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Abstract

The continuous growth of the world population causes an increasing energy demand. Despite

the expansion of renewable energies, they cannot satisfy this demand alone. Thus, fossil en-

ergy sources, such as oil and gas, are still essential to supply the required amount of energy

nowadays and in the future. Since the most conventional oil and gas deposits are already ex-

ploited, the importance of unconventional reservoirs, e.g., shale oil and shale gas, has grown.

The unconventional shale gas production constitutes a large part of the total gas production

in the United States and makes it an important hydrocarbon resource in North America. The

exploitation of shale gas is challenging and requires horizontal wells as well as hydraulic frac-

turing. Therefore, it is crucial to derive precise seismic images of the subsurface formations

from seismic migration or other algorithms. These methods need a velocity model of the

subsurface as an input parameter. While the velocity model can be described by two bulk

wave velocities for isotropic formations, this is not possible for anisotropic formations since

the wave velocities depend on their propagation direction. Hence, anisotropic parameters are

needed to obtain a correct velocity model. The number of parameters depends on the type of

anisotropy. The simplest type is transverse isotropic (TI) symmetry possessing one isotropic

plane. This TI symmetry is common in many rocks, such as in shales, which are the host rocks

for shale oil and shale gas. Consequently, in the exploration of such resources, the quanti�ca-

tion of the anisotropy is essential for the velocity model, which is input in seismic migration

to obtain the correct depths of the imaged seismic structures. Otherwise, uncertainties in the

depths can cause problems, e.g., unexpected drilling in overpressure zones resulting in a kick

or even, in the worst case, in a blowout. Moreover, precise depths are important for reservoir

navigation to attain optimal reservoir entry points for maximum oil or gas production.

Chapter 1 of this thesis gives an introduction to the �eld of borehole acoustics, which provides

a method to quantify the anisotropic parameters of a formation. The advantage of borehole

acoustics is that the logging is performed in the borehole very close to the rocks yielding

in-situ information at various depths with a high resolution. In the past, the standard tech-

niques to obtain anisotropic parameters were wireline (WL) cross-dipole (Esmersoy et al.,

1994) and monopole measurements (Norris and Sinha, 1993; Tang, 2003). The disadvantage

of the WL methods is that the tool string has to be removed entirely before the WL tool

can be lowered into the borehole to perform the logging. Consequently, the drilling process

must be interrupted for the logging, which increases the drill costs. Nowadays, WL logging

is replaced by logging-while-drilling (LWD) measurements whenever possible. The advantage

of LWD is that the logging is accomplished while the borehole is drilled, and the drilling

process has not to be interrupted. Moreover, LWD measurements can provide information in
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real-time, which can be used to navigate the drill path. On the other hand, the presence of

the logging tool, which has a larger diameter and a higher rigidity than a WL tool, causes

some challenges in determining anisotropic parameters. The aim of this thesis is to under-

stand the relationship between the formation's anisotropic parameters and the LWD borehole

waves, including not only monopole and dipole but also quadrupole waves. For this purpose,

di�erent modeling tools are used to forward model the borehole wave�eld for given parameters.

Chapter 2 presents the theory of plane waves propagating in anisotropic media. The govern-

ing partial di�erential equations are transformed from Cartesian into cylindrical coordinates

to obtain a solution in the borehole acoustic geometry for the most straightforward vertical

transverse isotropic (VTI) symmetry. In this case, the formation's TI symmetry axis, which

is perpendicular to the isotropic plane, lies parallel to the vertical borehole axis. On the other

hand, it is outlined why a similar solution of the partial di�erential equations in cylindrical

coordinates cannot be derived for generally anisotropic media, e.g., for the horizontal trans-

verse isotropic (HTI) symmetry, where the TI symmetry axis is orthogonal to the borehole

axis or for the tilted transverse isotropic (TTI) symmetry, where the symmetry axis is ar-

bitrarily inclined to the borehole axis. Because of the lack of a general analytical solution,

�nite-di�erence (FD) modeling is used to simulate the waveforms in anisotropic formations

with symmetries lower than VTI. Chapter 3 brie�y explains the used FD method and discusses

various spatial FD grids in more detail, which usage depends on the anisotropic symmetry.

Chapter 4 summarizes the results of the systematic investigation of the forward modeled bore-

hole and refracted waves in TI formations in both the absence and the presence of an LWD

tool. A monopole source emits refracted head waves and the borehole-guided Stoneley wave of

order zero, which is helpful to determine anisotropic parameters for the VTI symmetry. Fur-

thermore, the behavior of the �exural waves excited by a dipole source of order one is already

well-understood in azimuthal anisotropic formations (HTI or TTI), which is not the case for

quadrupole waves having the order two. One of the main discoveries of this thesis is that not

only the �exural waves split into the fast principal �exural and slow principal �exural waves,

but similarly all higher-order cylindrical waves, such as quadrupole waves. The concept of

dipole shear wave splitting is generalized to all higher-order modes in a mathematical fashion

and results in a generalized formula for the well-known Alford rotation (Alford, 1986). The

derived formula is veri�ed by applying it to the FD modeled quadrupole and hexapole wave-

forms. Furthermore, anisotropy-induced mode contaminants are investigated in detail for all

three types of TI symmetries. While the VTI symmetry does not induce mode contaminants,

it is shown that the HTI symmetry causes coupling between all borehole waves having odd

orders and coupling between all borehole waves having even orders, including the Stoneley

wave. Moreover, the TTI symmetry induces coupling between all borehole modes following

a particular pattern. The investigation of the mode contaminants using FD modeling is con-

sistent with the partial di�erential equations in cylindrical coordinates describing the wave

motion in generally anisotropic media.
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Based on the investigation of the forward modeled borehole waves, various inversion methods

are proposed in chapter 5. While one inversion method introduced by Wang et al. (2016)

uses non-orthogonal cross-dipole excitations, a similar inversion method has been developed

in this thesis using non-orthogonal cross-quadrupole measurements. However, this proposed

inversion method cannot be applied to current LWD tools since the double amount of az-

imuthal receivers is needed. Therefore, an alternative inversion method has been developed

utilizing the anisotropy-induced mode coupling, particularly the Stoneley wave excited by a

quadrupole source. However, all proposed inversion methods have limitations and might be

di�cult to apply in real measurements, which is discussed in the last section of chapter 5.
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1. Introduction

1.1. Borehole acoustic con�gurations

Borehole acoustics is one method of the well logging disciplines with the purpose to excite

acoustic waves in a wellbore that are sensitive to the surrounding rocks. Measuring and

processing these waves yield valuable information for formation evaluation, including the

velocities or slowness values (reciprocal velocity) of the compressional and shear waves prop-

agating in the formation. The standard logging con�guration of borehole acoustics consists

of a circular, �uid-�lled borehole surrounded by a formation and contains a logging tool, as

displayed in �gure 1.1. It can be distinguished into two di�erent con�gurations, wireline (WL)

logging and logging-while-drilling (LWD).

A WL tool is attached to a cable and lowered into the �uid-�lled borehole after the drill

string is removed (Fig. 1.1a). The logging is performed while the tool is pulled upwards by

a winch. WL tools are slim and have a small diameter relative to the borehole diameter. In

the lower part, the WL logging tool contains a transmitter consisting of four piezoelectric seg-

ments azimuthally separated by ninety degrees from each other to perform an omnidirectional

monopole excitation. Additionally, a bender bar with two piezoelectric plates is mounted for

uni-directional dipole excitation. A piezoelectric crystal has the property to change volume

when a voltage is applied. Hence, applying an alternating voltage yields a periodic expansion

and contraction of the crystal. The receiver array is located above the transmitter unit and

consists of eight to twelve uniform-spaced receivers. Each receiver consists of four piezoelectric

(a) WL con�guration (b) LWD con�guration

Fig. 1.1: Schematic view of a wireline (WL) (a) and logging-while-drilling (LWD) (b) con�guration. The gray
stripes indicate the formation, whereas the cyan color illustrates the borehole �uid. The di�erent logging tools
are displayed by the gray areas containing a transmitter unit (red star) and a receiver array (blue triangles).
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sensors separated azimuthally by ninety degrees from each other and azimuthally aligned with

the source. The signals received from each sensor are stacked with a particular polarity to

improve the signal-to-noise ratio and suppress possible mode contaminants induced through

source imbalances, borehole ellipticity, or tool eccentricity. The transmitter and the receiver

array are separated by an acoustic isolator that has the purpose of isolating or attenuating

acoustic waves traveling from the transmitter to the receivers along the tool. The receiver

array location above the transmitter has the advantage that noise generated at the surface

from the rig or roads has an opposite propagation direction to the acoustic waves generated

by the transmitter. Therefore, the received coherent signal in the receiver array data has an

opposite moveout to the noise, which is advantageous for processing.

On the other hand, LWD tools (Fig. 1.1b) are part of the bottom-hole-assembly (BHA) that

denotes the lower part of the drill string containing the drill bit, the mud motor, heavy steel

pipes, stabilizers, logging devices and other parts. Because of the large diameter of the BHA

relative to the borehole diameter, the �uid annulus between the acoustic logging tool and the

formation is very small. Furthermore, the LWD tool contains a �uid core in which the �uid is

pumped downwards to the drill bit. The transmitter unit is located above the receiver array.

This geometry is reverse to that in WL tools because the noise is primarily induced by the drill

bit in LWD, which is much larger than the noise in WL measurements. The transmitter con-

sists of four piezoelectric segments, which can be excited with equal or alternating polarities.

The excitation of all four segments with equal polarity is referred to as monopole excitation

(Fig. 1.2a). In contrast, if two opposite segments are excited with alternating (opposite) po-

larity, the excitation is referred to as dipole excitation (Fig. 1.2b), whereas the excitation of

all four segments with alternating polarity yields the quadrupole excitation (Fig. 1.2c). The

(a) Monopole excitation
(equal polarity, n = 2)

(b) Dipole excitation
(alternate polarity, n = 1)

(c) Quadrupole excitation
(alternate polarity, n = 2)

(d) Stoneley wave (m=0) (e) Flexural wave (m=1) (f) Quadrupole wave (m=2)

Fig. 1.2: Equal and alternate polarity multipole sources of di�erent excitation orders and the corresponding
directivities of the emitted borehole-guided waves. The equal polarity monopole source (a) excites as the
leading term the omnidirectional Stoneley wave (m = 0) (d). The alternate polarity dipole source of order one
(b) excites the leading �exural wave (m = 1) (e), whereas an alternate polarity quadrupole source of order
two (c) excites the leading quadrupole wave (m = 2) (f).
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receiver array has the same structure as in WL tools and is separated from the transmitter

by an acoustic isolator. Since LWD tools have a higher rigidity to be competent for drilling,

the isolator cannot be made of soft materials like rubber to suppress tool modes traveling

along the LWD tool. Therefore, the isolator is designed in a particular way to keep the tool

modes and formation modes separate. The logging is directly performed while drilling, which

has the advantage that the drilling has not to be interrupted, saving a signi�cant amount of

expensive rig time. Additionally, LWD enables real-time information and helps to drill more

e�ciently and safer because the obtained information can be used to navigate the drill path.

Consequently, the emphasis in borehole acoustics has been shifted from WL to LWD.

The borehole �uid is drilling mud consisting of di�erent components to satisfy speci�c proper-

ties such as carrying cuttings, providing hydrostatic pressure, or cooling the drill bit. However,

for simpli�cation, the borehole �uid is approximated by water in this thesis. The formation

surrounding the borehole can be classi�ed into slow and fast formations. In slow formations,

the formation shear wave (S-wave) velocity is smaller than the velocity of the compressional

wave (P-wave) in the borehole �uid. On the other hand, the velocity of the formation shear

wave is higher than the compressional wave velocity of the borehole �uid in fast formations.

In the latter, excited P-waves can convert to refracted shear waves at the borehole wall.

These refracted shear waves propagate along the borehole wall and radiate P-waves into the

�uid (Huygens�Fresnel principle). In this way, the shear wave slowness of the formation can

be determined from the moveout of these radiated P-waves because their travel path in the

borehole �uid is for all transmitter-receiver combinations identical (Fig. 1.1) and the moveout

results only from traveling along the borehole wall at shear wave velocity. In contrast, in slow

formations, compressional waves cannot convert to refracted shear waves at the borehole wall

because of Snell 's law. Therefore, only refracted P-waves exist, and the shear wave slowness

cannot be determined from head waves.

1.2. Wave propagation in a �uid-�lled borehole in the absence

of a logging tool

A transmitter in a �uid-�lled borehole excites not only head waves but also borehole-guided

wave modes because the borehole is an acoustic waveguide that supports an in�nite number of

propagating and non-propagating dispersive wave modes (Sinha and Asvadurov, 1998). Imag-

inably, elementary waves bouncing between the borehole wall and interfere constructively only

for speci�c wave vector directions yielding particular azimuthal mode symmetries (Braunisch

et al., 2004). Some modes radiate energy into the surrounding formations and are referred

to as leaky modes because they are highly attenuative and do not contribute to the far �eld

(Hellwig, 2017). Moreover, all borehole-guided wave modes exhibit geometrical dispersion

e�ects and their dispersion and propagation characteristics depend on the properties of the

formation, the borehole �uid, and the geometric dimensions. Furthermore, a real transmitter

only excites a limited number of modes depending on its bandwidth and radiation character-

istics (Sinha and Asvadurov, 1998).
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First theoretical work on elastic wave propagation in a �uid-�lled borehole of an in�nite ex-

tent and in the absence of a logging tool was done by Biot (1952). He calculated the phase

and group velocity dispersion curves of axial symmetric Stoneley waves (m = 0). Synthetic

full-waveform logs of these axial symmetric waves were analytically modeled, for example,

by Peterson (1974), Roever et al. (1974), or Paillet and White (1982) applying branch-cut

integration (BCI). In contrast, Rosenbaum (1974), Tsang and Rader (1979) and Cheng and

Toksöz (1981) used real-axis integration (RAI) to model the synthetic waveforms. Kurkjian

and Chang (1986) presented a mathematical description of borehole-guided modes with higher

azimuthal wavenumbers, such as �exural (m = 1) or quadrupole (m = 2) waves excited by an

acoustic multipole source. Sinha and Asvadurov (2004), as well as Tang and Cheng (2004)

have given an overview of the dispersion characteristics of borehole-guided modes in a �uid-

�lled borehole surrounded by slow and fast formations. They considered the axisymmetric

monopole, dipole and quadrupole excitations. The dispersion curves are de�ned by the roots

of the determinant of the boundary condition matrix. This matrix can be constructed by

applying appropriate boundary conditions at the borehole wall to combine the wave�eld in

the borehole �uid and in the formation (Sinha and Asvadurov, 2004).

Figure 1.3 displays the phase slowness dispersion curves of various borehole-guided waves in

slow and fast formations. For an axisymmetric monopole excitation, the excited dominant

lowest-order mode is the Stoneley wave. The Stoneley wave originally denotes the interface

wave traveling along a planar interface between two solids. In borehole acoustics, the Stone-

ley wave is referred to as the wave propagating along the borehole wall, which is excited

at all frequencies. Depending on the formation (slow or fast), its phase slowness dispersion

(a) Slow formation (b) Fast formation

Fig. 1.3: Phase slowness dispersion curves of the Stoneley (m = 0), �exural (m = 1), and quadrupole (m = 2)
waves excited in a �uid-�lled borehole surrounded by a slow (a) and fast (b) formation in the absence of
a logging tool. The dashed blue line shows the pseudo-Rayleigh wave excited by a monopole source in fast
formations. The dashed black lines illustrate the compressional wave slowness in the borehole �uid (βf) and
the shear wave slowness in the formation (βS), respectively.
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curve increases or decreases from the tube wave slowness at low frequencies to asymptote the

Scholte wave slowness at high frequencies. In slow formations, the tube wave slowness can

be signi�cantly lower than the formation shear wave slowness. The Scholte wave denotes the

wave traveling along a planar interface between a solid and a �uid. At higher frequencies, the

wavelength of the Stoneley wave becomes shorter and the cylindrical borehole wall appears to

be �at, which yields the asymptote to the Scholte wave slowness. Additionally to the Stoneley

wave, pseudo-Rayleigh waves are excited in fast formations and have the combined e�ects of

re�ected waves in the �uid and refraction along the borehole wall (Tang and Cheng, 2004).

There exists an in�nite number of such modes along the frequency axis. In the frequency

range displayed in �gure 1.3b, only one pseudo-Rayleigh wave is visible. Its phase slowness

dispersion curve increases from the formation shear wave slowness at the cuto� frequency and

asymptotes the borehole �uid slowness at high frequencies. The borehole only guides the wave

modes if their phase slowness is higher than the formation shear wave slowness. Below this

slowness, the wave modes become leaky modes because they radiate energy into the forma-

tion. One of these modes is referred to as leaky P-wave, which is dominated by the refraction

of compressional waves but loses energy by converting to shear waves that radiate energy into

the formation (Tang and Cheng, 2004). Its phase slowness dispersion curve asymptotes at

high frequencies the slowness in the borehole �uid.

Second, the dipole excitation is considered, which excites �exural waves (m = 1). Similar

to the pseudo-Rayleigh wave, there exists an in�nite number of �exural waves along the fre-

quency axis. The lowest-order �exural wave is displayed in �gure 1.3 in red for slow and fast

formations. The �exural wave travels with the formation shear wave slowness at the cuto�

frequency and increases to the Scholte wave slowness asymptote at high frequencies. There-

fore, the �exural wave can be used to determine the formation shear wave slowness in slow

formations where refracted shear waves do not exist. Consequently, the standard technique to

obtain the formation shear wave slowness from WL measurements is to use dipole excitations

proposed by Zemanek et al. (1984) �rst.

Finally, the quadrupole excitation is considered, which excites quadrupole modes (m = 2).

Their phase slowness dispersion characteristics are similar to that of �exural waves. Figure 1.3

shows that the quadrupole mode travels with formation shear wave slowness at the cuto�

frequency and asymptotes to the Scholte wave slowness at high frequencies. Moreover, the

cuto� frequency of the quadrupole modes is higher than that of the �exural waves.

1.3. Wave propagation in a �uid-�lled borehole in the presence

of a logging tool

The presence of a logging tool in the center of a �uid-�lled borehole provides an additional

path for wave propagation along the tool wall, introducing an additional set of tool modes.

Some formation borehole modes signi�cantly interact with these tool modes and some are

una�ected by them (Sinha and Asvadurov, 2004). The borehole waves are guided by the
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�uid-�lled annular space between the logging tool and the borehole wall. Since a WL tool

has only a small diameter, it a�ects the wave propagation not as much as an LWD tool.

The latter occupies a large portion of the borehole and can strongly a�ect the acoustic wave

propagation. Cheng and Toksöz (1981) modeled the in�uence of a logging tool on Stoneley

and pseudo-Rayleigh waves. They showed that the determinant of the boundary condition

matrix has some additional roots that correspond to the excited tool modes. Hsu and Sinha

(1998) investigated the e�ects of a WL logging tool on the phase slowness of the formation

�exural wave. Therefore, they considered three di�erent con�gurations: a tool modeled by a

steel rod or steel pipe in an in�nite �uid and a �uid-�lled borehole of in�nite extent in the

absence and in the presence of a tool. Sinha et al. (2009) and Geerits et al. (2010) compared

the phase slowness dispersion curves of the Stoneley, �exural, and quadrupole waves in the

presence of an LWD tool. The phase slowness dispersion curves of these modes are plotted in

�gures 1.4�1.6 for a slow and a fast formation.

Figure 1.4 displays the phase slowness dispersion curves of the dominant modes excited by

a monopole source in di�erent con�gurations. The dashed blue line shows the dispersion

curve of the Stoneley waves excited in an open �uid-�lled borehole in the absence of a tool,

which was already displayed in �gure 1.3. The dashed red line denotes the tool mode ex-

cited in a con�guration consisting of an LWD tool modeled by a steel pipe in an in�nite

�uid. Correspondingly, the solid lines are the dispersion curves of the formation and tool

Stoneley wave excited in the combined con�guration, i.e., an LWD tool centered in a �uid-

�lled borehole surrounded by a slow (Fig. 1.4a) or fast (Fig. 1.4b) formation. In the slow

formation, the presence of the LWD tool perturbs the general dispersion characteristics of the

(a) Slow formation (b) Fast formation

Fig. 1.4: Phase slowness dispersion curves of the leading borehole- and tool-guided waves excited by a monopole
source in various con�gurations. The dashed blue line illustrates the phase slowness dispersion curve of the
formation Stoneley wave excited in a �uid-�lled borehole in the absence of a logging tool (Fig. 1.3). The tool
Stoneley wave excited in the presence of an LWD tool modeled by a steel pipe in an in�nite �uid is displayed
by the dashed red line. The solid lines represent the dispersion curves of the tool and formation Stoneley

waves in a combined con�guration, i.e., an LWD tool in a �uid-�lled borehole surrounded by a slow (a) and
fast (b) formation. The data is based on Sinha et al. (2009).
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formation Stoneley wave. Its slowness values decrease with increasing frequencies and do not

intersect with the true formation shear wave slowness. Hence, the low-frequency limit (tube

wave slowness) is strongly altered, but the high-frequency limit still coincides with the Scholte

wave slowness. In fast formations (Fig. 1.4b), the tool mode repels the dispersion curve of

the Stoneley wave to higher frequencies, but the decreasing behavior is preserved. In con-

trast, the pseudo-Rayleigh wave, which is excited only in fast formations, is repelled to lower

slowness values but still attains the true formation shear wave slowness at the cuto� frequency.

Figure 1.5 provides an overview of the in�uence of an LWD tool on the �exural wave excited

by a dipole source. In the fast formation, �gure 1.5b shows that the dispersion curves of

the formation �exural wave in the absence of a tool (dashed blue line) and the tool �exural

wave in the absence of a formation (dashed red line) intersect at about 5 kHz. However, if

both con�gurations are combined, the formation and tool �exural waves couple and do not

intersect but repel one from the other. At low frequencies, the dispersion curve of the tool

�exural wave follows the dispersion curve of the tool mode in an in�nite �uid. Analogously,

the formation �exural wave shows a similar dispersion characteristic as the �exural wave in

the absence of a tool. However, at higher frequencies, they switch identities and the tool

�exural wave dispersion curve follows that of the formation �exural wave excited in an open

�uid-�lled borehole, whereas the formation �exural wave dispersion curve coincides with that

of the tool �exural wave in an in�nite �uid. Since the formation �exural wave attains the true

formation shear wave slowness at low frequencies, it is still possible to obtain the formation

shear wave slowness from dipole measurements. In contrast, this is not possible in slow for-

mations (Fig. 1.5a). The formation �exural and tool �exural waves also couple and repel one

(a) Slow formation (b) Fast formation

Fig. 1.5: Phase slowness dispersion curves of the leading borehole- and tool-guided �exural waves excited by a
dipole source (n = 1) in various con�gurations. The dashed blue line illustrates the phase slowness dispersion
curve of the formation �exural wave excited in a �uid-�lled borehole in the absence of a logging tool (Fig. 1.3).
The tool �exural wave excited in the presence of an LWD tool modeled by a steel pipe in an in�nite �uid is
displayed by the dashed red line. The solid lines represent the dispersion curves of the tool and formation
�exural waves in a combined con�guration, i.e., an LWD tool in a �uid-�lled borehole surrounded by a slow
(a) and fast (b) formation. The data is based on Sinha et al. (2009).
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from the other, but the low-frequency portion of the formation �exural wave does not attain

the true formation shear wave slowness (Sinha et al., 2009). Instead, the dispersion curve fol-

lows the one of the tool �exural wave in an in�nite �uid. Moreover, Geerits et al. (2010) have

demonstrated that the formation �exural wave can even be absent in slow formation, and only

the tool �exural wave exists. Consequently, LWD dipole measurements are not appropriate

to obtain the formation shear wave slowness in slow formations. Geerits et al. (2010) have

shown that a WL tool also causes coupling between the formation and tool �exural wave and

also switches identities at higher frequencies. However, the dispersion characteristic of the

formation �exural wave at low frequencies is only slightly perturbed and still attains the true

formation shear wave slowness even in slow formations. Thus, it is possible to use WL dipole

measurements to obtain the formation shear wave slowness in all formations, which is not

possible in an LWD con�guration for slow formations.

Finally, the e�ects of an LWD tool on the waves excited by a quadrupole source are discussed.

In both slow (Fig. 1.6a) and fast (Fig. 1.6b) formations, the general characteristic of the

formation quadrupole mode is only slightly a�ected by the LWD tool. The cuto� frequency is

decreased and the dispersion curves increase steeper starting from the cuto� frequency than

in the absence of a tool, but the formation quadrupole mode still attains the true formation

shear wave slowness at low frequencies. Thus, the quadrupole mode is convenient to obtain

the formation shear wave slowness from LWD measurements in slow formations, which was

�rst demonstrated by Tang et al. (2003).

(a) Slow formation (b) Fast formation

Fig. 1.6: Phase slowness dispersion curves of the leading borehole- and tool-guided quadrupole waves excited
by a quadrupole source (n = 2) in various con�gurations. The dashed blue line illustrates the phase slowness
dispersion curve of the formation quadrupole wave excited in a �uid-�lled borehole in the absence of a logging
tool (Fig. 1.3). The tool quadrupole wave excited in the presence of an LWD tool modeled by a steel pipe
in an in�nite �uid is displayed by the dashed red line. The solid lines represent the dispersion curves of the
tool and formation quadrupole waves in a combined con�guration, i.e., an LWD tool in a �uid-�lled borehole
surrounded by a slow (a) and fast (b) formation. The data is based on Sinha et al. (2009).
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1.4. Anisotropy

The most theoretical formulations of wave propagation in a �uid-�lled borehole in the pres-

ence or absence of a logging tool assume a surrounding isotropic formation. However, in oil

and gas exploration, many common formations are anisotropic, such as shales. A medium is

called anisotropic with respect to a parameter if this parameter is direction-dependent. For

an anisotropic elastic medium, the seismic wave velocities depend on the direction of their

particle motion. Consequently, two shear waves having the same propagation direction may

travel with di�erent velocities in an anisotropic formation if their polarization directions are

distinct. Formation anisotropy can be caused by various mechanisms. Intrinsic anisotropy

is caused by a preferred orientation of mineral grains or the particular shape of isotropic

minerals, e.g., �at-lying platelets (Thomsen, 1986). Additionally, thin bedding of isotropic

layers can cause anisotropy. These layers are heterogeneous and isotropic on a small scale

but homogeneous and anisotropic on a large scale if the wavelength is large compared to the

thickness of the layers (Backus, 1962). Furthermore, a system of aligned vertical or dipping

fractures or microcracks causes anisotropy (Crampin, 1985), and anisotropy can be induced

by tectonic stresses or by altering the local stress �eld distribution through drilling a borehole

(Sinha and Kostek, 1996).

Anisotropic media exhibit various symmetries and can be classi�ed into di�erent symmetry

classes (Auld, 1973; Musgrave, 1970; Nayfeh, 1995). In most cases, anisotropy is modeled

by the most straightforward symmetry denoted as transverse isotropy (TI). Such media pos-

sess one isotropic plane in which the wave velocities are direction invariant. The symmetry

axis is de�ned to be perpendicular to that isotropic plane. Outside the isotropic plane, the

wave velocities change with direction. There exists two exceptional cases of TI symmetry in

borehole acoustics. If the symmetry axis of a TI formation is aligned with the borehole axis,

the symmetry is referred to as vertical transverse isotropy (VTI). This symmetry class often

occurs, e.g., for a vertical borehole in thin bedding of horizontal layers. Analogously, if the

symmetry axis is perpendicular to the borehole axis, the symmetry is referred to as horizontal

transverse isotropy (HTI). This type of symmetry can occur for a horizontal borehole in thin

bedding of horizontal layers or a vertical borehole surrounded by a formation containing a

system of aligned vertical fractures. If the borehole axis is arbitrarily aligned to the formation

symmetry axis, the symmetry is called only TI or tilted transverse isotropy (TTI), which

occurs for deviated boreholes.

In borehole acoustics, the correct quanti�cation of anisotropy is essential for prestack depth

migrations, amplitude-versus-o�set (AVO) analysis, wellbore stability, optimization of com-

pletion design, hydraulic fracturing monitoring, or production management. Analytical solu-

tions of wave propagation in a �uid-�lled borehole surrounded by an intrinsically anisotropic

formation can only be obtained if the formation exhibits VTI symmetry. The �rst researchers

who modeled axisymmetric waves in a �uid-�lled borehole surrounded by an anisotropic VTI

formation were White and Tongtaow (1981) using branch-cut integration (BCI) and Chan and
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Tsang (1983) using real-axis integration (RAI). Additionally, Ellefsen et al. (1990) modeled

higher-order borehole waves, such as the �exural or quadrupole wave, and Schmitt (1989)

extended the work to model wave propagation in poroelastic formations. If the formation ex-

hibits HTI or TTI symmetry, analytical solutions are not available, but perturbation methods

were developed by Ellefsen et al. (1991), Norris and Sinha (1993), Sinha et al. (1994), and

Zhang and Wang (1996) to model the borehole waves. Sinha et al. (1994) used a perturba-

tion method to calculate the dispersion curves of borehole modes in TI formations, but their

waveforms result from an isotropic reference state. For the modeling of full elastic anisotropic

waveforms in �uid-�lled boreholes surrounded by a formation exhibiting general anisotropy,

�nite-di�erence (FD) modeling is used. Leslie and Randall (1992) developed a 2.5-dimensional

time-domain FD method to model such borehole waves, whereas Cheng et al. (1995) used a

three-dimensional FD code in Cartesian coordinates.

The sensitivity of borehole modes to anisotropy parameters depends on their order and radi-

ation pattern. The Stoneley wave is the only borehole mode sensitive to formation properties

transverse to the borehole axis since this mode radially deforms the borehole at low fre-

quencies. Norris and Sinha (1993) used a perturbation method to model the low-frequency

velocity of the Stoneley wave (tube wave velocity) for deviated boreholes that penetrates a

weak anisotropic formation exhibiting TI symmetry. Additionally, they proposed an inversion

procedure to output formation anisotropy parameters in fast formations, assuming a known

deviation angle and some correlations between the anisotropy parameters that may be vio-

lated for strong anisotropic formations. In contrast, Nicoletis et al. (1990) used a combination

of analytical solutions and numerical methods to calculate the velocity of the Stoneley wave in

the low-frequency limit. Tang (2003) investigated the e�ect of the presence of a logging tool

on the tube wave speed in VTI formations. He modeled the tool by an e�ective tool modulus

and proposed an inversion algorithm to output the horizontal shear velocity assuming that

all other parameters are known. Chi and Tang (2006) compared two and three-dimensional

solutions to model the tube wave velocity in arbitrary anisotropic formations. Moreover,

�nite-di�erence modeling of the Stoneley wave in anisotropic formations was performed by

Leslie and Randall (1992) and Sinha et al. (2006).

