, both spatially and
temporally, to the ongoing actions of the human interaction partner. Using the HMM-
based interaction selection method, the presented approach is therefore well suited for
collaborative tasks requiring continuous body movement coordination of a human and
a robot.

Similar to experiments in VR context-dependent IMs also provided a reliable degree
of spatial adaptation in HRI scenarios. In contrast to character animation however
meshes were generated with less vertices and additional motion capture markers on
the right hand. This increases spatial generalization and allows the reconstruction of
gripper orientations during runtime.

A drawback of the method is, that due to the kinematic chain of the robot an inverse
kinematics solver is needed to generate the final joint angles from the more abstract
human pose extracted from the IM. However, since the approach is fundamentally based
on the reconstruction of a humanoid skeletal structure it has the potential of being
applicable to anthropomorphic robots as well. By changing the kinematic chain of the
inverse kinematics solver one could create seamless controls for complex articulated
humanoids as experiments in virtual reality suggest (see chapter 5).

The current chapter addresses human-robot collaboration in a dyadic fashion involv-
ing two interactants. Since objects are not modeled, the robot is not able to detect
and account for object rotations during the interaction with the user. This limitation
is discussed in the following chapter where interaction models are extended to triadic
settings. Here, objects are explicitly integrated into the response generation scheme,
allowing seamless adaptations to varying object rotations.
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7. Triadic Human-Robot

Interactions

This chapter presents an interaction model variant specifically targeting human-robot
handovers. Whereas the previous models focused on dyadic interactions, i.e. collab-
orations involving two interactants, the following introduces an extension to triadic
and possibly n-adic settings. In addition to the interaction dynamics between both
interactants, the triadic variant of an interaction model also captures the object that
is passed, allowing for fine-grained adaptation of a robot’s gripper during runtime. As
a result, more intuitive and time-efficient human-robot handovers emerge.

Fig. 7.1.: A robotic assistant retrieves an object from the user in a typical handover interaction.
The triadic interaction model methodology allows robots to engage in such by extracting relevant
information about body synchrony and spatial relationships from human-human demonstration. As
a result, seamless and natural handovers with the robot emerge, evoking the same effortlessness and
ease to which people are so accustomed to from interactions with other humans.

7.1. Introduction

Handing over an object to another person is arguably one of the most essential physical
interaction skills. Independently of whether people are at home, in the workplace, at a
restaurant, or at the hospital, they are often faced with situations in which they either
receive or hand-over an object to another person. Hence, for robots to be reliably used
as assistants to humans, they have to be able to engage in similar interactions and
deal with the large variability inherent to such handover tasks. Hand-overs are joint
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tasks in which the giver and receiver coordinate their movements in order to ensure the
successful transition of the object from one to the other. This requires the interaction
partners to react and adapt to each others’ movement, timing, style, and posture.

With the advent of collaborative robots, research on human-robot handovers has
found increased interest in the robotics community. Various strategies for specifying
and learning such behavior have been put forward, such as in [45, 122]. While these ap-
proaches have produced important insights, they mostly model human-robot handover
as a dyadic interaction process – the process parameters are solely influenced by the
two interaction partners and not the handled object. However, especially in situations
in which an object is handed from a human to a robot, it is important to incorporate
the object as an additional element in the interaction process. In addition, the majority
of approaches focuses on the spatial relationship of the end-effectors during the task
and only the position of the human hand is used to identify the robot’s response.

In this chapter, a triadic interaction model variant is proposed that cap-

tures both interactants and a manipulated object for seamless human-robot

handovers. In particular, the focus is on scenarios in which the robot receives an
object from a human partner. Given a single demonstration, information about the
synchrony in movement between different body parts of the two interactants, spatial
relationships between interactants and the object at different moments in the interac-
tion as well information about object possession is extracted. In turn, these parameters
are used to synthesize similar behavior during human-robot handovers. In contrast to
previous chapters, the triadic interaction model constantly tracks both, the human in-
teraction partner and the manipulated object. This allows for fine-grained adaptation
of the robot’s end-effector during the course of an interaction with a human partner.

The main contributions of this chapter can be summarized as follows:

1. A one-shot learning methodology for seamless human-robot handovers based on
interaction models.

2. Generation of triadic Interaction Meshes that incorporate spatial relationships
between interactants and a manipulated object.

3. Automated extraction of body synchrony and object state parameters from
human-human demonstrations.

The method builds upon on earlier findings from previous chapters (see Chapter 5
and 6) and extends them to triadic setups. The remainder of the chapter will introduce
relevant related work, present the interaction model for triadic interactions, and per-
form a set of experiments to evaluate the methodology using objective and subjective
measures.

7.2. Related Work on Human-Robot Handover

A variety of approaches have been used in the past to study handovers between hu-
mans and robots. A common methodology is to perform user studies so as to extract
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basic insights and design recommendations for how to implement such behaviors. For
example, [123] identified that deliberately adding delays to handover tasks can increase
human awareness and success. In [124], a number of both physical and social-cognitive
aspects were studied in order to provide recommendations for plausible handover poli-
cies. The work in [125] focuses mostly on the importance of gaze as a cue for the
projected handover location. Such non-verbal cues can help align the intentions of the
robot and the human partner. Intention inference and legibility of motion has been
addressed in the works by Dragan and colleagues [126]. In a similar vein, Dehais et
al. [127] argue for the importance of the robot’s posture during handovers. In particu-
lar, legible and human-like motions are preferred over goal-oriented and time-efficient
behavior, since they help enable shared mental models between the partners.

Another line of research focuses on designing path-planning algorithms and heuristics
that are specific to handover tasks. The work in [128], for example, generates robot
plans so as to increase safety and comfort of the human. To this end, the human
is treated as part of the planning process. Optimal handover locations are, in turn,
planned by taking both the perspective of the robot as well as that of the human
into account. Such an increase in state-space, however, also comes with increased
computational costs. Another planning-based approach is presented in the work by
Quispe et al. [129]. The authors identify optimal handover locations by searching for
high manipulability positions for both the giver and the receiver. Ideally, both giver
and receiver should have a high manipulability score during the object exchange.

A third line of research focuses on machine learning approaches for identifying op-
timal handover parameters. Kupcsik et al. [130] use noisy human feedback to infer a
latent reward function. In turn, the estimated reward function is used within a policy
search algorithm in order to learn parameters for motor primitives. The work in [131]
discusses the use of interaction primitives [44] in order to realize handovers during
collaborative manufacturing tasks. Learning is performed by observing the dyadic in-
teraction between two humans. Action generation is achieved using Bayesian inference
in a probabilistic model. However, since the object is not part of the model, impor-
tant elements of the interaction are missing. In fact the majority of approaches for
human-robot handovers do not actively incorporate the object into the action genera-
tion process. It is argued, however, that the inclusion of the manipulated object can
have important benefits for modeling the interaction process. Indeed, the pose of the
object is a clear cue for the state of the interaction. In the remainder of this chapter, it
will be discussed how objects can be incorporated into the handover-generation process
using interaction models.

