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Abstract

We report a new method for the reduction of noise from spectra. This method

is based on casting vectors from one data point to the following data points of

the noisy spectrum. The noise-reduced spectrum is computed from the casted

vectors within a margin that is identified by an envelope-finder algorithm. We

compared here the presented method with the Savitzky–Golay and the wavelet

transform approaches for noise reduction using simulated Raman spectra

of various signal-to-noise ratios between 1 and 25 dB and experimentally

acquired Raman spectra. The method presented here performs well compared

with the Savitzky–Golay and the wavelets-based denoising method, especially

at small signal-to-noise ratios and furthermore relies on a minimum of human

input requirements.
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1 | INTRODUCTION

Spectral analysis involves processing of spectroscopic
data or patterns for quantification and/or identification
of samples or processes.[1–7] The spectroscopic raw data
usually contain contributions originating from the
desired signal itself, the noise and from the

background or interferences from undesired signals.[8]

One of the first processing steps (often the first one) of
spectroscopic raw data is the elimination of the noise
or the reduction of the noise level. This is especially
challenging when the signal-to-noise ratio (SNR) is
small, meaning when the differentiation between noise
and signal based on solely intensity or peak height is
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not straightforward. Existing noise reduction algo-
rithms can reduce the noise level on the one hand,
but on the other hand—especially at small SNRs—can
also manipulate and with this falsify the desired signal
contribution.

The origin of small SNRs can be manifold. Small
available or realizable excitation powers[9] in combina-
tion with small interaction probabilities (cross sections)
between the excitation and the matter under investiga-
tion often result in small SNRs.[10–12] Also, a less efficient
signal detection or short acceptable signal integration
time can result in small SNRs.[13,14] On the contrary, even
the long integration of low signal levels can lead to small
SNRs, as together with the signal also the thermal back-
ground together with its thermal noise is accumulated.
The ineluctable contamination of spectroscopic data with
noise therefore limits the performance of spectroscopic
techniques.[15–17]

Many postprocessing techniques have been used to
denoise spectroscopic data, such as the Savitzky–Golay
(SG) filter,[18,19] smoothing based on the wavelet trans-
form method,[20–22] the “perfect smoother” method,[23]

the finite impulse response (FIR) smoother,[24] and
smoothing based on the “Wiener estimation.”[25] The SG
smoother is the most popular and frequently used
method to denoise spectroscopic data.[8,25,26] It is based
on the least-squares fitting of polynomials of specified
order to connected data points contained in a moving
window of specified size. The larger the size of the win-
dow is chosen, meaning the more data points are consid-
ered for the polynomial fit, the more the raw spectral
data are smoothed.[24] Not only the noise but also the
sharp signal features can potentially be smoothed out,
like it is the case for all smoothing algorithms. Thus, a
compromise needs to be made between smoothing out
the noise and a loss of spectral information by carefully
adjusting the window size and polynomial order of the
filter.

Smoothing based on wavelets is simple to use, while
adapting well to the form of the signal being
smoothed.[22,27] Here, the noisy raw spectral data are
transformed into a wavelet domain by decomposing it
into a set of orthonormal wavelet basis functions. The
major signal trends of the spectrum are assignable to
large wavelet coefficients, whereas the noise is assignable
to only small coefficients.[20,28] Hereupon, the noise is
suppressed by thresholding the wavelet coefficients. Then
the not-suppressed coefficients are reverse transformed to
obtain the noise-reduced spectra. However, the selection
of the wavelet basis functions and the threshold value
have a great impact on the performance of the method
and are strongly problem dependent.[25] Moreover,
the application of this approach to spectra with small

SNR can reduce, remove, or manipulate also signal
contributions.[29]

Člupek et al.[24] tested the FIR smoother to suppress
noise in spectra. They reported that this technique offers
better preservation of the real signal contribution com-
pared with the SG smoother. However, it is demanding
in computation.[24,25] Using the “Wiener estimation,”
Chen et al.[25] developed a method on the basis of spec-
tral reconstruction to recover spectra with small SNR. In
comparison with other denoising methods such as the SG
method, the FIR smoother, and the wavelet transform
method, their method showed excellent performance.
However, a calibration data set that relies on input spec-
tra with large SNRs is required for the successful den-
oising of spectra with small SNR.