Since the �exural wave is only sensitive to the vertical shear wave velocity, it is not helpful

to determine di�erences in the shear wave velocities if the symmetry axis is parallel to the

borehole axis (VTI). However, if the symmetry axis is inclined, the sensitivity of the �exural

wave to anisotropic parameters increases with an increasing inclination and is at a maximum

if the symmetry axis is perpendicular to the borehole axis (HTI). Esmersoy et al. (1994) and

Mueller et al. (1994) have shown that WL cross-dipole measurements provide an opportunity

to obtain formation anisotropy parameters. An HTI formation can be characterized by two

distinct mutually perpendicular directions associated with a slow and a fast principal shear

wave velocity. Analogously, in HTI media, there exists one slow and one fast principal �exural

wave, whose directivities are azimuthally rotated by ninety degrees. In general, a dipole source

excites a weighted superposition of both principal �exural waves, which are recorded at the



1.4. Anisotropy 21

receivers. The measured wave signal is rotated using the Alford rotation introduced by Alford

(1986) to obtain the slow and fast principal waves. Since both principal waves travel with the

true formation shear wave slowness at low frequencies, the principal shear wave velocities can

be determined. Furthermore, Tang and Chunduru (1999) proposed a more robust inversion

method to simultaneously invert the orientation and associated slowness values of the prin-

cipal directions by minimizing an error function. In consequence, cross-dipole measurements

are the standard technique in WL logging to obtain HTI parameters.

However, this method fails in an LWD con�guration, especially in slow formations, since the

formation dipole or �exural wave cannot be used to determine the true formation shear wave

slowness. Section 1.3 explains that the quadrupole mode is more convenient to obtain the

true formation shear wave slowness in isotropic formations. This poses the question if LWD

quadrupole modes can also be used to determine TI parameters. The main disadvantage of

the quadrupole mode is the non-unique directivity (Fig. 1.2). Nevertheless, Wang and Tang

(2003) investigated LWD quadrupole modes in anisotropic TI formations and showed that the

quadrupole mode also splits into earlier and later arrivals. Additionally, Blyth et al. (2016)

demonstrated that there exists a symmetric and an antisymmetric principal quadrupole mode.

While the symmetric quadrupole tends to travel at low frequencies with the fast shear wave

slowness, the low-frequency limit of the antisymmetric quadrupole mode is closer to the slow

shear wave slowness. However, it is not possible to directly read the true fast and slow shear

wave slowness values from the dispersion curves.

Moreover, Mickael et al. (2012a,b), Nestyagin et al. (2017), Nwosu et al. (2015), Sakiyama

et al. (2016), and Syresin et al. (2016) proposed LWD unipole sources to determine anisotropic

parameters. A unipole source consists of one single source mounted at one side of the LWD

tool and excites a superposition of an in�nite number of borehole modes having azimuthal

wavenumbers from zero to in�nity. In the frequency range of interest, a superposition of the

monopole, dipole, and quadrupole mode is dominant (Wang et al., 2011). The emitted total

wave�eld is focused and can be used to obtain the slowness of the non-dispersive refracted

compressional and shear waves for a particular azimuth. By taking advantage of the tool

rotation, it is possible to provide slowness information at all azimuths. Hence, in HTI forma-

tions, the azimuth having the lowest slowness value corresponds to the fast principal direction,

whereas the azimuth with the highest slowness value belongs to the slow principal direction.

However, unipole measurements are only helpful in fast formations because refracted shear

waves do not exist in slow formations (Sec. 1.1).

Furthermore, Hornby et al. (2003) presented an inversion method to obtain TI parameters

using data from multiple wells with di�erent deviation angles relative to the formation TI

symmetry axis. Moreover, Horne et al. (2012) discussed an analogous inversion method, us-

ing only one well having vertical, horizontal, and tilted parts relative to the TI symmetry axis.

Additionally, a similar inversion method was discussed by Walsh et al. (2006), but all of them

are very speci�c and cannot be generalized. Consequently, they did not become mainstream
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techniques in borehole acoustics.

Although most research was focused on intrinsic anisotropy, Sinha and Kostek (1996) inves-

tigated the e�ect of stress-induced anisotropy on borehole �exural waves. They showed that

drilling a borehole signi�cantly alters the existing stress state in the near �eld. However, at

low frequencies, the borehole �exural wave has a larger radial depth of investigation and is

una�ected by the stress-induced altered zone. In contrast, at higher frequencies, the �exural

wave becomes sensitive to the stress-induced altered zone close to the borehole. Consequently,

horizontal uniaxial stress in the formation causes a crossover in the dispersion curves of the

�exural waves aligned parallel and perpendicular to the stress direction, respectively. Since

this �exural dispersion crossover is not observed in intrinsically anisotropic formation, it is an

indicator of stress-induced anisotropy. Besides, Liu and Sinha (2000, 2003) used FD modeling

to study the in�uence of borehole stress on monopole and dipole dispersion curves. Fang

et al. (2014) discussed the e�ect of stress-induced anisotropy on borehole compressional wave

propagation, whereas Zheng et al. (2009) investigated cross-dipole modes.
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2. Theory

In the scope of this thesis only intrinsic anisotropy is considered, which can be mathematically

described by the sti�ness or compliance tensor. The �rst part of this chapter presents the

properties and various symmetries of these tensors. The next part deals with the theory of

seismic wave propagation in linear elastic anisotropic media. The solutions of the governing

equations given in Cartesian coordinates are harmonic plane waves. However, cylindrical

coordinates are more convenient for the borehole acoustic problem. Thus, the governing

di�erential equations are transformed from Cartesian to cylindrical coordinates and solved for

the most straightforward VTI symmetry, yielding the modi�ed Bessel functions as elementary

solutions. The solutions valid in VTI media are connected to the solutions valid in the borehole

�uid by applying boundary conditions at the borehole wall. In this way, an analytical solution

for the borehole acoustic con�guration is obtained, which was presented by Schmitt (1989) for

poro-elastic VTI media. In contrast, an analogous solution of the partial di�erential equations

in cylindrical coordinates could not be found if the anisotropic formation exhibits symmetries

lower than VTI. These symmetries require a di�erent ansatz. Although the ansatz was already

developed, there was no time to implement and test the underlying ideas in the scope of this

thesis. The new ansatz will be the content of another work and is thus omitted here.

2.1. Sti�ness and compliance tensor

A linear elastic, intrinsic anisotropic medium can be fully described by the volumetric mass

density ρs and the sti�ness tensor C ′′
i,j,k,l or the compliance tensor S′′

i,j,k,l. Both tensors of

rank four de�ne the coe�cients of the linear relation between the stress tensor τ ′′ and the

strain tensor ϵ′′ (Hooke's law)

τ ′′i,j = C ′′
i,j,k,lϵ

′′
k,l, (2.1a)

or

ϵ′′i,j = S′′
i,j,k,lτ

′′
k,l. (2.1b)

From equations 2.1a and 2.1b is deduced that the compliance tensor is the inverse of the

sti�ness tensor, and vice versa

S′′
i,j,k,lC

′′
k,l,p,q = C ′′

i,j,k,lS
′′
k,l,p,q = δi,pδj,q, (2.2)
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where δi,j denotes the unit tensor of rank two

δi,j =

⎧⎨⎩1 i = j

0 i ̸= j
. (2.3)

In the following of this section, the properties and symmetries are presented only for the

sti�ness tensor applying also to the compliance tensor.

The sti�ness tensor possesses eighty-one (34) components in the three-dimensional space.

Since the stress and strain tensors are symmetric (τ ′′i,j = τ ′′j,i and ϵ
′′
i,j = ϵ′′j,i), the �rst and the

second index of the sti�ness tensor can be interchanged, as well as the third and the fourth

index. This symmetry property of the sti�ness tensor

C ′′
i,j,k,l = C ′′

j,i,k,l = C ′′
i,j,l,k = C ′′

j,i,l,k, (2.4)

reduces the number of independent components to thirty-six. Further symmetries can be

shown by considering the strain energy density de�ned as (e.g., Nayfeh, 1995)

U =
1

2
τ ′′i,jϵ

′′
i,j =

1

2
C ′′
i,j,k,lϵ

′′
k,lϵ

′′
i,j . (2.5)

Straightforward di�erentiation of equation 2.5 yields

C ′′
i,j,k,l =

∂2U

∂ϵ′′i,j∂ϵ
′′
k,l

, (2.6)

and it can be shown that interchanging the order of di�erentiation does not change the relation

(Nayfeh, 1995). Hence, the �rst two indices of the sti�ness tensor can be interchanged with

the last two indices. This additional symmetry property

C ′′
i,j,k,l = C ′′

k,l,i,j (2.7)

reduces the number of independent components to twenty-one. The sti�ness tensor of rank

four can be rewritten into a matrix with six rows and six columns utilizing the symmetries.

Therefore, a pair of indices is contracted to one single index according to the Voigt 's notation

(Voigt, 1910)

1, 1 → 1 2, 2 → 2 3, 3 → 3 2, 3 → 4 1, 3 → 5 1, 2 → 6. (2.8)
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2.1.1. Triclinic symmetry

Applying the Voigt 's notation to equation 2.1a, Hooke's law can be written in a matrix-vector

form (e.g., Nayfeh, 1995)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ ′′1,1

τ ′′2,2

τ ′′3,3

τ ′′2,3

τ ′′1,3

τ ′′1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′′
1,1 C ′′

1,2 C ′′
1,3 C ′′

1,4 C ′′
1,5 C ′′

1,6

C ′′
2,2 C ′′

2,3 C ′′
2,4 C ′′

2,5 C ′′
2,6

C ′′
3,3 C ′′

3,4 C ′′
3,5 C ′′

3,6

C ′′
4,4 C ′′

4,5 C ′′
4,6

sym C ′′
5,5 C ′′

5,6

C ′′
6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϵ′′1,1

ϵ′′2,2

ϵ′′3,3

2ϵ′′2,3

2ϵ′′1,3

2ϵ′′1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.9)

The sti�ness matrix in equation 2.9 is symmetric and contains twenty-one independent com-

ponents describing a triclinic medium, which is the most general case of anisotropy.

2.1.2. Monoclinic symmetry

Most materials exhibit material symmetries leading to simpli�cations of the sti�ness tensor.

An anisotropic medium possessing one plane of symmetry is referred to as monoclinic. For

instance, if the symmetry plane coincides with the x′′1�x
′′
3 plane, the material that occupies

the semi-space x′′2 ≥ 0 has the same properties as the material in the semi-space x′′2 ≤ 0

(Nayfeh, 1995). Consequently, the medium is invariant to mirroring at the symmetry plane.

This invariance requires that several elements of the sti�ness tensor vanish, and the number of

independent elements reduces to thirteen. The vanishing elements depend on which plane is

the symmetry plane. The sti�ness tensor characterizing a monoclinic medium with the x′′1�x
′′
3

plane as the symmetry plane has the structure (e.g., Nayfeh, 1995)

C ′′
i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′′
1,1 C ′′

1,2 C ′′
1,3 0 C ′′

1,5 0

C ′′
2,2 C ′′

2,3 0 C ′′
2,5 0

C ′′
3,3 0 C ′′

3,5 0

C ′′
4,4 0 C ′′

4,6

sym C ′′
5,5 0

C ′′
6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.10)

If the symmetry plane changes, the non-zero elements of the sti�ness tensor also change.

Additional symmetry planes cause more zero elements and further reduce the number of

independent sti�ness tensor elements.

2.1.3. Orthotropic symmetry

Media possessing three mutually orthogonal planes are referred to as orthorhombic or or-

thotropic media. Their sti�ness tensor contains only nine independent elements and is de�ned



26 2. Theory

as (e.g., Nayfeh, 1995)

C ′′
i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′′
1,1 C ′′

1,2 C ′′
1,3 0 0 0

C ′′
2,2 C ′′

2,3 0 0 0

C ′′
3,3 0 0 0

C ′′
4,4 0 0

sym C ′′
5,5 0

C ′′
6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.11)

2.1.4. Transverse isotropic (TI) symmetry

An essential type of anisotropy in borehole acoustics and this thesis is the transverse isotropic

(TI) symmetry. Media exhibiting such a symmetry possess one isotropic plane. Within this

plane, the wave velocities are direction invariant, and the axis perpendicular to that isotropic

plane is referred to as the symmetry axis. All planes containing the symmetry axis are planes

of mirror symmetry. A TI medium with a vertical symmetry axis (x′′3�axis) is referred to as

vertical transverse isotropy (VTI) medium. The corresponding sti�ness tensor contains �ve

independent components, and Hooke's law can be expressed as (e.g., Nayfeh, 1995)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ ′′1,1

τ ′′2,2

τ ′′3,3

τ ′′2,3

τ ′′1,3

τ ′′1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′′
1,1 C ′′

1,1 − 2C ′′
6,6 C ′′

1,3 0 0 0

C ′′
1,1 C ′′

1,3 0 0 0

C ′′
3,3 0 0 0

C ′′
4,4 0 0

sym C ′′
4,4 0

C ′′
6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϵ′′1,1

ϵ′′2,2

ϵ′′3,3

2ϵ′′2,3

2ϵ′′1,3

2ϵ′′1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.12)

In VTI media, the compressional and shear wave velocities of vertically or horizontally prop-

agating plane waves can be derived directly from the sti�ness tensor. Figure 2.1 illustrates

(a) P-waves (b) SV-waves (c) SH-waves

Fig. 2.1: The �gures illustrate the relationship between vertically/horizontally propagating plane waves and
the sti�ness tensor elements characterizing the TI symmetry. The x′′3�axis is the TI symmetry axis.
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the relationship between the wave velocities and the sti�ness tensor elements. The P-wave

propagating vertically in the VTI formation involves only the stress tensor component τ ′′3,3,

which depends on the strain tensor elements ϵ′′1,1, ϵ
′′
2,2 and ϵ′′3,3 (Eq. 2.12). Since the vertical

P-wave is a pure mode, it exhibits only particle motion parallel to the vertical propagation

direction and only the strain tensor element ϵ′′3,3 is non-zero. Thus, the stress component

τ ′′3,3 is proportional to ϵ′′3,3 via the sti�ness tensor element C ′′
3,3, de�ning the vertical P-wave

velocity. Analogously, horizontally propagating P-waves in the x′′1 and x′′2 directions depend

only on the stress tensor components τ ′′1,1 and τ
′′
2,2, respectively. Both components are related

to the corresponding strain tensor components via the sti�ness tensor element C ′′
1,1. As a

result, the velocities of vertically and horizontally propagating P-waves can be expressed as

vPver =

√︄
C ′′
3,3

ρs
, (2.13a)

vPhor =

√︄
C ′′
1,1

ρs
. (2.13b)

The vertically and horizontally propagating shear waves can be considered in a similar way

(Fig. 2.1b�2.1c). The shear waves propagating in the vertical x′′3�direction are polarized

in the x′′1� and x′′2�directions corresponding to the stress tensor components τ ′′1,3 and τ ′′2,3,

respectively. Both components are related to the corresponding strain tensor components by

the sti�ness tensor element C ′′
4,4 (Eq. 2.12). The same is true for horizontally propagating

shear waves polarized in vertical x′′3�direction (SV-waves). Figure 2.1b shows that the same

stress tensor components (τ ′′1,3 and τ
′′
2,3) are involved as for vertically propagating shear waves.

In contrast, a horizontally propagating shear wave polarized in the horizontal direction (SH-

waves) involves the stress tensor component τ ′′1,2 (Fig. 2.1c), which is related to the strain

tensor component ϵ′′1,2 by the sti�ness tensor element C ′′
6,6. In summary, the velocities of

vertically and horizontally propagating SV- and SH-waves can be expressed as

vSver = vSHver = vSVver =

√︄
C ′′
4,4

ρs
, (2.13c)

vSHhor =

√︄
C ′′
6,6

ρs
, vSVhor =

√︄
C ′′
4,4

ρs
. (2.13d)

The velocity of a vertically propagating shear wave is independent of its polarization direction

since it is always polarized into the isotropic plane, and thus the polarization directions of the

SV- and SH-wave are arbitrary.

Besides the sti�ness tensor, a VTI medium can be characterized by an alternative represen-

tation. Thomsen (1986) introduced three dimensionless parameters de�ned as

ϵ ≡
C ′′
1,1 − C ′′

3,3

2C ′′
3,3

, (2.14a)
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γ ≡
C ′′
6,6 − C ′′

4,4

2C ′′
4,4

, (2.14b)

δ ≡
(︁
C ′′
1,3 + C ′′

4,4

)︁2 − (︁C ′′
3,3 − C ′′

4,4

)︁2
2C ′′

3,3

(︂
C ′′
3,3 − C ′′

4,4

)︂ . (2.14c)

The parameter ϵ describes the di�erence between the velocities of the horizontally and verti-

cally propagating compressional waves, whereas the parameter γ is de�ned by the di�erence of

the horizontal and vertical SH-wave velocities. In contrast, the parameter δ is less transparent

but controls most anisotropic phenomena of importance in exploration geophysics (Thomsen,

1986). The three parameters, the vertical compressional (Eq. 2.13a), and the vertical shear

wave velocities (Eq. 2.13c) describe a VTI medium, such as the sti�ness tensor containing

�ve independent elements. The inverse formulas to construct the sti�ness tensor from the

Thomsen notation are de�ned by

C ′′
1,1 = ρs

(︁
vPver
)︁2

(2ϵ+ 1), (2.15a)

C ′′
1,3 = ρs

(︃√︂
(vPver)

4 (2δ + 1)− 2 (vPver)
2 (vSver)

2 (δ + 1) + (vSver)
4 −

(︁
vSver
)︁2)︃

, (2.15b)

C ′′
3,3 = ρs

(︁
vPver
)︁2
, (2.15c)

C ′′
4,4 = ρs

(︁
vSver
)︁2
, (2.15d)

C ′′
6,6 = ρs

(︁
vSver
)︁2

(2γ + 1). (2.15e)

2.1.5. Isotropy

For isotropic media, the three Thomsen parameters ϵ, γ, and δ vanish, and the media can

be described by only two parameters, the vertical compressional and shear wave velocities.

Using Lamé's constants λ and µ, the sti�ness tensor can be expressed as (e.g., Nayfeh, 1995)

C ′′
i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ+ 2µ λ λ 0 0 0

λ+ 2µ λ 0 0 0

λ+ 2µ 0 0 0

µ 0 0

sym µ 0

µ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.16)

2.2. Reference frames

In the following of this work, three di�erent reference frames are used, as displayed in �g-

ure 2.2. The red reference frame is referred to as the crystallographic reference frame (x′′),

which is de�ned by the symmetries of the anisotropic medium. The blue reference frame is

the borehole reference frame (x′), where the x′3�axis is de�ned to coincide with the vertical
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(a) Crystallographic to borehole reference frame (b) Borehole to tool reference frame

Fig. 2.2: Illustration of the transformations from the crystallographic reference frame x′′ (red) to the borehole
reference frame x′ (blue) and the tool reference frame x (black).

borehole axis. Di�erent quantities, e.g., the sti�ness tensor elements, can be transformed from

the crystallographic reference frame to the borehole reference frame by a rotation around the

x′′1�axis over the angle ψ0. The third reference frame is the tool reference frame (x) displayed

in �gure 2.2b in black. While the vertical axes of the borehole and tool reference frames

coincide, they are azimuthally separated from each other by the angle θ0. Since all equations

in the following sections of this chapter are expressed in the tool reference frame, the sti�ness

tensor must be transformed from the crystallographic reference to the tool reference frame by

applying two rotations

Ci,j,k,l = Ri,i′Rj,j′Rk,k′Rl,l′C
′′
i′,j′,k′,l′ . (2.17)

The two rotations are mathematically described by one rotation tensorR given in equation B.9

(App. B.1). Alternatively, the sti�ness tensor expressed in Voigt 's notation can be directly

transformed by the matrix-matrix-multiplications

C = RC ′′RT, (2.18)

where the rotation matrix R is de�ned in Eq. B.15 (App. B.1), and RT is the transpose of R.

2.3. Seismic wave equations for a linear elastic, anisotropic

medium

2.3.1. Basic equations

The dynamic behavior of an anisotropic, heterogeneous, time-invariant, and locally reacting

solid can be described in a Cartesian coordinate system by the equation of motion (de Hoop,

1995)

∆+
k,m,p,q∂mτp,q(x, t)− ρsk,r(x)∂tvr(x, t) = 0, (2.19)
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given in tensor form using subscript notation. The summation is applied over all repeated

indices, and k is a free index. The bold variables (e.g., x) are vectors. Since the equation

of motion is valid in the three-dimensional space, all indices take the values 1, 2, and 3.

Furthermore, ∂t denotes di�erentiation with respect to the time coordinate, whereas all other

derivatives (e.g., ∂m) denote di�erentiation with respect to a spatial coordinate (e.g., xm).

The stress τ and the volumetric mass density of the solid ρs are tensors of rank two, whereas

the particle velocity v is a tensor of rank one equivalent to a vector. The symmetrical unit

tensor of rank four is de�ned as

∆+
i,j,p,q =

1

2
(δi,pδj,q + δi,qδj,p) , (2.20)

where the unit tensor δi,j of rank two is de�ned in equation 2.3. The equation of motion given

in equation 2.19 is a homogeneous partial di�erential equation since the right-hand side is

zero. Physically, this equation describes a medium without any sources inside. Assuming a

given density, the equation of motion contains two unknowns, the stress tensor and the particle

velocity. Consequently, this partial di�erential equation cannot be solved without any relation

between both quantities. Such a connection is de�ned by the constitutive relation (Hooke's

law) given by

τp,q(x, t) = Cp,q,i,j(x)ϵi,j(x, t), (2.21a)

or by its inverse form

ϵi,j(x, t) = Si,j,p,q(x)τp,q(x, t), (2.21b)

describing a linear elastic relation between the stress τ and the strain ϵ. This linear relation

is an approximation but reasonable for describing the wave propagation in anisotropic media

since deformations are very small. When using a non-linear relation, the partial di�erential

equation becomes non-linear and very complicated to solve. The proportionality factors are

the sti�ness tensor C and the compliance tensor S, as presented in section 2.1. The strain

tensor ϵ of rank two is de�ned by

ϵi,j(x, t) =
1

2
(∂iuj(x, t) + ∂jui(x, t)) , (2.22)

where u denotes the particle displacement vector. Di�erentiation with respect to time yields

∂tϵi,j(x, t) =
1

2
(∂ivj(x, t) + ∂jvi(x, t)) = ∆+

i,j,n,r∂nvr(x, t), (2.23)

because the particle velocity vector is de�ned as the temporal derivative of the particle dis-

placement vector (vi = ∂tui). Substitution of equation 2.23 into the elastic constitutive

relations (Eq. 2.21b) after temporal di�erentiation yields

∆+
i,j,n,r∂nvr(x, t)− Si,j,p,q(x)∂tτp,q(x, t) = 0. (2.24)

The equation of motion (Eq. 2.19) and equation 2.24 fully describe the homogeneous �rst-

order di�erential equations for the dynamic stress τ and the particle velocity v, which can be
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written in matrix form as⎛⎝−∆+
k,m,p,q∂m ρsk,r(x)∂t

−Si,j,p,q(x)∂t ∆+
i,j,n,r∂n

⎞⎠⎛⎝τp,q
vr

⎞⎠ (x, t) = 0, (2.25)

de�ning a linear equation system of two linear di�erential equations and two unknowns. This

equation system can be solved by applying appropriate integral transforms (van der Hijden,

1987).

2.3.2. Integral transforms

In the �rst step, an integral transform concerning the time coordinate is applied to equa-

tion 2.25. For causality reasons, the one-sided Laplace transform is used as de�ned in Ap-

pendix A.1. Accordingly, the time derivatives ∂t are replaced by multiplication with the

possibly complex parameter s representing a temporal frequency⎛⎝−∆+
k,m,p,q∂m sρsk,r(x)

−sSi,j,p,q(x) ∆+
i,j,n,r∂n

⎞⎠⎛⎝τ̌p,q
v̌r

⎞⎠ (x, s) = 0. (2.26)

In the following, it is assumed that the solid is homogeneous, i.e., the compliance tensor S and

the volumetric mass density ρs are invariant in space. Hence, spatial Fourier transforms can

be applied to equation 2.26. Appendix A.2 explains that the di�erentiation with respect to

a spatial coordinate ∂p is equivalent to the multiplication with the factor sβp if the radiation

condition is ful�lled. The factor is the product of the Laplace transform parameter s and

the phase slowness vector β. The resulting linear equation system after applying the Laplace

transform and spatial Fourier transforms is given by⎛⎝−s∆+
k,m,p,qβm sδk,rρ

s

−sSi,j,p,q s∆+
i,j,n,rβn

⎞⎠⎛⎝τ̂p,q(β, s)
v̂r(β, s)

⎞⎠ = 0. (2.27)

Because s ̸= 0 (App. A.1), equation 2.27 can be divided by s,⎛⎝−∆+
k,m,p,qβm δk,rρ

s

−Si,j,p,q ∆+
i,j,n,rβn

⎞⎠⎛⎝τ̂p,q(β, s)
v̂r(β, s)

⎞⎠ = 0. (2.28)

2.3.3. Christo�el equation

After applying the integral transforms, the linear equation system (Eq. 2.28) contains only

algebraic expressions (no derivatives) and can be solved by standard algebra methods. A

detailed derivation of the solution can be found in Appendix C.1, whereas this section only

explains fundamental steps. The second equation (second row of the matrix) of equation 2.28

is rewritten to make it explicit for τ̂p,q.

τ̂p,q(β, s) = Cp,q,n,rβnv̂r(β, s) (2.29)
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Substitution of equation 2.29 into the �rst equation (�rst row of the matrix) of equation 2.28

yields the so-called Christo�el equation

(︁
βmC̄k,m,n,rβn − δk,r

)︁
v̂r(β, s) = 0, (2.30)

where

C̄k,m,n,r =
1

ρs
Ck,m,n,r. (2.31)

The Christo�el equation has only trivial solutions, i.e., the particle velocity vector is zero,

except for the phase slowness vectors β, that makes the term (βmC̄k,m,n,rβn+δk,r) singular. To

�nd these vectors, the phase slowness vector β is �rst decomposed in its length and direction

βm = |β|(ζ)ζm. (2.32)

Now, the length of the phase slowness vector |β| is sought dependent on the unitary prop-

agation vector ζ de�ning the propagation direction. Substitution of equation 2.32 into the

Christo�el equation (Eq. 2.30) yields

(︁
|β|2Λk,r − δk,r

)︁
v̂r(β, s) = 0, (2.33)

with

Λk,r = ζmC̄k,m,n,rζn. (2.34)

The symmetry of the sti�ness tensor (Ci,j,k,l = Ck,l,i,j) causes Λ to be symmetric (Λk,r = Λr,k).

Because all tensors have a maximum rank of two, equation 2.33 can be written in a matrix-

vector form (︁
|β|2Λ− I

)︁
v̂ = 0, (2.35)

equivalent to

(Λ− κI) v̂ = 0, (2.36)

where I denotes the unity matrix and

κ =
1

|β|2
. (2.37)

Seeking the lengths of the phase slowness vector |β|(ζ) is now equivalent to seeking the values

κ(ζ) that make Λ−κI singular dependent on the unitary propagation vector ζ. Equation 2.36
is, by de�nition, a classical eigenvalue problem, where the eigenvalues are the unknown values

κ and the eigenvectors de�ne the direction of the particle velocity vectors v̂. Since the matrix Λ

is real and symmetric, all eigenvalues are real, and the associated eigenvectors are orthogonal

(Nayfeh, 1995). The eigenvalues can be computed analytically by �nding the roots of the

characteristic polynomial (App. C.1). Because this polynomial is of degree three, there exists

three eigenvalues κ[l] and three corresponding orthogonal eigenvectors V [l] (l=1,2,3). These

eigenvectors are non-trivial solutions of the Christo�el equation (Eq. 2.36). Since only their

direction is uniquely de�ned but not their length, they can be multiplied by an arbitrary
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coe�cient, and therefore an in�nite number of non-trivial solutions exist

v̂[l]r (β, s) =

⎧⎪⎨⎪⎩
T [l](β, s)V

[l]
r (β) for β = |β|[l](ζ)ζ

0 otherwise
, l = 1, 2, 3, (2.38)

where |β|[l] is de�ned by the inverse of equation 2.37

|β|[l](ζ) = 1

±
√︁
κ[l](ζ)

, l = 1, 2, 3. (2.39)

The number of solutions can be reduced by determining the coe�cients T [l] by applying

boundary conditions. Since the superposition of the solutions of a linear partial di�erential

equation is another solution, one solution of the Christo�el equation for the particle velocity

vector can be de�ned by

v̂r(β, s) =
3∑︂
l=1

v̂[l]r (β, s). (2.40)

The solutions for the particle velocity vector v̂r can be substituted into equation 2.29 to obtain

the solutions for the stress tensor τ̂p,q.

Subsequently, the solutions can be transformed from the spectral and s-domain (β, s) back

to the spatial and time domain (x, t) by applying inverse integral transforms. The inverse

spatial Fourier transform converts the solutions from the spectral to the spatial domain. For

transforming the solutions from the complex frequency or s-domain back to the time domain,

the inverse Laplace transform is used. The application of these inverse integral transforms

yields harmonic plane waves described by

v[l]r (x, t) = V [l]
r exp

(︂
s|β|[l]ζqxq + st

)︂
. (2.41)

Hence, the eigenvalues κ[l] of the Christo�el equation (Eq. 2.36) correspond to three plane

wave solutions. For each plane wave, equation 2.39 yields two phase slowness values with

identical absolute values but opposite signs. Hence, two solutions per wavetype are obtained,

which propagate in opposite directions. The propagation direction is de�ned by the unitary

propagation vector ζ that is orthogonal to the plane wavefront. The vector V [l] contains the

polarization direction and the amplitude of the plane waves. While the polarization direction

is de�ned by the eigenvector belonging to the respective eigenvalue, the amplitude can be

determined by applying boundary conditions.

In isotropic media, the largest eigenvalue corresponds to the compressional or P-wave. The

two remaining eigenvalues, which are equal, correspond to the SV-wave (vertically polarized

shear wave) and the SH-wave (horizontally polarized shear wave). The eigenvector corre-

sponding to the P-wave is parallel to the unitary propagation vector ζ × v = 0, whereas
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the other two eigenvectors are perpendicular to the unitary propagation vector ζ · v = 0

(Fig. 2.3a). This is, in general, violated in anisotropic solids. Since all three eigenvalues

can be di�erent in anisotropic media, the shear waves can split into two waves propagat-

ing with di�erent phase slowness. Moreover, the three eigenvectors de�ning the three plane

wave polarization directions are still mutually orthogonal but are not necessarily parallel or

perpendicular to the unitary propagation vector. Consequently, the largest eigenvalue cor-

responds to the quasi-P-wave (qP-wave), and the two remaining eigenvalues correspond to

the quasi-SH-wave (qSH-wave) and the quasi-SV-wave (qSV-wave). The pre�x quasi means

that the qP-wave is, in general, not a pure compressional wave because there is some particle

motion transverse to the propagation direction. Vice versa, the qSV-wave contains particle

motion parallel to the propagation direction. In transverse isotropic (TI) solids, the SH-wave

is always a pure shear wave with particle motion perpendicular to the propagation direction

and orthogonal to the qP- and qSV-wave (Fig. 2.3b). In triclinic media, the SH-wave is not

necessarily perpendicular to the propagation direction (Fig. 2.3c) and thus becomes a quasi-

SH-wave exhibiting particle motion parallel to the propagation direction.