7.3. Interaction Models for Triadic Human-Robot

Handovers

The methodology in this chapter follows the interaction model approach and generalizes
it to scenarios that involve two interaction partners and a manipulated object. Similar
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Fig. 7.2.: Based on a single human-human handover demonstration an interaction model is computed
that captures spatial and temporal dynamics of both interactants and the additional object. Spatial
relationships are encoded in a so called triadic IM at each frame of the recording. Utilizing the model
during runtime, the state of the interaction is continuously infered, yielding a best matching IM before
a robot’s response is seamlessly generated.

to dyadic settings, motion capture is used to record human-human demonstrations of
two users demonstrating a handover. In addition, the movement of the manipulated
object is also recorded and tracked.

Given this recording, an interaction model is extracted that describes how the two
interaction partners synchronized their movements w.r.t. each other and the manipu-
lated object. In contrast to dyadic interaction models, the triadic variant is generated
from a single interaction demonstration without any subtasks. As a result, the global
posture space features a single trajectory, rendering interaction selection during run-
time unnecessary. The triadic interaction model is thus, a local posture space of the
initial handover demonstration and a set of triadic interaction meshes that model spa-
tial relationships of the involved interactants. At runtime, the extracted model is used
to continuously recognize the state of the handover and adapt the robot’s movements
to the human interactant (see Fig. 7.2).

In the remainder of this chapter, each step will be described in more detail. Anal-
ogous to dyadic interaction models, the first interaction partner, i.e., the human, is
referred to as the observed agent, while the second interaction partner, i.e., the robot,
will be called the controlled agent. The third entity in the triadic interaction is the
passive object. Variables with superscript (·)oa denote the observed agent, (·)ca the
controlled agent and (·)po the passive object.

7.3.1. Data Recording

Data for learning is recorded using a setup involving multiple Microsoft Kinect time
of flight cameras and the Microsoft Kinect SDK. 8 body part positions are recorded
per person (M = 8, N = 8)1 and 7 points on the object (U = 7) using depth and color
imaging. The motion capture data of the agents is represented as a time series of poses
poa
1:T = [poa

1 ,p
oa
2 , . . . ,p

oa
T ] and pca

1:T = [pca
1 ,p

ca
2 , . . . ,p

ca
T ] respectively. Poses poa

t and pca
t

are composed of M and N joints, yielding poa
t ∈ IR3M and pca

t ∈ IR3N for each time step
t ∈ {1, . . . , T}, where T is the number of frames in the recording. In a similar fashion,
the motion of the object is denoted by p

po
1:T = [ppo

1 ,p
po
2 , . . . ,p

po
T ] with p

po
t ∈ IR3U.

1For each agent feet, hands, elbows, head and pelvis are captured.
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Fig. 7.3.: Based on human-human demonstration triadic IMs are created. The figure shows three
stages of a handover and the generated IM topology.

7.3.2. Triadic Interaction Meshes for Human-Robot Handovers

In order to model the spatial relationships between the interactants and the object
in a human-robot handover, a mesh triangulation over the involved body parts and
object vertices is used. The previous chapters have shown that IMs are suitable for
adapting recorded motions spatially to new situations. So far, however, objects are not
considered in the IM generation scheme.

In this chapter it is argued that for handovers objects mediate the interaction and
that they play a vital role for the success of the collaboration task. Towards that
end, a data-driven IM topology generation method is developed that extends context-
dependent IMs to triadic interactions involving two agents and an object. A depiction
of such triadic IMs at different moments of an interaction can be found in Fig. 7.3.
Nodes in an IM represent joints of the human body and vertices on the object surface.
Connections between these nodes are generated at different time steps based on the
synchrony in movement as indicated by the corresponding covariance.

Generation of triadic IMs is performed by evaluating the pairwise covariances be-
tween both users and the object at every frame with a sliding window of size S:

cov(poa,i,ppo,j) = E[(poa,i − E(poa,i))(ppo,j − E(ppo,j))]

cov(pca,k,ppo,j) = E[(pca,k − E(pca,k))(ppo,j − E(ppo,j))]
(7.1)

where pca,i ∈ IR3 is the position of a joint i of the controlled agent, poa,k ∈ IR3 the
position of a joint k of the observed agent, and ppo,j ∈ IR3 a point on the tracked
object. Similar to the dyadic HRI setting in the previous chapter, a window size of
S = 30 points or 1 s yields reliable results while providing enough spatial variability
during runtime. Fig. 7.4 depicts the pairwise covariances between the hands of two
interactants and the object over 30 trials. In all of the trials the handover starts
with a bell-shaped trend in correlation which then decreases to zero during the actual
transition of the object between the giver and the taker. In the retraction phase, the
covariances describe a similar bell-shaped pattern but have different signs.

The IM topology Tt at timestep t is constructed by successively adding tetrahedra,
where each tetrahedron connects one joint of the controlled agent, two points on the
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Fig. 7.4.: Top: The covariance between the hands of both users with respect to the object’s motion for
30 handovers is illustrated. The symmetry of the changes in the covariance indicates body synchrony
between both interactants and it is argued that by retaining this feature during human-robot handover
more natural and intuitive interactions take place. Bottom: The distance between the closest pair of
joints of both users towards the object is shown. First, the object is passed to the robot before it is
handed over (yellow and green area). The blue area indicates a retracting motion, where the arm is
moving towards its idle pose. In all recordings the receiving human anticipated the interaction and
started moving towards the object as soon as the passing motion was initiated.

object and one joint of the observed agent. Concretely, the joint/point pair with the
maximal covariance between the controlled agent and the object is computed:

imax, jmax = argmax
(i,j)

cov(pca,i,ppo,j) (7.2)

Similarly, the pair with maximal covariance between the observed agent and the object
is selected, where the point on the object must not be the same as the point chosen in
the above pair:

kmax, lmax = argmax
(k,l 6=jmax)

cov(poa,k,ppo,l) (7.3)

The tetrahedron T = (imax, kmax, jmax, lmax) is then added to the IM topology. Note
that by including two distinct points of the object in the tetrahedron, the object’s
orientation is implicitly represented in the IM.

The process of adding tetrahedra to the IM is repeated, with previously used
joint/point pairs being excluded from further consideration, and as long as a pair
(pca,i,ppo,j) with covariance above threshold Ψ can be found. Since a good choice Ψ

depends on the velocity of the motion and the frame rate with which the behavior is
captured, it has to be set based on the individual setup. Also, Ψ has a strong influence
on the density of the topology. As dense connection structures hinder mesh deforma-
tion during optimization sparse topologies are desired (see chapter 5). However, sparse
structures potentially fail to preserve spatial relationships to a reasonable degree, forc-
ing the robot to misalign its gripper. In the experiments a value of Ψ = 0.1 resulted
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Fig. 7.5.: The observed agent’s motion during the handover demonstration is projected into the
local posture space. In order to account for varying joint importances during different phases of
the interaction, the low-dimensional motion trajectory is further segmented where each segment is
associated with a different set of constraints (see text). The figure illustrates the first two principal
components of a low-dimensional handover trajectory divided into five segments.

in IMs composed of E = 1 to E = 12 tetrahedra per timestep (see Fig. 7.3), which
produced reliable spatial adaptability towards unseen user motions.