We here introduce a vector casting method for noise
reduction. We compared its performance with the fre-
quently used SG and wavelets denoising methods. The
performance comparison considers the extractability of
the real signal contribution. To the best of our knowl-
edge, vector casting has never been applied to denoise
spectra.

2 | MATERIAL AND METHODS

2.1 | Samples

We used two sets of samples to validate the vector casting
method. The two sets comprise simulated Raman spectra
and experimentally acquired Raman spectra. At this
point, it should be underlined that the vector casting
method is not limited to the treatment of Raman spectra.
Therefore, the descriptions provided in the sections that
follow are provided in a general context and can be trans-
ferred to any kind of spectral data. We only consider con-
tributions to the spectroscopic data coming from the real
signal and from the noise. We neglect the potentially
occurring contributions of a background, as the back-
ground is usually subtracted from the spectroscopic data
using baseline correction methods.[11,30,31] These baseline
correction methods can still be applied after the noise
reduction method.

The simulated spectra

R xið Þ= Ssig xið Þ+Nsim xið Þ ð1Þ

are the summation of a pure signal spectrum Ssig(xi) and
a noise spectrum Nsim(xi), where xi is the variable
(Raman shift in the case of Raman spectra, wavelength
in the case of fluorescence spectra, wavenumber in the
case of absorption spectra, temperature in the case of dif-
ferential scanning calorimetry spectra, theta in the case
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of X-ray diffraction spectra, etc.). Due to Doppler broad-
ening, collisional broadening and optical effects spectral
lines, peaks, or bands are never strictly monochromatic
but feature a distribution around their centre.[32] Spectral
signal profiles can be fitted by Lorentzian, Gaussian, or
Voigt profiles.[33]

The simulated signal spectrum

Ssig xið Þ=
X7
n=1

An 1+
xi−xn
σn

� �2
" #−1

ð2Þ

is the summation of seven Lorentzian peaks having dif-
ferent amplitudes An, widths σn, and being centered at
different variables xn. We chose Lorentzian peaks as they
best reflect theoretical Raman signal lines.[34] The usage
of other peak shapes or a different number of peaks
would not influence the vector casting method.

Figure 1 shows the simulated spectrum Ssig(xi). The
number seven of Lorentzian peaks and the parameters of
these peaks were chosen to imitate overlapping peaks
(xn = 840), narrow peaks (xn = 848,xn = 900), small peaks
(xn = 830), and broad peaks (xn = 820,xn = 860).

Noise in spectroscopic data acquired with a non-
intensified charge coupled device consists of Poisson
noise (shot and thermal noise) and Gaussian noise (read-
out noise). However, above certain noise levels, Gaussian
noise is a good approximation for Poisson noise.[21,35]

The sum of a mutually independent zero-mean Gaussian
noise is still a zero-mean Gaussian noise with variance
equal to the sum of the variances of the independent
Gaussian noises.[36] Thus, spectroscopic noise can be
modelled as the summation

Nsim xið Þ= e xið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nph2 xið Þ+nth2 +nrd2

q
ð3Þ

of shot noise nph (also referred to as photon noise), ther-
mal noise nth, and readout noise nrd.

[35,37] e(xi) is Gauss-
ian noise having a standard deviation of one and mean of
zero.[36,38] The shot noise

nph xið Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ssig xið Þ

q
ð4Þ

is the square root of the signal Ssig(xi) and with this is a
function of the variable xi. Variables xi with large signal
feature a large shot noise, whereas variables without sig-
nal feature no shot noise.

The thermal noise

nth =
ffiffiffi
B

p
ð5Þ

is approximated by the square root of the thermal back-
ground B. The thermal background is supposed to be a
constant over xi. Also, the read out noise is considered as
a constant c over xi.

nrd = c ð6Þ

The SNR in decibel is computed according to

SNR=10log10

PN
i=1 Ssig xið Þ�� ��2PN
i=1 Nsim xið Þj j2

 !
ð7Þ

from the integral of the squared signal and the integral of
the squared noise.[39] The SNR can be changed by chang-
ing the constant B in Equation (5), the constant c in
Equation (6), or by scaling the signal Ssig(xi) in
Equation (4).