(a) Isotropic (b) Transverse isotropic (c) Triclinic

Fig. 2.3: Polarization vectors of the three plane wave modes propagating in the direction de�ned by ζ in
isotropic (a), TI (b), or triclinic (c) media.

There may exist directions for which the waves are pure modes, but these directions depend

on the elastic properties of the anisotropic solid and the type of symmetry. If the qP-wave

polarization vector is parallel to the unitary propagation vector (ζ × v = 0), both remaining

polarization vectors necessarily satisfy ζ ·v = 0 (Nayfeh, 1995). Consequently, all three waves

are pure waves. On the other hand, if one polarization vector is perpendicular to the unitary

propagation vector (ζ · v = 0), the other polarization vectors do not necessarily satisfy any

condition. Therefore, only one wave may be pure, e.g., the SH-wave in TI solids.

2.3.4. Phase slowness surfaces

Once the eigenvalues are computed, the phase slowness values can be calculated in dependence

with the propagation direction via

|β⊙|(ζ) = 1

+
√︁
κ⊙(ζ)

⊙ = {qP, qSV, qSH}. (2.42)

The phase slowness surfaces can be constructed for all three wave modes by plotting the

computed positive slowness values of each mode for all possible propagation directions. For
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isotropic media, these phase slowness surfaces are spheres. One sphere corresponds to the

P-wave, and two identical spheres correspond to the SV- and SH-waves. In anisotropic solids,

the three phase slowness surfaces are arbitrarily shaped and can strongly deviate from spheres

(Fig. 2.4) depending on the type of anisotropy. One problem constructing such phase slow-

ness surfaces is assigning the computed eigenvalues to the correct wave modes. While the

lowest phase slowness value always corresponds to the qP-wave, it is not trivial to assign the

remaining phase slowness values to the qSV- and qSH-wave consistently for all propagation

directions. For transverse isotropic solids, the eigenvectors that correspond to the respective

eigenvalues can be used for the assignment. Since the SH-wave polarization direction is always

perpendicular to the unitary propagation vector ζ in such solids, the following relation can

be used

|ζ · vSH| ≤ |ζ · vqSV|. (2.43)

A problem occurs only if the dot product of the left- and the right-hand side is equal (both

are zero). This is always the case if the eigenvalues corresponding to the shear waves coincide.

In that case, the eigenvectors are not uniquely de�ned and can be aligned arbitrarily per-

pendicular to the qP-wave polarization vector, which is parallel to the propagation direction

vector. Tsvankin (2012) called this phenomenon shear wave singularity. He distinguished

between "kiss" singularities and "intersection" singularities. In �gure 2.4c, a slice of the three

phase slowness surfaces for the Austin Chalk TI formation is displayed, and it can be seen

that both types of singularities occur for this type of formation. At the angles ψ0 = 0◦ or

ψ0 = 180◦, there are "kiss" singularities, where the phase slowness surfaces of the shear waves

touch each other tangentially. Additionally, the phase slowness surfaces of the SH- and qSV-

waves intersect, e.g., at about ψ0 = 43.5◦, which creates an "intersection" singularity. While

anisotropic solids with transverse isotropic symmetry always possess a "kiss" singularity when

the propagation direction is parallel to the symmetry axis, an "intersection" singularity does

not necessarily exist. One example of such a TI solid is the Cotton Valley Shale formation,

for which the phase slowness surfaces are displayed in �gure 2.5. It can be seen that the

qSV-wave is slower than the SH-wave for all propagation directions except at ψ0 = 30◦, where

(a) qP-wave (b) qSV- and SH-wave (c) β1 − β3−slice

Fig. 2.4: Phase slowness surfaces of the plane wave modes in the slow Austin Chalk TI formation (Tab. 3.1)
exhibiting a vertical symmetry axis (VTI).
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(a) qP-wave (b) qSV- and SH-wave (c) β1�β3�slice

Fig. 2.5: Phase slowness surfaces of the plane wave modes in the fast Cotton Valley Shale TI formation
(Tab. 3.1), which symmetry axis is inclined by ψ0 = 30◦ to the vertical axis (TTI).

the phase slowness surfaces of both wave modes touch each other. This angle corresponds

to the TI symmetry axis. In borehole acoustics, a "kiss" singularity always occurs if the TI

symmetry axis is parallel to the borehole axis (VTI). On the other hand, if the TI symmetry

axis is perpendicular to the borehole axis (HTI), no singularity exists. Besides, isotropic me-

dia possess "kiss" singularities for all propagation directions since both shear wave slowness

values are identical.

2.3.5. Group velocity

While the phase slowness vector or its inverse, the phase velocity vector, de�nes the speed

and the direction of a single plane wave harmonic at a given frequency, the group slowness

vector or its inverse, the group velocity vector, determines the direction and the velocity of

energy propagation and in fact the seismic ray. In anisotropic media, the phase slowness

vector deviates from the group slowness vector, in general. Figure 2.6a shows that in a homo-

geneous, anisotropic medium, the group velocity vector vG is parallel to the vector between

the source and an observation point (receiver). In contrast, the phase velocity vector or phase

slowness vector β is normal to the wavefront. Consequently, the phase velocity vector, in

general, deviates from the group velocity vector in anisotropic media since the wavefronts

(a) Wavefront (b) Phase slowness surface (x�z�slice)

Fig. 2.6: Relationship between the phase slowness vector (β) and group velocity vector (vG). While the phase
slowness vector is normal to the wavefront (a), the group velocity vector is normal to the phase slowness
surface (b) (the wavefront displayed in (a) does not correspond to the phase slowness surface in (b)).
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are arbitrarily shaped. On the other hand, for homogeneous, non-dispersive isotropic media,

both velocity vectors always coincide because the wavefronts are spheres. Besides anisotropy,

velocity variations with frequency (velocity dispersion) can also cause deviations between the

phase and the group velocity vector.

The group velocity vector depends on the function of the phase slowness (β⊙ = |β⊙|) in

relation to the propagation direction and can be de�ned in the most general form by (e.g.,

Nayfeh, 1995)

vG;⊙
n =

∂

∂ζn

(︃
1

|β⊙|(ζ)

)︃
, ⊙ = {qP, qSV, qSH}. (2.44)

An alternative expression can be found by substituting the solutions into the Christo�el

equation (Eq. 2.30) and using V ⊙
k V

⊙
k = 1

−C̄k,m,n,rζmζnV ⊙
r V

⊙
k =

1

|β⊙|2
. (2.45)

Di�erentiation of equation 2.45 yields another expression for the group velocity (Nayfeh, 1995)

vG;⊙
n = −|β⊙|C̄k,m,n,rV ⊙

r V
⊙
k ζm. (2.46)

Furthermore, Nayfeh (1995) has proven that the group velocity vector is always orthogonal to

the phase slowness surfaces. Since these surfaces can become concave for anisotropic media,

the direction of the group velocity vector may be identical for three di�erent phase slowness

directions, as displayed in �gure 2.6b. Consequently, concave parts of the slowness surface

generate triplications on the shear wavefronts referred to as cusps in some literature, e.g.,

Nayfeh (1995). Figure 2.7 presents an x�z�slice of the phase slowness surfaces (Fig. 2.7a) and

the corresponding group velocity surfaces (Fig. 2.7b) of all three plane wave modes in a cubic

(a) Phase slowness surface (b) Group velocity surface

Fig. 2.7: Phase slowness (a) and group velocity (b) surfaces (x�y�slice) of the plane wave modes in a cubic
indium arsenide crystal (InAs).
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indium arsenide crystal (Nayfeh, 1995). The phase slowness surface of the qSV-wave possesses

some concave parts corresponding to the triplications or cusps in the group velocity surface.

Hence, for those phase slowness directions, three group velocities exist at which the energy

can propagate, yielding self-intersecting wavefronts. In contrast, the qP- and SH-wave phase

slowness surfaces have no concave parts, so there are no cusps. The qP-wave can never have

cusps because its phase slowness surface is always convex (Tsvankin, 2012). Furthermore,

the phase slowness surfaces corresponding to the anisotropic TI formations considered in

this thesis are always convex, and thus, the cusps need no further investigation. Nevertheless,

Brodov et al. (1993) have shown that cusps may occur for some clays exhibiting TI symmetry.

2.4. Solution in cylindrical coordinates for the borehole

geometry

Since a borehole has cylindrical symmetry, it is advantageous to use cylindrical coordinates

(r, θ, z) instead of Cartesian coordinates (x1, x2, x3), de�ned by

x1 = r cos θ, (2.47a)

x2 = r sin θ, (2.47b)

x3 = z. (2.47c)

All quantities must be transformed from Cartesian to cylindrical coordinates using the trans-

formation tensor Rx3(θ), describing a clockwise rotation over the angle θ around the x3�axis

Rx3
i,j(θ) =

⎛⎜⎜⎜⎜⎝
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞⎟⎟⎟⎟⎠ . (2.48)

While the particle velocity is transformed from Cartesian to cylindrical coordinates by

v̌r′(r, θ, z, s) = Rx3
r′,r(θ)v̌r(x1, x2, x3, s), (2.49)

the second-order stress tensor is transformed via

τ̌ i′,j′(r, θ, z, s) = Rx3
i′,i(θ)R

x3
j′,j(θ)τ̌ i,j(x1, x2, x3, s). (2.50)

The constant density ρs of the formation is independent of the coordinate system because

only homogeneous media are considered. In contrast, the sti�ness tensor Ci,j,k,l is constant in

Cartesian coordinates but depends on the azimuth θ in cylindrical coordinates. Since Hooke's

law applies in all coordinate systems, it can be de�ned in cylindrical coordinates by

τ̌ i′,j′(r, θ, z, s) = C̃i′,j′,k′,l′(θ)ϵ̌k′,l′(r, θ, z, s), (2.51)
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where C̃i′,j′,k′,l′ designates the sti�ness tensor in cylindrical coordinates de�ned by

C̃i′,j′,k′,l′(θ) = Rx3
i′,i(θ)R

x3
j′,j(θ)R

x3
k′,k(θ)R

x3
l′,l(θ)Ci,j,k,l. (2.52)

The expanded form of the sti�ness tensor in cylindrical coordinates is given in Appendix B.2.

Furthermore, the Laplace transforms of the partial di�erential equations (Eq. 2.26) have to

be transformed from Cartesian to cylindrical coordinates. The transformed �rst equation in

the matrix-vector notation is de�ned by

−

⎛⎜⎜⎜⎝
∂r +

1
r −1

r 0 0 ∂z
1
r∂θ

0 1
r∂θ 0 ∂z 0 ∂r +

2
r

0 0 ∂z
1
r∂θ ∂r +

1
r 0

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ̌ r,r

τ̌ θ,θ

τ̌ z,z

τ̌ θ,z

τ̌ r,z

τ̌ r,θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ρss

⎛⎜⎜⎜⎝
v̌r

v̌θ

v̌z

⎞⎟⎟⎟⎠ = 0, (2.53)

and the second one by

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ̌ r,r

τ̌ θ,θ

τ̌ z,z

τ̌ θ,z

τ̌ r,z

τ̌ r,θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃1,1 C̃1,2 C̃1,3 C̃1,4 C̃1,5 C̃1,6

C̃1,2 C̃2,2 C̃2,3 C̃2,4 C̃2,5 C̃2,6

C̃1,3 C̃2,3 C̃3,3 C̃3,4 C̃3,5 C̃3,6

C̃1,4 C̃2,4 C̃3,4 C̃4,4 C̃4,5 C̃4,6

C̃1,5 C̃2,5 C̃3,5 C̃4,5 C̃5,5 C̃5,6

C̃1,6 C̃2,6 C̃3,6 C̃4,6 C̃5,6 C̃6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂r 0 0

1
r

1
r∂θ 0

0 0 ∂z

0 ∂z
1
r∂θ

∂z 0 ∂r

1
r∂θ ∂r − 1

r 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
v̌r

v̌θ

v̌z

⎞⎟⎟⎟⎠ . (2.54)

The subscripts r, θ, and z denote the components of the stress tensor and the particle veloc-

ity vector. The substitution of the second equation into the �rst one yields the Christo�el

equation in cylindrical coordinates, expressed as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎝
∂r +

1
r −1

r 0 0 ∂z
1
r∂θ

0 1
r∂θ 0 ∂z 0 ∂r +

2
r

0 0 ∂z
1
r∂θ ∂r +

1
r 0

⎞⎟⎟⎟⎠ C̃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂r 0 0

1
r

1
r∂θ 0

0 0 ∂z

0 ∂z
1
r∂θ

∂z 0 ∂r

1
r∂θ ∂r − 1

r 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− ρss2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎝
v̌r

v̌θ

v̌z

⎞⎟⎟⎟⎠ = 0,

(2.55)

where v̌ = v̌(r, θ, z, s) denotes the Laplace transform of the particle velocity vector in cylin-
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drical coordinates. The sti�ness tensor C̃ = C̃(θ) is still symmetric in cylindrical coordinates

(App. B.2) but depends on the azimuth θ, which has to be noted for azimuthal di�erentiation.

The expanded expressions of the Christo�el equation are given in Appendix C.2.

2.4.1. Special case: vertical transverse isotropy (VTI)

A VTI medium, where the symmetry axis is parallel to the vertical borehole axis (z-direction),

can be described by only �ve independent components of the sti�ness tensor (Sec. 2.1). Fur-

thermore, the sti�ness tensor is azimuthally invariant, and the Christo�el equation in cylin-

drical coordinates becomes simpler (App. C.2). The particle velocity can be expressed by

three scalar potentials, given by (e.g., Tang and Cheng, 2004)

v̌(r, θ, z, s) = ∇Φ̌ +∇×
(︂
Ψ̌

SH
ez

)︂
+∇×∇×

(︂
Ψ̌

qSV
ez

)︂
. (2.56)

Applying the del operator ∇ in cylindrical coordinates yields

∇Φ̌ =

(︃
∂rΦ̌,

1

r
∂θΦ̌, ∂zΦ̌

)︃T

, (2.57a)

∇×
(︂
Ψ̌

SH
ez

)︂
=

(︃
1

r
∂θΨ̌

SH
,−∂Ψ̌SH

, 0

)︃T

, (2.57b)

∇×∇×
(︂
Ψ̌

qSV
ez

)︂
=

(︃
∂r∂zΨ̌

qSV
,
1

r
∂θ∂zΨ̌

qSV
,−
(︁
∇2 − ∂2z

)︁
Ψ̌

qSV
)︃T

, (2.57c)

while the Laplace operator in cylindrical coordinates is de�ned as

∇2 = ∂2r +
1

r
∂r +

1

r2
∂2θ + ∂2z . (2.58)

Consequently, the particle velocity vector can be expressed as⎛⎜⎜⎜⎜⎝
v̌r

v̌θ

v̌z

⎞⎟⎟⎟⎟⎠ (r, θ, z, s) =

⎛⎜⎜⎜⎝
∂r

1
r∂θ ∂r∂z

1
r∂θ −∂r 1

r∂θ∂z

∂z 0 −
(︁
∇2 − ∂2z

)︁
⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Φ̌

Ψ̌
SH

Ψ̌
qSV

⎞⎟⎟⎟⎟⎠ (r, θ, z, s). (2.59)

Substituting equation 2.59 into the Christo�el equation (Eq. 2.55) yields three partial di�er-

ential equations

∂r
[︁
C1,1∇2 + (C1,3 + 2C4,4 − C1,1) ∂

2
z − ρss2

]︁
Φ̌

+
1

r
∂θ
[︁
C6,6∇2 + (C4,4 − C6,6) ∂

2
z − ρss2

]︁
Ψ̌

SH

+∂r∂z
[︁
(C1,1 − C1,3 − C4,4)∇2 + (C1,3 + 2C4,4 − C1,1) ∂

2
z − ρss2

]︁
Ψ̌

qSV
= 0, (2.60a)
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1

r
∂θ
[︁
C1,1∇2 + (C1,3 + 2C4,4 − C1,1) ∂

2
z − ρss2

]︁
Φ̌

−∂r
[︁
C6,6∇2 + (C4,4 − C6,6) ∂

2
z − ρss2

]︁
Ψ̌

SH

+
1

r
∂θ∂z

[︁
(C1,1 − C1,3 − C4,4)∇2 + (C1,3 + 2C4,4 − C1,1) ∂

2
z − ρss2

]︁
Ψ̌

qSV
= 0, (2.60b)

∂z
[︁
(C1,3 + 2C4,4)∇2 + (C3,3 − C1,3 − 2C4,4) ∂

2
z − ρss2

]︁
Φ̌

−
(︁
∇2 − ∂2z

)︁ [︁
C4,4∇2 + (C3,3 − 2C4,4 − C1,3) ∂

2
z − ρss2

]︁
Ψ̌

qSV
= 0. (2.60c)

These partial di�erential equations can be manipulated by computing the divergence of equa-

tions 2.60a�2.60c and subsequential subtraction of equation 2.60c to obtain equation 2.61a.

Moreover, applying the curl operator to equations 2.60a�2.60c yields equation 2.61b. Both

manipulated equations and equation 2.60c yield the following system of partial di�erential

equations to be solved

[︁
C1,1∇2 + (C1,3 + 2C4,4 − C1,1) ∂

2
z − ρss2

]︁
Φ̌

+∂z
[︁
(C1,1 − C1,3 − C4,4)∇2 + (C1,3 + 2C4,4 − C1,1) ∂

2
z − ρss2

]︁
Ψ̌

qSV
= 0, (2.61a)

∂z
[︁
(C1,3 + 2C4,4)∇2 + (C3,3 − 2C4,4 − C1,3) ∂

2
z − ρss2

]︁
Φ̌

−
(︁
∇2 − ∂2z

)︁ [︁
C4,4∇2 + (C3,3 − 2C4,4 − C1,3) ∂

2
z − ρss2

]︁
Ψ̌

qSV
= 0, (2.61b)

[︁
C6,6∇2 + (C4,4 − C6,6) ∂

2
z − ρss2

]︁
Ψ̌

SH
= 0. (2.61c)

The �rst two equations are coupled partial di�erential equations, whereas the third equation

is decoupled, describing the pure SH-wave.

The latter can be solved by applying a spatial Fourier transform concerning the vertical

z�coordinate (App. A.2) and an azimuthal Fourier transform concerning the θ�coordinate

(App. A.3). Hence, the partial derivatives ∂z are replaced by the scalar factor sβz and the

derivatives ∂θ by the factor im. While βz denotes the vertical phase slowness, m represents

the azimuthal wavenumber. Accordingly, equation 2.61c can be transformed and rearranged

to

[︁
r2∂2r + r∂r + r2s2β2r −m2

]︁
Ψ̃

SH
(r,m, βz, s) = 0, (2.62)

where the radial phase slowness is de�ned by

βr = βSHr = ±

√︄
C4,4β2z − ρs

C6,6
. (2.63)
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The substitution u = rsβr (∂u = ∂r/(sβr)) can be applied to obtain Bessel 's di�erential

equation

[︁
u2∂2u + u∂u +

(︁
u2 −m2

)︁]︁
Ψ̃

SH
= 0. (2.64)

The solutions of this di�erential equation are the modi�ed Bessel functions Im(u) and Km(u)

(e.g., Gradshteyn and Ryzhik, 2007). The �rst is ascending with increasing argument u, and

the latter is descending with increasing argument u. To ful�ll the radiation condition, i.e.,

the potential Ψ̌
SH

shall vanish when r → ∞, the modi�ed Bessel function Km(u) is chosen

as the solution. Applying the inverse spatial Fourier transform with respect to the vertical

coordinate and the inverse azimuthal Fourier transform concerning the azimuth yields the

solution

Ψ̌
SH

(r, θ, z, s) = T SH(s)Km(rsβ
SH
r ) exp (imθ) exp (sβzz) . (2.65)

The transmission coe�cient T SH de�nes the amplitude and has to be determined by applying

boundary conditions.

The remaining two partial di�erential equations (Eq. 2.61a�2.61b) describing the qP- and

qSV-wave cannot be solved in the same way because of their coupling. Therefore, an ansatz

is chosen that the solutions have the same form as the SH-wave potential

Φ̌(r, θ, z, s) ∝ T qP(s)Km(rsβr) exp (imθ) exp (sβzz) , (2.66)

Ψ̌
qSV

(r, θ, z, s) ∝ T qSV(s)Km(rsβr) exp (imθ) exp (sβzz) . (2.67)

Both equations are substituted into the coupled partial di�erential equations (Eq. 2.61a�2.61b)

to obtain the linear equation system

s2

⎛⎝A1,1 A1,2

A2,1 A2,2

⎞⎠⎛⎝ Φ̌

Ψ̌
qSV

⎞⎠ = 0, (2.68a)

with the matrix elements

A1,1 = β2rC1,1 + (C1,3 + 2C4,4)β
2
z − ρs, (2.68b)

A1,2 = sβz
(︁
β2r (C1,1 − C1,3 − C4,4) + C4,4β

2
z − ρs

)︁
, (2.68c)

A2,1 = sβz
(︁
β2r (C1,3 + 2C4,4) + C3,3β

2
z − ρs

)︁
, (2.68d)

A2,2 = −s2β2r
(︁
β2rC4,4 + (C3,3 − C4,4 − C1,3)β

2
z − ρs

)︁
. (2.68e)

The determinant of the matrix must vanish to compute non-trivial solutions. This is equivalent

to �nding the roots of the characteristic polynomial, which can be expressed after polynomial

division in the form

s2
(︁
β2r + β2z

)︁ (︁
a1β

4
r + a2β

2
r + a3

)︁
= 0, (2.69a)
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with

a1 = C1,1C4,4, (2.69b)

a2 =
(︁
C1,1C3,3 − C2

1,3 − 2C1,3C4,4

)︁
β2z − (C1,1 + C4,4) ρ

s, (2.69c)

a3 = C3,3C4,4β
4
z − (C3,3 + C4,4) ρ

sβ2z + (ρs)2 . (2.69d)

The characteristic polynomial has the roots s = 0 and βr = ±iβz, which do not correspond to

a wave motion and are ignored (Tang and Cheng, 2004). Additionally, the polynomial given

in the second parenthesis possesses two roots for β2r , which indeed correspond to the wave

motion of the qP-wave

βr = βqPr = ±

√︄
−a2 +

√︁
a22 − 4a1a3
2a1

, (2.70)

and the qSV-wave

βr = βqSVr = ±

√︄
−a2 −

√︁
a22 − 4a1a3
2a1

. (2.71)

The eigenvalues imply that the wave motions of the qP- and qSV-wave cannot be resolved

into independent compressional and shear waves (Tang and Cheng, 2004). Indeed, they have

to be combined to solve both partial di�erential given in equations 2.61a and 2.61b. The

solutions are given in terms of the potentials Φ and Ψ̌
qSV

by⎛⎝ Φ̌

Ψ̌
qSV

⎞⎠ (r, θ, z, s) =

⎛⎝ 1 α2

α1 1

⎞⎠⎛⎝ T qPKm(rsβ
qP
r )

T qSVKm(rsβ
qSV
r )

⎞⎠ exp (imθ) exp (isβzz) , (2.72a)

with

α1 = −A1,1(β
qP
r )

A1,2(β
qP
r )

, α2 = −A1,2(β
qSV
r )

A1,1(β
qSV
r )

. (2.72b)

The two coe�cients α1 and α2 result from �nding the eigenvectors for the eigenvalues βqPr

and βqSVr . The solution for the potential Φ shows that anisotropy induces coupling of trans-

verse particle motion to the qP-wave, and the magnitude of the coupling is controlled by

the coe�cient α2. Analogously, the solution for the potential Ψ̌
qSV

indicates the coupling of

longitudinal particle motion to the qSV-wave, and the magnitude of the coupling is de�ned by

the coe�cient α1. If the formation is isotropic instead of anisotropic, the coe�cients vanish,

and the isotropic solutions are obtained. In both cases, the transmission coe�cients (T qP,

T qSV) have to be determined by applying appropriate boundary conditions.

The boundary conditions result from the connection of the above-described solution for the

wave�eld in unbounded VTI media with the solution in the borehole �uid at the borehole



44 2. Theory

wall. Since the derivation of solutions for the total acoustic wave�eld in the borehole �uid is

extensively presented in literature, e.g., Ellefsen et al. (1990), Geerits and Kranz (2017), Hsu

and Sinha (1998), and Tang and Cheng (2004), it is omitted in this work. At the borehole

interface between the �uid and the formation (r = RH), the boundary conditions are de�ned

by the continuity of the radial particle velocity (v̌r) and the radial stress component (τ̌ r,r).

Moreover, the components τ̌ r,z and τ̌ r,θ must vanish since the borehole �uid cannot support

shear stresses. Hence, the resulting equations are de�ned as (e.g., Tang and Cheng, 2004)

v̌r = v̌fr, r = RH, (2.73a)

τ̌ r,r = τ̌ fr,r, r = RH, (2.73b)

τ̌ r,z = 0, r = RH, (2.73c)

τ̌ r,θ = 0, r = RH. (2.73d)

The solution for the particle velocity vector (v̌) in the formation is obtained by substituting

the solutions for the potentials (Eq. 2.65 and 2.72a) into equation 2.59. Moreover, the stress

tensor components (τ̌ ) can be calculated by substituting the solutions for the particle velocity

vector into equation 2.54. The substitution of both the radial particle velocity component and

the respective stress tensor components into the above-de�ned boundary conditions yields a

matrix equation for the unknown transmission coe�cients (Tang and Cheng, 2004)⎛⎜⎜⎜⎜⎜⎜⎝
D1,1 D1,2 D1,3 D1,4

D2,1 D2,2 D2,3 D2,4

D3,1 D3,2 D3,3 D3,4

D4,1 D4,2 D4,3 D4,4

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
Rf

T qP

T SH

T qSV

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
v̌fr

τ̌ fr,r

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.74)

Additionally, the re�ection coe�cient Rf is included, de�ning the amplitude of the acoustic

wave�eld in the borehole �uid, which is re�ected from the borehole wall. The right-hand side

of the equation is de�ned by the radial particle velocity v̌fr and the radial normal stress tensor

component τ̌ fr,r in the borehole �uid. The latter is identical to the acoustic pressure p̌ in

the �uid. The explicit components of the matrix D and the right-hand side can be found in

Ellefsen (1990) and Tang and Cheng (2004), using a slightly di�erent notation. From the roots

of the boundary condition matrix D, dispersion curves can be obtained. For this reason, the

radial phase slowness values βr are sought at a given frequency s, for which the determinant

vanishes

det (D(βr, s)) = 0. (2.75)

The possibly complex roots of the determinant are calculated numerically, e.g., using Muller 's

method (Muller, 1956). Once a root is found, it can be tracked to various frequencies to obtain

the dispersion curves. While the boundary condition matrix de�ned in Eq. 2.74 considers

a �uid-�lled borehole surrounded by a VTI formation in the absence of a logging tool, the
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con�guration can be extended by several layers to model the LWD tool. This would result in a

larger linear equation system, including re�ection and transmission coe�cients corresponding

to the interface between the tool and the �uid (e.g., Geerits and Kranz, 2017).

2.4.2. General case: triclinic symmetry

For anisotropic formations exhibiting symmetries lower than VTI, the corresponding sti�ness

tensor depends on the azimuth θ, making the Christo�el equation challenging to solve. In the

case of the most general triclinic symmetry, all twenty-one components of the sti�ness tensor

are non-zero. Their dependency on the azimuth in cylindrical coordinates is explicitly given in

Appendix B.2. When applying partial di�erentiation with respect to the azimuth according to

equation 2.55, the azimuthal derivatives of the sti�ness tensor elements are needed to perform

the product rule. The resulting Christo�el equation is given in Appendix C.2 and contains

cosine and sine functions of the azimuth up to the power of four, as well as various products of

them. When applying the azimuthal Fourier transform, each cosine and sine term has to be

transformed separately and convolved with the azimuthal Fourier transform of the particle

velocity vector according to Appendix A.3. The spatial vertical Fourier transform (App. A.2)

can be applied in the same way as for the VTI case. The resulting Christo�el equation in the

(r,m, βz, s)�domain is de�ned by

Λ̃(r,m, βz, s) = 0, (2.76)

where the elements of the matrix Λ are given in Appendix C.2 (Eq. C.21b�C.21j). The az-

imuthal Fourier transforms of the cosine and the sine terms introduce coupling between several

mode numbers in the range from m − 4 to m + 4. The induced mode contaminants depend

on the symmetry of the anisotropic formation. If the formation exhibits orthotropic or HTI

symmetry, the terms corresponding to the azimuthal wavenumbers m± 1 and m± 3 vanish,

and only the terms corresponding to even increments of m remain. Furthermore, in the case

of VTI symmetry or isotropy, only the terms corresponding to the azimuthal wavenumber m

are non-zero since all other terms vanish. This is because the sti�ness tensor is azimuthally

invariant for VTI or isotropic media, and no cosine and sine terms are azimuthally Fourier

transformed, and no mode contaminants are induced.

Equation 2.76 represents an ordinary di�erential equation in the radial coordinate r. In the

isotropic or VTI case, Bessel 's di�erential equation can be deduced for which solutions are

de�ned by the (modi�ed) Bessel function (Gradshteyn and Ryzhik, 2007). In contrast, it is

impossible to deduce Bessel 's di�erential equation if the medium exhibits symmetries lower

than VTI. In the latter case, the system of di�erential equations (Eq. 2.76 and C.21b�C.21j)

appears daunting and impossible to decouple. One solution strategy might be transforming

the radial coordinate to the radial slowness number βr to obtain an algebraic equation. For

this reason, the Meijer transform (Meijer, 1941) de�ned in Appendix A.4 seemed to be an

appropriate integral transform. However, a solution for the di�erential equation was not

successfully found in the scope of this thesis.
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3. Finite-di�erence modeling of wave

propagation in anisotropic media

Alternatively to an analytical solution, the anisotropic wave equation can also be solved

numerically by the �nite-di�erence (FD) method. This method is a purely numerical method

to obtain full wave�eld solutions in complex geometries. For simulating the wave propagation

in cylindrical boreholes surrounded by anisotropic media, a three-dimensional, time-domain

�nite-di�erence code in Cartesian coordinates is used. The code is written in the programming

language C and was originally developed by Olaf Hellwig and Daniel Köhn (Köhn et al., 2015).

In the scope of this thesis, the code is modi�ed to work correctly for triclinic anisotropic media.

Therefore, the implemented spatial FD grid is exchanged, and in consequence of the new

grid, the source initialization is modi�ed, and communication between processors is extended

for parallelization. This chapter shortly describes the basic concepts of the �nite-di�erence

method and explains the new spatial grid in more detail.

3.1. Finite-di�erence method

The computational domain is covered by a discrete space-time grid in the FD method. A

three-dimensional regular spatial grid is de�ned by the set of positions

xi = x0 + i∆x, yj = y0 + j∆y, zk = z0 + k∆z. (3.1)

The spatial increments are referred to as grid spacing. Analogously, the time grid is de�ned

by

tl = t0 + l∆t, (3.2)

with ∆t denoting the time step. The functions describing the wave�eld, the density, and the

sti�ness of the medium are represented by their values at the discrete grid positions

f i,j,kl = f(xi, yj , zk, tl). (3.3)

The problem of wave motion in anisotropic media can be expressed by various formulations.

One of those is the commonly used velocity-stress formulation, which is given in chapter 2.