While the approach is in principle able to work with just one joint from each agent
and two object vertices, IM topologies with several tetrahedra are generally advanta-
geous. One reason is that additional information on how to approach the object can
be provided to the robot, e.g. when not only the desired hand position is provided but
also an elbow position. Another reason is the increased robustness against tracking
errors at runtime by making the system less dependent on the accurate tracking of a
single body part.

7.3.3. Data-Driven Triadic Constraint Extraction

Hard and soft constraints are defined in order to inform the runtime optimization pro-
cess about the degree to which different parts of an IM may be deformed to match the
current situation. In human-robot interaction settings, as opposed e.g. to offline gener-
ation of computer graphics animations, the poses of the human are not under control
of the optimization algorithm. This can be modeled with hard positional constraints.
Soft constraints can be used to control the spatial adaptivity of the respective joints
of the controlled agent (robot) in the handover task. As a particularity of the han-
dover task, the ownership of the object being handed over changes during the triadic
interaction, thus requiring changing constraint definitions between different phases of
the interaction. Traditional IM approaches either assume manual editing of positional
constraints [39] or constant constraints [59] for the whole interaction. In triadic IMs
however, an automatic constraint extraction process similar to context-dependent IM
is used and constraints may vary over time.

In order to distinguish between different phases of the handover task, the example
interaction is projected into a local posture space where the resulting motion trajectory
is segmented into different parts (see chapter 4). Fig. 7.5 shows an example low-
dimensional motion trajectory and its division into five segments Q1 . . .Q5.
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For each time step, hard and soft constraints are extracted from the task demon-
stration based on the respective roles of the two agents and the object as well as the
covariances and distances between their joints/points. Covariances are evaluated over
motion segments Qk whereas distances are evaluated for each time step (see chap-
ter 4.3.3).

Hard constraints are assigned to joints of the observed agent as well as the object
while being held by the observed agent. In principle, all joints of the observed agent
could be associated with a hard constraint, as none of the joints is under the control
of the optimization algorithm. In practice, better results can be achieved by only
assigning hard constraints that are important to the interaction, as determined by
covariance and distance measures.

A hard constraint coa,i is assigned to joint i of the observed agent if it exhibits a
large covariance to some point j on the object:

coa,i=1...M =

{

1 if ∃j cov(poa,i,ppo,j) ≥ Ψ

0 otherwise
(7.4)

Also, a hard constraint cpo,i is assigned to point i on the object if it is close2 to some
joint j of the observed agent with which it also has a large covariance:

cpo,i=1...U =

{

1 if ∃j ( cov(ppo,i,poa,j) ≥ Ψ ∧ ||ppo,i,poa,j|| ≤ Ω )

0 otherwise
(7.5)

Soft constraints are assigned to the joints the controlled agent. A soft constraint
f ca,i is assigned to joint i of the controlled agent if it is far away and exhibits small
covariance with the points on the object:

f ca,i=1...N =

{

1 if ∀j ( cov(pca,i,ppo,j) < Ψ ∧ ||pca,i,ppo,j|| > Ω )

0 otherwise
(7.6)

Additionally, soft constraints are attributed with weights in the range 0 to 1. A
weight close to 1 means that the joint will have a strong tendency to reach a position
resembling the demonstration, whereas a weight close to 0 means that it has a strong
tendency to adapt towards the actual situation. Let i denote a joint of the controlled
agent and j the point on the object with the largest covariance to i. Then weight wca,i

is defined as

wca,i=1...N=

{

1− cov(pca,i,ppo,j)
σ(pca,i)σ(ppo,j)

where f c,i=1

0 otherwise
(7.7)

For the optimization process described (see chapter 4), hard constraints c, soft
constraints f and weights w are expanded into square diagonal matrices C, F and
W ∈ IRZ×Z of size Z =M+N+U . The first M elements of the diagonals contain con-
straint information about the observed agent, the next N elements information about

2Distances below Ω = 0.75 cm are considered to be relevant for the interaction.
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the controlled agent, and the last U elements information about the object:

C=diag(coa,1, . . . , coa,M , 0, . . . , 0, cpo,1, . . . , cpo,U)

F=diag(0, . . . , 0, f ca,1, . . . , f ca,N , 0, . . . , 0)

W=diag(0, . . . , 0, wca,1, . . . , wca,N , 0, . . . , 0)

(7.8)

7.3.4. Local Posture Space Generation

During runtime an appropriate IM from the pool of all IMs is to be selected in order
to generate the robot’s response (see section 7.3.5). For that the interaction is tempo-
rally aligned, i.e. the time frame from the initial recording that best fits the current
situation, is selected. In contrast to earlier dyadic implementations, where objects are
neglected (potentially resulting in crude state estimates during runtime [5, 122]), user
motions and object trajectories are explicitly included in a triadic interaction model in
a joint posture space. This allows more precise state estimates during runtime and pro-
vides increased robustness towards occlusions that typically occur during handovers,
e.g. when the object occludes the hand.

A joint posture space L is calculated by applying PCA to the combined motion
capture data of the observed agent poa

1:T and the object ppo
1:T . After transformation3 both

motions are compactly represented as a single trajectory p1:T ∈ L. For calculation of
time-dependent constraint definitions (see section 7.3.5), the trajectory in L is further
segmented using Hotellings T-squared statistics (see Fig. 7.5 and chapter 4). A segment
Qk with k ∈ {1, . . . , K} is defined as sequence of consecutive points pr:v ∈ L in the
joint posture space, where K is the number of segments.

On average 2 to 3 dimensions are required to represent up to 98 percent of the
information in the user’s and object’s tracking data. Based on 30 validation recordings
(see Fig. 7.4) K = 4 to K = 6 segments are typically created.

7.3.5. Generating Robot Responses

During runtime the user’s p̂oa
H−S:H as well as the object’s motion p̂

po
H−S:H is captured,

combined into p̂H−S:H = [p̂oa
H−S:H , p̂

po
H−S:H ] and projected into the local posture space L.

Here, H is an index to the most recent pose in the sliding window of size S of evalu-
ated poses. The resulting trajectory in L is then matched against segments Qk using
similarities in the posture space (see chapter 4.3.3). Similarities are only computed
for segments whose centroid is in close proximity to the mean of p̂H−S:H . In essence,
a high similarity value is assigned to segments that point in the same direction and,
thus, describe similar postural changes of the object and the user over time.