For the acquisition of the experimental Raman
spectra,[11] we used as excitation source a diode laser
(Toptica DLpro) emitting 785-nm radiation and a spec-
trometer (Ventana from Ocean Optics) for signal detec-
tion between 800 and 940 nm, which corresponds to
Raman shifts between 200 and 2,000 cm−1. With an exci-
tation laser power of 10 mW, we collected Raman spectra
of liquid ethanol at various integration times between
20 and 1,000 ms. From the different integration times,
experimental spectra R(xi) with various SNRs resulted.
Also, the experimentally acquired spectra are composed
of a signal and a noise contribution. Additionally, a
quasi-noise-free (low-noise) Raman spectrum of ethanol
was acquired with an excitation power of 300 mW and
1,000 ms of signal integration time. This quasi-noise-free
spectrum can be considered as a reference spectrum or as
a quasi-pure signal spectrum Ssig(xi). We chose ethanol
for the acquisition of the experimental spectra, as the

FIGURE 1 Simulated spectrum (intensity as a function of a

variable xi) consisting of seven Lorentzian peaks [Colour figure can

be viewed at wileyonlinelibrary.com]
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Raman spectrum of ethanol also shows narrow, broad,
and overlapping peaks.

The noise-reduced spectrum r(xi) results after noise
reduction from either the simulated or the experimental
spectra R(xi) with either the vector casting method, the
envelope-finder method, the SG method, or the wavelet
transform method. In order to compare the performance
of the different noise reduction methods, we quantified
the deviation between the real signal spectrum Ssig(xi)
and the noise-reduced spectra r(xi) derived with the dif-
ferent methods according to Equations (8a) to (8d) as
proposed by Barton et al.[35] These equations quantify
(a) the mean improvement of the signal quality across
the entire spectral range (Equation (8a)), (b) monitor
whether or not the algorithm interacted negatively with
the spectral peaks (Equation (8c)), and (c) quantify the
signal-to-noise improvement (Equation (8d)) relative to
SNR of the original noisy spectrum (R(xi)).

SNRglobal r xið Þð Þ= max r xið Þð Þ
RMSE r xið Þ,Ssig xið Þ� � , ð8aÞ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1 r xið Þ−Ssig xið Þ� �2

N
,

s
ð8bÞ

SNRpeak r xið Þð Þ= max r xið Þð Þ
RMSE r xið Þpeak ,Ssig xið Þpeak

� 	 , ð8cÞ

SNRprod r xið Þð Þ= SNRglobal r xið Þð Þ
SNRglobal R xið Þð Þ �

SNRpeak r xið Þð Þ
SNRpeak R xið Þð Þ : ð8dÞ

3 | RESULTS AND DISCUSSION

The vector casting method requires preprocessing of the
raw spectra. In the first step, the top and bottom enve-
lopes of the noisy spectra have to be identified using an
envelope-finder algorithm that is described in detail
below. Afterwards, the vectors are casted within the mar-
gin of the before identified envelopes for the derivation of
the noise-reduced spectrum r(xi). We want to emphasize
here that already the envelope-finder algorithm alone
provides a significant noise reduction.

3.1 | Envelope-finder algorithm

The envelope-finder algorithm aims at identifying a
smooth top Etop(xi) and a bottom Ebottom(xi) envelope of
the noisy spectrum R(xi). In the first level (Level 1), all
data points of R(xi) are classified as either peak or valley,

irrespectively of whether the peak is due to noise or due
to a real signal. On this account, a forward R0

f and a back-
ward R0

b differentiation is made.

R0
f xið Þ=R xið Þ−R xi+1ð Þ, ð9Þ

R0
b xið Þ=R xið Þ−R xi−1ð Þ: ð10Þ

A data point is a peak p(xi) or a valley v(xi) if its forward
and backward differentiation are both positive or nega-
tive, respectively.