The governing equations can be derived from equations 2.19, 2.21a, and 2.22 in the form

ρs∂tvp = ∂qτp,q, (3.4a)
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∂tτp,q = Cp,q,i,j∂tϵi,j , (3.4b)

∂tϵi,j =
1

2
(∂ivj + ∂jvi) . (3.4c)

The wave�eld is expressed by the stress tensor τ and the particle velocity vector v.

Finite-di�erence methods approximate partial di�erential equations with algebraic �nite-

di�erence equations by replacing the partial derivatives with FD formulas. Besides the

forward-di�erence and backward-di�erence formula, the central-di�erence formula derived

from the Taylor series expansion is most common (e.g., Moczo et al., 2004)

∂uf(u) ≈ DuF (u) =
F (u+ ∆u

2 )− F (u− ∆u
2 )

∆u
. (3.5)

The parameter u can be replaced by any spatial coordinate x, y, z, or the time coordinate

t. While the forward- and backward-di�erence formulas are �rst-order approximations, the

central-di�erence formula is a second-order approximation (Moczo et al., 2004), where the or-

der of accuracy is de�ned by the truncation error of the Taylor series expansion. Furthermore,

it is possible to de�ne non-uniform spatial grids with variable spacing. The FD operator for

such grids can also be derived by Taylor series expansion and is de�ned by

∂uf(u) ≈ DuF (u) =
F (u+ α∆u)− F (u+ (α− 1)∆u)

∆u
, (3.6)

which is only �rst-order accurate (Hellwig, 2017). The parameter α (0 < α < 1) de�nes the

ratio of the grid spacing of the two involved neighboring grids. If both grid spacings are equal,

the parameter is α = 0.5, and equation 3.6 reduces to equation 3.5.

The temporal grid is chosen to be uniform, which means that the time step∆t is constant. The

central-di�erence formula for uniform grids (Eq. 3.5) can be rewritten to obtain an explicit

time integration scheme

F

(︃
t+

∆t

2

)︃
= ∆t [DtF (t)] + F

(︃
t− ∆t

2

)︃
. (3.7)

The time-stepping can be implemented as an explicit leapfrog time integration, i.e., the par-

ticle velocity and the stress tensor are updated at discrete times shifted by half a time step

against each other (Hellwig, 2017).

3.2. Spatial �nite-di�erence grids

3.2.1. Standard staggered grid

Analogously to the temporal FD grid, it is advantageous to de�ne the particle velocity com-

ponents and the stress tensor components not at the same spatial position but shifted by half

a grid spacing. For this reason, various spatial FD grids were developed in the past. The most
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commonly used grid for isotropic media is the standard staggered grid (SSG) introduced by

Virieux (1984, 1986), as displayed in �gure 3.1a. The normal components of the stress tensor

(a) Standard staggered grid (SSG) (b) Lebedev grid

Fig. 3.1: Spatial �nite-di�erence grids.

(τx,x, τy,y, τz,z) are stored together in the center of the grid cell, whereas each shear component

of the stress tensor (τy,z, τx,z, τx,y) has its position at the edges of the cell. Similarly, each

component of the particle velocity vector (vx, vy, vz) is positioned on the faces of the cell. The

locations of all components are given by

τ i,j,ku,u = τu,u

(︂
xi+

1
2 , yj+

1
2 , zk+

1
2

)︂
, u ∈ {x, y, z}, (3.8a)

τ i,j,ky,z = τy,z

(︂
xi+

1
2 , yj , zk

)︂
, (3.8b)

τ i,j,kx,z = τx,z

(︂
xi, yj+

1
2 , zk

)︂
, (3.8c)

τ i,j,kx,y = τx,y

(︂
xi, yj , zk+

1
2

)︂
, (3.8d)

vi,j,kx = vx

(︂
xi, yj+

1
2 , zk+

1
2

)︂
, (3.8e)

vi,j,ky = vy

(︂
xi+

1
2 , yj , zk+

1
2

)︂
, (3.8f)

vi,j,kz = vz

(︂
xi+

1
2 , yj+

1
2 , zk

)︂
, (3.8g)

where i, j, and k in the left-hand sides of the equations are the indices of the cell. In con-

trast, the indices in the right-hand sides correspond to the actual positions. The advantage of

the above-de�ned positioning is that all derivatives, approximated with the central-di�erence

operator (Eq. 3.6), are calculated at the position where they are needed for further compu-

tations. For example, the update of the particle velocity component vx depends only on the

spatial derivatives of the stress tensor components τx,x, τx,y, and τx,z (Eq. 3.4a)

ρs∂tvx = ∂xτx,x + ∂yτx,y + ∂zτx,z. (3.9a)
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The FD method approximates these spatial derivatives by

∂xτx,x ≈ 1

∆x

(︂
τ i,j,kx,x − τ i−1,j,k

x,x

)︂
, (3.9b)

∂yτx,y ≈
1

∆y

(︂
τ i,j+1,k
x,y − τ i,j,kx,y

)︂
, (3.9c)

∂zτx,z ≈
1

∆z

(︂
τ i,j,k+1
x,z − τ i,j,kx,z

)︂
, (3.9d)

and a comparison with equation 3.8 or �gure 3.1a shows that all derivatives are computed

at the location (xi, yj+ 1
2
, zk+ 1

2
) where the particle velocity component vx is stored. Similarly,

the stress tensor shear component τx,z can be updated in isotropic media (Eq. 2.16) by

∂tτx,z = 2µ∂tϵx,z = µ (∂xvz + ∂zvx) . (3.10)

The equation involves only two spatial partial derivatives of the particle velocity components

approximated by the FD operators

∂xvz ≈
1

∆x

(︂
vi,j,kz − vi−1,j,k

z

)︂
, (3.11a)

∂zvx ≈ 1

∆z

(︂
vi,j,kx − vi,j,k−1

x

)︂
. (3.11b)

The approximations of the derivatives are computed at the position (xi, yj+ 1
2
, zk) where the

shear stress component τx,z is stored. This works for all stress component updates in isotropic

media, and no interpolation is required. Besides, the SSG can also be used in anisotropic media

exhibiting orthotropic or higher symmetries. All these symmetries, including the isotropic

case, are characterized by twelve zero elements of the sti�ness tensor (Sec. 2.1)

C1,4 = C1,5 = C1,6 = C2,4 = C2,5 = C2,6

= C3,4 = C3,5 = C3,6 = C4,5 = C4,6 = C5,6 = 0. (3.12)

In contrast, these elements can become non-zero if the anisotropic medium exhibits monoclinic

or triclinic symmetry (Sec. 2.1). In the triclinic case, all elements of the sti�ness tensor are

non-zero and updating a stress component, e.g., τx,z, involves all strain components

∂tτx,z = C1,5ϵx,x + C2,5ϵy,y + C3,5ϵz,z + C4,5ϵy,z + C5,5ϵx,z + C5,6ϵx,y. (3.13)

Thus, all spatial derivatives of all three components of the particle velocity vector have to

be computed. The problem is that these derivatives are, in general, not computed at the

position of τx,z. Consequently, the standard staggered grid does no longer work. Igel et al.

(1995) showed that the grid could be repaired by interpolating the strain components to the

positions where they are needed for computation. However, these interpolations signi�cantly

increase the computational e�ort and will likely introduce a considerable numerical error

(Bansal and Sen, 2008).
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3.2.2. Lebedev grid

As an alternative, this thesis proposes more convenient spatial FD grids. One of those grids

is the rotated staggered grid originally introduced by Saenger et al. (2000) to circumvent

instability problems caused by high contrast discontinuities. Saenger and Bohlen (2004)

demonstrated that this rotated staggered grid could also be used to model wave propaga-

tion in general anisotropic media, but it is restricted to uniform grids. A second FD grid

appropriate for anisotropic media is the grid introduced by Lebedev (1964) to solve di�erent

types of partial di�erential equations. Indeed, the rotated staggered grid can be considered

as a modi�cation of the Lebedev grid (Lisitsa and Vishnevskiy, 2010). Lisitsa (2007) demon-

strated that both grids are equivalent in two dimensions, but in three dimensions, they are

fundamentally di�erent (Bernth and Chapman, 2011). In this thesis, only the Lebedev grid

is explained and applied because it is computationally more e�cient and can also be imple-

mented straightforwardly for non-uniform grids.

The Lebedev grid displayed in �gure 3.1b stores all components of the stress tensor in the

center and additionally at the edges of the cell. Similarly, all particle velocity components are

stored at the faces and one corner of the cell

τ i+
1
2
,j+ 1

2
,k+ 1

2 = τ(xi+
1
2 , yj+

1
2 , zk+

1
2 ), (3.14a)

τ i+
1
2
,j,k = τ(xi+

1
2 , yj , zk), (3.14b)

τ i,j+
1
2
,k = τ(xi, yj+

1
2 , zk), (3.14c)

τ i,j,k+
1
2 = τ(xi, yj , zk+

1
2 ), (3.14d)

vi,j,k = v(xi, yj , zk), (3.14e)

vi,j+
1
2
,k+ 1

2 = v(xi, yj+
1
2 , zk+

1
2 ), (3.14f)

vi+
1
2
,j,k+ 1

2 = v(xi+
1
2 , yj , zk+

1
2 ), (3.14g)

vi+
1
2
,j+ 1

2
,k = v(xi+

1
2 , yj+

1
2 , zk). (3.14h)

The Lebedev scheme can also be considered as four overlapping standard staggered grids

shifted against each other by half a face diagonal. Since the SSG stores nine quantities

(six components of the stress tensor and three components of the particle velocity vector),

the Lebedev grid stores thirty-six quantities. The advantage of the grid is that all spatial

derivatives for the particle velocity can be calculated at all positions of the stress tensor

components and vice versa. Consequently, the interpolation of quantities is not required,

reducing the numerical error. The solutions for the stress tensor and particle velocity vector

can be output at the center of the Lebedev grid cell (i + 1
2 , j +

1
2 , k + 1

2), including all four

staggered grids. The quantities stored in each SSG are interpolated to the cell center of

the Lebedev grid �rst. Subsequently, the arithmetic average of all four interpolated values is

computed. The combination of both steps yields the weights displayed in �gure 3.2 and which
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(a) Output of stress tensor components (b) Output of particle velocity components

Fig. 3.2: The stress tensor and particle velocity components can be output at the cell center by averaging the
stress tensor (a) and particle velocity (b) components stored in all four SSGs. Each SSG is illustrated by a
di�erent color.

are applied in the following equations

τ̄ i+
1
2
,j+ 1

2
,k+ 1

2 =
1

4

[︃
τ i+

1
2
,j+ 1

2
,k+ 1

2 +
τ i+

1
2
,j,k + τ i+

1
2
,j+1,k + τ i+

1
2
,j,k+1 + τ i+

1
2
,j+1,k+1

4

+
τ i,j+

1
2
,k + τ i+1,j+ 1

2
,k + τ i,j+

1
2
,k+1 + τ i+1,j+ 1

2
,k+1

4

+
τ i,j,k+

1
2 + τ i+1,j,k+ 1

2 + τ i,j+1,k+ 1
2 + τ i+1,j+1,k+ 1

2

4

]︃
, (3.15a)

v̄i+
1
2
,j+ 1

2
,k+ 1

2 =
1

4

[︃
vi,j+

1
2
,k+ 1

2 + vi+1,j+ 1
2
,k+ 1

2

2
+
vi+

1
2
,j,k+ 1

2 + vi+
1
2
,j+1,k+ 1

2

2

+
vi+

1
2
,j+ 1

2
,k + vi+

1
2
,j+ 1

2
,k+1

2

+
1

8

(︂
vi,j,k + vi+1,j,k + vi,j+1,k + vi+1,j+1,k

+vi,j,k+1 + vi+1,j,k+1 + vi,j+1,k+1 + vi+1,j+1,k+1
)︂]︃
. (3.15b)

For isotropic or anisotropic media with orthotropic or higher symmetries, the four SSGs

constituting the Lebedev grid decouple. Hence, the particle velocity vector and stress tensor

components are updated on each grid independently with no interaction between the four

grids. Therefore, it is recommended to use the SSG in media with orthotropic or higher

symmetries to reduce the computational e�ort.
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3.3. Heterogeneous media

In both grids, the density and sti�ness tensor elements of the medium are stored in the cell

center. However, for updating the particle velocity or the stress tensor (Eq. 3.4a and 3.4b),

the formation parameters are required at their positions. For homogeneous media, this is no

problem because they are constant at all positions of the grid. In contrast, the parameters

need special treatment for heterogeneous media in order to ful�ll the continuity conditions.

If a medium possesses a discontinuity, e.g., an interface between two layers with di�erent

parameters, the conditions have to be ful�lled at the interface between two neighboring cells.

This is achieved by appropriate averaging of the material parameters. Moczo et al. (2002)

have shown that arithmetic averaging of the density and harmonic averaging of the sti�ness

tensor elements are adequate. The averaging of the material parameters is performed at more

positions for the Lebedev grid than for the SSG resulting in a higher computational e�ort.

3.4. Finite-di�erence properties and grid dispersion

The �nite-di�erence equations and their solutions exhibit di�erent properties. FD equations

are consistent with the partial di�erential equation if the di�erence between both (the trun-

cation error of the Taylor series expansion) vanishes as the size of the time step and the

grid spacing go to zero (Moczo et al., 2004). An FD equation is stable if it yields bounded

solutions if the exact solution is bounded, and it is unstable if the computed solution becomes

unbounded. Stability depends on the chosen length of the time step and the grid spacing.

Lisitsa and Vishnevskiy (2010) have derived a stability criterion for the Lebedev grid

∆t ·max
(︁
vqP
)︁
·

√︄
1

(min(∆x))2
+

1

(min(∆y))2
+

1

(min(∆x))2
≤ 1, (3.16)

where vqP denotes the qP-wave phase velocity. Convergence de�nes that the solution of the

FD equation approaches the exact solution of the partial di�erential equation as the time step

and the spatial grid spacings go to zero (Moczo et al., 2004). Convergence is complicated to

prove, but it is related to consistency and stability. Thus, the Lax equivalence theorem can

be used, expressing that an FD equation that is consistent and stable is also convergent (Lax

and Richtmyer, 1956).

Besides, grid dispersion has to be considered. Since the �nite-di�erence solution is discrete,

only a limited number of wavenumbers can be represented, and hence, the phase velocity on

the FD grid di�ers from the true velocities in the continuous medium (Moczo et al., 2007).

This phenomenon is referred to as grid dispersion and must be taken into account for planning

numerical simulations since it has a cumulative e�ect on the wave propagation. The relative

error between the grid velocity and true velocity depends on the Courant number and the

spatial sampling ratio (Hellwig, 2017). Since both parameters are controlled by the grid

spacing, it is necessary to choose appropriate spatial grid spacings to keep the grid dispersion

at a prescribed level. For this reason, the minimum wavelength λmin must be resolved with at
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least ten grid points for head waves. Moreover, Bohlen and Saenger (2006) have demonstrated

that 15 to 30 grid points per minimum wavelength are required to accurately compute Rayleigh

waves at a planar free surface aligned with the grid. Therefore, it is recommended to use a

similar requirement for the �nite-di�erence modeling of borehole-guided waves (Hellwig, 2017).

Moczo et al. (2004) have presented the spatial sampling criterion for head waves

max (∆x,∆y,∆z) <
λmin
10

=
min(v)

10facc
. (3.17)

If this criterion is ful�lled, the �nite-di�erence computation is accurate up to the frequency

facc. The criterion was obtained for the SSG and for the FD scheme, which is second-order

accurate in space (Moczo et al., 2004). Since the Lebedev grid can be considered as four

standard staggered grids, the grid spacing is equivalent, and the dispersion properties of both

the standard staggered grid and the Lebedev grid coincide (Lisitsa and Vishnevskiy, 2010).

3.5. Initial conditions

The French mathematician Hadamard proposed that a model of a physical problem is well-

posed if a solution exists, the solution is unique, and its behavior changes continuously with

the initial conditions. The existence of solutions of the velocity-stress formulation (Eq. 3.4a�

3.4c) is shown in chapter 2. However, to �nd a unique solution, additional initial and boundary

conditions are required. An appropriate initial condition is that all particle velocity and stress

tensor components are zero before an instant t0, at which a source is applied. In the simplest

case, a volumetric point source is applied by increment the right-hand side of equation 3.4b.

For the SSG, the temporal derivative of the increment is added to the normal components

τ i,j,kx,x , τ i,j,ky,y and τ i,j,kz,z of the stress tensor to apply a source that acts at the grid cell i, j, k.

The midpoint of the volumetric source coincides with the midpoint of this grid cell.

In contrast, this is not as simple for the Lebedev scheme. Since it consists of four standard

staggered grids, the source must be applied to all four grids. Therefore, two di�erent methods

can be used. The most straightforward way is to apply the point source to the normal

components of the stress tensor at all four locations with the weight one (Fig. 3.3a). The

disadvantage of this method is that the source midpoint is not located in the cell center but

at (xi+ 1
4
, yj+ 1

4
, zk+ 1

4
). A more elegant solution is to apply the source with the weight one to

the SSG that stores the normal components of the stress tensor closest to the de�ned source

location (Fig. 3.3b). Additionally, the source is applied to the four neighboring locations of

each remaining SSG with the weight 1/4 (Lisitsa and Vishnevskiy, 2010). As a result, the

total source weight of each SSG is one, and the applied source origin is aligned with the grids

and not shifted to them.
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(a) Eccentered source (b) Centered source

Fig. 3.3: Application of a volumetric point source to the Lebedev grid. The source has to be applied to each
SSG displayed in di�erent colors. In the left �gure (a), the source is applied to all four SSGs with equal
weights, whereas in the right �gure (b), the source is applied to the black SSG with the weight one and to
four locations of the remaining three SSGs with the weight 1/4.

3.6. Boundary conditions

Additional to the wave equation and initial conditions, boundary conditions are required

to de�ne a unique solution of the partial di�erential equation. The spatial computational

domain is limited to a �nite grid resulting in a cuboid having six boundaries. Di�erent types

of boundary conditions can be set at each boundary face, such as a free surface to implement

boundary conditions of the Dirichlet type or periodic boundary conditions. Other types are

non-re�ecting or absorbing boundary conditions for simulations in unbounded domains. By

applying such boundary conditions, practical no wave�eld energy is transmitted or re�ected

back from the boundary. Non-re�ecting boundary conditions are commonly implemented

using complex-frequency shifted perfectly matched layers introduced by Berenger (1994) for

electromagnetic waves and applied to seismic modeling by Chew and Liu (1996) and Hastings

et al. (1996).

3.7. Parallelization

The �nite-di�erence code is parallelized to simulate the wave propagation on large grids within

a reasonable run time. The parallelization is based on a decomposition of the spatial grid

into sub-grids of equal size (Bohlen, 2002). The wave�eld update is then performed on each

sub-grid by a single processing element. On the boundary of each sub-grid, components of the

stress tensor and the particle velocity from the neighboring sub-grid are needed. Therefore,

communication between processing elements belonging to neighbored sub-grids is required,

which is realized using the message passing interface (MPI) (Message Passing Interface Forum,

2012). The MPI is a public library available in the programming languages C and Fortran

and provides various functions for communication. In the FD code used for this thesis, non-

blocking communication functions are used to speed up the exchange of variables (Hellwig,

2017).



56 3. Finite-di�erence modeling of wave propagation in anisotropic media

3.8. Finite-di�erence parameters

This section gives an overview of the parameters used to model the wave�eld in a circular

borehole surrounded by various anisotropic formations. The LWD tool is modeled by a cylin-

drical steel pipe with a �uid core centered in the borehole. Since the FD code is implemented

in Cartesian coordinates, the cross-section of the circular borehole has to be discretized with

a �ne grid spacing of ∆x = ∆y = 1mm. Using a non-uniform grid, the formation outside the

borehole is discretized with larger grid spacing to reduce the total number of grid cells and

the computational e�ort (Fig. 3.4). The maximum size of the grid spacing is limited through

the grid dispersion (Sec. 3.4) depending on the required maximum accurate frequency, as well

as the acoustic parameters of the surrounding formation, the borehole �uid, and the logging

tool. In this thesis, three di�erent anisotropic formations are considered. The Austin Chalk

formation is an example of a slow TI formation, whereas the Bakken Shale and Cotton Valley

Shale formations represent fast TI formations. Their densities and sti�ness tensor elements

can be found in table 3.1 based on Sinha et al. (1994, 2006). The borehole �uid parame-

ters are given in table 3.2, and the parameters of the LWD tool modeled by a steel pipe are

de�ned in table 3.3. The source signal is a Ricker wavelet (Ricker, 1943) characterized by

its center frequency fc. In theory, the bandwidth of the wavelet is unlimited but frequencies

higher than three times the center frequency are insigni�cant. Thus, it is adequate to set the

maximum accurate frequency to facc = 3fc. Using the spatial sampling criterion (Eq. 3.17),

the maximum grid size can be calculated based on the three di�erent formations and the

center frequency of the source signal (Tab. 3.4). The minimum velocity is the slow shear wave

velocity for the Austin Chalk formation. Since the shear wave velocities of the Bakken Shale

and Cotton Valley Shale formations are higher than the compressional velocity of the borehole

�uid, the grid spacing depends only on the borehole compressional velocity and the source

frequency in fast formations. Since the cross-section of the borehole and steel pipe have to

Fig. 3.4: Schematic view of the discretized cross-section of a circular borehole, including a steel pipe using a
non-uniform grid in Cartesian coordinates.
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Tab. 3.1: Overview of the volumetric mass density, the sti�ness tensor elements, the corresponding verti-
cal/horizontal compressional and shear wave velocities, and the Thomsen parameters (Thomsen, 1986) of the
slow Austin Chalk, fast Bakken Shale, and fast Cotton Valley Shale VTI formations.

Formation Austin Chalk Bakken Shale Cotton Valley Shale

ρs
[︁
kgm−3

]︁
2200 2230 2640

C ′′
1,1 [GPa] 22.00 40.90 74.73

C ′′
1,3 [GPa] 12.00 8.50 25.29

C ′′
3,3 [GPa] 14.00 26.90 58.84

C ′′
4,4 [GPa] 2.40 10.50 22.05

C ′′
6,6 [GPa] 3.10 15.30 29.99

vPhor
[︁
ms−1

]︁
3162.3 4282.6 5320.4(︁

βPhor
)︁ (︁[︁

µs ft−1
]︁)︁

(96.4) (71.2) (57.3)

vPver
[︁
ms−1

]︁
2522.6 3473.2 4721.0(︁

βPver
)︁ (︁[︁

µs ft−1
]︁)︁

(120.8) (87.8) (64.6)

vSHhor
[︁
ms−1

]︁
1187.1 2619.3 3370.4(︁

βSHhor
)︁ (︁[︁

µs ft−1
]︁)︁

(256.8) (116.4) (90.4)

vSHver
[︁
ms−1

]︁
1044.5 2169.9 2890.0(︁

βSHver
)︁ (︁[︁

µs ft−1
]︁)︁

(291.8) (140.5) (105.5)

ϵ 0.286 0.260 0.135

γ 0.146 0.229 0.180

δ 0.224 0.104 0.205

Tab. 3.2: Acoustic parameters of the borehole
�uid (water) and the borehole radius.

Borehole Fluid

ρf
[︁
kgm−3

]︁
1000

vf
[︁
ms−1

]︁
1500(︁

βf
)︁ (︁[︁

µs ft−1
]︁)︁

(203.2)

borehole
radius RH

[m] 0.107

Tab. 3.3: Acoustic parameters and radii of the
LWD tool (steel pipe).

Logging tool

ρT
[︁
kgm−3

]︁
7850

vPT
[︁
ms−1

]︁
5860(︁

βPT
)︁ (︁[︁

µs ft−1
]︁)︁

(52.0)

vST
[︁
ms−1

]︁
3130(︁

βST
)︁ (︁[︁

µs ft−1
]︁)︁

(97.4)

inner tool
radius RID

T

[m] 0.025

outer tool
radius ROD

T

[m] 0.092
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Tab. 3.4: Maximum grid spacings in dependence with the formation and the center frequency fc of the source
signal. The last column displays the maximum time step dependent on the grid spacing ∆z.

Formation fc [kHz] ∆x = ∆y [mm] ∆z [mm] ∆tmax [ns]

2 15.0 10.160 120

Austin Chalk 4 8.0 8.128 120

8 4.0 4.064 118

Bakken Shale/ 2 25.0 20.320 120

Cotton Valley Shale 4 10.0 10.160 120

8 5.0 5.080 119

be discretized with much �ner grid spacing to model the curvature more precisely, the grid

spacing values obtained in table 3.4 are only useful in the vertical and horizontal directions

outside the borehole in the formation. The maximum time step ∆tmax in the last column of

table 3.4 is computed using the stability criterion de�ned in equation 3.16. Independent of

the formation type, the steel pipe possesses the maximum compressional wave velocity in the

con�guration, and the horizontal minimal grid spacings are ∆x = ∆y = 1mm. Hence, the

maximum time step depends only on the vertical grid spacing ∆z, which has no signi�cant

in�uence. The grid dimensions are 2m × 2m × 10m resulting in a total number of 190 mil-

lion grid cells. The simulated time of the modeling is 10ms yielding 100 000 time steps for

∆t = 100 ns.
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4. Wave propagation in �uid-�lled

boreholes surrounded by TI media

This chapter investigates the wave propagation in a �uid-�lled borehole surrounded by an

anisotropic formation exhibiting TI symmetry via time-domain FD modeling (Ch. 3). In

the �rst section, the VTI case is considered, where the TI symmetry axis of the formation

coincides with the vertical borehole axis. The second exceptional case is the HTI symmetry

characterized by a TI symmetry axis that is perpendicular to the borehole axis. Finally,

the most general TTI case is discussed, where the TI symmetry axis is arbitrarily inclined

to the borehole axis. The head waves and borehole-guided waves with various azimuthal

wavenumbers (e.g., Stoneley, �exural, quadrupole) are studied in all cases in the absence and

the presence of an LWD tool. For this reason, synthetic time-domain waveform arrays are

computed and processed to obtain the phase slowness dispersion curves of the borehole waves

(App. D). Additionally, the sensitivities of the phase slowness dispersion curves to particular

sti�ness tensor elements are investigated in detail. The last section of this chapter deals with

anisotropy-induced mode contaminants.

4.1. Vertical transverse isotropy (VTI)

The most straightforward anisotropic borehole con�guration consists of a �uid-�lled borehole

surrounded by a VTI formation, where the symmetry axis (x′′3�axis) is parallel to the borehole

axis (x3�axis), as illustrated in �gure 4.1. The wave velocities are azimuthally invariant since

the plane transverse to the borehole is the isotropic plane of the TI formation indicated by

Fig. 4.1: Illustration of the VTI symmetry in the crystallographic reference frame (red) and the tool reference
frame (black). The isotropic plane is indicated by the gray lines.
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the gray lines in �gure 4.1. Hence, the tool and borehole reference frames coincide with the

crystallographic reference frame (Sec. 2.2) and Ci,j ≡ C ′′
i,j . According to equation 2.12, a VTI

formation can be fully described by the �ve sti�ness tensor elements C1,1, C1,3, C3,3, C4,4,

and C6,6 plus the density ρs. As explained in section 2.1.4, the phase velocities of vertically

and horizontally propagating P- and SH-waves are de�ned as⎛⎜⎜⎜⎜⎜⎜⎝

(︁
vPhor

)︁2(︁
vPver
)︁2(︁

vSHhor
)︁2(︁

vSHver
)︁2

⎞⎟⎟⎟⎟⎟⎟⎠ =
1

ρs

⎛⎜⎜⎜⎜⎜⎜⎝
C1,1

C3,3

C6,6

C4,4

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.1)

The shear wave velocity of a vertically and horizontally propagating SV-wave is in both cases

determined by the sti�ness tensor element C4,4.

The following sections investigate the wave propagation in a �uid-�lled borehole surrounded

by slow and fast VTI formations in the absence and presence of an LWD tool. First, the

omnidirectional monopole excitation is considered exciting refracted head waves and the

borehole-guided Stoneley wave. The latter is sensitive to the horizontal SH-wave velocity

at low frequencies. In contrast, the �exural and quadrupole waves excited by a dipole and

quadrupole source, respectively, are sensitive to the vertical shear wave velocities.

4.1.1. Monopole excitation

The waveform array data excited by a monopole source in a �uid-�lled borehole surrounded

by the slow Austin Chalk VTI formation in the absence of a logging tool is displayed in �g-

ure 4.2a. Similar to the isotropic case (Sec. 1.2), the �rst arrival corresponds to the refracted

P-wave traveling vertically along the borehole wall. Its velocity coincides with the vertical

P-wave velocity (vPver) determined by the sti�ness tensor element C3,3. The second arrival

corresponds to the axisymmetric Stoneley wave showing a dispersive characteristic. Its phase

slowness dispersion curve is plotted in �gure 4.2c by the solid blue line. Additionally, the

dotted and dashed blue lines display the dispersion curves of the Stoneley wave, excited in

isotropic formations exhibiting a shear modulus of µ = C4,4 and µ = C6,6, respectively. All

phase slowness dispersion curves are extracted from the modeled time-domain waveform ar-

rays by a modi�ed matrix pencil method introduced by Ekstrom (1996) (App. D.2.2). The

dispersion curve of the Stoneley wave excited in the isotropic formation characterized by

µ = C6,6 coincides with the dispersion curve modeled in the VTI formation at low frequen-

cies. With increasing frequencies, the latter moves away from the dispersion curve in the

isotropic formation (µ = C6,6) and comes closer to the dispersion curve modeled for the

isotropic formation de�ned by µ = C4,4. Consequently, at low frequencies, the slowness of

the Stoneley wave seems to be dominated by the sti�ness tensor element C6,6, whereas the

in�uence of C4,4 becomes more signi�cant at higher frequencies.
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(a) Waveform array (slow VTI) (b) Waveform array (fast VTI)

(c) Phase slowness dispersion (slow VTI) (d) Phase slowness dispersion (fast VTI)

(e) Stoneley wave sensitivity (slow VTI) (f) Stoneley wave sensitivity (fast VTI)

Fig. 4.2: Waveform array data excited by a monopole source (fc = 8kHz) in a �uid-�lled borehole surrounded
by the slow Austin Chalk (a) and fast Bakken Shale (b) VTI formations in the absence of a logging tool. The
amplitudes of the refracted P-, refracted shear, and Stoneley waves are di�erently ampli�ed for better visibility.
The solid lines in the second-row �gures (c�d) display the phase slowness dispersion curves of the Stoneley

wave compared to the isotropic counterparts illustrated by the dotted (µ = C4,4) and dashed (µ = C6,6) blue
lines, respectively. The dashed black line represents the tube wave slowness (βtube). The last-row �gures (e�f)
show the sensitivity of the Stoneley wave slowness to the P-wave velocity in the borehole �uid (vf) and the
sti�ness tensor elements C4,4 and C6,6 of the formation.