A temporally suitable time step of the recording t̂ is found by computing a DTW
path between the matched Q̂k and p̂H−S:H . It is noted that the number of poses in
a segment must not necessarily equal the sliding window size S since the used DTW

3The transformations of p1:T into different coordinate systems can be achieved with a single matrix
operation and a precise marking will be henceforth omitted for reasons of readability. Instead the
corresponding space is referenced at each occurrence
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implementation is able to account for different sequence lengths [132]. Given t̂, a pose
pt̂ = [poa

t̂
,pca

t̂
,ppo

t̂
] from the initial task demonstration, the corresponding IM topology

Tt̂, the weight matrix Wt̂ and matrices with hard and soft constraints Ct̂, Ft̂ can be
retrieved.

Consider the difference between pt̂ from the training recording with the pose in
the current situation p̂H = [p̂oa

H , p̂
ca
H , p̂

po
H ]. In order to adapt the retrieved IM to the

current situation, essentially, its deformation energy is minimized while at the same
time ensuring the validity of the associated hard constraints. Following earlier chapters,
the minimization problem is solved with a sparse system of linear equations

(

MT
t̂
Mt̂ + FT

t̂
Wt̂Ft̂ CT

t̂

Ct̂ 0

)

(

p̂H

)

=

(

MT
t̂
b+ FT

t̂
Wt̂pt̂

pt̂

)

(7.9)

where Mt̂ and b are obtained by expanding the Laplacians of (7.9)4.
Solving the system for p̂H yields an adapted pose for the robot p̂ca

H , given the poses
of the human interactant and the object. This robot pose is then transformed into
joint space using IK. Similar to the dyadic implementations in earlier chapters, IM
topologies Tt are computed at every frame t of the initial motion capture recording in
order to create context-sensitive and instant responses.

7.4. Evaluation

In the following section, the proposed methodology is evaluated and compared with
other handover approaches reported in the literature in a within-subject user study. In
particular, it will be shown how triadic IMs affect spatial and temporal generalization
to new situations.

7.4.1. Methods

The triadic interaction model is compared with two state-of-the-art approaches that
have recently been proposed. The first comparison is with traditional IMs which uses
Delaunay triangulation to generate a mesh out of the poses of virtual characters [39].
During runtime a suitable IM is retrieved by querying a k-d tree, cf. [39].

The second approach for comparison is a responsive control scheme as described
in [133]. Huang and colleagues organize poses of the observed agent in a k-d tree. At
runtime, the k-d tree is repeatedly queried with user poses, yielding a pair of postures
from the initial recording. The pose of the second interactant is then mapped to the
robot’s kinematic configuration using an inverse kinematics solver. Since no optimiza-
tion or learning is performed, the k-d tree needs to be seeded with a sufficiently large
set of different handovers to achieve generalization. In the presented implementation of

4For (7.9), Z × Z constraint matrices C, F , and W are transformed into 3Z × 3Z shape to account
for each Cartesian component of the joint positions separately. The 3Z × 3Z diagonal matrices
are created as in (7.8) but with each element being repeated three times.
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Fig. 7.6.: Two human users demonstrate a handover interaction. It is composed of a reach/give
motion, the actual handover and a retract motion that stops when both arms rest aside.

this approach, a k-d tree is constructed using 30 motion capture recordings at different
heights and positions (see Fig. 7.7).

The same dataset of motion capture recordings used throughout the experiment.
The movements contain the reach motion, the actual handover, as well as a retraction
of the hand (see Fig. 7.6). However, whereas the k-d tree structure from Huang et al.
is constructed using 30 motion capture recordings, both IM methods utilize a single
task demonstration setting up the interaction mesh. Note that only the triadic IM
approach incorporates the object’s position during mesh generation. The training
example of the IM methods has been randomly selected from the pool of all motion
capture recordings with medium handover heights (see Fig. 7.4 and Fig. 7.6). As a
general rule however, only smooth data sets should be used for model learning to
minimize the risk of jerky robot responses. The triadic IMs are parametrized with
Ψ = 0.1, Ω = 0.75 cm and Φk = 0.05 respectively. This yielded a 2-dimensional low-
dimensional space with K = 5 segments based on T = 177 motion capture frames (see
Fig. 7.5).

7.4.2. Measures

To evaluate performance interaction times as well as the number of successful interac-
tions are measured. A handover is considered successful if the robot is able to receive
the object without dropping it. To measure subjective user experience and perfor-
mance, a NASA TLX survey is conducted for each of the tested control schemes.

7.4.3. Procedure

10 participants (all male; students) were recruited, all of whom had previous exposure
to robots. Participants were first given 5min to get familiar with the robot and the
task. In the experiments a UR5 arm and a Robotique 3-finger gripper is used. Both are
not equipped with a force-torque sensors. Since motion capture cannot reliably detect
opening/closing of hands, users were handed a WiiMote bluetooth sender to operate
the gripper manually.

In order to familiarize oneself with the gripper operation and experience robot re-
sponses beforehand, each subject passed the object several times to the robot, before
the experiment started. For that a control scheme was chosen randomly. After famil-
iarization, 3 rounds of interactions were performed, with one round for each control
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Fig. 7.7.: In the user experiment each par-
ticipant was tasked to handover a green ob-
ject at three locations (1,2,3) at three differ-
ent heights each (A,B,C). This procedure was
repeated for all three response generation ap-
proaches.

Fig. 7.8.: The figure illustrates 7 handovers.
At each location the robot aligned its gripper
to match the object’s rotation as well as the
user posture so that the handover is fluent and
natural.

scheme (see section 7.4.1). For each control scheme, each user was tasked to hand
a box-shaped object to the robot at 3 different locations and 3 different heights (see
Fig. 7.7). During the interaction with the robot, the participants were not told which
scheme was active nor did they know which method was developed by the authors. The
participants were also told to avoid corrections when the robot is already retracting
and when the object is to slip out of the gripper. It was suspected that they would try
to catch the object and were thus explicitly told not to engage in these situations for
safety reasons.

After each experiment, the participants where asked to fill out a NASA TLX ques-
tionnaire with feedback regarding the mental demand, physical demand, temporal de-
mand, performance, effort, and frustration. In total, the experiments lasted approxi-
mately 40min per participant.

Tab. 7.1.: Comparison of successful handovers

Proposed Method Ho et al. Huang et al.

Attempts 83 80 83
Successful 77 33 30

7.4.4. Results

During the course of the experiment 246 handovers where recorded with 83 using triadic
IMs, 80 using IM topologies created by Delaunay triangulation5 [41] and 83 using the
approach proposed by [133]. The overall amount of successful interactions is shown
in Table 7.1. Naturally, participants handed over the object differently as shown in
Fig. 7.9. Still, triadic IMs reliably generated suitable response motions so that the
gripper orientation and robot arm motion matched the current situation. This is due

53 recordings were dropped due to inconsistencies in motion capture readings.
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Fig. 7.9.: The figure shows participants of the survey and how they handed the object over. It can
be seen that each of them passed the object at different locations and rotations. Still, triadic IMs
reliably generated robot responses that were appropriate for each situation.

to the object- and user-aware optimization scheme. The resulting range of motion,
i.e. the potential handover location is indicated in Fig. 7.8 for 7 handovers at different
positions.