p xið Þ=R xið Þ, if R0
b xið Þ>0

� �
&& R0

f xið Þ>0
� 	

, ð11Þ

v xið Þ=R xið Þ, if R0
b xið Þ<0

� �
&& R0

f xið Þ<0
� 	

: ð12Þ

Figure 2 top shows the Level 1 peaks and valleys.
In the second level (Level 2), data points of p(xi) and

v(xi) are searched for peaks and valleys by forward and
backward differentiation. Figure 2 middle shows these
computed peak and valley data points of the peaks and
valleys obtained in Level 1. The notations pp(xi) and
vp(xi) indicate the peaks of p(xi) and valleys of p(xi),
respectively. Similarly, pv(xi) and vv(xi) means, respec-
tively, peaks of v(xi) and valleys of v(xi). Computing the
peaks and valleys recursively, in a third level, the peaks

FIGURE 2 Illustration of cascaded local Extrema search at

level 1, level 2, and level 3 [Colour figure can be viewed at

wileyonlinelibrary.com]
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and valley of pp(xi), vp(xi), pv(xi), and vp(xi) can be com-
puted by forward and backward differentiation as well.
Figure 2 bottom shows the Level 3 valleys of the Level
2 valleys of the Level 1 peaks, which is referred to as vvp
(xi). It also can be seen that the first two red diamonds
(vvp(xi)) in Figure 2 bottom can be considered as left and
right border of a signal peak.

Figure 3a again shows that these vvp(xi) data points
(red diamonds) are suitable as indicators for the left and
the right border of potential peaks. Figure 3b,c shows
upon which criteria a decision is made whether or not a
signal peak is situated between two vvp(xi) data points,
here the left border (lb) and the right border
(rb) diamond. The procedure for the classification of peak
and peak-free regions is as follows:

1. The maximum value of the difference

ΔImax =max R xið Þ−R xi+1ð Þj jð Þj
w

ð13Þ

between two consecutive vvp(xi) data points (lb and rb) is
computed. The window size w is defined automatically
by the vvp(xi) and does not have to be chosen by the user.
In Figure 3b, the maximum difference ΔImax is shown as
green line and can be defined as the maximum deviation
between consecutive data points within the window.

2. The height Ph of a potential signal peak which in
Figure 3b is shown as a blue line

Ph =max R xið Þ−Baselineð Þj
w

ð14Þ
is computed as the maximum difference between a data
point and the baseline within the window. The baseline

is the direct connection between the two vvp(xi) data
points.

3. The window is classified as a peak region wp if

Ph >ΔImax ð15Þ

and if according to Figure 3c, the slopes of the linear fits
of p(xi) and v(xi) left of the maximum of the potential
peak are both positive and right of the potential peak are
both negative.

left side slopes > 0,

right side slopes < 0:
ð16Þ

Otherwise, the window is classified as peak-free wpf

region.
The Level 1 peak p(xi) and valley v(xi) (Figure 2 top)

data points are a good first estimate of the top and bot-
tom envelopes of the noisy signal R(xi). For smoothing
these envelopes p(xi) and v(xi), we considered a moving
window wm consisting of 2n+1 peak (Pi) or valley (Vi)
data points. Here, the window size has to be set manu-
ally. Later, the influence of the chosen moving window
size wm onto the noise reduction performance will be dis-
cussed. Here, we assigned Pi to the data points of p(xi)
confined within wm, and Ctop

i is one of the data points of
Pi, which is located at center of the wm. Similarly, Vi is
assigned to the data points of v(xi) included in wm, and
Cbottom
i is the central data point of Vi. The central peak

Ctop
i or valley Cbottom

i data point within the moving win-
dow wm is updated by a new value. The updating proce-
dure depends on whether Ctop

i or Cbottom
i is within a peak

region wp or within a peak-free region wpf. If they are part

FIGURE 3 (a) Simulated noisy spectrum

(grey line) and detected level 3 minima of

maxima of R(xi) (red filled diamonds). (b) a

window margined between left border (lb) and

right border (rb) showing the candidate peak

(Pc) as brown point, maximum difference

between consecutive data points in green line

and the peak height (Ph) in blue line.

(c) Illustration of how linear regression lines are

fitted to the level one peak and valley data

points within the window margined by lb and rb

[Colour figure can be viewed at

wileyonlinelibrary.com]

GEBREKIDAN ET AL. 735



of a peak-free region, they are substituted by the moving
window wm average.