For further investigation, the sensitivity of the Stoneley wave phase slowness (βSt) to various

parameters is computed depending on the frequency s (e.g., Tang and Cheng, 2004)

sensitivity =
parameter

β(s)
· ∂β(s)

∂parameter
. (4.2)

Since the phase slowness of the Stoneley wave is computed numerically, the partial derivative

is replaced by an FD operator to perform numerical di�erentiation (Sec. 3.1). The sensitiv-

ities of the Stoneley wave phase slowness to the sti�ness tensor elements C4,4, C6,6, and the

compressional wave velocity of the borehole �uid (vf) are shown in �gure 4.2e. As assumed,

the sensitivity of the Stoneley wave slowness is high to the elastic constant C6,6 and zero to

C4,4 at low frequencies. With increasing frequencies, the Stoneley wave slowness becomes

less sensitive to C6,6 and more to C4,4. Moreover, the Stoneley wave is also sensitive to the
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compressional wave velocity of the �uid. Since the sum of all three sensitivities is less than

one, the Stoneley wave is indeed sensitive to other parameters (Tang and Cheng, 2004), which

are omitted in the �gure.

White and Tongtaow (1981) derived a formula to compute the slowness or velocity of the

Stoneley wave in the low-frequency limit referred to as tube wave velocity (vtube)

vtube = lim
s→0

vSt = vf

(︄
1 +

ρf
(︁
vf
)︁2

C6,6

)︄(− 1
2
)

. (4.3)

The equation shows that the Stoneley wave velocity (vSt) in the low-frequency limit depends

only on the parameters of the borehole �uid and the elastic constant C6,6 of the surrounding

VTI formation. Figure 4.2c illustrates the reciprocal of the tube wave velocity, i.e., the tube

wave slowness (βSt), by the dashed black line, which coincides with the low-frequency limit of

the Stoneley wave dispersion curve in the VTI formation. The dispersion curve of the Stone-

ley wave in the faster isotropic formation also coincides with the tube wave slowness since

the shear modulus is set to µ = C6,6. In contrast, the shear modulus of the slower isotropic

formation is µ = C4,4, yielding a higher tube wave slowness.

The right column of �gure 4.2 displays, in the same manner, the waveform array, the phase

slowness dispersion curves, and the sensitivity analysis of the Stoneley wave if the surround-

ing formation is the fast Bakken Shale VTI formation. The waveforms (Fig. 4.2b) contain

the refracted shear wave in addition to the refracted P- and Stoneley waves. The refracted

shear wave travels similar to the refracted P-wave, vertically along the borehole wall with

vertical shear wave velocity (vSHver = vSVver) controlled by the elastic modulus C4,4. Further-

more, �gure 4.2f shows that in fast formations, the Stoneley wave is strongly sensitive to the

compressional wave velocity of the borehole �uid and only weakly sensitive to the formation

parameters. Nevertheless, the sensitivity to the formation parameters is highest to the elastic

constant C6,6 and zero to the elastic constant C4,4 at low frequencies. Moreover, equation 4.3

is still valid to compute the tube wave velocity, as illustrated by the dashed black line in

�gure 4.2d.

Section 1.3 showed that the presence of an LWD tool strongly a�ects the slowness dispersion

characteristics of the Stoneley wave in an isotropic environment. Similar behavior can be

observed in a VTI environment. Norris (1990) has shown that the LWD tool can be modeled

by an e�ective modulusMT to compute the tube wave velocity. Tang (2003) has extended the

work from isotropic to VTI media. The resulting equations can be used to compute the phase

slowness dispersion curves of the Stoneley wave by the roots of the boundary condition matrix

given in Tang (2003). In the slow Austin Chalk formation, the phase slowness dispersion curve

of the Stoneley wave is descending instead of ascending (Fig. 4.3a), and the tube wave slowness

is strongly increased. Hence, equation 4.3 is not valid in the presence of a tool. Furthermore,

�gures 4.3c and 4.3d show that the presence of an LWD tool also changes the sensitivities.
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(a) Phase slowness dispersion (slow VTI) (b) Phase slowness dispersion (fast VTI)

(c) Stoneley wave sensitivity (slow VTI) (d) Stoneley wave sensitivity (fast VTI)

Fig. 4.3: Phase slowness dispersion curves and sensitivity analysis of the Stoneley waves excited by a monopole
source in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale (right) VTI
formations in the presence of an LWD tool. The solid lines in the �rst-row �gures (a�b) display the phase
slowness dispersion curves of the Stoneley wave compared to the isotropic counterparts illustrated by the
dotted (µ = C4,4) and dashed (µ = C6,6) lines, respectively. The second-row �gures (c�d) show the sensitivity
of the Stoneley wave slowness to the P-wave velocity in the borehole �uid (vf) and the sti�ness tensor elements
C4,4 and C6,6 of the formation.

The Stoneley wave is much less sensitive to the P-wave velocity in the borehole �uid since the

LWD occupies much space in the borehole remaining only a tiny �uid annulus. Nevertheless,

at low frequencies, the sensitivity to the sti�ness tensor element C6,6 is at a maximum, whereas

the sensitivity to the component C4,4 is zero. Consequently, it is still possible to obtain the

component C6,6 from the Stoneley wave slowness at low frequencies (Sec. 5.1).

4.1.2. Dipole excitation

Analogous to the monopole excitation, the phase slowness dispersion curve and the sensitiv-

ity analysis of the �exural wave excited by an alternate polarity dipole source (n = 1) in a

�uid-�lled borehole surrounded by a VTI formation are displayed in �gure 4.4 in the absence

of a logging tool. Since the parameters of a VTI formation are azimuthally invariant, the ex-

cited directional �exural wave does not depend on the source azimuth. In the low-frequency

limit, the �exural wave propagates with the vertical shear wave velocity (vSHver = vSVver ∝ C4,4)

of the formation for both the slow Austin Chalk and the fast Bakken Shale formation. The

sensitivity analysis con�rms that the �exural wave is mainly controlled by the sti�ness tensor

element C4,4 and only marginal by C6,6. Consequently, the �exural wave can only be used to

determine the elastic modulus C4,4 but not C6,6.

Similar to the isotropic case, the presence of an LWD tool strongly a�ects the formation

�exural wave and induces a tool �exural wave (Fig. 4.5). In the slow Austin Chalk formation,
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(a) Phase slowness dispersion (slow VTI) (b) Phase slowness dispersion (fast VTI)

(c) Flexural wave sensitivity (slow VTI) (d) Flexural wave sensitivity (fast VTI)

Fig. 4.4: Phase slowness dispersion curves and sensitivity analysis of the �exural waves excited by a dipole
source in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale (right) VTI
formations in the absence of an LWD tool. The solid lines in the �rst-row �gures (a�b) display the phase
slowness dispersion curves of the �exural wave compared to the isotropic counterparts illustrated by the dotted
(µ = C4,4) and dashed (µ = C6,6) blue lines, respectively. The black lines represent the vertical (βSH

ver) and
horizontal (βSH

hor) SH-wave slowness in the formation. The second-row �gures (c�d) show the sensitivity of the
�exural wave slowness to the P-wave velocity in the borehole �uid (vf) and the sti�ness tensor elements C4,4

and C6,6.

(a) Phase slowness dispersion (slow VTI) (b) Phase slowness dispersion (fast VTI)

(c) Tool �exural wave sensitivity (slow VTI) (d) Tool �exural wave sensitivity (fast VTI)

Fig. 4.5: Phase slowness dispersion curves and sensitivity analysis of the �exural waves excited by a dipole
source in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale (right) VTI
formations in the presence of an LWD tool. The �rst-row �gures (a�b) display the phase slowness dispersion
curves of the tool and formation �exural waves by the dashed and solid lines, respectively. The black lines
represent the vertical (βSH

ver) and horizontal (βSH
hor) SH-wave slowness in the formation. The second-row �gures

(c�d) show the sensitivity of the tool �exural wave slowness to the P-wave velocity in the borehole �uid (vf)
and the sti�ness tensor elements C4,4 and C6,6.
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only the tool �exural wave is excited, but no formation �exural wave (Fig. 4.5a). In contrast,

in the fast Bakken Shale formation, the formation �exural wave is still visible and mainly

sensitive to the component C4,4 at the cuto� frequency (Fig. 4.5b). Figures 4.5c and 4.5d

display the sensitivities of the tool �exural wave to formation shear parameters and the P-

wave velocity in the borehole �uid. The tool �exural wave possesses at medium and high

frequencies a signi�cant amount of sensitivity to the sti�ness tensor elements C4,4 and C6,6,

respectively. Consequently, the tool �exural wave potentially contains valuable information

to invert formation VTI parameters.

4.1.3. Quadrupole excitation

The quadrupole wave excited by an alternate polarity quadrupole source (n = 2) in a �uid-

�lled borehole surrounded by a VTI formation in the absence of a logging tool shows a similar

behavior as the �exural wave. The phase slowness dispersion curve of the quadrupole wave

attains the vertical shear wave velocity controlled by C4,4 at the cuto� frequency (Fig. 4.6a

and 4.6b). Similarly, the sensitivity analysis shows that the sensitivity to the sti�ness tensor

element C6,6 is close to zero, whereas the sensitivity of the quadrupole wave slowness to the

component C4,4 is at a maximum at low frequencies (Fig. 4.6c and 4.6d). The same results

are obtained if the �uid-�lled borehole contains an LWD tool (Fig. 4.7) since the quadrupole

tool mode only slightly a�ects the formation quadrupole mode. Therefore, LWD quadrupole

(a) Phase slowness dispersion (slow VTI) (b) Phase slowness dispersion (fast VTI)

(c) Quadrupole mode sensitivity (slow VTI) (d) Quadrupole mode sensitivity (fast VTI)

Fig. 4.6: Phase slowness dispersion curves and sensitivity analysis of the quadrupole modes excited by a
quadrupole source in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale
(right) VTI formations in the absence of an LWD tool. The solid lines in the �rst-row �gures (a�b) display the
phase slowness dispersion curves of the quadrupole modes compared to the isotropic counterparts illustrated
by the dotted (µ = C4,4) and dashed (µ = C6,6) blue lines, respectively. The black lines represent the
vertical (βSH

ver) and horizontal (βSH
hor) SH-wave slowness in the formation. The second-row �gures (c�d) show

the sensitivity of the quadrupole mode slowness to the P-wave velocity in the borehole �uid (vf) and the
sti�ness tensor elements C4,4 and C6,6.
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(a) Phase slowness dispersion (slow VTI) (b) Phase slowness dispersion (fast VTI)

(c) Quadrupole mode sensitivity (slow VTI) (d) Quadrupole mode sensitivity (fast VTI)

Fig. 4.7: Phase slowness dispersion curves and sensitivity analysis of the quadrupole modes excited by a
quadrupole source in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale
(right) VTI formations in the presence of an LWD tool. The �rst-row �gures (a�b) display the phase slowness
dispersion curves of the formation quadrupole waves by the dashed and solid lines, respectively. The black
lines represent the vertical (βS

ver) and horizontal (βS
hor) SH-wave slowness in the formation. The second-row

�gures (c�d) show the sensitivity of the formation quadrupole mode slowness to the P-wave velocity in the
borehole �uid (vf) and the sti�ness tensor elements C4,4 and C6,6.

measurements are more convenient to obtain the vertical shear wave velocity than LWD dipole

logging, especially in slow formations where the formation �exural wave may not be present.

4.1.4. Summary

Tab. 4.1 gives an overview of the sensitivity analysis of the refracted and borehole-guided

(e.g., Stoneley, �exural, quadrupole) waves to the sti�ness tensor elements characterizing a

VTI formation. The sensitivity analysis is helpful to determine which waves can be used to

obtain particular sti�ness tensor elements. The table treats both the absence and the presence

of an LWD tool as well as slow and fast VTI formations.

First, the con�guration without a logging tool is considered as it is valuable for WL mea-

surements since the slim WL tool has only little e�ect on the borehole waves. The refracted

P-wave is emitted, e.g., by a monopole source, and travels vertically along the borehole wall

at vertical P-wave velocity de�ned by the sti�ness tensor element C3,3. The vertical S-wave

velocity controlled by the sti�ness tensor element C4,4 can be obtained from the refracted

shear wave in fast formations or from the low-frequency limits of the �exural and quadrupole

waves in both formation types. The Stoneley wave is the only borehole wave sensitive to the

horizontal SH-wave velocity de�ned by the sti�ness tensor element C6,6 in the low-frequency

limit. At higher frequencies, the sensitivity to C4,4 becomes greater than to C6,6. While the

sensitivities to C6,6 and C4,4 are signi�cant in slow formations, they are weak in fast forma-
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Tab. 4.1: Overview of the phase slowness sensitivities of particular waves to sti�ness tensor elements charac-
terizing a VTI formation. The table considers the absence and presence of an LWD tool as well as fast and
slow formations. The bold variables denote a strong sensitivity to the respective sti�ness tensor elements,
whereas the parentheses indicate that the sensitivity is weak.

wave mode slow formation fast formations

refracted P C3,3 C3,3

no tool
Stoneley C6,6 (low freq.), C4,4(high freq.) (C6,6)

�exural C4,4 C4,4

quadrupole C4,4 C4,4

refracted P C3,3 C3,3

Stoneley C6,6 (low freq.),C4,4 (high freq.) C6,6

LWD tool formation �exural not present C4,4

tool �exural C4,4, C6,6 (C6,6)

formation quadrupole C4,4 C4,4

tions since the Stoneley wave is mainly sensitive to the compressional wave velocity in the

borehole �uid.

In the LWD con�guration, the refracted P-wave is sensitive to the sti�ness tensor element

C3,3, like in the absence of a tool. Moreover, the vertical shear wave velocity proportional

to C4,4 can be obtained from the low-frequency limit of the formation �exural wave in fast

formations. In slow formations, the formation �exural wave is not present, but the sti�ness

tensor element C4,4 can be obtained from a model-based inversion method of the tool �exural

wave, which also exhibits a considerable sensitivity to C6,6. In contrast, the tool �exural wave

is only weakly sensitive to formation parameters in fast formations since the sensitivity to the

P-wave velocity in the borehole �uid dominates. Alternatively, the sti�ness tensor element

C4,4 can be obtained from the low-frequency limit of the formation quadrupole wave in both

slow and fast formations.

While the sti�ness tensor elements C3,3, C4,4, and C6,6 can be determined by processing dif-

ferent refracted and borehole-guided waves, it is not possible to obtain the sti�ness tensor

elements C1,1 and C1,3 from borehole acoustic measurements in VTI formations. This is be-

cause the borehole acoustic con�guration can only measure P-waves propagating on a vertical

travel path but not in horizontal or other directions.
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4.2. Horizontal transverse isotropy (HTI)

The second exceptional case is the HTI symmetry characterized by a TI symmetry axis (x′′3�

axis) that is perpendicular to the borehole axis (x′3�axis), as visualized in �gure 4.8. Since the

compressional and shear wave velocities change with azimuth, the HTI symmetry is in some

literature referred to as azimuthal anisotropy (e.g., Sinha et al., 1994). The sti�ness tensor

elements can be transformed from the crystallographic reference frame (x′′) to the borehole

reference frame (x′) via a rotation around the x′′1�axis by π/2 radians (Sec. 2.2). In this way,

the TI symmetry axis (x′′3�axis) coincides with the x′2�axis. The sti�ness tensor given in the

borehole reference is de�ned by

C ′
i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′′
1,1 C ′′

1,3 C ′′
1,1 − 2C ′′

6,6 0 0 0

C ′′
3,3 C ′′

1,3 0 0 0

C ′′
1,1 0 0 0

C ′′
4,4 0 0

sym C ′′
6,6 0

C ′′
4,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.4)

where the single elements are expressed in the crystallographic reference frame. While the

wave velocity of a vertically propagating P-wave is controlled by the sti�ness tensor element

C ′′
1,1 (= C ′

3,3), the velocity of a horizontally propagating P-wave depends on the azimuth and

has to be computed by solving the Christo�el equation (Eq. 2.36) in general. Nevertheless,

for two principal directions, the wave velocities can be computed directly from particular

sti�ness tensor elements. One of those principal directions coincides with the TI symmetry

axis (parallel to the x′2�axis), and the wave velocity of a P-wave propagating in that direction

is controlled by the sti�ness tensor element C ′′
3,3 (= C ′

2,2). The second principal direction

lies horizontally perpendicular to the symmetry axis in the isotropic plane (parallel to the

Fig. 4.8: Illustration of the TI symmetry in the crystallographic reference frame (red) and the borehole reference
frame (blue), where the symmetry axis is perpendicular to the vertical borehole axis (HTI). The isotropic plane
is indicated by the gray lines.
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x′1�axis), and the P-wave velocity is de�ned by the sti�ness tensor element C ′′
1,1 (= C ′

1,1) for

that direction.

Furthermore, the wave velocities of vertically propagating shear waves in HTI formations de-

pend on their polarization directions. The SV-wave is polarized perpendicular to the isotropic

plane of the TI formation and thus parallel to the TI symmetry axis (x′2�axis). In contrast,

the SH-wave is polarized in the isotropic plane of the TI formations, i.e., perpendicular to the

symmetry axis and parallel to the x′1�axis. While the sti�ness tensor element C ′′
4,4 determines

the shear wave velocity of the vertically propagating SV-wave, the velocity of the vertically

propagating SH-wave is determined by C ′′
6,6⎛⎜⎜⎜⎝

(︁
vPver
)︁2(︁

vSVver
)︁2(︁

vSHver
)︁2
⎞⎟⎟⎟⎠ =

1

ρs

⎛⎜⎜⎜⎝
C ′′
1,1

C ′′
4,4

C ′′
6,6

⎞⎟⎟⎟⎠ . (4.5)

These shear wave velocities are often referred to as the slow shear wave velocity vSslow and the

fast shear wave velocity vSfast, characterizing the HTI formation. The shear wave polarization

directions of the SH- and SV-wave are the mutually perpendicular principal directions of the

HTI formation. The direction corresponding to the fast shear wave velocity is referred to

as the fast principal direction, whereas the direction corresponding to the slow shear wave

velocity is referred to as the slow principal direction. If a vertically propagating shear wave,

who's polarization direction is not aligned with one of the principal directions, enters an HTI

formation, it splits into the SH- and SV-waves. The �rst one is polarized in the fast principal

direction propagating with fast shear wave velocity, whereas the latter is polarized in the slow

principal direction propagating with slow shear wave velocity. This behavior is referred to as

shear wave splitting or birefringence phenomenon.

While the shear wave splitting is well-understood for plane waves, the following sections inves-

tigate the behavior of borehole-guided waves in HTI formations. The �rst section investigates

the omnidirectional Stoneley wave excited by a monopole source, which is not dependent on

the source azimuth and does not split. However, its velocity in the low-frequency limit is

sensitive to a known combination of sti�ness tensor elements. The next section mathemati-

cally derives the theory of cylindrical wave splitting of borehole-guided waves with azimuthal

wavenumbers higher than zero. It is shown that all cylindrical waves (m > 0) split into a fast

and a slow principal wave when they enter an HTI formation. The theory is veri�ed by FD

modeling of synthetic time-domain waveforms for �exural, quadrupole, and hexapole waves

in the subsequent sections. For all borehole waves, the phase slowness dispersion curves ex-

tracted from the waveform array and their sensitivities to particular sti�ness tensor elements

are systematically investigated in both the absence and presence of an LWD tool.
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4.2.1. Monopole excitation

Figure 4.9a displays the synthetic waveform array of the borehole wave�eld excited by a

monopole source in a �uid-�lled borehole surrounded by the fast Bakken Shale HTI forma-

tion in the absence of a logging tool. While the excited Stoneley wave is clearly visible, the

amplitudes of the refracted P- and refracted shear waves are comparably small. However,

slowness time coherence (STC) processing (App. D.1) shows di�erent maxima corresponding

to these refracted waves (Fig. 4.9c). The maximum corresponding to the refracted P-wave is

located at the vertical P-wave slowness controlled by the elastic constant C ′′
1,1. Additionally,

two maxima are found corresponding to the refracted shear waves. One maximum is located

at the slowness of the vertically propagating SH-wave proportional to C ′′
6,6, and one maxi-

mum is located at the slowness of the vertically propagating SV-wave proportional to C ′′
4,4.

Consequently, a monopole source excites a refracted shear wave polarized in the fast principal

direction (SH-wave) and a refracted shear wave polarized in the slow principal direction (SV-

wave) in fast HTI formations. Theoretically, these two refracted shear waves can be used to

obtain the slow and fast principal shear wave slowness values and, thus, the sti�ness tensor

elements C ′′
4,4 and C ′′

6,6. However, the amplitudes of the refracted shear waves are small in

the presence of an LWD tool, and it is not possible to reliably extract the refracted shear

waves in real measurements because of the interference with the strong drilling noise. The

upper right maximum corresponds to the Stoneley wave, which dispersion curve is displayed

in �gure 4.9b.

(a) Waveform array (fast HTI) (b) Phase slowness dispersion (fast HTI)

(c) Semblance (fast HTI) (d) Stoneley wave sensitivity (fast HTI)

Fig. 4.9: Monopole excitation in a �uid-�lled borehole surrounded by the fast Bakken Shale HTI formation
in the absence of a logging tool. The left �gures display the waveform array (a) and semblance analysis
(App. D.1) of the array data containing the refracted P-, refracted shear, and Stoneley waves (c). The
right �gures show the phase slowness dispersion characteristics of the Stoneley wave (b) and its sensitivity to
formation parameters (d).
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The slowness of the Stoneley wave in the low-frequency limit corresponds to the tube wave

slowness indicated by the dotted black line. Norris and Sinha (1993) have derived a formula

to compute the tube wave velocity in general TI media, which can also be applied to the

HTI symmetry. Their equation is originally given in the borehole reference frame but can be

straightforwardly transformed to the crystallographic reference frame, yielding

vtube = lim
s→0

vSt = vf

(︄
1 +

8ρf
(︁
vf
)︁2

C ′′
1,1 + C ′′

3,3 − 2C ′′
1,3 + 4C ′′

4,4

)︄(− 1
2)

. (4.6)

The equation can be qualitatively validated by the sensitivity analysis of the Stoneley wave

slowness dispersion curve to the sti�ness tensor elements of the formation. While the phase

slowness of the Stoneley wave is highly sensitive to the borehole �uid in the range 0.8�0.9 at

all frequencies (omitted in Fig. 4.9d), it is less sensitive to the formation parameters displayed

in �gure 4.9d. Nevertheless, the sensitivity to the formation parameters is highest to the

sti�ness tensor elements C ′′
4,4 and zero to C ′′

6,6 at low frequencies. While the sensitivity to the

elements C ′′
1,1 and C ′′

3,3 has a similar magnitude, the sensitivity to C ′′
1,3 has an opposite sign.

These results are consistent with equation 4.6, where the components C ′′
1,1 and C

′′
3,3 are multi-

plied by one, the component C ′′
1,3 is subtracted, and the component C ′′

4,4 has the largest factor.

The presence of an LWD tool strongly alters the tube wave velocity, as displayed in �g-

ure 4.10a, and causes that equation 4.6 is no longer valid. Nevertheless, the sensitivity of

the Stoneley wave slowness to the sti�ness tensor elements is similar as in the absence of a

logging tool (Fig. 4.10b). The sensitivity to the sti�ness tensor elements is higher in the LWD

con�guration, whereas the Stoneley wave is less sensitive to the compressional wave velocity

in the borehole �uid. The reason for this is that the borehole �uid occupies only a small �uid

annulus in the presence of the large LWD tool.

Besides, the Stoneley wave is not sensitive to azimuthal variations in the shear wave velocities

due to its omnidirectional nature (Fig. 1.2d). Hence, the azimuthal excitation direction of the

monopole source relative to the principal directions of the HTI formation does not in�uence

the Stoneley wave dispersion curve.

(a) Phase slowness dispersion (fast HTI) (b) Stoneley wave sensitivity (fast HTI)

Fig. 4.10: Monopole excitation in a �uid-�lled borehole surrounded by the fast Bakken Shale HTI formation
in the presence of an LWD tool. The �gures display the phase slowness dispersion curve of the Stoneley wave
(a) and its sensitivity to formation parameters (b).
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4.2.2. Theory of cross-multipole shear wave splitting

While the Stoneley wave exhibits an omnidirectional directivity, the �exural wave (m = 1) and

higher-order modes are directional, and their directivities are de�ned by cos(mθ) (Fig. 1.2e

and 1.2f). Consequently, these wave modes m ≥ 1 depend on the azimuthal source excitation

direction relative to the principal directions of the HTI formation. Esmersoy et al. (1994)

and Mueller et al. (1994) have shown that in HTI formations, two principal �exural waves

exist, which propagate with di�erent velocities. A dipole source aligned with the fast principal

direction of the HTI formation excites the fast principal �exural wave CF
1 , whereas a dipole

source aligned with the slow principal direction excites the slow principal �exural wave CS
1 .

This is analogous to the vertically propagating SH- and SV-waves in HTI media, which are

polarized in the fast and slow principal directions, respectively. Furthermore, if the dipole

excitation direction is not aligned with the principal directions, the excited �exural wave splits

into the slow and the fast principal �exural wave, such as a vertically propagating shear wave.

This section explains that the fundamental concept of dipole shear wave splitting in HTI

formations can be generalized to all higher-order cylindrical waves. The following work was

previously published in the form of an expanded abstract for the 90th annual meeting of the

Society of Exploration Geophysicists (SEG) in Demmler et al. (2020). The starting point for

explaining the theory is a summary of the fundamental results that apply to the borehole

acoustic pressure due to an alternate polarity double multipole excitation in isotropic forma-

tions (Przebindowska and Geerits, 2019). Based on this, the four-component cross-multipole

pressure data matrix is de�ned. Subsequently, the concept of HTI shear wave splitting is

generalized to alternate polarity multipole modes (m > 0).

Alternate polarity double multipole excitation in isotropic formations

Figure 4.11 illustrates a cross-section of an alternate polarity cross-multipole source or receiver

of the excitation order n. The double multipole source consists of two single multipole sources

azimuthally shifted from each other by π/(2n) radians. While the blue multipole source

Fig. 4.11: Schematic view of the cross-section of an alternate polarity double multipole source/receiver consist-
ing of one single X-multipole source/receiver (blue) and one single Y-multipole source/receiver (red) separated
azimuthally by π/(2n) radians.
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is referred to as the X-multipole source, the red multipole source is referred to as the Y-

multipole source. The azimuthal locations of the single constituting sources are de�ned for

the X-multipole source as

θXj = (j − 1)
π

n
, j = 1, ..., 2n, (4.7a)

and for the Y-multipole source as

θYj =
π

2n
+ (j − 1)

π

n
, j = 1, ..., 2n. (4.7b)

Accordingly, the azimuthal location of the �rst constituting source of the X-multipole source

is θX1 = 0. The azimuthal locations of the constituent multipole sources and receivers are

coincident.

Przebindowska and Geerits (2019) expressed the acoustic pressure of the wave�eld emitted

by such an alternate polarity double multipole surface source in a homogeneous and isotropic

formation as

p̌(r, θ, z, s) =

p̌X⏟ ⏞⏞ ⏟∑︂
k=odd

Čkn(r, z, s) cos(knθ)±

p̌Y⏟ ⏞⏞ ⏟∑︂
k=odd

Čkn(r, z, s) sin(knθ)

⎧⎨⎩k = 1, 5, 9, . . .

k = 3, 7, 11, . . .
.

(4.8)

According to equation 4.8, the borehole acoustic pressure p̌ is a superposition of that origi-

nating from the X-multipole source (p̌X) and the Y-multipole source (p̌Y ). The relationship

between the e�ective cylinder functions Čkn and the excitation functions Č
q′

kn is given by

(Geerits and Kranz, 2017)

Čkn(r, z, s) =
2nApǎ0(s)

4π2
ρs2Č

q′

kn(r, z, s)Wkn(θ̄0). (4.9)

In this equation 4.9, Ap represents the surface area of a single, cylindrically shaped surface

source, and ǎ0 represents its associated uniform acceleration. The wave�eld weighting function

Wkn describes the azimuthal �ltering e�ect caused by the �nite azimuthal aperture (θ̄0) of

the constituting sources (Geerits and Kranz, 2017).

Four-component multipole data matrix

The four-component multipole pressure data matrix P̌ is de�ned as

P̌(r, z0, s) =

⎛⎝p̌XX p̌XY

p̌Y X p̌Y Y

⎞⎠ . (4.10)

The matrix contains the two in-line components, p̌XX and p̌Y Y , and the two cross-line com-

ponents, p̌XY and p̌Y X . The �rst subscript letter of these components refers to the multipole

source and the second subscript letter refers to the multipole receiver. For instance, the

component p̌XX describes the acoustic pressure of the wave�eld emitted by the X-multipole
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source and received by the X-multipole receiver. The pressure values received at the single

constituting receivers are stacked using an alternating polarity according to

p̌XX(r, z0, s) =
2n∑︂
j=1

(−1)(j−1)p̂X(r, θ
X
j , z0, s) = 2n

∑︂
k=odd

Čkn(r, z, s). (4.11a)

The acoustic pressure emitted by the X-multipole source is de�ned by the �rst term in equa-

tion 4.8, and the azimuthal locations of the constituting receiver are de�ned in equation 4.7a.

Similarly, the in-line component p̌Y Y is de�ned as

p̌Y Y (r, z0, s) =
2n∑︂
j=1

(−1)(j−1)p̂Y (r, θ
Y
j , z0, s) =

± 2n
∑︂
k=odd

Čkn(r, z, s),

⎧⎨⎩k = 1, 5, 9, . . . , etc.

k = 3, 7, 11, . . . , etc.
, (4.11b)

using the second term of equation 4.8 and the receiver azimuths de�ned in equation 4.7b. In

contrast, the cross-line components vanish

p̌XY (r, z0, s) =

2n∑︂
j=1

(−1)(j−1)p̂X(r, θ
Y
j , z0, s) = 0, (4.11c)

p̌Y X(r, z0, s) =

2n∑︂
j=1

(−1)(j−1)p̂Y (r, θ
X
j , z0, s) = 0. (4.11d)

The generalization to HTI media

The above results that apply in isotropic formations can be extended to HTI media by making

fundamental assumptions. In analogy to the two principal polarization directions of a verti-

cally propagating shear wave, it is assumed that there are two principal excitation functions.

The �rst is associated with the fast principal direction denoted by Č
F
kn, whereas the second

is associated with the slow principal direction denoted by Č
S
kn. Assuming the fast principal

direction corresponds to the azimuth θ = 0, it can be postulated that the X-multipole source

excites the fast principal wave and the Y-multipole source excites the slow principal wave

p̌X(r, θ, z, s) =
∑︂

k=odd(>0)

Č
F
kn(r, z, s) cos(knθ), (4.12)

p̌Y (r, θ, z, s) = ±
∑︂

k=odd(>0)

Č
S
kn(r, z, s) sin(knθ),

⎧⎨⎩k = 1, 5, 9, . . . , etc.

k = 3, 7, 11, . . . , etc.
. (4.13)

For the following explanations, only the leading term k = 1 is considered (m = kn). Fig-

ure 4.12a illustrates the leading term of the fast principal wave CF
n (r, z, s) cos(nθ) and the

slow principal wave CS
n(r, z, s) sin(nθ). The azimuth measurement unit in the �gure is nθ
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(a) Azimuthally aligned (b) Azimuthally o�set

Fig. 4.12: Illustration of multipole shear wave splitting in terms of the principal fast (CF
n ) and slow (CS

n)
cylindrical waves, where the X-multipole source is aligned to the fast principal direction (a) and azimuthally
o�set by the angle nθF to it (b). The azimuth measurement unit in the �gures is nθ instead of θ.

instead of θ, which justi�es the notion that the fast principal wave is orthogonal to the slow

principal wave independent of the excitation order n for all angles nθ. Since the X-multipole

source, which �rst constituting source azimuth coincides with nθ = 0, only excites the fast

principal wave, the multipole source is aligned with the fast principal direction. Analogously,

the Y-multipole source, which �rst constituting source azimuth coincides with nθ = π/2, is

aligned with the slow principal direction because it excites only the slow principal wave.