Table 7.1 reveals significant differences in success rates between the compared ap-
proaches. Using triadic IMs, the robot was able to rotate and align its gripper so that
the object could be grasped tightly in approx. 92% of the handovers. In the remaining
8% percent, the object either slipped out of the gripper or dropped immediately. In
contrast, using the approaches of [41] and [133], only ≈ 40 percent of all interactions
succeeded. Since the object is not explicitly modeled there, the robot has no means of
detecting object rotations and locations but instead fully relies on the user’s posture to
determine its gripper pose. However, since each participant handed the object differ-
ently to the robot, e.g. by varying height or rotation, the robot misaligned its gripper
frequently and the object dropped down. Fig. 7.8 illustrates 7 handovers at different
locations using our approach. Similarly, Fig. 7.9 shows the variation in movements and
orientations over different users.

7.4.5. Interaction Times

The durations required to hand the object over, i.e. accumulated times needed to
reach towards the object, grasp it and then retract back to an rest pose, are depicted
in Fig. 7.10 for all 3 methods. During all experiments, the velocity of the UR5 robot
was limited to 50 percent of its maximum speed to ensure safety.

Using the triadic IM approach, users needed on average 9.7 s to complete the task,
in comparison with approx. 13 s for the other two methods. Hence, the interaction was
about ≈25% faster using triadic IMs. In addition, the interaction times exhibited a
significantly smaller variance which can be attributed to the time-dependent constraint
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Fig. 7.10.: The graph shows the interaction times for all recorded interactions. On average triadic IMs
yield the shortest interaction times (approx. 9.7 s) with the robot while at the same time exhibiting
the highest success rate of 97%. Despite similar task completion times the object has been dropped
significantly more often using traditional IMs or a k-d tree resulting in a success rate of 42% and 36%
respectively.

assignment in the presented approach. In contrast to generic constraints, the data-
driven triadic methodology produces constraints that focus on the essential elements
of the interaction.

7.4.6. Spatial Generalization

Fig. 7.11 depicts handover locations for all participants and control schemes. Again,
differences in variance for these approaches can be observed. Despite occasional oc-
clusions and tracking errors, the proposed triadic method consistently offered a range
of ±37 cm based on a single task demonstration, whereas traditional IMs and the k-d
tree method allowed for a range of about ±24 cm.

Fig. 7.11.: The figure illustrates handover heights for all three methods (blue all recorded handovers,
green successful handovers). The triadic approach offers an increased range of heights for which the
robot is able to respond appropriately without dropping the object. This shows that the interaction
model method generalizes better to unseen situation.

The increase in spatial generalization results can be explained by the time-varying
constraint assignments. During the giving motion of the observed agent, the robot
roughly follows the initial task demonstration but strongly adapts it behavior to the
user’s motion (due to active hard constraints). Over time, however, this changes and
the robot focuses more on the object rather than the user (due to the added soft
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Fig. 7.12.: Top: The diagrams show the number active constraints for three handover interactions.
During the give phase, the dominating hard constraints cause a strong spatial adaptation of the robot’s
motion towards the user motion. In contrast, during the final retract motion, only few constraints are
active which allows the robot to closely follow the task demonstration without much spatial adaption.
The handover phase is dominated by soft constraints, which indicates that spatial adaption of the
robot’s motion is a compromise between the task demonstration and the demands of the current
situation. Bottom: The plots show wrist height trajectories used for determining the boundaries
between the three phases of the handover tasks in the diagrams in the top row.

constraints). As soon as the user retracts, the overall number of constraints immedi-
ately drops and the robot can now adopt a behavior that strongly resembles the task
demonstration. A visualization of this change in mesh topology is shown in Fig. 7.3.

Fig. 7.12 shows how the number of active constraints changes during the course of
three handovers with different speeds and similar heights. The high number of active
hard constraints at the beginning of the interaction demonstrates that the robot starts
early to synchronize its movements with the user, re-targeting its gripper movement
towards the actual object position. In the middle part of the interaction, the number of
hard constraints is low while more soft constraints are activated. Accordingly, spatial
adaption of the robot’s motion is now more balanced between the task demonstration
and the actual situation. In the last part of the interaction, due to the lack of active
constraints, the robot’s gripper essentially follows the spatial trajectory of the demon-
stration. The number of activated constraints also varies over different users which
reflects the different ways the handover movements were performed (cf. Fig. 7.9).

7.4.7. User Experience and Task Performance

After being exposed to all three approaches each participant was surveyed using a
NASA TLX questionnaire. The subjective evaluation of robot performance by the
users can be seen in Fig. 7.13. They follow the general trend of the experiments – the
approaches of [39] and [133] produce approximately similar performance. Triadic IMs,
by contrast received significantly better scores by the users. As mentioned before, the
users where not informed which method was used at each time. A similar trend can
also be found in Fig. 7.14 which depicts the self-reported frustration of the users.

The triadic method also produced low levels of frustration. The methods of Huang
et al. and Ho et al. produced higher levels of frustration, with the latter also showing
a larger variance in the reported scores.
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Fig. 7.13.: TLX performance scores indicate that users felt more confident when the robot was con-
trolled using the interaction model method. Interestingly, the variance of individual performances was
significantly lower compared to other methods. This indicates a increased confidence and repeatability
of triadic IMs.

Fig. 7.14.: The figure shows NASA TLX questionnaire frustration levels for all 3 methods. The results
indicate that users were more stressed and irritated using traditional IM or the approach from Huang
and colleagues.

7.5. Discussion and Limitations

The results of the experiment above validate the hypothesis that incorporating the
object into the interaction process can have various benefits w.r.t. interaction times,
human frustration, and overall success. However, the presented approach is still only
a first step and is limited in some ways.

First, only a limited representation of the object’s shape is used. In particular, since
all experiments are performed with a box, a small number of vertices was sufficient
to represent the shape. It would, however, also be important to explore how object
morphology affects the generation of the triadic IM. It is not clear at the moment if a
detailed shape needs to be employed or whether a convex hull is sufficient. At the same
time, continuous tracking of a complex object also poses various challenges w.r.t. to
computer vision.

Further, it should be noted that other methods can be used for estimating the state
of the interaction, i.e. the time step from the initial recording that best fits the current
situation. In the past, interaction primitives [44] and HMMs (see chapter 6) have
been successfully employed in HRI to perform state estimation. In a triadic interaction
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Fig. 7.15.: Triadic interaction models can also be used by the robot to pass object to a human as
depicted in the figure. Similar to human-robot handovers, the robot is continuously adapting its pose
to match the velocity and position of its interaction partner.

model a PCA-based approach is used due to its low computational demand.
An eminent benefit of the interaction model approach is that it’s bidirectional: it

can also be used independently of whether the human or the robot are initiating the
handover (see Fig. 7.15). For robot-human handovers, recent literature suggests that
humans typically prefer standard orientations of objects [134]. Also, the robot is able
to rely on the user’s ability to adapt during the handover. During human-to-robot
handovers however, the robot has to align its gripper to best fit the objects shape
and anticipate where the object will be handed over. This requires continuous spatial
adaption with respect to the user’s and the object’s motion.