Ctop
i =

P
Pi

2n+1
,Top envelope

Cbottom
i =

P
Vi

2n+1
:Bottom envelope

ð17Þ

If they are identified as part of peak region wp, they are
substituted by

Ctop
i =

P
Pij Pi−Ci

topj j≤ΔImax

j
,Top envelope

Cbottom
i =

P
Vij Vi−Ci

bottom
�� ��≤ΔImax

j
,Bottom envelope

ð18Þ

the average of all peak/valley data points in the window
for which the value of the difference of the central win-
dow point Ctop

i or Cbottom
i and the respected peak or valley

data point is smaller than or equal to ΔImax, where ΔImax

is computed according to Equation (13). j is the number
of peak (Pi) or valley (Vi) data points contained within
the moving window wm where |Pi − Ci

top| ≤ ΔImax or |
Vi − Ci

bottom| ≤ ΔImax.
In Equation (17), the central peak Ctop

i or valley
Cbottom
i data points are updated by averaging all the peak

Pi or the valley Vi data points within wm, respectively.
Contrary, Equation (18) updates the central peak Ctop

i or
valley Cbottom

i data points by averaging peak Pi or valley Vi

data points, which fulfill a condition |Pi − Ci
top| ≤ ΔImax

or |Vi − Ci
bottom| ≤ ΔImax. This condition makes sure that

only peak Pi or valley Vi data points that are not far from
Ctop
i or valley Cbottom

i are considered to update Ctop
i or val-

ley Cbottom
i , respectively.

By linear interpolation between all updated peak Ctop
i

and valley Cbottom
i data points for all variables xi that

according to Equations (11) and (12) have neither been
assigned to a valley nor a peak point, the noise-reduced
top envelope Etop(xi) and bottom envelope Ebottom(xi) are
generated. Figure 4 shows both of them computed for a
moving window with the size n = 9. Scheme 1 presents
the flow chart of the envelope-finder algorithm where
m is total number of peak/valley data points of the noisy
spectrum.

Figure 4 shows the top and the bottom envelope as
blue and red line. The raw spectral data R(xi) are shown
as grey line. The real signal contribution Ssig(xi) behind

the spectral data is shown as dashed line. The solid black
line shows the

Emean xið Þ= Ebottom xið Þ+Etop xið Þ
2

ð19Þ

mean of the top and the bottom envelopes Emean(xi).
Apparently, Emean(xi) is already close to Ssig(xi). This indi-
cates that the envelope-finder algorithm alone has a great
potential of noise reduction. Nevertheless, the noise level
can be even more reduced if in a next step vectors are
casted within the margins of the top and the bottom
envelopes.

3.2 | Vector casting based smoothing

Vectors are casted from a starting already noise-reduced
point r(xk) to subsequent not yet noise-reduced data
points R(xi > k), as it is illustrated in Figure 5. The starting
already noise-reduced point r(xk)

r xkð Þ=Emean xi=0ð Þ ð20Þ

is the mean of the bottom and top envelope at xi = 0.
From this already noise-reduced point r(xk), vectors

a
!

i =
R xi> kð Þ−r xkð Þ

xi−xk

� �
ð21Þ

FIGURE 4 Simulated noisy spectrum (grey line), linearly

interpolated top envelope (blue line) and bottom envelope (red

line), the mean of the top and bottom envelope (black line), and the

real signal spectrum as dashed line [Colour figure can be viewed at

wileyonlinelibrary.com]
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can be casted to all subsequent data points available
with i > k.

Second, all vectors a
!
i that cross either the top or the

bottom envelope are deleted from the set of vectors a
!
i .

Deleted vectors are highlighted in red in Figure 5,
whereas remaining vectors are highlighted in green.

Third, for each of the remaining vectors the slope

bi =
R xi> kð Þ−r xkð Þ

xi−xk
ð22Þ

is computed from which the average slope

�bk =

P
bi
l

ð23Þ

of all the remaining vectors is computed, where l is the
number of remaining vectors.

Fourth, for the not yet noise-reduced data point
xi = k+1 that is situated one increment right of the
already noise-reduced data point xk, the new noise-
reduced value

r xi= k+1ð Þ= r xkð Þ+ �bk � xi= k+1−xi= kð Þ ð24Þ

is computed from the average slope of the remaining vec-
tors and the distance between the two neighbouring vari-
ables xi = k and xi = k+1. This procedure is repeated as
long as all raw data points R(xi) have been replaced by
noise-reduced data points r(xi).