In the general case, neither the X- nor the Y-multipole source is aligned with the principal

directions of the formation (Fig. 4.12b). Thus, both the fast and the slow principal waves are

excited, irrespective of which of the two multipole sources is �red. Consequently, any multipole

source that is not aligned with the principal directions of the HTI formation excites a weighted

superposition of the fast and slow principal waves. The weights are de�ned by projecting the

amplitudes of the fast and slow principal waves onto the X- and Y-excitation directions,

respectively. According to �gure 4.12b, the acoustic pressure of the wave�eld emitted by the

X-multipole source that is not aligned with a principal direction can be postulated by

p̌X(r, θ, z, s) = cos
(︁
nθF

)︁
Č

F
n(r, z, s) cos

(︁
n
(︁
θ − θF

)︁)︁
− sin

(︁
nθF

)︁
Č

S
n(r, z, s) sin

(︁
n
(︁
θ − θF

)︁)︁
. (4.14)

Similarly, an equation can be derived for the azimuthal o�set Y-multipole excitation

p̌Y (r, θ, z, s) = sin
(︁
nθF

)︁
Č

F
n(r, z, s) cos

(︁
n
(︁
θ − θF

)︁)︁
+ cos

(︁
nθF

)︁
Č

S
n(r, z, s) sin

(︁
n
(︁
θ − θF

)︁)︁
. (4.15)

The angle θF denotes the azimuth between the �rst constituting source of the X-multipole

source and the fast principal direction of the formation (Fig. 4.12b).

The generalized formula for the Alford Rotation

For the de�nition of the four-component pressure data matrix in HTI formations, the de�ni-

tions from equations 4.11a�4.11d are used, in which equations 4.14 and 4.15 are substituted.
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The resulting data matrix components are given by

p̌XX(r, z0, s) = 2n
[︂
Č

F
n(r, z0, s) cos

2(nθF) + Č
S
n(r, z0, s) sin

2(nθF)
]︂
, (4.16a)

p̌Y Y (r, z0, s) = 2n
[︂
Č

F
n(r, z0, s) sin

2(nθF) + Č
S
n(r, z0, s) cos

2(nθF)
]︂
, (4.16b)

p̌XY (r, z0, s) = p̌Y X(r, z0, s) = 2n
[︂
Č

F
n(r, z0, s)− Č

S
n(r, z0, s)

]︂
sin(nθF) cos(nθF). (4.16c)

Using the matrix de�nition (Eq. 4.10), the above equations can be rewritten into matrix form

P̌(r, z0, s) = R(nθF)Ǧn(r, z0, s)RT(nθF), (4.17a)

where

R(nθF) =

⎛⎝cos(nθF) − sin(nθF)

sin(nθF) cos(nθF)

⎞⎠ , (4.17b)

and

Ǧn(r, z0, s) = 2n

⎛⎝ČF
n 0

0 Č
S
n

⎞⎠ (r, z0, s). (4.17c)

Equations 4.17a�4.17c represent a generalization of the Alford rotation (Alford, 1986). The

original formula was introduced by Alford (1986) for the excitation order n = 1, wherefore it

only applies to �exural waves. In contrast, this generalization applies to all vector-cylindrical

waves, which can all be considered as scaled dipoles, thereby excluding the monopole having

the azimuthal wavenumber zero.

Non-orthogonal �rings

The above-presented generalized formula for the Alford rotation assumes an orthogonal �ring

of the cross-multipole source, i.e., the X- and Y-multipole source �rings are azimuthally sep-

arated by π/(2n). Since the X- and Y-multipole sources cannot be �red simultaneously, they

are �red in sequence. However, in LWD measurements, the tool rotates between the X- and

the Y-multipole source �rings. Thus, the fast tool rotation prevents orthogonal �rings, and

both excitations are, in general, non-orthogonal. The advantage of the tool rotation is that a

cross-multipole source is not necessary since one multipole source can be �red in sequence at

di�erent azimuths utilizing the tool rotation. For both �rings, the four-component pressure

data matrix is measured by the in-line and cross-line multipole receivers that are still orthog-

onal to each other.

The above-de�ned formulas for the Alford rotation are extended to apply for non-orthogonal

�rings according to �gure 4.13 illustrating the multipole shear wave splitting for the two

non-orthogonal X-multipole and Y*-multipole excitations. The star indicates that the Y*-

multipole excitation is not necessarily orthogonal to the X-multipole excitation. The azimuth
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Fig. 4.13: Illustration of multipole shear wave splitting in terms of the principal fast (CF
n ) and slow (CS

n) cylin-
drical waves, where the X- and Y*-multipole sources are not �red orthogonal to each other. Both excitation
directions are azimuthally o�set to the principal directions of the formation. The azimuth measurement unit
in the �gures is nθ instead of θ.

between both sources is referred to as ∆θ. In the general case, neither of the multipole

sources is aligned with the principal directions of the formation. Consequently, both sources

excite a weighted superposition of the fast and slow principal cylindrical waves. As explained

above, the weights are de�ned by the projection of the principal wave's amplitudes onto the

X- and Y*-excitation directions, respectively. While Eq. 4.14 for the acoustic pressure of the

wave�eld emitted by the X-multipole source does not change, equation 4.15 is changed to a

more general form according to �gure 4.13

p̌Y ∗(r, θ, z, s) = cos
(︁
n
(︁
θF −∆θ

)︁)︁
Cň

F
(r, z, s) cos

(︁
n
(︁
θ − θF

)︁)︁
− sin

(︁
n
(︁
θF −∆θ

)︁)︁
Cň

S
(r, z, s) sin

(︁
n
(︁
θ − θF

)︁)︁
. (4.18)

In the next step, the elements of the four-component data matrix are computed. Therefore,

it must be noted that the azimuthal locations of the cross-line receivers for the X-multipole

excitation (θYj ) are di�erent from the azimuthal locations of the in-line receivers for the Y*-

multipole excitation (θY
∗

j ). The other way around, the locations of the cross-line receivers

(θX
∗

j ) for the Y*-multipole excitation do not coincide with the in-line receivers for the X-

multipole excitation (θXj ). The azimuthal locations of the in-line and cross-line receivers for

the X-multipole excitations are de�ned in equations 4.7a and 4.7b, whereas the locations of

the in-line and cross-line receivers for the Y*-multipole excitation are given by

θY
∗

j = ∆θ + (j − 1)
π

n
, θX

∗
j = ∆θ − π

2n
+ (j − 1)

π

n
, j = 1, ..., 2n. (4.19)

These receiver positions are used for stacking the components of the in-line and cross-line

components of the four-component data matrix

p̌XX(r, z0, s) = 2n
[︂
Č

F
n(r, z0, s) cos

2(nθF) + Č
S
n(r, z0, s) sin

2(nθF)
]︂
, (4.20a)

p̌XY (r, z0, s) = 2n
[︂
Č

F
n(r, z0, s)− Č

S
n(r, z0, s)

]︂
sin(nθF) cos(nθF), (4.20b)

p̌Y ∗Y ∗(r, z0, s) = 2n
[︂
Č

F
n(r, z0, s) cos

2(n
(︁
θF −∆θ

)︁
)

+Č
S
n(r, z0, s) sin

2(n
(︁
θF −∆θ

)︁
)
]︂
, (4.20c)

p̌Y ∗X∗(r, z0, s) = 2n
[︂
Č

S
n(r, z0, s)− Č

F
n(r, z0, s)

]︂
sin(n

(︁
θF −∆θ

)︁
) cos(n

(︁
θF −∆θ

)︁
). (4.20d)
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These equations for the in-line and cross-line components can also be rewritten into the

matrix-vector form⎡⎣ (p̌XX , p̌XY )

(p̌Y ∗X∗ , p̌Y ∗Y ∗)RT(n∆θ − π
2 )

⎤⎦ (r, z0, s) = Q(n∆θ)R(nθF)Ǧn(r, z0, s)RT(nθF). (4.21a)

While the rotation matrix R and the matrix Ǧn, containing the principal cylindrical waves,

are de�ned in equation 4.17b and 4.17c, respectively, the matrix Q is de�ned as

Q(n∆θ) =

⎛⎝ 1 0

cos (n∆θ) sin (n∆θ)

⎞⎠ . (4.21b)

The matrix Q is composed of the �rst row of the unity matrix and the second row of the

rotation matrix RT(n∆θ − π/2). If the X- and Y-multipole sources are orthogonal (n∆θ =

π/2), the matrix Q becomes the unity matrix, and equation 4.21a reduces to the formula for

an orthogonal cross-multipole excitation (Eq. 4.17a).

4.2.3. Dipole excitation

According to the above theory, a dipole source aligned with the fast principal direction of the

formation only excites the fast principal �exural wave CF
1 , whereas a dipole source aligned with

the slow principal direction excited the slow principal �exural wave CS
1 (Fig. 4.14a�4.14b).

Consequently, the four-component data matrix P of the wave�eld excited by an aligned cross-

(a) p̌X(θF = 0◦) (b) p̌Y (θF = 0◦) (c) p̌X(θF = 30◦) (d) p̌Y (θF = 30◦)

Fig. 4.14: Directivities of the �exural waves excited by cross-dipole sources aligned with the formation's
principal directions (a�b) and azimuthally o�set to them by θF = 30◦ (c�d). The directivity is computed from
the maximum absolute amplitude of the functions p̌X (Eq. 4.14) and p̌Y (Eq. 4.15), respectively, at a �xed
radius and the axial o�set z0 = 3.262m. The directivity of the fast principal �exural wave is displayed in blue,
whereas the slow one is plotted in red. In the azimuthally o�set case (c�d), the excited �exural wave splits
into the fast and slow principal �exural waves, as indicated by the dashed lines.



4.2. Horizontal transverse isotropy (HTI) 79

dipole source equals the matrix G1, where the o�-diagonal elements are zero, and the diagonal

elements contain the fast and slow principal �exural waves, respectively. Figure 4.15 shows

the time-domain waveforms of this matrix, which are excited by a cross-dipole source aligned

with the principal directions of the slow Austin Chalk HTI formation. The source is centered

in a �uid-�lled borehole in the absence of a logging tool, and the receiver is axially o�set by

z0 = 3.262m.

The phase slowness dispersion curves of both principal �exural waves are displayed in �g-

ure 4.16a by the solid lines. In comparison, the dashed lines illustrate the dispersion curves

of the �exural waves, which are excited in isotropic formations having the shear modulus

µ = C ′′
6,6 and µ = C ′′

4,4, respectively. The dispersion curves of the fast and slow principal

�exural waves excited in HTI formations lie at all frequencies between the dispersion curves

of their isotropic counterparts. Furthermore, the low-frequency limit of the fast principal

�exural wave corresponds to the fast shear wave slowness βSfast proportional to C
′′
6,6, whereas

the slow principal �exural wave attains the slow shear wave slowness βSslow proportional to

C ′′
4,4 at the cuto� frequency. Additionally, it can be seen that the cuto� frequency of the slow

principal �exural wave is slightly higher than the cuto� frequency of the fast principal �exural

wave. The sensitivities of the fast and slow principal �exural wave dispersion curves to the

sti�ness tensor elements C ′′
4,4, C

′′
6,6, and to the �uid compressional velocity vf are displayed in

�gures 4.16c and 4.16e, respectively. As expected, the sensitivity of the fast principal �exural

wave dispersion curve is highest to the elastic constant C ′′
6,6 and zero to C

′′
4,4 at low frequencies.

(a) pXX = CF
1 (b) pXY = 0

(c) pY X = 0 (d) pY Y = CS
1

Fig. 4.15: Four-component pressure data matrix of the time-domain waveforms excited by a cross-dipole source
aligned to the principal directions of the slow Austin Chalk HTI formation. The source (fc = 4kHz) is centered
in a �uid-�lled borehole in the absence of a logging tool, and the axial o�set between the cross-dipole source
and the cross-dipole receiver is z0 = 3.262m. The in-line components (a, d) contain the waveforms of the fast
and slow principal �exural waves plotted in blue and red, respectively.
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(a) Phase slowness dispersion (slow HTI) (b) Phase slowness dispersion (fast HTI)

(c) Fast �exural wave sensitivity (slow HTI) (d) Fast �exural wave sensitivity (fast HTI)

(e) Slow �exural wave sensitivity (slow HTI) (f) Slow �exural wave sensitivity (fast HTI)

Fig. 4.16: Phase slowness dispersion curves and sensitivity analysis of the principal �exural waves excited in a
�uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale (right) HTI formations in
the absence of an LWD tool. The solid lines in the �rst-row �gures (a�b) display the phase slowness dispersion
curves of the fast and slow principal �exural waves compared to the isotropic counterparts illustrated by the
dashed red (µ = C′′

4,4) and blue (µ = C′′
6,6) lines, respectively. The black lines represent the formation's fast

(βS
fast) and slow (βS

slow) shear wave slowness. The bottom �gures show the sensitivity of the fast (c�d) and
slow (e�f) principal �exural wave slowness to the P-wave velocity in the borehole �uid (vf) and the sti�ness
tensor elements C′′

4,4 and C′′
6,6 of the formation.

At higher frequencies, the sensitivity to C ′′
6,6 decreases, and the sensitivity to C ′′

4,4 increases.

In contrast, the sensitivity of the slow principal �exural wave dispersion curve is highest to

C ′′
4,4 and zero to C ′′

6,6 at the cuto� frequency. The sensitivity to C ′′
4,4 remains dominant also

at higher frequencies.

If the slow Austin Chalk HTI formation is replaced by the fast Bakken Shale HTI formation,

similar behavior is observed. The fast principal �exural wave attains the fast shear wave

slowness at the cuto� frequency, while the low-frequency limit of the slow principal �exural

wave corresponds to the slow shear wave slowness (Fig. 4.16b). Furthermore, it is visualized

that the phase slowness dispersion curves of the fast and slow principal �exural waves are

very similar to their corresponding isotropic counterparts. At low frequencies, the sensitivity

of the fast principal �exural wave dispersion curve is highest to C ′′
6,6 and zero to C ′′

4,4, whereas
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the slow �exural wave dispersion curve is highest sensitive to C ′′
4,4 and zero to C ′′

6,6. Besides,

both principal �exural wave dispersion curves are much more sensitive to the borehole �uid

compressional velocity in the fast Bakken Shale formation than in the slow Austin Chalk

formation.

The sensitivity analysis and the phase slowness dispersion curves of the fast and slow princi-

pal dipole waves have shown that the �rst one is suitable for determining the formation's fast

shear wave slowness, whereas the latter can be used to obtain the slow shear wave slowness

of the formation. However, the problem in real measurements is that the azimuth of the fast

and slow principal direction is unknown. Consequently, the dipole excitation is, in general,

not aligned with a principal direction, and a weighted superposition of the fast and the slow

�exural wave is excited according to the theory in section 4.2.2 and �gures 4.14c�4.14d. Fig-

ure 4.17 displays the time-domain waveforms of the four-component pressure data matrix,

which are excited by a cross-dipole source azimuthally o�set to the principal directions of

the slow Austin Chalk HTI formation by θF = 30◦. Since both the fast and the slow princi-

pal waves are excited, the cross-line components pXY and pY X of the four-component data

matrix become non-zero. The blue lines illustrate the time-domain waveforms obtained from

FD modeling of an azimuthally o�set cross-dipole source. In comparison, the red waveforms

are computed by rotating the FD modeled fast and slow principal �exural waves (Fig. 4.15a

and 4.15d) utilizing the formula for the Alford rotation (Eq. 4.17). The coincidence of the

waveforms for all components validates this equation. Using the inverse formula of the Alford

(a) pXX (b) pXY

(c) pY X (d) pY Y

Fig. 4.17: Four-component pressure data matrix of the time-domain waveforms excited by a cross-dipole source
azimuthally o�set to the principal directions of the slow Austin Chalk HTI formation by θF = 30◦. The source
(fc = 4kHz) is centered in a �uid-�lled borehole in the absence of a logging tool, and the axial o�set between
the cross-dipole source and the cross-dipole receiver is z0 = 3.262m. The blue waveforms result from FD
modeling using an azimuthally o�set cross-dipole source, whereas the red waveforms are computed by rotating
the modeled waveforms of the principal �exural waves (Fig. 4.15) via the Alford rotation.
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rotation, it is possible to obtain the fast and slow principal �exural waves from cross-dipole

measurements that are azimuthally o�set to the fast and slow principal directions (Sec. 5.2).

Subsequently, the formation's fast and slow shear wave slowness can be obtained from the

phase slowness dispersion curves of both principal waves in the low-frequency limit.

While the above investigation assumes an open �uid-�lled borehole without a logging tool, the

results become di�erent in an LWD environment. The presence of the LWD tool causes tool

�exural waves, which strongly a�ect the formation �exural waves, as discussed in section 1.3

for the isotropic case. Similar to the VTI case, the formation �exural wave is not present in the

slow Austin Chalk HTI formation (Fig. 4.18a) and thus cannot be used to determine the fast

and slow shear wave slowness. Nevertheless, �gure 4.18a presents that the tool �exural wave

excited by a dipole source aligned with the formation's fast principal direction di�ers from

the tool �exural wave excited by a dipole source aligned with the formation's slow principal

(a) Phase slowness dispersion (slow HTI) (b) Phase slowness dispersion (fast HTI)

(c) Fast tool �exural wave sensitivity (slow HTI) (d) Fast �exural waves sensitivity (fast HTI)

(e) Slow tool �exural wave sensitivity (slow HTI) (f) Slow �exural waves sensitivity (fast HTI)

Fig. 4.18: Phase slowness dispersion curves and sensitivity analysis of the principal tool and formation �exural
waves excited in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale (right)
HTI formations in the presence of an LWD tool. The solid lines in the �rst-row �gures (a�b) display the phase
slowness dispersion curves of the fast and slow principal tool and formation �exural waves compared to their
isotropic counterparts illustrated by the dashed red (µ = C′′

4,4) and blue (µ = C′′
6,6) lines, respectively. The

black lines represent the formation's fast (βS
fast) and slow (βS

slow) shear wave slowness. The bottom �gures (c�f)
show the sensitivity of the principal tool (dashed lines) and formation (solid lines) �exural wave slowness to
the P-wave velocity in the borehole �uid (vf) and the sti�ness tensor elements C′′

4,4 and C
′′
6,6 of the formation.
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direction. Consequently, the tool �exural wave must also be sensitive to formation parame-

ters. The sensitivity analysis of the fast tool �exural wave (Fig. 4.18c) shows the sensitivity

of its phase dispersion curve to the elastic constants C ′′
4,4 and C

′′
6,6 at frequencies greater than

1 kHz. The sensitivity to the elastic modulus C ′′
6,6 controlling the fast shear wave slowness is

higher than to the elastic modulus C ′′
4,4 de�ning the slow shear wave slowness. Analogously,

the sensitivity of the dispersion curve of the slow tool �exural wave is higher to the elastic

constant C ′′
4,4 than to C ′′

6,6 (Fig. 4.18e).

The right column of Fig. 4.18 displays the same plots for the fast Bakken Shale HTI forma-

tion. In contrast to the slow Austin Chalk formation, both the tool and formation �exural

waves are excited by a dipole source. The phase slowness dispersion curve of the formation

�exural wave exhibits similar behavior as in the absence of a logging tool. The fast principal

formation �exural wave CF
1 attains the formation's fast shear wave slowness at the cuto�

frequency, whereas the slowness of the slow principal formation �exural wave CS
1 coincides

with the slow shear wave in the low-frequency limit. The sensitivities of their phase slowness

dispersion curves to the formation parameters are displayed in �gures 4.18d and 4.18f by the

solid lines. As expected, the fast principal formation �exural wave is most sensitive to the

elastic constant C ′′
6,6 at low frequencies, whereas the slow principal formation �exural wave

has its maximum sensitivity to the elastic constant C ′′
4,4. Furthermore, the di�erence between

the phase slowness dispersion curves of the fast and slow tool �exural waves also implies that

they are sensitive to formation parameters. The sensitivities of the dispersion curves of the

principal tool �exural waves to formation parameters are displayed in �gures 4.18d and 4.18f

by the dashed lines. Since the sensitivity is much higher to the �uid compressional velocity

in fast formations than in slow formations, the sensitivity to the formation parameters is

signi�cantly lower. While the dispersion curve of the fast principal tool �exural wave exhibits

similar sensitivity to C ′′
4,4 and C ′′

6,6, the dispersion curve of the slow principal tool �exural

wave is more sensitive to C ′′
4,4 than to C ′′

6,6.

In summary, the tool �exural wave is also sensitive to formation anisotropy parameters and

may contain useful information to determine the fast and slow shear wave slowness of an HTI

formation (Wang et al., 2016). Moreover, the Alford rotation can be applied to the waveforms

of both the tool �exural waves and the formation �exural waves. The sensitivity of the tool

�exural wave to the formation parameters is higher in slow than in fast HTI formations. On

the other hand, the formation �exural wave is excited additionally to tool �exural wave in

fast formations, which can be used to read both slowness values directly from their phase

slowness dispersion curves at the cuto� frequency.

4.2.4. Quadrupole excitation

The theory of cross-multipole shear wave splitting (Sec. 4.2.2) implies that there exists two

principal waves for all excitation orders (n > 0) in HTI media. Consequently, a cross-

quadrupole source aligned with the formation's principal directions excites the fast and slow

principal quadrupole modes, respectively. While the X-quadrupole source aligned with the
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fast principal direction only excites the fast principal quadrupole mode CF
2 (Fig. 4.19a), the

Y-quadrupole source aligned with the slow principal direction only excites the slow princi-

pal quadrupole mode CS
2 (Fig. 4.19b). A quadrupole source is referred to as aligned with

the fast principal direction if the source excitation direction is parallel to the formation's

principal directions. In contrast, a quadrupole source is referred to as aligned with the slow

principal direction if its excitation direction is π/4 = 45◦ rotated to the principal directions

in the θ�space. These notations follow from the theory utilizing the nθ�space where the X-

and Y-quadrupole sources are orthogonal. Blyth et al. (2016) introduced the notation sym-

metric quadrupole corresponding to the fast principal quadrupole mode and antisymmetric

quadrupole corresponding to the slow principal quadrupole mode.

The four-component data matrix of the time-domain waveforms emitted and received by an

LWD cross-quadrupole measurement aligned with the principal directions of the slow Austin

Chalk HTI formation is displayed in �gure 4.20. As expected, the cross-line components are

zero, and the in-line component pXX contains the fast principal quadrupole mode CF
2 , whereas

the in-line component pY Y is de�ned by the slow principal quadrupole mode CS
2 .

The dispersion curves of both principal quadrupole modes are illustrated in �gure 4.21a by

the solid blue and red lines, respectively. The dashed lines display the dispersion curves of

the quadrupole modes excited in isotropic formations that have the shear modulus µ = C ′′
6,6

and µ = C ′′
4,4, respectively. Like the �exural waves, the fast and slow principal quadrupole

mode dispersion curves lie at all frequencies between the dispersion curves of their isotropic

(a) pX(θF = 0◦) (b) pY (θF = 0◦) (c) pX(θF = 30◦) (d) pY (θF = 30◦)

Fig. 4.19: Directivities of the quadrupole modes excited by a cross-quadrupole source aligned with the forma-
tion's principal directions (a�b) and azimuthally o�set to them by θF = 30◦ (c�d). The directivity is computed
from the maximum absolute amplitude of the functions p̌X (Eq. 4.14) and p̌Y (Eq. 4.15), respectively, at a �xed
radius and the axial o�set z0 = 3.262m. The directivity of the fast principal quadrupole mode is displayed
in blue, whereas the slow one is plotted in red. In the azimuthally o�set case (c�d), the excited quadrupole
mode splits into the fast and slow principal quadrupole modes indicated by the dashed lines.
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(a) pXX = CF
2 (b) pXY = 0

(c) pY X = 0 (d) pY Y = CS
2

Fig. 4.20: Four-component pressure data matrix of the time-domain waveforms excited by a cross-quadrupole
source aligned to the principal directions of the slow Austin Chalk HTI formation. The source (fc = 4kHz)
is centered in a �uid-�lled borehole in the absence of a logging tool, and the axial o�set between the cross-
quadrupole source and the cross-quadrupole receiver is z0 = 3.262m. The in-line components (a, d) contain
the waveforms of the fast and slow principal quadrupole modes plotted in blue and red, respectively.

counterparts. Furthermore, the fast principal quadrupole dispersion curve attains the forma-

tion's fast shear wave slowness βSfast at the cuto� frequency. In contrast, the slow principal

quadrupole slowness becomes much lower than the formation's slow shear wave slowness at

low frequencies. Therefore, it is not possible to read the formation's slow shear wave slow-

ness directly from the dispersion curves. The sensitivity analysis displayed in �gures 4.21c

and 4.21e shows that the slowness dispersion curve of the fast principal quadrupole mode is

only sensitive to the elastic modulus C ′′
6,6 and zero to C ′′

4,4 in the low-frequency limit. The

other way around, the slowness dispersion curve of the slow principal quadrupole mode is

highly sensitive to the elastic constant C ′′
4,4 and zero to C ′′

6,6 at the cuto� frequency. All in

all, the fast and slow principal quadrupole modes exhibit a similar sensitivity as the principal

�exural waves. If the slow Austin Chalk formation is replaced by the fast Bakken Shale for-

mation, similar dispersion characteristics of the principal quadrupole modes can be observed

(Fig. 4.21b). However, the fast and slow principal quadrupole dispersion curves are almost

identical except at low frequencies and are hard to distinguish. The results of the sensitivity

analysis of the principal quadrupole wave slowness to the formation parameters presented in

Fig. 4.21d and 4.21f are similar to that in the slow formation.

Analogous to the cross-dipole logging, the cross-quadrupole source is, in general, not az-

imuthally aligned with the formation's fast or slow principal direction and a weighted super-

position of both principal quadrupole modes is excited (Fig. 4.19c and 4.19d). Consequently,

the cross-components pXY and pY X of the four-component data matrix become non-zero.

Figure 4.22 displays the time-domain waveforms of the four-component pressure data matrix,
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(a) Phase slowness dispersion (slow HTI) (b) Phase slowness dispersion (fast HTI)

(c) Fast quadrupole mode sensitivity (slow HTI) (d) Fast quadrupole mode sensitivity (fast HTI)

(e) Slow quadrupole mode sensitivity (slow HTI) (f) Slow quadrupole mode sensitivity (fast HTI)

Fig. 4.21: Phase slowness dispersion curves and sensitivity analysis of the principal formation quadrupole
modes excited in a �uid-�lled borehole surrounded by the slow Austin Chalk (left) and fast Bakken Shale
(right) HTI formations in the presence of an LWD tool. The solid lines in the �rst-row �gures (a�b) display
the phase slowness dispersion curves of the fast and slow principal formation quadrupole modes compared to
their isotropic counterparts illustrated by the dashed red (µ = C′′

4,4) and blue (µ = C′′
6,6) lines, respectively.

The black lines represent the formation's fast (βS
fast) and slow (βS

slow) shear wave slowness. The bottom �gures
(c�f) show the sensitivity of the principal formation quadrupole mode slowness to the P-wave velocity in the
borehole �uid (vf) and the sti�ness tensor elements C′′

4,4 and C′′
6,6 of the formation.

which are excited by a cross-quadrupole source azimuthally o�set to the principal direc-

tions of the slow Austin Chalk HTI formation by θF = 30◦. The blue lines illustrate the

waveforms obtained from FD modeling of an azimuthally o�set cross-quadrupole source. In

contrast, the red waveforms are computed by rotating the FD modeled fast and slow princi-

pal quadrupole modes (Fig. 4.20a and 4.20d) utilizing the generalized formula for the Alford

rotation (Eq. 4.17). The coincidence of the waveforms for all components veri�es that this

equation is not only valid for �exural waves but also for higher-order cylindrical waves such

as quadrupole modes. Via the inverse formula for the generalized Alford rotation, the fast

and slow principal quadrupole modes can be obtained from cross-quadrupole measurements

that have an arbitrary azimuthal o�set to the formation's fast and slow principal directions

(Sec. 5.2). However, the formation's principal shear wave slowness values cannot be read

directly from the phase slowness dispersion curves of the principal quadrupole modes in the

low-frequency limit.
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(a) pXX (b) pXY

(c) pY X (d) pY Y

Fig. 4.22: Four-component pressure data matrix of the time-domain waveforms excited by a cross-quadrupole
source azimuthally o�set to the principal directions of the slow Austin Chalk HTI formation by θF = 30◦. The
source (fc = 4kHz) is centered in a �uid-�lled borehole in the presence of an LWD tool, and the axial o�set
between the cross-quadrupole source and the cross-quadrupole receiver is z0 = 3.262m. The blue waveforms
result from FD modeling using an azimuthally o�set cross-quadrupole source, whereas the red waveforms are
computed by rotating the waveforms of the principal quadrupole modes (Fig. 4.20) via the Alford rotation.

4.2.5. Hexapole waves

The next higher-order borehole waves are hexapole waves having the azimuthal wavenumber

m = 3 (e.g., Geerits et al., 2010) and behave similarly to the quadrupole modes in HTI forma-

tions. A cross-hexapole source aligned with the principal directions of the formation excites

only the fast (CF
3 ) and the slow (CS

3 ) principal hexapole wave, respectively (Fig. 4.23a�4.23b).

On the other hand, if the cross-hexapole source is not aligned with the principal directions,

a weighted superposition of both principal hexapole modes is excited, as displayed in �g-

ures 4.23c and 4.23d. The corresponding four-component data pressure matrix is shown in

�gure 4.24. While the blue waveforms are obtained from the FD modeling of an azimuthally

o�set hexapole source (θF = 10◦), the red waveforms are obtained by applying the general-

ized formula for the Alford rotation (Eq. 4.17) using the FD modeled fast and slow principal

hexapole waves. The perfect coincidence of both waveforms for all components once again

validates the generalization of the Alford rotation.

The main problem of the hexapole mode in real measurements is that it cannot be directly

excited by a hexapole source since standard LWD tools possess only four piezoelectric source

segments (Sec. 1.1). In contrast, a hexapole excitation of the order n = 3 requires six source

segments azimuthally separated from each other by π/3 radians. On the other hand, a dipole

source (n = 1) excites not only the �exural wave (m = 1) as the leading term but additionally

all odd multiples m = kn (k = 1, 3, 5, ...) (Eq. 4.8). Consequently, a dipole source always
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(a) pX(θF = 0◦) (b) pY (θF = 0◦) (c) pX(θF = 10◦) (d) pY (θF = 10◦)

Fig. 4.23: Directivities of the hexapole modes excited by a cross-hexapole source aligned with the formation's
principal directions (a�b) and azimuthally o�set to them by θF = 10◦ (c�d). The directivity is computed from
the maximum absolute amplitude of the functions p̌X (Eq. 4.14) and p̌Y (Eq. 4.15), respectively, at a �xed
radius and the axial o�set z0 = 3.262m. The directivity of the fast principal hexapole mode is displayed in
blue, whereas the slow one is plotted in red. In the azimuthally o�set case (c�d), the excited hexapole mode
splits into the fast and slow principal hexapole modes indicated by the dashed lines.