The generalization of a learned handover to different locations was shown to be
around +/−37 cm. For future work, further investigation into how generalization can
be extended to larger envelopes is intended. Also, for safety reasons, the speed of
the robot during experiment was deliberately limited. Given the encouraging results,
future research directions will investigate fast handovers and their requirements.

The experiments where conducted with a simple box shaped object. In order to
apply the triadic variant of an interaction models to the assembly tasks from chapter 6
more sophisticated object tracking and recognition capabilities are required.

7.6. Conclusion

The experiments showed that during human-robot handovers object positions and rota-
tions are vital for the success of the interaction. A one-shot learning approach in which
the important parameters for a successful handover are extracted in a data-driven way
has been presented in this chapter. Whereas current approaches for human-robot han-
dover almost exclusively focus on a single agent, triadic interaction models capture the
synchronous movements of two interaction partners as well as a manipulated object.
As an extension to the approach presented in chapter 4, triadic interaction models
also extract positional constraints for the object that is passed. During runtime the
model is employed in a human-robot setting to infer a robots response continuously
and seamlessly. In comparison to other robot control schemes the presented interac-
tion model implementation yields more intuitive and time-efficient handovers, while
also increasing user satisfaction and overall success ratios.
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8. Conclusion

This chapter summarizes and concludes the presented thesis. After highlighting main
contributions, key research directions that evolve around interaction learning are dis-
cussed.

8.1. Summary and Main Contributions

Robots are more and more entering human workplaces and intuitive programming
interfaces are called for in order to enable them to cooperate with people. Current
programming-by-demonstration approaches mainly make use of kinesthetic teaching
and focus mostly on a single agent. In this thesis however an interaction learning
framework has been developed that is based on parallel behavior demonstrations by
two interacting partners. An important benefit of the methodology is, that the robot’s
behaviors are trained by means of two-person motion capture. This not only removes
the burden of kinesthetically moving the robot during training but also reduces the
cognitive load of the demonstrators and the amount of programming involved.

It was argued that by using two-person task demonstrations, a robot is able to im-
itate interaction dynamics and body synchrony to provide more natural and intuitive
responses during collaboration tasks with users. At the core of the proposed method,
an interaction model is generated to capture body synchrony and spatiotemporal char-
acteristics of two demonstrators. During the course of an interaction with a robot, the
model is used to spatially adapt the initial two-person recording to match the current
situation at each frame. It thereby generates smooth and instant responses that take
the specifics of the human interaction partner seamlessly into account. An advantage
of the approach is that due to the underlying human-human task demonstrations the
robot’s motion is human-readable and, thus, leads to intuitive collaborations. As a
result of this, the interaction has the potential to evoke similar effortlessness and ease
to which humans are so accustomed to from interactions with other people.

From an algorithmic point of view, an interaction model serves state estimation for
ongoing interactions and provides data structures for seamless response generation. It
is composed of several low-dimensional spaces and a set of context-dependent Inter-
action Meshes. During the interaction with the robot, the state of the interaction is
estimated based on the user’s motion in the global posture space. It is generated from
all interaction demonstrations and a suitable example is inferred based on similarities of
the user’s live motion. For that either the distance-based or HMM-based selection ap-
proach is used, depending on the complexity and similarity of poses. Situations which
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feature ambiguous user postures or require sequential orders of interactions require an
HMM in order to yield correct and appropriate robot motions.

Given the observed user postures and a suitable interaction demonstration, the user’s
motion is temporally aligned in the corresponding local posture space. In the end,
temporal alignment yields a pair of poses from the initial two-person recording that
resembles the current situation best. One of these is the unadapted response pose
of the robot. However, the initial recording certainly differs from what is required
in the current context and spatial adaptation of the response is needed. For that
the robot’s pose is optimized using a novel context-dependent IM structure at each
frame of the interaction. The IM captures spatial relationships among body parts and
defines positional constraints based on two-person motion capture recordings. The
preservation of such is most important during physical human-robot teaming where
close contact is often unavoidable. Harnessing human-human task demonstrations, a
context-dependent IM focuses on correlating joints and automatically attributes non-
correlating body parts positional constraints. Whereas traditional methods use dis-
tance based generation schemes, context-dependent IMs are based on relevant joints
instead of pre-programmed topologies. They yield more robust nets that increase spa-
tial generalization and decrease computational load during runtime.

In essence, the key methodical contributions of this thesis are:

• A programming-by-demonstration framework based on human-human motion
capture recordings

• An algorithm for efficient state estimation in human-robot interactions using low-
dimensional spaces and trajectory segmentation.

• Context-dependent IMs for body-synchrony preserving and seamless robot re-
sponses

• An algorithm for automated constraint extraction based on joint correlations in
human-human task demonstrations

• A one-shot learning scheme for simple and straightforward triadic human-robot
handovers.

The proposed method was evaluated in three application scenarios. In a VR setting,
virtual characters were adaptively animated in competitive and cooperative interac-
tions. Here several punches and kicks were taught and for each the controlled agent
responded with appropriate defense motions. In a casual interaction scenario high fives,
dances and a clapping game were trained. Both settings required the virtual character
to respond with adapted behaviors while still retaining body synchrony and spatial
constraints.

The experiments revealed that the interaction model offers increased spatial gener-
alization over traditional IM approaches. In particular, context-dependent IMs retain
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joint correlations extracted from two-person motion capture recordings. This is a valu-
able advantage as it preserves the synchronicity found in natural human-human inter-
actions. It also equips the virtual character with the ability to imitate the smoothness
and ease of motion to which people are so accustomed. A result of the VR experiments
is the insight that the topology of an IM plays a crucial role for the ability of the mesh
to adapt to varying user motions. Traditional IM generation methods fail to preserve
spatial details and require manual fine tuning of constraints for each interaction sce-
nario. Context-dependent IMs on the other hand automatically attribute positional
constraints, reducing training times significantly.