Figure 5a,b shows the noise reduction due to the vec-
tor casting method in a spectral region that does not con-
tain a signal peak and in a spectral region that does
contain a signal peak respectively. Figure 5a (zoomed
plot) shows the details of the computation of the next
noise-reduced data point starting from the previous one
and Figure 5c shows as solid black line the computed
noise-reduced spectrum r(xi).

In Figure 5, vectors are not casted from the previously
noise-reduced data point to all of the subsequent data
points but only to subsequent data points contained in a
certain window wvector. Casting the vectors not to all sub-
sequent data points but only to data points contained in a
certain window reduces the computation demand signifi-
cantly. In Figure 5, the size of the window wvector in
which the vectors are casted is M = 150, meaning, that
vectors are casted to the subsequent 150 data points.
Scheme 2 shows the flow chart of the vector casting
method.

3.3 | Parameter tuning effect

The algorithms outlined in the previous
section requires two input parameters: the size n of
the moving window wm and the size M of the window
in which vectors are casted wvector. In order to

SCHEME 1 Flow chart of envelope-finder algorithm
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investigate the effect of these parameters, we applied
the vector casting method at different values of n and
M. In Figure 6, we showed the results at n = 1,5,9,11
keeping M = 150.

Increasing n initially from n = 1 to n = 5 improves
the smoothness of the noisy signal especially for small
SNR (peak-free region Figure 6). However, the vector
casting method is rather insensitive to further increase of
the size of the smoothing window from n = 9 to n = 11.
The peak regions are also less sensitive to the change in n
as compared with the peak-free regions because the data
points for averaging are determined automatically
(Equation (18)) where only small number of nearby data
points are involved.

The effect of varying the number of vectors to be
casted is shown in Figure 7 and was tested by setting
M = 50,100,and 150 keeping n = 9. Compared with
the mean of envelopes (black line in Figure 7), casting
vectors show significant improvement. However,
increasing M further than M = 50 did not show signif-
icant improvement as the noise-reduced spectra
look rather similar. This can be justified by the
circumstance that the larger the distance between xi
and xk is, the less is the probability of the
corresponding vector to be included in the computa-
tion of the new noise-reduced data point r(xk+1) in
Equation (24).

3.4 | Comparison with Savitzky–Golay
and wavelet transform smoothing
techniques

Figure 8 shows the simulated signal spectrum as solid
black line and as grey simulated raw spectra with noise
levels between 1 and 25 dB. At each SNR, 10 samples
were simulated. The raw spectra are noise reduced using
the presented vector casting method, the presented
envelope-finder algorithm, the SG method, and the wave-
let transform method. For the SG and the wavelet trans-
form method, the input parameters were optimized with
respect to a maximum overall SNR performance between
the obtained noise-reduced spectrum and the pure signal
spectrum according to Equation (8d). Figure 9a,b shows
the parameters selected to give optimal denoised spectra
for the wavelets and SG methods, respectively.

With respect to the SG method, the window size was
varied from three to the maximum odd number that was
smaller than or equal to the number of data points of the
spectrum, and the polynomial order was varied between
one and nine. During denoising of the simulated noisy
signals, as it can be seen in Figure 9b, polynomial order
of three and window size of nine were more frequently
selected.

With respect to the wavelet transform method, a
wavelet denoising function (wdenoise) using the software

FIGURE 5 The noisy raw spectrum is

represented by the grey line. The smooth top

and bottom envelope are highlighted in blue

and red. The noise-reduced data points are

represented by the black solid line.

(a) Illustration of the vector casting method in a

spectral range that does not contain a signal

peak. Details of computation of the denoised

spectrum data points, interceptions of selected

vector lines (magenta +), and mean of

interceptions of selected vector lines (cyan

circle). Green vectors remain as they do not

intersect the top or the bottom envelope. Red

vectors are deleted as they intersect the top or

the bottom envelope. (b) Illustration of the

vector casting method in a spectral region that

does contain a signal peak. (c) Illustration of the

complete noise-reduced spectrum in the

respective section [Colour figure can be viewed

at wileyonlinelibrary.com]
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SCHEME 2 Flow chart of vector casting method for

