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Abstract 
 
This thesis performed within the Collaborative Research Center 799 describes a development 
of the metal-ceramic thermodynamic databases as applied to the design of the TRIP-Matrix-
Composite materials. A wide range of theoretical and experimental investigations have been 
carried out in the relevant systems of Fe–Mg–Zr–O, Mg–Ti–Zr–O and Mg–Mn–Zr–O. 
Thermodynamic data were obtained using experimental methods of calorimetry and ab-initio 
calculations. Phase relations in the constituent binary and ternary systems have been studied 
using different types of static and dynamic methods. The obtained results allowed an assessment 
of thermodynamic parameters of the aforementioned systems using CALPHAD approach. The 
thermodynamic calculations have been performed to predict interfacial reactions within the 
composite material as well as to made recommendations for the design and further development 
of production processes for TRIP-Matrix-Composite materials. 
 
  



 



 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 

 























1. Collection of various types of experimental information available in literature
(crystallographic data for phases, phase equilibria, calorimetry, electrochemical data,
vapor pressure measurements).

2. The selection of thermodynamic models based on crystallographic information for
phases in the system under investigation. This implies selection of sub-lattices and their
occupancies by constituents in agreement with crystal structure.

3. The consideration of temperature dependence of end-member parameters and
introducing of mixing parameters for the Gibbs energy description of the phases.

4. The optimization of the thermodynamic parameters using all available experimental as
well as theoretical data.

5. The storage of the optimized parameters in computer–readable thermodynamic datasets.
6. The calculation of phase diagrams and various phase equilibria using the obtained

thermodynamic datasets in order to verify reliability of the results.













The determination of the heat flow rate of the zero–line (with empty sample and
reference sides). This step takes into account the heat capacity of inner parts of the
device.
The calibration step. At that, a sample of the material, for which heat capacity was
precisely determined (for example synthetic sapphire), is measured in the sample
crucible.
Measurement of a sample with unknown heat capacity.
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Optimization of chemical composition of steel matrix followed by annealing, which
improves its microstructure [149];
Study of pressureless sintering of TMC [P11];
Prediction and understanding of the local deformation mechanisms [150];
Modelling of interfacial reactions between steel matrix and ceramic particles [151];
Understanding of phase transformations of the metastable austenite into martensite in
the CrMnNi–N–C model alloy [152].



















Zero temperature DFT calculations for the Zr3Fe and C15-ZrFe2 intermetallic compounds
have been performed by VASP Software. A good agreement of theoretical results with
available experimental data has been obtained;
Effect of finite-temperatures was described within quasi-harmonic approximation (QHA).
Heat capacities at constant volume (CV) and at constant pressure (CP) were calculated;
Heat capacities of Zr3Fe, Zr2Fe were experimentally measured for the first time.
Experimental data were obtained in a wide temperature range of 100 – 1023 K and 200 –
600 K, respectively;
Available experimental data on the heat capacities of the Laves phases of C15-ZrFe2 and
C14-ZrMn2 have been extended by the DSC measurement within a temperature ranges of
100 – 1473 K and 200 – 980 K, respectively;
Based on the obtained results, using a combination of Ab-initio calculations and
experimental data, temperature dependence functions of heat capacity CP(T), as well as
thermodynamic parameters such as standard entropy S298 and enthalpy of formation ∆H0 for
intermetallic phases have been obtained from 0 K up to temperatures of their stability limit
and described by an extended Einstein model [132];
Thermodynamic parameters of the Fe–Zr and Mn–Zr systems have been re-assessed based
on the obtained results.

Formation enthalpy of the β-ZrTiO4 compound from oxides was measured using drop
solution calorimetry.
Molar heat capacity of the β-(ZrxTi1-x)2O4 compound was measured using DSC in the range
235–1220 K.
The phase relations in the TiO2–ZrO2 system were investigated in the temperature range
from 1300 to 1900 K using XRD and SEM/EDX.
Temperatures of invariant reactions in the TiO2–ZrO2 system have been determined by
means of DTA.
Using the obtained experimental results together with literature data, the thermodynamic
parameters in the ZrO2 system were derived.



MgO–TiO2–ZrO2 system was experimentally investigated in the temperature range from
1475 K to melting temperatures using XRD, SEM/EDX and DTA.
Isothermal sections of the system at 1475, 1530, 1555, 1680 and 1880 K were constructed
based on corresponding experimental data.
According to experimental data of this work, T-ZrO2 phase was not stabilized in the MgO–
TiO2–ZrO2 system and transformed to monoclinic structure on cooling.
A new ternary compound, i.e. the δ-phase with a trigonal structure of the Pr7O12-structure
type with composition described by formula Mg2Zr4.2Ti0.8O12 has been found.
Temperature range of stability has been determined between 1527 and 1664 K for the δ-
phase.
Heat capacities of the δ-phase was measured in the range 210–1370 K.
Einstein temperature of the δ-phase was estimated to be 516 K using the mass effects
suggested by Grimvall [131].
Standard entropy for the δ-phase was evaluated to be 12.3 J·mol-at-1·K-1.
Solid state transformations and invariant reactions have been experimentally defined.
Liquidus projection for the MgO–TiO2–ZrO2 system has been constructed.
Thermodynamic description of the MgO–TiO2–ZrO2 system has been derived.
Based on the available experimental data, thermodynamic parameters of the MgO–MnOx–
ZrO2 system were assessed.
The obtained thermodynamic description was used for interpretation of DTA-TG results.
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