The conducted VR experiments showed the applicability and potential of interac-
tion models in controlled virtual worlds. Given the encouraging results, the framework
was subsequently deployed in human-robot settings, adding the physical aspects of the
real-world. Among others, occlusions of motion capture markers and robot response
timings are particular prominent examples that need to be taken into account. From a
methodological point of view however, no alternations of the interaction model struc-
ture are required when transitioning from character animation to robot control. To
evaluate the generalization capabilities of interaction models in robotics applications
two examples were chosen. In the first application two complex assembly tasks were
considered. Each task required fine-grained adaptation of the robot’s motion so that
objects could be jointly constructed with the human user. In the first assembly task a
tube frame was assembled and the second example utilized Lego blocks to build a mock-
up rocket. Both scenarios feature sequential subtasks and, as a result, the HMM-based
interaction selection method was chosen. Based on the two-person motion capture
recording, postures spaces as well as context-dependent IMs were automatically gener-
ated without user intervention. Despite different motion capture marker layouts and a
reduced set of motion capture markers, the model generated reliable robot responses
and the Lego rocket as well as the tube frame were jointly assembled with a human
user. A result of the experiments is a quantitative analysis of the spatial generalization
capabilities of interaction models. Context-dependent IMs offered −25 cm to 25 cm
of spatial adaptation which exceeds alternate IM approaches by a large margin. This
showed that the proposed state estimation process and the novel IM generation scheme
are also applicable in robotic applications involving close human-robot contact.

In a third application the interaction model approach was extended to a triadic
setting. Whereas previous examples focused on body synchrony of two interacting
partners, the triadic interaction model variant explicitly integrated an additional ob-
ject. For that the object’s motion was tracked during training and included into the
posture space to enhance temporal alignment. At the same time, relevant points on
the object’s surface were considered during IM generation to improve response genera-
tion. Similar to dyadic settings, covariances among joints and object vertices provided
important insight into interaction dynamics. The triadic interaction model variant
thus models object motions and allows a robot to focus on the user’s behavior and
the object’s rotations for more precise interactions. The inclusion of the object in to
the IM generation scheme also results in an improved spatial adaptation capability
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of the robot’s gripper during a handover task. In the end, firm grasps and intuitive
handovers take place since the robot’s gripper closely matches the object’s shape even
for changing rotations.

The performance of the approach was confirmed by a user study. Participants were
tasked to repeatedly handover a box-shaped object to the robot at different heights
and orientations. This in turn prompted the robot to adapt its motion along the way.
During the experiment all participants were also exposed to alternate control schemes
which were recently reported in literature. A comparing view on all evaluated schemes
revealed that triadic interaction models outperformed others by a large margin. Not
only where twice as many interactions successful (> 95%) but users reported further
that they were more satisfied with their overall performance. This shows improved
handover precisions with respect to accuracy and, according to the NASA TLX ques-
tionnaire, decreased cognitive load. Since users do not have to focus on an object’s
orientation during the handover, less time was required to pass the box yielding de-
creased interaction times. In the end, more intuitive and natural interactions emerged
when the robot was controlled using interaction models.

8.2. Discussion and Future Research Directions

In the following, research ideas which emerge from theoretical and practical contri-
butions of this thesis are discussed. They are designed to give an impetus to future
research. However, they provide by no means an exhaustive view on the matter, but
offer starting points for new considerations.

8.2.1. Application-oriented Research Directions

Most HRI research aims at algorithms and systems that can be deployed in real-world
applications. For that, laboratory prototypes need to evolve into mature platforms
that reliably offer robustness and user safety. To assess the readiness for deployment 10
Technology Readiness Levels (TRLs) have been formulated [135]. At the time of writ-
ing, interaction models fall into TRL 4. They reliably produced encouraging results
in laboratory environments and a proof-of-concept has been developed. In order to
mature into the next level, real-world studies and field tests are necessary. However,
among other technical hurdles, a sophisticated tracking system is the first and foremost
requirement before the next level can be achieved. Cluttered factory workplaces and
unpredictable lighting conditions render available tracking technologies often unreliable
and error-prone. Motion capture, which is fundamentally based on tracking hardware,
suffers from additional line-of-sight problems and robots, tools as well as objects can
potentially occlude the user’s body. Given the resulting uncertainty about its posture,
robust estimation algorithms are called for so that the user’s behavior can be safely
monitored. An additional benefit that results from advances in tracking technology is,
that they not only improve the quality with which user motions are estimated, but also
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the quality of training data. More reliable and accurate task demonstrations immedi-
ately improve the precision of a robot’s response as it has a significant influence on its
ability to detect and anticipate actions.

Possible research directions could also emerge from the interaction model’s ability
of reconstructing full body motions. In chapter 5 different VR applications for virtual
characters were presented and in each, agent responses were seamlessly generated for
the entire anthropomorphic skeletal structure. Given these encouraging results, it
stands to reason if the framework is also applicable for full body control of humanoid
robots. In comparison to their simulated counterparts, humanoids are inherently hard
to balance and require sophisticated stability control mechanisms. Also, they are able
to develop large momenta during motions which calls for additional safety measures.
Nevertheless, interaction models are capable of generating full body controls for bi-
pedal, bi-manual humanoids but their feasibility has yet to be confirmed with real-world
experiments.

8.2.2. Theory-driven Research Directions

From Reactive to Proactive Behavior Generation

The proposed interaction model methodology implements a tight coupling of perceived
human motions with robot responses. User poses are directly matched to task demon-
strations and context-dependent Interaction Meshes generate appropriate robot con-
trols. In the considered human-robot teams, it often suffices to rely on the humans’
high-level ability of determining the next assembly step, focusing on the responsiveness
of the robot’s behavior instead. With that, the robot is able to respond instantly in a
wide variety of situations. However, since the user steers the interaction with its own
motion, it is his own burden to decide what action to take next. It can be argued that
this task can become overwhelming if the number of steps increase.

Future research directions could evolve around proactive planning that is often found
in human teams. Consider an assembly line where a robot works collectively with a
user. Here, a proactive robotic co-worker would suggestively handover tools and objects
that are required next in the task. In doing so, it would not only assist reactively
but participate actively by suggesting subsequent steps. At the end, mixed initiative
situations could emerge where robots proactively initiate interactions.

Applications in Shared Workplace Ergonomics Optimization

Another area of research could evolve around workplace ergonomics optimization. De-
spite a formal definition of ergonomics at workplaces, no real world implementations
with robots have been presented so far [136]. The reason for that result from the
complexity of the robot’s control routines. When robot co-workers are deployed in
industrial assembly lines, they naturally have to deal with ergonomic conditions of
different human colleagues. Since each human worker has its own physical limitations
and varying comfort zones, ergonomics parameters are hard to foresee during program-
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ming. Besides the physical integrity of the human co-worker, other constraints such
as body weight distribution or stance influence workplace ergonomics during runtime.
In a typical handover scenario where a tool is passed from the robot to the human for
example, a handover location might be optimal with respect to spatial relationships
but requires the worker to lean forward unnaturally. This can lead to back pain and
increases the risk of injury. A robot should consequently account for these situations
and adapt its own behavior accordingly, so that the tool is passed ergonomically.

It has been shown throughout this thesis that IM topologies play a vital role for
the success of a human-robot collaboration. Future work could extend and elaborate
these findings by developing additional comfort constraints that not only account for
spatial relationships but also ergonomics properties such as foot pressure and joint
bend angles. In addition, alternate sensors could also be integrated. Pressure sensors
in the worker’s shoes for example could measure the weight distributions and comfort
constraints could support the user’s body balance as to avoid unnecessary physical
load.