denoising of noisy spectrum

FIGURE 6 Vector casting method applied at different

smoothing window size of n = 1 (black solid line), n = 5 (red solid

line), n = 9 (green solid line), and n = 11 (magenta solid line). Grey

solid line shows the simulated noisy spectra, and blue solid line

shows pure reference signal [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Vector casting applied at different values of

number of casted vectors M = 50 (red solid line), M = 100 (green

solid line), and M = 150 (magenta solid line). The mean of the

envelopes is shown in black solid line. Grey solid line shows the

simulated noisy spectra, and blue solid line shows pure reference

signal [Colour figure can be viewed at wileyonlinelibrary.com]
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package “Wavelet Toolbox” in MATLAB (by MathWorks
Inc.) was used. Improved implementation versions of the
wavelet denoising technique[40,41] can exist; however, the
relevant codes are not available and thus could not be
applied. Therefore, using the wavelets denoising built in
MATLAB, we varied the level of decomposition between
1 and 10. Four different threshold selection rules[42] were
tested. For the selection of the suppression coefficients,
mean, median, soft and hard thresholding [43] approaches
were evaluated. Moreover, two different wavelet families
(symlets and Daubechies) were tested. Figure 9a shows
the frequency of usage of these parameters while opti-
mally denoising the simulated noisy signals with wave-
lets method. With respect to the envelope-finder
approach, we used a size of the moving window of n = 9,
and for the vector casting method, we casted the vectors
in a window containing 150 data points.

FIGURE 8 Synthetic noisy spectra (grey lines) simulated at

different SNR levels (1, 2, ..., 20, 25 dB) and reference spectrum

(black line)

FIGURE 10 Comparison

of vector casting (green line) and

mean envelope (black line) to

Savitzky–Golay (blue line) and

wavelets (red line). (a) Global

signal-to-noise ratio of denoised

signal r(xi) as a function of

signal-to-noise ratio of original

noisy signal R(xi). (b) Signal-to-

noise ratio of peak regions of

denoised signal r(xi) as a

function of signal-to-noise ratio

of peak regions of the noisy

signal R(xi). (c) Overall

performance of denoising

algorithms with respect to

overall denoised signal quality

and interaction with sharp peaks

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 (a) Parameters of wavelet based denoising selected in an iterative loop for an optimal denoised signal (i) the wavelet

decomposition levels. (ii) the denoising method (threshold selection rules), empirical Bayes (Bayes), and false discovery rate (FDR) were

more frequently selected. (iii) wavelet families with different orders, symlets, and Daubechies. Symlet family order 4 (sym4) were selected

more frequently. (iv) threshold rules. (b) Parameters (polynomial order and window size) of SG smoothing selected for its optimal

performance [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 10 shows the SNR achievement of the four
denoising methods computed using Equations (8a), (8c),
and (8d). As it can be seen in Figure 10a,b, all the
denosing methods improved the original SNR across the
entire spectral region as well as at sharp peaks. The vec-
tor casting and wavelet methods perform better as com-
pared with the other two methods. The vector casting
method performs better than wavelet method at lower
SNR, whereas the wavelet method exceeds the perfor-
mance of vector casting method at higher SNRs.
Figure 10c depicts the overall performance of the den-
oising methods in smoothing the noisy signal while at
the same time keeping the spectral peaks undistorted.
For noisy signal with SNR up to 15 dB, the vector casting
method performs better followed by the mean envelopes.
For higher SNRs, the wavelets method exceeded the per-
formance of the here proposed methods.

Figure 11 shows the simulated raw spectrum R(xi)
with a SNR = 10 dB as grey line, the pure signal spec-
trum Ssig(xi) as blue line, and the denoised spectra r(xi) of
vector casting, mean envelope, Savitzky–Golay, and
wavelets as green, black, magenta, and red lines, respec-
tively. From the comparison of the pure signal spectrum
and denoised signal spectra information can be extracted
about the performance of the different noise reduction
methods with respect to the level of smoothing at peak-
free regions and preservation of spectral shapes at peak
regions (zoomed figures in Figure 10). With the vector
casting method (green line), the noise-reduced spectrum
shows excellent match to the peak locations of the signal