(a) pXX (b) pXY

(c) pY X (d) pY Y

Fig. 4.24: Four-component pressure data matrix of the time-domain waveforms excited by a cross-hexapole
source azimuthally o�set to the principal directions of the slow Austin Chalk HTI formation by θF = 10◦.
The source (fc = 4kHz) is centered in a �uid-�lled borehole in the absence of a logging tool, and the axial
o�set between the cross-hexapole source and the cross-hexapole receiver is z0 = 3.262m. The blue waveforms
result from FD modeling using an azimuthally o�set cross-hexapole source, whereas the red waveforms are
computed by rotating the waveforms of the principal hexapole modes via the Alford rotation.
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excites a hexapole wave (m = 3) as the higher-order cylindrical wave following the leading

�exural wave. Figure 4.25 displays the directivities of the �exural and hexapole waves ex-

cited by a cross-dipole source in a �uid-�lled borehole surrounded by an HTI formation. The

dipole source aligned with the formation's fast principal direction excites the fast principal

�exural wave and the fast principal hexapole wave. Analogously, a dipole source aligned with

the formation's slow principal direction excites the slow principal �exural wave and the slow

principal hexapole wave. The latter has an opposite polarity (−CS
3 ) to the slow principal

hexapole wave excited by a hexapole source aligned with the formation's slow principal direc-

tion (Fig. 4.23b). This follows directly from equation 4.13 or by consideration of the source

polarities.

If the dipole source is not aligned with the principal directions, a weighted superposition of

the slow and fast principal �exural waves is excited. Additionally, it seems that the same

is true for the hexapole wave. However, since the azimuthal o�set of the dipole source is

θF = 30◦, the source azimuth is nθF = 90◦ in the nθ�space for the hexapole wave (n = 3).

Consequently, the source azimuth is azimuthally o�set to the principal directions for the �ex-

ural waves but aligned to them for the hexapole modes. However, �gures 4.25c�4.25d show

that instead of a principal hexapole mode, a weighted superposition of the slow and the fast

hexapole is excited. The problem is that these weights are not de�ned by the generalized Al-

ford rotation but are unknown. Hence, the generalized formula for the Alford rotation applies

for all excitation orders n only to the leading term k = 1 (m = kn).

(a) pX(θF = 0◦) (b) pY (θF = 0◦) (c) pX(θF = 30◦) (d) pY (θF = 30◦)

Fig. 4.25: Directivities of the hexapole modes excited by a cross-dipole source aligned with the formation's
principal directions (a�b) and azimuthally o�set to them by θF = 30◦ (c�d). The directivity is computed from
the maximum absolute amplitude of the functions p̌X and p̌Y , respectively, at a �xed radius and the axial
o�set z0 = 3.262m. The directivities of the fast principal �exural and hexapole waves are displayed in blue,
whereas the slow ones are plotted in red. In the azimuthally o�set case (c�d), the cross-dipole source excites
a weighted superposition of the principal �exural and hexapole modes, respectively.



90 4. Wave propagation in �uid-�lled boreholes surrounded by TI media

The phase slowness dispersion curves of the fast and slow principal tool and formation �exural

waves are displayed in �gure 4.26 compared to the dispersion characteristics of the fast and

slow principal formation hexapole waves. Similar to the quadrupole modes, the principal

hexapole waves do not attain the true fast and slow shear wave values of the HTI formation

at the cuto� frequency. Moreover, the di�erence of the slowness dispersion curves between

the fast and slow principal hexapole mode is minimal in the slow Austin Chalk formation,

and in the fast Bakken Shale formation, both are almost identical. Thus, the hexapole mode

is not appropriate for the determination of the formation's HTI parameters.

(a) Phase slowness dispersion (slow HTI) (b) Phase slowness dispersion (fast HTI)

Fig. 4.26: Phase slowness dispersion curves of the principal �exural and hexapole waves excited by a cross-
dipole source in a �uid-�lled borehole surrounded by the slow Austin Chalk (a) and fast Bakken Shale (b) HTI
formations in the presence of an LWD tool. The principal tool and formation �exural waves are illustrated
by the dotted and dashed lines, respectively. The solid lines display the principal formation hexapole modes.
The black lines represent the formation's fast (βS

fast) and slow (βS
slow) shear wave slowness.

4.2.6. Summary

The results of the sensitivity analysis for di�erent refracted and borehole waves (Stoneley,

�exural, quadrupole) in HTI formations are summarized in table 4.2. The con�guration with-

out a logging tool corresponds to WL logging because the WL tool has only little e�ect on

the sensitivities of the borehole waves. The refracted P-wave propagating vertically along the

borehole wall can be used to determine the vertical P-wave velocity de�ned by the sti�ness

tensor element C ′′
1,1 expressed in the crystallographic reference frame. The Stoneley wave is

sensitive to a combination of the sti�ness tensor elements C ′′
1,1, C

′′
1,3, C

′′
3,3, and C ′′

4,4 in the

low-frequency limit. The �exural wave splits into the fast and slow principal �exural waves.

While the low-frequency limit of the fast principal �exural wave coincides with the vertical

SH-wave velocity that is proportional to the sti�ness tensor element C ′′
6,6, the slow principal

�exural wave attains, at the cuto� frequency, the vertical SV-wave velocity de�ned by the

sti�ness tensor element C ′′
4,4.

In the LWD con�guration, the sensitivities of the refracted P- and Stoneley waves are similar

to those in the absence of a tool. However, the presence of an LWD tool alters the slowness of

the Stoneley wave in the low-frequency limit. Moreover, the LWD tool causes that formation

�exural waves are not present in slow formations. In that case, the fast principal tool �exural

wave is sensitive to the sti�ness tensor element C ′′
6,6, whereas the slow principal tool �exural

wave is sensitive to C ′′
4,4. Thus, the elements C ′′

4,4 and C ′′
6,6 may be obtained by applying

a model-based inversion method on the principal tool �exural waves. In fast formations,
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Tab. 4.2: Overview of the phase slowness sensitivities of particular waves to sti�ness tensor elements charac-
terizing an HTI formation. The table considers the absence and presence of an LWD tool as well as fast and
slow formations. The bold variables denote a strong sensitivity to the respective sti�ness tensor elements,
whereas the parentheses indicate that the sensitivity is weak.

wave mode slow formation fast formations

refracted P C′′
1,1 C′′

1,1

no tool
Stoneley C ′′

1,1, C
′′
1,3, C

′′
3,3, C

′′
4,4 C ′′

1,1, C
′′
1,3, C

′′
3,3, C

′′
4,4

fast �exural C′′
6,6, C

′′
4,4 C′′

6,6

slow �exural C′′
4,4 C′′

4,4

refracted P C′′
1,1 C′′

1,1

Stoneley C ′′
1,1, C

′′
1,3, C

′′
3,3, C

′′
4,4 C ′′

1,1, C
′′
1,3, C

′′
3,3, C

′′
4,4

fast formation �exural not present C′′
6,6

LWD tool
slow formation �exural not present C′′

4,4

fast tool �exural C′′
6,6, (C

′′
4,4) (C ′′

4,4, C
′′
6,6)

slow tool �exural C′′
4,4 (C ′′

4,4)

fast formation quadrupole C′′
6,6, (C

′′
4,4) C ′′

6,6 ≈ C ′′
4,4

slow formation quadrupole C′′
4,4, (C

′′
6,6) C ′′

4,4 ≈ C ′′
6,6

the principal tool �exural waves exhibit only weak sensitivity to formation parameters, but

the principal formation �exural waves can be used for the determination of C ′′
4,4 and C ′′

6,6.

Analogous to the �exural wave, the quadrupole mode splits into the slow and fast principal

quadrupole modes. Accordingly, the principal fast formation quadrupole mode is sensitive

to the sti�ness tensor element C ′′
6,6, and the slow principal formation quadrupole mode to

C ′′
4,4 in slow formations. In fast formations, the fast and slow principal quadrupole modes

exhibit similar sensitivities to the sti�ness tensor elements C ′′
4,4 and C

′′
6,6 and thus can not be

distinguished except at very low frequencies, which is not useful in real LWD measurements.
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4.3. Tilted transverse isotropy (TTI)

This section treats the general TTI case, where the formation's TI symmetry axis (x′′3�axis)

is arbitrarily inclined to the vertical borehole axis (x′3�axis), as displayed in Fig. 4.27. The

Fig. 4.27: Illustration of the TI symmetry in the crystallographic reference frame (red) and the borehole
reference frame (blue), where the symmetry axis is arbitrarily inclined to the borehole axis (TTI). The isotropic
plane is indicated by the gray lines.

sti�ness tensor elements given in the crystallographic reference frame (x′′) can be transformed

to the borehole reference frame (x′) by a rotation around the x′′1�axis by the inclination angle

ψ0 (Sec. 2.2). The resulting sti�ness tensor exhibits monoclinic symmetry in the borehole

reference frame, where the x′2�x
′
3 plane is the plane of mirror symmetry

C ′
i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′
1,1 C ′

1,2 C ′
1,3 C ′

1,4 0 0

C ′
2,2 C ′

2,3 C ′
2,4 0 0

C ′
3,3 C ′

3,4 0 0

C ′
4,4 0 0

sym C ′
5,5 C ′

5,6

C ′
6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.22)

The elements of the sti�ness tensor given in the borehole reference frame can be expressed

by the sti�ness tensor elements in the crystallographic reference frame dependent on the

inclination angle ψ0

C ′
1,1 = C ′′

1,1, (4.23a)

C ′
1,2 = C ′′

1,2 cos
2 ψ0 + C ′′

1,3 sin
2 ψ0, (4.23b)

C ′
1,3 = C ′′

1,2 sin
2 ψ0 + C ′′

1,3 cos
2 ψ0, (4.23c)

C ′
1,4 =

(︁
C ′′
1,3 − C ′′

1,2

)︁
cosψ0 sinψ0, (4.23d)
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C ′
2,2 = C ′′

1,1 cos
4 ψ0 + C ′′

3,3 sin
4 ψ0 + (2C ′′

1,3 + 4C ′′
4,4) sin

2 ψ0 cos
2 ψ0, (4.23e)

C ′
2,3 = C ′′

1,3 + (C ′′
1,1 + C ′′

3,3 − 2C ′′
1,3 − 4C ′′

4,4) sin
2 ψ0 cos

2 ψ0, (4.23f)

C ′
2,4 = (C ′′

1,3 − C ′′
1,1 + 2C ′′

4,4) cos
3 ψ0 sinψ0 + (C ′′

3,3 − C ′′
1,3 − 2C ′′

4,4) cosψ0 sin
3 ψ0, (4.23g)

C ′
3,3 = C ′′

1,1 sin
4 ψ0 + C ′′

3,3 cos
4 ψ0 + (2C ′′

1,3 + 4C ′′
4,4) sin

2 ψ0 cos
2 ψ0, (4.23h)

C ′
3,4 = (C ′′

3,3 − C ′′
1,3 − 2C ′′

4,4) cos
3 ψ0 sinψ0 + (C ′′

1,3 − C ′′
1,1 + 2C ′′

4,4) cosψ0 sin
3 ψ0, (4.23i)

C ′
4,4 = C ′′

4,4 + (C ′′
1,1 + C ′′

3,3 − 2C ′′
1,3 − 4C ′′

4,4) sin
2 ψ0 cos

2 ψ0, (4.23j)

C ′
5,5 = C ′′

4,4 cos
2 ψ0 + C ′′

6,6 sin
2 ψ0, (4.23k)

C ′
5,6 = (C ′′

4,4 − C ′′
6,6) cosψ0 sinψ0, (4.23l)

C ′
6,6 = C ′′

4,4 sin
2 ψ0 + C ′′

6,6 cos
2 ψ0. (4.23m)

Figure 4.28a displays the compressional moduli C ′
1,1, C

′
2,2, and C

′
3,3 characterizing the slow

Austin Chalk TI formation dependent on the inclination angle ψ0. Since the sti�ness tensor

elements are rotated from the crystallographic reference frame to the borehole reference frame

around the x′1�axis, the latter always lies in the isotropic plane, and the elastic modulus C ′
1,1

is constant for all inclinations (Eq. 4.23a). In contrast, the sti�ness tensor elements C ′
2,2 and

C ′
3,3 change with the inclination angle in a complementary manner (Eq. 4.23e and 4.23h). If

(a) Compressional moduli (b) Shear moduli

(c) Compressional wave velocity (d) Shear wave velocities

Fig. 4.28: The �gures display various sti�ness tensor elements characterizing the slow Austin Chalk TI for-
mation (a�b) and the corresponding velocities of the vertically propagating qP-, qSV- and SH-waves (c�d)
dependent on the inclination angle ψ0. The exact wave velocities obtained by solving the Christo�el equation
are plotted by the solid lines, whereas the dashed lines display approximated wave velocities using single
sti�ness tensor elements expressed in the borehole reference frame.
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the inclination angle is zero (VTI), the elements C ′
2,2 and C

′
1,1 coincide because, in this case,

both de�ne the P-wave velocity in the isotropic plane. The element C ′
3,3 has a lower value and

controls the velocity of the vertically propagating P-wave parallel to the vertical symmetry

axis. On the other hand, if the inclination attains ψ0 = 90◦ (HTI), the components C ′
1,1

and C ′
3,3 are equal because the x′1�x

′
3 plane de�nes the isotropic plane in this case, and the

component C ′
2,2 becomes equal to C ′′

3,3 de�ning the P-wave velocity in x′2�direction parallel

to the TI symmetry axis.

The elastic shear moduli of the slow Austin Chalk formation are displayed in �gure 4.28b in

relation to the inclination angle. Similar to the compressional moduli C ′
2,2 and C

′
3,3, the shear

moduli C ′
5,5 and C

′
6,6 show a complementary ascending and descending behavior, respectively

(Eq. 4.23k and 4.23m). The sti�ness tensor element C ′
4,4 is symmetric at ψ0 = 45◦, where it

attains its maximum value. If the inclination angle is zero (VTI), the elastic moduli C ′
4,4 and

C ′
5,5 coincide and de�ne the shear wave velocities of the vertically propagating shear waves.

On the other hand, if the inclination angle is ψ0 = 90◦ (HTI), the value of the elastic modulus

C ′
5,5 controlling the vertical SH-wave velocity is higher than that of the shear modulus C ′

4,4

de�ning the vertical SV-wave velocity.

For arbitrary inclinations, the velocities of vertically propagating qP- and qSV-waves are not

de�ned by single sti�ness tensor elements because they are no longer pure modes. For instance,

the compressional motion (parallel to the propagation direction) of the vertical qP-wave is

controlled by the sti�ness tensor element C ′
3,3, whereas the shear motion involves additional

sti�ness tensor elements, e.g., C ′
3,4 and C ′

4,4. Analogously, the shear motion (transverse to

the propagation direction) of the qSV-wave is de�ned by the sti�ness tensor element C ′
4,4,

whereas the compressional motion involves the sti�ness tensor element C ′
3,3. Consequently,

the Christo�el equation must be solved to obtain the exact velocities or slowness values of

the qP- and qSV-waves (Eq. 2.39). Figures 4.28c and 4.28d display the exact velocities for

the vertically propagating qP-, qSV-, and SH-waves dependent on the inclination angle ψ0 by

the solid lines. The dashed blue line in �gure 4.28c illustrates an approximated velocity for

the qP-wave de�ned only by the sti�ness tensor element C ′
3,3

vqP;∗ver (ψ0) =

√︄
C ′
3,3(ψ0)

ρs
. (4.24)

The approximated velocity coincides with the true velocity for the VTI (ψ0 = 0◦) and HTI

(ψ0 = 90◦) symmetry because, in these cases, the qP-wave becomes a pure compressional

wave. For arbitrary inclinations (0◦ < ψ0 < 90◦), the approximated velocity is slightly lower

than the true velocity since the shear motion is not considered in the former. Similarly, an

approximated velocity for the vertically propagating qSV-wave is proposed that involves only

the shear motion and depends only on the sti�ness tensor element C ′
4,4

vqSV;∗
ver (ψ0) =

√︄
C ′
4,4(ψ0)

ρs
. (4.25)
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The approximated velocity of the vertical qSV-wave is displayed by the dashed red line in

�gure 4.28d in comparison to the true velocity plotted by the solid red line. The velocities are

identical for the VTI and HTI symmetries since the qSV-wave becomes a pure shear wave.

For inclination angles in between, the approximated velocity signi�cantly deviates from the

true velocity because of the signi�cant compressional particle motion. In contrast to the qP-

and qSV-wave, the vertically propagating SH-wave is always a pure shear wave in TI media,

independent of the inclination angle. The SH-wave is polarized parallel to the x′1�axis that is

perpendicular to the plane of mirror symmetry, de�ning the monoclinic symmetry. Therefore,

the vertical SH-wave velocity is only controlled by the sti�ness tensor element C ′
5,5, and the

true velocity is de�ned by

vSHver(ψ0) =

√︄
C ′
5,5(ψ0)

ρs
. (4.26)

The solid orange line in �gure 4.28d illustrates the vertical SH-wave velocity dependent on

the inclination. Furthermore, it is shown that the vertically propagating SH-wave can become

slower than the vertically propagating qSV-wave for particular inclinations. For inclinations

smaller than ψ0 = 43.5◦, the qSV-wave velocity is greater than the SH-wave velocity, and

for greater inclinations, the SH-wave becomes the faster wave. Therefore, the fast and slow

principal directions depend on the inclination angle for the TTI symmetry. In borehole acous-

tics, the principal directions are always de�ned on the plane transverse to the borehole (x′1�x
′
2

plane), as illustrated in �gure 4.29. The SH-wave is always polarized in the isotropic plane par-

allel to the x′′1�axis (= x′1�axis) and de�nes the fast principal direction (vfast) of the Austin

Chalk TI formation for inclinations higher than ψ0 > 43.5◦. The slow principal direction

(vslow) is de�ned by the polarization direction of the qSV-wave (lying in the x′2�x
′
3 plane)

that is projected onto the plane transverse to the borehole (parallel to the x′2�axis). If the

inclination angle is smaller than ψ0 < 43.5◦, the polarization direction of the SH-wave de�nes

the slow principal direction, whereas the fast principal direction is de�ned by the projected

Fig. 4.29: The principal directions (vfast and vslow) of a TI formation, which symmetry axis (x′′3 ) is arbitrarily
inclined to the borehole axis (x′3), are de�ned, in borehole acoustics, by the polarization direction of the SH-
wave (vSH) and the polarization direction of the qSV-wave (vqSV) that is projected onto the plane transverse
to the borehole (x′1�x

′
2 plane). The �gure displays the case where the SH-wave propagates faster than the

qSV-wave.
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qSV-wave polarization direction. Thus, the fast and the slow principal direction interchange

when the inclination changes from ψ0 < 43.5◦ to ψ0 > 43.5◦, or vice versa.

The elastic compressional and shear moduli of the fast Bakken Shale formation exhibit similar

behavior to those of the slow Austin Chalk formation. Hence, the velocities of the vertically

propagating qP-, qSV- and SH-waves and their approximations are very similar and are thus

omitted here. In contrast, di�erent behavior of the elastic moduli can be observed for the

fast Cotton Valley Shale formation, which parameters are given in table 3.1. While the com-

pressional moduli exhibit similar behavior (Fig. 4.30a), the shear modulus C ′
4,4 is di�erent

(Fig. 4.30b) because it decreases with an increasing inclination for ψ0 < 45◦ to values lower

than in the VTI and HTI cases. Moreover, the vertically propagating qSV-wave is for all

inclinations (ψ0 > 0◦) slower than the vertically propagating SH-wave (Fig. 4.30d). Thus,

the SH-wave polarization direction always corresponds to the formation's fast principal direc-

tion, whereas the projection of the qSV-wave polarization direction de�nes the slow principal

direction independent of the inclination angle (Fig. 4.29). The di�erence between the approx-

imated and true velocities of the qP- and qSV-waves is smaller than for the slow Austin Chalk

formation and less than 1%. The reason for this is that the qP-wave has less particle motion

transverse to the propagation direction, and the qSV-wave has less particle motion parallel

to the propagation direction in the fast Cotton Valley Shale formation. Consequently, the

approximated velocities may be used for an inversion method instead of the true ones.

(a) Compressional moduli (b) Shear moduli

(c) Compressional wave velocity (d) Shear wave velocities

Fig. 4.30: The �gures display various sti�ness tensor elements characterizing the fast Cotton Valley Shale
TI formation (a�b) and the corresponding velocities of the vertically propagating qP-, qSV- and SH-waves
(c�d) dependent on the inclination angle ψ0. The exact wave velocities obtained by solving the Christo�el

equation are plotted by the solid lines, whereas the dashed lines display approximated wave velocities using
single sti�ness tensor elements expressed in the borehole reference frame.
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The following section investigates the borehole wave�eld excited by a monopole source. It

is presented that the refracted qSV- and SH-waves, traveling at slightly di�erent velocities,

are hard to distinguish for low inclination angles. Furthermore, the velocity of the Stoneley

wave in the low-frequency limit is de�ned by the azimuthal average of the sti�ness tensor

element C6,6. The next sections show that the behavior of the �exural and quadrupole waves

in the TTI case is similar to the HTI case. All cylindrical waves split into a fast and a slow

principal cylindrical wave. Their di�erence in the waveforms and phase slowness dispersion

curves depends on the inclination angle of the TI symmetry axis to the vertical borehole axis.

4.3.1. Monopole excitation

Figure 4.31a displays the semblance analysis (App. D.1) of the head waves and the Stoneley

wave excited by a monopole source in an open �uid-�lled borehole surrounded by the fast

Bakken Shale TTI formation, where the symmetry axis is inclined to the borehole axis by

ψ0 = 75◦. Like in the HTI case, the semblance plot shows one maximum corresponding to

the refracted qP-wave and two maxima corresponding to the refracted SH- and qSV-wave.

The SH-wave is faster than the qSV-wave, which is also true for an inclination of ψ0 = 60◦,

but the di�erence in the shear wave velocities becomes smaller, as illustrated in �gure 4.31b.

The maxima corresponding to the refracted qSV- and SH-waves are not clearly separated and

are hard to distinguish. If the inclination angle further decreases, only one maximum for the

(a) Semblance (ψ0 = 75◦) (b) Semblance (ψ0 = 60◦)

(c) Phase slowness dispersion (d) Tube wave slowness

Fig. 4.31: Monopole excitation in a �uid-�lled borehole surrounded by the fast Bakken Shale TTI formation
in the absence of a logging tool. The �rst-row �gures (a�b) display the semblance analysis (App. D.1) of
the refracted P-, refracted shear, and Stoneley waves for two di�erent inclination angles (ψ0 = 75◦ (a) and
ψ0 = 60◦ (b)). The bottom left �gure (c) illustrated the phase slowness dispersion curve of the Stoneley wave
for various inclination angles ψ0. The corresponding tube wave slowness (β

tube) is displayed in relation to the
inclination angle in the bottom right �gure (d).
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shear waves can be found, and the SH- and qSV-wave velocities cannot be separated in the

semblance plot. The large maximum in the upper right corner in the semblance plots belongs

to the dispersive Stoneley wave, with dispersion characteristic displayed in �gure 4.31c for

di�erent inclination angles. The tube wave slowness denoting the low-frequency limit of the

Stoneley wave increases with increasing inclination angles.

Equation 4.3 in section 4.1.1 explains that, in VTI formations, the tube wave velocity depends

only on the elastic modulus C ′′
6,6 de�ning the velocity of a horizontally propagating SH-

wave. In TTI formations, this elastic modulus C6,6 depends on the inclination angle ψ0 and

the azimuth θ0. Norris and Sinha (1993) have demonstrated that the tube wave velocity

is controlled by the azimuthal average (C6,6) of the modulus C6,6 since the Stoneley wave

exhibits an omnidirectional directivity

vtube = lim
s→0

vSt = vf

(︄
1 +

ρf
(︁
vf
)︁2

C6,6

)︄(− 1
2
)

, (4.27a)

C6,6 =
1

2π

2π∫︂
θ0=0

C6,6(θ0)dθ0, (4.27b)

=
1

8
[C1,1 + C2,2 − 2C1,2 + 4C6,6] , (4.27c)

=
1

8

[︁
C ′′
1,1

(︁
1− 2 cos2 ψ0 + cos4 ψ0

)︁
+ 2C ′′

1,3 sin
2 ψ0

(︁
cos2 ψ0 − 1

)︁
+C ′′

3,3 sin
4 ψ0 + 4C ′′

4,4 sin
2 ψ0

(︁
cos2 ψ0 + 1

)︁
+ 8C ′′

6,6 cos
2 ψ0

]︁
. (4.27d)

The averaged value C6,6 can be explicitly calculated via equation 4.27b, including azimuthal

integration of equation B.16v (App. B.2). The result is given in equation 4.27c, valid in both

the tool (x) and the borehole (x′) reference frame. Additionally, equation 4.27d expresses

the formula in the crystallographic reference frame (x′′) dependent on the inclination angle

ψ0. Figure 4.31d displays the tube wave slowness for an open �uid-�lled borehole surrounded

by the fast Bakken Shale TI formation depending on the inclination angle. As indicated,

the tube wave slowness values coincide with the low-frequency limits of the Stoneley wave

dispersion curves displayed in �gure 4.31c. If a slow TI formation surrounds the borehole,

similar behavior of the tube wave slowness is observed, and equations 4.27a�4.27d are still

valid. In contrast, the presence of an LWD tool strongly alters the tube wave slowness and

makes equation 4.27d invalid. Thus, the above equations cannot be used to develop an

inversion method for LWD monopole measurements.

4.3.2. Dipole excitation

The �exural waves excited by a dipole source in a �uid-�lled borehole surrounded by a TTI

formation depend on the source azimuth, similar to the HTI case. If the dipole source is

either aligned with the polarization direction of the SH-wave or with the polarization direc-
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tion of the qSV-wave projected onto the plane transverse to the borehole (Fig. 4.29), only

the fast and slow principal �exural waves are excited. The association of the polarization

directions to the fast and slow principal waves depends on the inclination angle ψ0 and the

corresponding slowness values for the SH- and qSV-wave. Moreover, Figures 4.32a�4.32b dis-

play the dispersion characteristic of both principal �exural waves in the slow Austin Chalk TI

formation, whose symmetry axis is inclined to the borehole axis by ψ0 = 15◦ and ψ0 = 30◦,

respectively. The principal �exural wave aligned with the projected qSV-wave polarization

direction (red) is at low frequencies slightly faster than the principal �exural wave aligned

with the SH-wave polarization direction (blue). Consequently, the fast principal direction

coincides with the qSV-wave polarization direction projected onto the plane transverse to the

borehole, and the associated �exural wave is referred to as the fast principal �exural wave.

In contrast, for higher inclination angles (Fig. 4.32c�4.32e), the �exural wave aligned with

(a) ψ0 = 15◦ (b) ψ0 = 30◦

(c) ψ0 = 45◦ (d) ψ0 = 60◦

(e) ψ0 = 75◦ (f) qSV- and SH-slowness

Fig. 4.32: Phase slowness dispersion curves of the principal fast and slow �exural waves excited in a �uid-�lled
borehole surrounded by the slow Austin Chalk TI formation for various inclinations (ψ0 = 15◦ (a), 30◦ (b),
45◦ (c), 60◦ (d), and 75◦ (e)) in the absence of a logging tool. The principal �exural waves are aligned with the
(projected) polarization directions of the vertically propagating SH- and qSV-waves, respectively. The black
lines represent their slowness values, additionally displayed in the last �gure (f) in relation to the inclination
angle ψ0.
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the SH-wave polarization direction (blue) is the faster one and is thus referred to as the fast

principal �exural wave. Moreover, �gure 4.32f illustrates the slowness values of the qSV-

and SH-waves dependent on the inclination. Accordingly, for inclinations smaller than 43.5◦,

the fast principal �exural wave is aligned with the projected qSV-wave polarization direction

while it is, for higher inclination angles, aligned with the SH-wave polarization direction. For

slight di�erences in the qSV- and SH-wave slowness values, e.g., at ψ0 = 45◦, the dispersion

curves of the fast and slow principal waves become hard to distinguish.

The sensitivity analysis of the dispersion curves of the principal �exural waves to the sti�ness

tensor elements is displayed in �gure 4.33 for the inclination angle ψ0 = 60◦. As expected,

the slowness of the fast principal �exural wave is highly sensitive to the elastic constant C ′
5,5

(∝ vSH) and zero to C ′
4,4 in the low-frequency limit (Fig. 4.33a). In contrast, the slowness

dispersion curve of the slow principal �exural wave is sensitive only to the modulus C ′
4,4 at

the cuto� frequency (Fig. 4.33b).

(a) Fast �exural wave sensitivity (b) Slow �exural wave sensitivity

Fig. 4.33: Sensitivity analysis of the phase slowness dispersion curves of the principal fast (a) and slow (b)
�exural waves to the P-wave velocity in the borehole �uid (vf), and the elastic moduli C′

4,4 and C′
6,6 of the

Austin Chalk TTI formation exhibiting an inclination of ψ0 = 60◦.

If the fast Bakken Shale formation is considered instead of the slow Austin Chalk formation,

the results are quite similar because the dependency of the shear wave velocities on the inclina-

tion angle is similar. For this reason, the Cotton Valley Shale formation is investigated instead

of the Bakken Shale formation as an example of fast TTI formations. Figure 4.34f displays

the slowness of the vertically propagating SH- and qSV-waves dependent on the inclination

angle ψ0. In contrast to the slow Austin Chalk formation, the slowness of the qSV-wave is

for all inclinations higher than the slowness of the SH-wave. Hence, a dipole source aligned

with the polarization direction of the SH-wave excites only the fast principal �exural wave

for all inclination angles (ψ0 > 0). Analogously, the slow principal �exural wave is always

polarized parallel to the projected polarization direction of the qSV-wave (Fig. 4.32a�4.32e).

If the inclination angle vanishes (VTI), the SH- and qSV-wave velocities coincide, and only

one �exural wave is excited.
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(a) ψ0 = 15◦ (b) ψ0 = 30◦

(c) ψ0 = 45◦ (d) ψ0 = 60◦

(e) ψ0 = 75◦ (f) qSV- and SH-slowness

Fig. 4.34: Phase slowness dispersion curves of the principal fast and slow �exural waves excited in a �uid-�lled
borehole surrounded by the fast Cotton Valley Shale TI formation for various inclinations (ψ0 = 15◦ (a), 30◦

(b), 45◦ (c), 60◦ (d), and 75◦ (e)) in the absence of a logging tool. The principal �exural waves are aligned
with the (projected) polarization directions of the vertically propagating SH- and qSV-waves, respectively.
The black lines represent their slowness values, additionally displayed in the last �gure (f) in relation to the
inclination angle ψ0.