Life-long Learning and Adaptive Refinement of Interaction Demonstrations

Using an interaction model a robot spatially adapts recorded task demonstrations and
there is consequently a clear distinction between the learning and reproduction phase.
For robots to be placed in human society, expert knowledge might not be readily avail-
able for training and one can argue that there should be a continuum between the two
phases. A new research direction could emerge around life-long refinement of interac-
tion models. On top of the initial task demonstrations, additional knowledge about the
interactions can be gained continuously during the course of multiple collaborations.
Over time, existing interaction capabilities could potentially be refined, improving a
robot’s overall performance and interaction skills. Also, when no suitable interaction
demonstration fits the current situation, alternate behaviors could be trained on-the-fly
by non experts, building upon previous knowledge. For this to become reality an algo-
rithmic foundation is needed that seamlessly generalizes interaction demonstrations. A
potential implementation could harness the compact representations of motion trajec-
tories in low-dimensional space to efficiently model probability distributions over task
demonstrations. In doing so, the parameters could be learned and refined over the
course of numerous interactions while at the same time adapting to the characteristics
of the human interaction partner.

Multi-Human-Robot Teams and Applications of n-adic Interactions

Current HRI research for industrial applications focuses on diadic human-robot team-
ing. Yet, most factories feature multiple robots which, at this point, mainly work by
themselves. These multi-robot environments that already exist open up new oppor-
tunities for human-robot teams where all participants are jointly working on a single
collaborative task. Whereas current interaction learning applications essentially con-
sider only one robot, future applications might rest upon symbiotic robot teams. In
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assembly lines for example robot motions are typically computed individually and work
areas are not shared with humans. In multi-robot environments one robotic arm could
pass a tool to the user whereas a second robot assists during assembly by holding the
to be assembled object. A third robot could meanwhile fetch the next object on a
conveyor belt proactively, yielding a seamless and smooth interaction between all in-
teractants. However, in order to plan the robots’ trajectories, external influences such
as belt timings, user motions as well as its working pace have to be taken into account.
As a result the underlying controls require continuous planning and optimization for
groups of interactants as specially when they are in close proximity.

The interaction model implementation in chapter 7 already showed the applicability
of the proposed learning framework in a triadic setting, involving three interactants.
Here, the model inherently captured the object that mediated the interaction, i.e. the
handover as well as both human interaction partners. Based on these results it stands
to reason if the framework is also applicable in n-adic settings involving multiple robots
that jointly cooperate with a human.

8.3. Concluding Remarks

Future societies will thrive on robots that simplify peoples’ lives in all of its facets.
A starting point for this thesis was that pre-programming each possible situation is
not practical and sophisticated programming techniques were called for. Turning to-
wards nature for help, imitation learning gained increasing popularity in recent re-
search [11, 137]. It allows robots to gradually increase their skill sets by imitating a
human teacher [11]. Despite the recent results, existing methods are mainly restricted
to a single trainer, resulting in robot behaviors that require them to be constrained in
caged environments. For robots to be included in human day-to-day activities however,
interaction skills are needed that promote teaming and collaboration with others.

Building upon the concept of imitation, the presented interaction learning methodol-
ogy broadens the perspective of programming-by-demonstration. It provides a frame-
work for learning interaction skills, enabling robots to actively participate in interac-
tions with people. An important insight is that by using human-human demonstrations
knowledge about collaborative tasks can be efficiently imparted while at the same time
yielding intuitive and human-readable responses. Experiments in VR as well as real-
world HRI settings demonstrate the feasibility of the methodology and its benefit for
robot learning. While the results are encouraging, there are still open research questions
and technical hurdles to be tackled before learning robots can be deployed in human so-
ciety. Nevertheless, this thesis showed that by observing two humans demonstrating a
collaborative task valuable information about interaction dynamics and spatiotemporal
characteristics can be extracted and used for learning interaction skills.
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A. Appendix

A.1. Two-Person Motion Capture Data

Table A.1 shows a motion capture frame of a dyadic HRI for a single time step. Each
row represents a tracked joint pi

t with its Cartesian coordinate pi,x:z
t and rotation matrix

(row wise m1, . . . ,m9). The recordings for triadic HRI have the same layout for both
interactants but feature additional rows for points on the object’s surface.
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Tab. A.1.: A motion capture frame of a dyadic HRI

Joint p
i,x
t=1 p

i,y
t=1 p

i,z
t=1 m1 m2 m3 m4 m5 m6 m7 m8 m9

pi=1
t=1 541.053 714.656 1744.91 0.007 -0.999 0.030 0.977 0.000 -0.209 0.209 0.031 0.977

pi=2
t=1 -503.611 591.681 940.046 -0.396 -0.917 -0.025 -0.911 0.390 0.133 -0.112 0.075 -0.990

pi=3
t=1 -424.369 449.784 1503.18 -0.261 0.961 0.079 0.807 0.263 -0.527 -0.528 -0.073 -0.846

pi=4
t=1 753.82 822.146 133.857 -0.428 -0.205 0.880 -0.356 -0.856 -0.373 0.830 -0.473 0.293

pi=5
t=1 405.666 456.796 1142.93 -0.646 0.390 0.655 0.143 -0.780 0.607 0.749 0.487 0.448

pi=6
t=1 463.631 851.441 1095.9 -0.517 -0.207 0.830 -0.355 0.934 0.012 -0.778 -0.288 -0.557

pi=7
t=1 -401.239 728.563 110.637 -0.560 0.282 0.778 -0.816 -0.344 -0.462 0.137 -0.895 0.424

pi=8
t=1 -271.363 828.821 1220.59 0.183 -0.866 -0.463 -0.472 0.335 -0.814 0.862 0.368 -0.347

pi=9
t=1 -554.015 236.418 1260.95 -0.698 -0.364 -0.615 -0.566 -0.241 0.787 -0.435 0.899 -0.037

pi=10
t=1 -333.697 615.083 1514.57 0.369 -0.912 -0.173 -0.843 -0.407 0.348 -0.389 0.017 -0.921

pi=11
t=1 505.67 581.214 112.215 0.082 0.280 -0.956 -0.049 0.959 0.276 0.995 0.024 0.092

pi=12
t=1 501.305 690.086 939.074 -0.135 -0.966 0.219 0.989 -0.121 0.078 -0.048 0.228 0.972

pi=13
t=1 -590.77 628.121 1748.1 -0.053 0.989 0.134 -0.949 -0.092 0.300 0.309 -0.111 0.944

pi=14
t=1 368.059 828.619 1431.8 -0.249 0.783 -0.568 -0.936 -0.345 -0.064 -0.246 0.516 0.820

pi=15
t=1 312.587 569.132 1437.04 0.501 -0.864 0.038 0.810 0.484 0.328 -0.302 -0.133 0.943

pi=16
t=1 315.584 549.132 1417.06 0.412 -0.924 0.128 0.841 0.459 0.299 -0.302 -0.101 0.916
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