spectrum and preserves the spectral shape information
rather well. And the standard deviation of the denoised
spectrum is very small compared with the other methods
specially at peak-free regions. Denoising applying solely
the envelope-finder algorithm (black line) provides an
overall noisier noise-reduced spectrum than the vector
casting method. Still the peak heights and spectral shape
are preserved rather well. The noise-reduced spectrum
obtained using the optimized Savitzky–Golay method
(magenta) shows a noisier spectrum and that the spectral
peak shape information is manipulated compared with
the pure signal spectrum. The wavelet transform method
(red line) shows a better performance than the Savitzky–
Golay method. Nonetheless, the peak positions and the
peak shapes are manipulated slightly.

Finally, the performance of the four denoising
approaches is compared based on experimentally
acquired Raman spectra. Figure 12 shows 14 experimental
Raman spectra of ethanol (grey lines) featuring different
noise levels. A quasi-pure ethanol signal spectrum (black
line) with large SNR is also shown as quasi-pure signal
spectrum Ssig(xi).

Figure 13a–d shows each 14 Raman spectra (grey
lines) of ethanol, normalized to the highest peak at
around 845 nm, recovered using vector casting, mean of
envelopes, wavelet, and Savitzky–Golay smoothing
methods, respectively. The spectrum of ethanol with high
SNR is also shown in blue line in the figures for refer-
ence. Moreover, to assess the reproducibility of the recov-
ered spectra, the standard deviation of the 14 recovered
noise-reduced spectra at each variable (here Raman shift)
is computed and depicted alongside the recovered spectra
as a red line. The standard deviation is quantified on the

FIGURE 11 Comparison of noise-reduced spectra r(xi) (black

line) using (a) vector casting method, (b) envelope-finder

algorithm, (c) wavelet based smoothing, and (d) Savitzky–golay

filter with respect to the pure signal spectrum R(xi) (blue line). The

original noisy spectrum is shown as grey line [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 12 Experimentally measured Raman spectra of

ethanol (grey lines) featuring different SNR levels and one quasi-

noise-free pure signal Raman spectrum of ethanol (black)

GEBREKIDAN ET AL. 741



right ordinate. As it can be seen from Figure 13, the stan-
dard deviation is higher around the peak regions than at
peak-free regions. Thus, all techniques affect the peak to
some extent. However, with the vector casting method, a
better reproducibility of the spectra was obtained. In
every peak, the vector casting method achieved the mini-
mum standard deviation. The mean of the envelopes also
shows a comparable result with the wavelets method.
The standard deviation of the Raman peak at around
812 nm is 0.013, 0.021, and 0.052 for the vector casting,
wavelets, and Savitzky–Golay methods, respectively. The
peak broadening effect of the Savitzky–Golay technique
is highly reflected by the standard deviation of the peak
at around 842 nm. Moreover, the standard deviation of
the double Raman peaks at 855 nm, shoulder peak at
870 nm, and Raman peak at 884 nm is decreased from
0.07 and 0.025 to 0.021, from 0.04 and 0.019 to 0.016, and
from 0.07 and 0.024 to 0.02 with respect to Savitzky–
Golay and wavelet methods, respectively.

Next to the circumstance that the here proposed
new method for the denoising of raw spectra outper-
forms the two most frequently used methods, it has to
be mentioned that the newly proposed method also
involves a minimum of human interaction. In contrast,
our method requires envelope detection that involves
peak detection. We also compared the proposed algo-
rithm in terms of computational efficiency. The lan-
guage used for the implementation was Python.[44] The
average time taken for the envelope-finder algorithm
was comparable with SG on a Dell Latitude E7450 with
an Intel Core i7 processor. However, the vector casting
method took longer execution time, and the average
execution time depends on the number of vectors to be
casted.

4 | CONCLUSION

In this study, we developed a new method for the
processing of spectra that are relevant for the purification
of spectral signal from spectra with small SNR. Of course,
this technique cannot extract signal peaks that are
smaller than the noise level, but it can remove noise,
although manipulating the characteristics of the pure sig-
nal less than the wavelet transform method or the SG
method. Furthermore, the proposed method does only to
a minimum extent rely on input parameters that have to
be chosen by humans. Summarizing, the proposed
method should be considered reliable, robust, and
accurate.
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