The presence of an LWD tool has a strong in�uence on the dispersion characteristics of the

�exural waves in the TTI case, like in the HTI case. Figure 4.35 displays the phase slowness

dispersion curves of the principal �exural waves in the presence of an LWD tool for inclination

angles of ψ0 = 30◦ and ψ0 = 60◦. In the slow Austin Chalk formation, only the principal tool

�exural waves are present (Fig. 4.35a and 4.35c), whereas the formation �exural waves are

additionally visible in the fast Cotton Valley Shale formation (Fig. 4.35b and 4.35d). These

principal formation �exural waves attain the true shear wave slowness values of the formation

at the cuto� frequency, in the same manner as in the absence of a tool. Hence, in fast for-

mations, the formation �exural wave might be used to determine formation TI parameters.

The fast and slow tool �exural waves di�er only marginally and are thus not sensitive to TI

parameters. In contrast, the phase slowness dispersion curves of the principal tool �exural

waves are di�erent in the slow Austin Chalk formation. The di�erence in the dispersion curves
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(a) ψ0 = 30◦ (slow TTI) (b) ψ0 = 30◦ (fast TTI)

(c) ψ0 = 60◦ (slow TTI) (d) ψ0 = 60◦ (fast TTI)

Fig. 4.35: Phase slowness dispersion curves of the principal tool and formation �exural waves excited in a �uid-
�lled borehole surrounded by the slow Austin Chalk (left) and fast Cotton Valley Shale (right) TI formation
for various inclinations (ψ0 = 30◦ (a�b), 60◦ (c�d)) in the presence of an LWD tool. The principal tool and
formation �exural waves (if they are present) are aligned with the (projected) polarization directions of the
vertically propagating SH- and qSV-waves, respectively. The black lines represent their slowness.

(a) pXX (b) pXY

(c) pY X (d) pY Y

Fig. 4.36: Four-component data matrix of the time-domain waveforms excited by an LWD cross-dipole source
azimuthally o�set to the principal directions of the slow Austin Chalk TTI formation (ψ0 = 60◦) by θF = 30◦.
The source (fc = 4kHz) is centered in a �uid-�lled borehole in the presence of an LWD tool, and the axial
o�set between the cross-dipole source and the cross-dipole receiver is z0 = 3.262m. The blue waveforms result
from FD modeling using an azimuthally o�set cross-dipole source, whereas the red waveforms are computed
by rotating the waveforms of the principal tool and formation �exural waves via the Alford rotation.
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of both tool modes implies that they are sensitive to formation TI parameters, especially if

the inclination angle is ψ0 = 60◦, for which the di�erence of the shear wave slowness values

is higher than for an inclination of ψ0 = 30◦. Hence, the principal tool �exural waves might

be used to determine the TI parameters in slow formations.

Moreover, �gure 4.36 shows that the generalized formula for the Alford rotation does not only

apply in HTI formations but also in TTI formations. The blue waveforms are simulated using

FD modeling of an azimuthally o�set LWD cross-dipole source in the Austin Chalk formation

(ψ0 = 60◦). The dashed red waveforms are obtained by applying the generalized Alford

rotation in which the FD modeled fast and slow principal �exural waves are substituted. The

marginal deviation of both waveforms is induced by numerical errors.

4.3.3. Quadrupole excitation

Since the general characteristic of the �exural waves is similar in TTI and HTI formations,

the same is expected for the quadrupole waves. Accordingly, the fast principal quadrupole

mode is excited by a quadrupole source, with constituent sources aligned with the polariza-

tion directions of the SH- and qSV-waves. The polarization direction of the latter is projected

onto the plane transverse to the borehole (Fig. 4.29). On the other hand, the slow principal

quadrupole mode is azimuthally rotated to the fast principal quadrupole mode by 45◦ in the

θ�space as described in section 4.2.4. Figure 4.37 displays the directivities of both principal

quadrupole waves excited by an aligned cross-quadrupole source in a �uid-�lled borehole sur-

rounded by the slow Austin Chalk TI formation, with symmetry axis inclined to the borehole

axis by ψ0 = 30◦ (Fig. 4.37a�4.37b) and ψ0 = 60◦ (Fig. 4.37e�4.37f), respectively. A cross-

quadrupole source aligned with the polarization directions of the SH- and qSV-wave in TTI

formations only excites the fast and slow principal quadrupole mode, respectively.

Figures 4.37c and 4.37d illustrate the directivities of the quadrupole modes excited by an

azimuthal o�set cross-quadrupole source (θF = 30◦) for an inclination angle ψ0 = 30◦. In con-

trast to the HTI case, the o�set cross-quadrupole source excites mainly an in-line quadrupole

mode. Consequently, the cross-components of the four-component data matrix are close to

zero. Equation 4.16 explains that the cross-components either vanish if the source azimuth

corresponds to a principal direction (nθF = kπ/2, k ∈ Z) or if the fast and slow princi-

pal waves are identical. Since the cross-components are zero independent of the azimuth,

the latter must be true, which is veri�ed by �gure 4.38c displaying the waveforms of both

principal waves. The coincidence of both waveforms implies that the fast and slow principal

quadrupole modes are almost identical (CF
2 ≈ CS

2 ). Thus, the distinction between fast and

slow is no longer meaningful because only one quadrupole mode C2 is excited independently

of the source azimuth, such as in isotropic formations. The phase slowness dispersion curve

of this quadrupole mode (Fig. 4.38d) illustrates that its low-frequency limit coincides with

the phase slowness of the qSV-wave, which is for the inclination ψ0 = 30◦ faster than the

SH-wave. If the inclination angle becomes greater, the quadrupole wave characteristic be-

comes more similar to the HTI case. Figure 4.37g and 4.37h illustrate the directivities of
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(a) pX(θF = 0◦, ψ0 = 30◦) (b) pY (θF = 0◦, ψ0 = 30◦) (c) pX(θF = 30◦, ψ0 = 30◦) (d) pY (θF = 30◦, ψ0 = 30◦)

(e) pX(θF = 0◦, ψ0 = 60◦) (f) pY (θF = 0◦, ψ0 = 60◦) (g) pX(θF = 30◦, ψ0 = 60◦) (h) pY (θF = 30◦, ψ0 = 60◦)

Fig. 4.37: Directivities of the quadrupole modes excited by a cross-quadrupole source aligned with the principal
directions of the Austin Chalk TTI formation (a, b, e, f) and azimuthally o�set to them by θF = 30◦ (c, d, g,
h). The directivity is computed from the maximum absolute amplitude of the functions p̌X (Eq. 4.14) and p̌Y
(Eq. 4.15), respectively, at a �xed radius and the axial o�set z0 = 3.262m. The directivity of the fast principal
quadrupole mode is displayed in blue, whereas the slow one is plotted in red. In the azimuthally o�set case,
the excited quadrupole mode splits into the fast and slow principal quadrupole modes indicated by the dashed
lines. All directivities are displayed for the inclination angles ψ0 = 30◦ (a�d) and ψ0 = 60◦ (e�h).

the quadrupole modes excited by an azimuthally o�set cross-quadrupole source (θF = 30◦)

for the inclination angle ψ0 = 60◦. The cross-components of the four-component matrix are

non-zero in this case, and the principal waves are distinguishable into the fast and the slow

principal quadrupole mode. Fig. 4.38g shows that the waveforms are di�erent, especially at

earlier arrival times corresponding to lower frequencies. Accordingly, the phase slowness dis-

persion curves of both principal quadrupole modes are distinct. While the fast quadrupole

mode propagates at low frequencies with the fast SH-wave slowness, the low-frequency limit

of the slow principal quadrupole does not attain the slow qSV-wave slowness. Instead, the

slow principal quadrupole mode propagates faster than the qSV-wave, such as in the HTI case

(Fig. 4.21a). Figure 4.38 gives an overview of the waveforms and phase slowness dispersion

curves of the fast and slow principal quadrupole modes excited in a �uid-�lled borehole in

the presence of an LWD tool surrounded by the slow Austin Chalk TTI formation exhibiting

inclinations of ψ0 = 15◦, 30◦, 45◦, 60◦ and 75◦. For inclinations smaller than 60◦, the di�erence

in the slowness values of the SH- and the qSV-waves are small (Fig. 4.38a�4.38f), wherefore
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(a) Waveforms ψ0 = 15◦ (b) Phase slowness dispersion ψ0 = 15◦

(c) Waveforms ψ0 = 30◦ (d) Phase slowness dispersion ψ0 = 30◦

(e) Waveforms ψ0 = 45◦ (f) Phase slowness dispersion ψ0 = 45◦

(g) Waveforms ψ0 = 60◦ (h) Phase slowness dispersion ψ0 = 60◦

(i) Waveforms ψ0 = 75◦ (j) Phase slowness dispersion ψ0 = 75◦

Fig. 4.38: Waveforms (left) and phase slowness dispersion curves (right) of the principal formation quadrupole
modes excited in a �uid-�lled borehole surrounded by the slow Austin Chalk TI formation for various in-
clinations (ψ0 = 15◦ (a�b), 30◦ (c�d), 45◦ (e�f), 60◦ (g�h), and 75◦ (i�j)) in the presence of an LWD tool.
The principal quadrupole modes are aligned with the (projected) polarization directions of the vertically
propagating SH- and qSV-waves, respectively. The black lines represent their slowness values.
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the fast and the slow principal quadrupole modes cannot be distinguished. For higher inclina-

tion angles (ψ0 = 60◦ or ψ0 = 75◦), the di�erence of the SH- and qSV-wave slowness become

greater, and the fast and slow principal quadrupole modes are di�erent (Fig. 4.38g�4.38j).

Figure 4.39 displays the sensitivity analysis of the phase slowness dispersion curves of the

principal quadrupole modes to the formation's TI parameters (ψ0 = 60◦) given in the bore-

hole reference frame (x′) and in the crystallographic reference frame (x′′), respectively. It is

expected that the fast principal quadrupole wave is maximally sensitive to the elastic modulus

C ′
5,5 in the low-frequency limit, controlling the fast shear wave (SH-wave) slowness. In con-

trast, the slow principal quadrupole mode should be maximally sensitive to the sti�ness tensor

element C ′
4,4 at the cuto� frequency, which mainly determines the slow shear wave (qSV-wave)

slowness. However, �gures 4.39a and 4.39c show di�erent behavior. While the sensitivity of

the slow principal quadrupole wave dispersion curve is higher to the elastic modulus C ′
4,4 than

to C ′
5,5, the fast principal quadrupole dispersion curve exhibits a strong sensitivity to both

moduli. Thus, it is quite complicated to obtain true formation shear wave slowness values

from quadrupole measurements in TTI formations. Furthermore, �gures 4.39b and 4.39d

display the sensitivities of the dispersion curves to the sti�ness tensor elements given in the

crystallographic reference frame. The dispersion curves of both principal quadrupole modes

are sensitive to all �ve parameters, and a quantitative relation, such as for the tube wave

velocity, cannot be derived.

If the slow Austin Chalk TI formation is replaced by the fast Cotton Valley Shale TI formation,

the fast and the slow principal modes become even harder to distinguish. Figure 4.40 displays

(a) Fast quadrupole mode sensitivity (x′) (b) Fast quadrupole mode sensitivity (x′′)

(c) Slow quadrupole mode sensitivity (x′) (d) Slow quadrupole mode sensitivity (x′′)

Fig. 4.39: Sensitivity analysis of the phase slowness dispersion curves of the principal fast (a�b) and slow (c�d)
quadrupole modes to the elastic moduli of the Austin Chalk TTI formation expressed in the borehole x′′ (left)
and crystallographic reference frame x′ (right), respectively. The inclination angle is ψ0 = 60◦.
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(a) Waveforms ψ0 = 15◦ (b) Phase slowness dispersion ψ0 = 15◦

(c) Waveforms ψ0 = 30◦ (d) Phase slowness dispersion ψ0 = 30◦

(e) Waveforms ψ0 = 45◦ (f) Phase slowness dispersion ψ0 = 45◦

(g) Waveforms ψ0 = 60◦ (h) Phase slowness dispersion ψ0 = 60◦

(i) Waveforms ψ0 = 75◦ (j) Phase slowness dispersion ψ0 = 75◦

Fig. 4.40: Waveforms (left) and phase slowness dispersion curves (right) of the principal formation quadrupole
modes excited in a �uid-�lled borehole surrounded by the fast Cotton Valley Shale TI formation for various
inclinations (ψ0 = 15◦ (a�b), 30◦ (c�d), 45◦ (e�f), 60◦ (g�h), and 75◦ (i�j)) in the presence of an LWD
tool. The principal quadrupole modes are aligned with the (projected) polarization directions of the vertically
propagating SH- and qSV-waves, respectively. The black lines represent their slowness values.
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the waveforms and phase slowness dispersion curves of the principal quadrupole modes excited

in a �uid-�lled borehole in the presence of an LWD tool surrounded by the fast Cotton Valley

Shale TI formation exhibiting various inclination angles. It can be seen that even for the

highest displayed inclination angle ψ0 = 75◦, the waveforms (Fig. 4.40i) are almost identical,

and the dispersion curves (Fig. 4.40j) are only slightly di�erent in the low-frequency limit.

Thus, the quadrupole mode seems to be not appropriate to determine TI parameters in fast

formations.

4.3.4. Summary

In contrast to the VTI and HTI cases, it is not possible to summarize the sensitivities of the

refracted and borehole waves to particular sti�ness tensor elements in a table for the general

TTI case. The problem is that the velocities of vertically propagating plane waves are no

longer de�ned by single sti�ness tensor elements but by a combination of them dependent on

the inclination between the TI symmetry axis and the vertical borehole axis. Consequently,

the borehole-guided Stoneley, �exural, and quadrupole waves can be sensitive to all sti�ness

tensor elements expressed in the crystallographic reference frame dependent on the inclination

angle ψ0.

In the absence of a logging tool, the slowness of the Stoneley wave in the low-frequency limit

is de�ned by the azimuthal average of the sti�ness tensor element C ′
6,6 expressed in the bore-

hole reference frame. However, this elastic constant itself depends on several sti�ness tensor

elements given in the crystallographic reference frame and the inclination angle. Furthermore,

the �exural waves split into fast and slow principal �exural waves like in the HTI case. The

principal waves propagate at the cuto� frequency with the slowness of vertically propagating

qSV- and SH-waves. Their slowness values also depend on several sti�ness tensor elements

given in the crystallographic reference frame and the inclination angle.

The presence of an LWD tool alters the slowness of the Stoneley wave in the low-frequency

limit, such as in the VTI and HTI cases. The tool �exural waves split like the formation

�exural waves in fast and slow principal tool �exural waves, which are sensitive to formation

parameters at intermediate and high frequencies in slow formations. Thus, the slowness values

of the vertically propagating qSV- and SH-waves may be obtained from the principal tool

�exural waves using a model-based inversion method. In fast formations, the low-frequency

limit of the formation �exural waves can be used to obtain the shear slowness values since the

principal tool �exural waves are almost identical. The formation quadrupole mode splits into

the fast and the slow principal formation quadrupole mode like the �exural wave. However,

their phase slowness dispersion curves do not attain the slowness values of the vertically

propagating qSV- and SH-waves at the cuto� frequency. Moreover, the principal quadrupole

modes are almost identical in fast formations and for low inclination angles. Consequently,

the quadrupole waves are only helpful in slow formations and at high inclination angles.
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4.4. Anisotropy-induced mode contaminants

An exactly centered multipole source in a perfectly cylindrical, �uid-�lled borehole surrounded

by an isotropic formation excites only a limited number of borehole modes. Geerits and Kranz

(2017) derived a formula for the acoustic pressure in the borehole �uid expressed as

p̌(r, θ, z, s) =
∑︂
k

ϵkČkn(r, z, s) cos(knθ), k =

⎧⎪⎨⎪⎩
0, 2, 4, ... if σ = 1

1, 3, 5, ... if σ = −1
, (4.28)

where the e�ective cylinder functions Čkn are de�ned in equation 4.9, and ϵk is the Neumann

factor de�ned by

ϵk =

⎧⎪⎨⎪⎩
1 if k = 0

2 else
. (4.29)

The equation for the acoustic pressure considers both an equal polarity excitation (σ = 1)

and an alternate polarity excitation (σ = −1). Accordingly, an alternate polarity multipole

source of the order n excites all borehole modes having azimuthal wavenumbers, which are

odd multiples of n (m = kn, k = 1, 3, 5, ...). Hence, a dipole source (n = 1) excites additional

to the leading �exural wave (m = 1) also the hexapole wave (m = 3), as discussed in sec-

tion 4.2.5, the decapole wave (m = 5), and all higher odd multiples of n = 1. Analogously,

a quadrupole source (n = 2) excites the leading quadrupole wave (m = 2), the dodecapole

wave (m = 6), and higher odd multiples of n = 2. In all cases, the amplitudes of the excited

borehole modes rapidly decrease with increasing azimuthal wavenumbers. Thus, only the

�rst multiple of n might be detectable in real measurements. On the other hand, an equal

polarity multipole source consisting of 2n source segments excites all borehole modes with

azimuthal wavenumbers equal to even multiples of n (m = kn, k = 0, 2, 4, ...). Consequently,

all equal polarity multipole sources excite a Stoneley wave having the azimuthal wavenumber

m = 0 independent of the source order n. The latter determines which higher-order modes

are additionally excited. For instance, a monopole source consisting of two source segments

(n = 1) excites in addition to the Stoneley wave, a quadrupole wave (m = 2), an octupole

wave (m = 4), and all higher even multiples of one. If the monopole source consists of four

source segments (n = 2), the excited next higher-order mode following the Stoneley wave is

the octupole wave, and the quadrupole mode is not excited.

The above-explained mode excitations are only valid for a perfect azimuthal symmetry, which

means that the cross-section of the borehole is perfectly circular, the tool is exactly centered,

and the source signals of the constituting sources are perfectly matched in amplitude and

phase. Norris (1990) and Nicoletis et al. (1990) investigated the e�ect of non-circular bore-

holes on the Stoneley wave velocity in the low-frequency limit. Additionally, Randall (1991)

modeled the Stoneley and �exural borehole waves in elliptical boreholes using FD modeling.

Leslie and Randall (1990), as well as Byun and Toksöz (2003), investigated the e�ect of an
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eccentric tool, and Geerits et al. (2010) quanti�ed the e�ect of source imbalances. The result

of their investigation is that a non-circular borehole, an eccentric tool, or source imbalances

induce mode contaminants, and the above-described mode excitation patterns are violated,

e.g., an alternate polarity multipole source may also excite even multiples of n or modes that

have azimuthal wavenumbers lower than n. The other way around, equal polarity multipole

sources may excite odd multiples of n if the symmetry is disturbed.

Another mechanism that induces mode contaminants is formation anisotropy. Norris and

Sinha (1996) have shown that the Stoneley and �exural waves couple in TI formations if the

symmetry axis is inclined to the borehole axis (0 < ψ0 < π/2). They concluded that the

coupling seemed to be stronger in the slow Austin Chalk formation than in the fast Bakken

Shale formation. In the following section, the anisotropy-induced mode contaminants are

investigated in addition to the Stoneley and �exural waves also for higher-order cylindrical

waves, such as the quadrupole, hexapole, and octupole waves. For this reason, synthetic

waveforms of borehole waves are modeled, which are excited by centered multipole sources

of di�erent excitation orders in a circular �uid-�lled borehole. The surrounding formation is

chosen to be the slow Austin Chalk formation for better visualization since the amplitudes

of the mode contaminants are greater in slow formations than in fast formations. Moreover,

the two exceptional VTI and HTI symmetries, as well as the general TTI symmetry, are

investigated separately. The synthetic waveforms are modeled at an o�set of z0 = 3.26m

at seventy-two receivers (N = 72) azimuthally separated from each other by ∆θrec = 5◦. A

discrete version of the azimuthal Fourier transform (App. A.3) is used to extract the di�erent

borehole modes from the waveforms (Geerits et al., 2018)

p̃m(r, z, t) =
1

N

N−1∑︂
j=0

exp (−imθj) p(r, θj , z, t), (4.30a)

p(r, θj , z, t) = Re

⎡⎣N−1∑︂
j=0

exp (imθj) ϵmp̌m(r, z, t)

⎤⎦ , (4.30b)

θj =
2πj

N
, ϵm =

⎧⎪⎨⎪⎩
1 if m = 0

2 else
.

First, a particular borehole mode having the azimuthal wavenumber m is extracted from the

waveforms using equation 4.30a. Next, the output is inversely transformed via equation 4.30b

to obtain the azimuthal directivity of the extracted mode. Subsequently, the maximum ab-

solute amplitudes of the resulting waveforms are plotted in relation to the azimuth to obtain

the directivity of the excited borehole modes. The amplitudes of the borehole modes are not

normalized in the �gures to visualize the amplitude ratio of the mode contaminants. The

following sections investigate the anisotropy-induced mode contaminants in a systematic way

for the VTI, HTI, and TTI symmetries. An overview of the results is given in the last section.
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4.4.1. Vertical transverse isotropy (VTI)

Figure 4.41a displays the directivities of the borehole waves excited by an equal polarity

LWD monopole source in a �uid-�lled borehole surrounded by the slow Austin Chalk VTI

formation. In agreement with the isotropic case, the monopole source of the order n = 2

excites only a strong Stoneley wave (m = 0) and a weak octupole wave (m = 4) as the

next higher-order mode. Similarly, an alternate polarity dipole source (n = 1) excites only

a �exural wave (m = 1) and a hexapole wave (m = 3) in VTI formations (Fig. 4.41b). The

quadrupole source (n = 2) excites the dominating quadrupole wave (m = 2), as displayed in

�gure 4.41c, whereas the excited higher-order dodecapole wave (m = 6) has amplitudes that

are too weak to be visible in the plot. Since all three sources excite the same modes as in

the isotropic case, it can be concluded that anisotropy of the VTI type does not induce mode

contaminants. The reason for this is the azimuthal invariance of the wave velocities in VTI

formations since the plane transverse to the borehole coincides with the isotropic plane of a

TI formation.

(a) Monopole excitation (b) Dipole excitation (c) Quadrupole excitation

Fig. 4.41: Directivities of the borehole waves excited by an equal polarity monopole (n = 2, σ = 1) (a), an
alternate polarity dipole (n = 1, σ = −1) (b), and an alternate polarity quadrupole (n = 2, σ = −1) (c) source
in a �uid-�lled borehole surrounded by the slow Austin Chalk VTI formation in the presence of an LWD tool.

4.4.2. Horizontal transverse isotropy (HTI)

In the next step, the HTI symmetry is considered. Figure 4.42 displays the directivities of

the borehole waves emitted by LWD monopole, quadrupole, and octupole sources, respec-

tively. In all cases, the sources are either aligned with the formation's fast principal direction

(Fig. 4.42b�4.42c) or aligned with the formation's slow principal direction (Fig. 4.42e�4.42f).

The omnidirectional monopole source excites independent of its source azimuth relative to

the formation's principal directions, the dominating Stoneley wave (m = 0), the fast principal

quadrupole wave (m = 2), the fast principal octupole wave (m = 4), and higher-order fast

principal cylindrical waves with even azimuthal wavenumbers. The latter are omitted in the

�gures because their amplitudes are too small for visualization. Further investigation shows

that a monopole source always excites all cylindrical waves with even azimuthal wavenumbers

in HTI formations independent of the excitation order n. This is di�erent from the isotropic

case, where the source order determines which higher-order cylindrical waves are excited. For
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(a) Monopole excitation (b) Quadrupole excitation (fast) (c) Octupole excitation (fast)

(d) Monopole excitation (e) Quadrupole excitation (slow) (f) Octupole excitation (slow)

Fig. 4.42: Directivities of the borehole waves excited by equal polarity monopole (n = 2, σ = 1) (a, d), alternate
polarity quadrupole (n = 2, σ = −1) (b, e), and alternate polarity octupole (n = 4, σ = −1) (c, f) sources in a
�uid-�lled borehole surrounded by the slow Austin Chalk HTI formation in the presence of an LWD tool. The
multipole sources are aligned with the formation's fast (a�c) and slow (d�f) principal directions, respectively.
The monopole excitation is invariant to the source azimuth.

instance, the monopole source of order n = 2 displayed in �gures 4.42a and 4.42d excites the

Stoneley wave and the octupole wave, but no quadrupole mode in the isotropic formation.

Consequently, the excited fast principal quadrupole wave in the HTI formation is anisotropy-

induced. The other way around, a quadrupole source (n = 2) aligned with the formation's

fast principal direction (Fig. 4.42b) excites the Stoneley wave, the dominating fast principal

quadrupole wave, the fast principal octupole wave, and higher-order cylindrical waves with

even azimuthal wavenumbers. Since a quadrupole source excites only the quadrupole wave

and the next higher-order dodecapole wave in isotropic or VTI formations (Fig. 4.41c), the

emitted Stoneley wave and the fast principal octupole wave are anisotropy-induced. This

HTI-induced coupling between the Stoneley wave and all fast principal cylindrical waves with

even azimuthal wavenumbers can be further veri�ed by �gure 4.42c, displaying the directivi-

ties of the borehole waves excited by an octupole source (n = 4) aligned with the formation's

fast principal direction. In contrast to the isotropic or VTI case, this octupole source excites

the anisotropy-induced fast principal quadrupole wave and the Stoneley wave. Besides, if

the quadrupole or octupole source is aligned with the formation's slow principal direction,

only the slow principal quadrupole wave, the slow principal octupole wave, and higher-order

slow principal cylindrical waves with even azimuthal wavenumbers are excited, but not the

Stoneley wave (Fig. 4.42e�4.42f).
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Further investigation of the Stoneley wave excited by a quadrupole source that is azimuthally

o�set to the fast principal direction of the formation shows that the amplitude of the Stone-

ley wave depends on this azimuth θF. The blue circles in �gure 4.43 display the maximum

amplitude of the Stoneley wave excited by a quadrupole source in relation to the azimuthal

source o�set θF to the formation's fast principal direction. The negative maximum amplitudes

mean that the excited Stoneley wave has the opposite polarity. While the amplitude is at a

maximum if the quadrupole source is aligned with the formation's fast principal direction, it

vanishes if the quadrupole source is aligned with the formation's slow principal direction. The

�gure deduces that the Stoneley wave amplitude follows a cos(2θF)�dependency plotted by

the solid blue line. Hence, the amplitudes of the Stoneley wave excited by a quadrupole source

contain valuable information about the azimuths of the formation's principal directions. Sim-

ilarly, it can be deduced that the amplitude of the Stoneley excited by an octupole source

is proportional to cos(4θF). Consequently, the dependency of the Stoneley wave amplitude

excited by sources of higher even orders is de�ned by cos(nθF) (n = 2, 4, 6, ...).

While above only considers cylindrical waves with even azimuthal wavenumbers, the �exural

and the hexapole waves having odd azimuthal wavenumbers are discussed in this part. Fig-

ures 4.44a and 4.44c show the directivities of the borehole waves excited by a dipole source

(n = 1) aligned with the fast and the slow principal direction of the formation, respectively. In

both cases, only the principal �exural waves (m = 1), the principal hexapole waves (m = 3),

and principal higher-order cylindrical waves with odd azimuthal wavenumbers are excited

identical to the isotropic case. Additionally, �gures 4.44b and 4.44d show that the aligned

hexapole sources (n = 3) excite the respective principal hexapole waves (m = 3) and also the

respective principal �exural (m = 1) and decapole waves (m = 5). Since the latter two are

not excited by a hexapole source in isotropic or VTI formations, both are anisotropy-induced.

Fig. 4.43: Maximum amplitude of the anisotropy-(HTI-)induced Stoneley wave (C0) excited by a quadrupole
source dependent on the azimuth θF between the quadrupole excitation direction and the formation's fast
principal direction. Negative amplitude values mean opposite polarity of the Stoneley wave.
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(a) Dipole excitation (fast) (b) Hexapole excitation (fast)

(c) Dipole excitation (slow) (d) Hexapole excitation (slow)

Fig. 4.44: Directivities of the borehole waves excited by alternate polarity dipole (n = 1, σ = −1) (a, c) and
hexapole (n = 3, σ = −1) (b, d) sources in a �uid-�lled borehole surrounded by the slow Austin Chalk HTI
formation in the presence of an LWD tool. The multipole sources are aligned with the formation's fast (a�b)
and slow (c�d) principal directions, respectively.

In summary, formation anisotropy of the HTI type causes coupling between all fast principal

cylindrical waves having odd azimuthal wavenumbers as well as coupling between all slow

principal cylindrical waves having odd azimuthal wavenumbers. Besides, coupling exists also

between all slow principal cylindrical waves having even azimuthal wavenumbers (m > 0). The

anisotropy-induced coupling between all fast principal cylindrical waves with even azimuthal

wavenumbers is special because they are also coupled to the Stoneley wave. A multipole

source azimuthally o�set to the formation's principal direction excites a weighted superpo-

sition of the fast and slow principal waves for all anisotropy-induced mode contaminants.

However, the weights of the principal waves are de�ned by the generalized formula for the Al-

ford rotation (Eq. 4.17) only for the leading term (m = n), but not for the mode contaminants.

The amplitude ratios of the mode contaminants depend on di�erent parameters. One im-

portant parameter is the source spectrum since some cylindrical waves will not be excited

if the source spectrum contains only frequencies below its cuto� frequency. Moreover, the

diameter and the elastic parameters of the LWD tool also in�uence the amplitudes of the

mode contaminants. Another crucial parameter is the type of HTI formation. While in the

above examples, only the slow Austin Chalk formation is considered, the amplitudes of the

anisotropy-induced modes are signi�cantly smaller for the fast Bakken Shale formation. Nev-

ertheless, the explained mode contaminants and the dependency of the anisotropy-induced

Stoneley wave are still valid.
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Further numerical experiments have deduced an analogy between anisotropy-induced mode

contaminants and those induced by an elliptical borehole. For this investigation, FD modeling

of cylindrical waves excited by multipole sources with various excitation orders is performed.

The cross-section of the �uid-�lled borehole is de�ned by an ellipse instead of a circle, and

the surrounding formation is isotropic (Fig. 4.45a�4.45b). The semi-major axes of the ellipse

are analogous to the principal directions of an HTI formation. For instance, an omnidirec-

tional monopole source excites the dominant Stoneley wave as well as an ellipticity-induced

X-quadrupole wave and the X-octupole wave, which are aligned with the semi-major axes.

These modes are analogous to the fast principal quadrupole and octupole waves. Similarly,

an X-quadrupole source aligned with the semi-major axis excites the X-quadrupole wave, an

ellipticity-induced Stoneley wave, and an ellipticity-induced X-octupole wave. On the other

hand, a Y-quadrupole source 45◦ rotated to the semi-major axes excites only the Y-quadrupole

and the ellipticity-induced Y-octupole wave but not the Stoneley wave. The Y-quadrupole

and Y-octupole waves are analogous to the slow principal waves in an HTI formation. Indeed,

the cos(nθF)�dependency of the amplitude of the induced Stoneley wave is still valid in ellipti-

cal boreholes, where the angle θF is, in analogy, the azimuth between the excitation direction

and the larger semi-major axis of the ellipse. The ellipticity-induced coupling between the

cylindrical waves having odd azimuthal wavenumbers also shows an identical behavior to the

HTI-induced coupling and is therefore omitted here. The analogy between ellipticity-induced

and anisotropy-(HTI-)induced mode coupling can be explained by the non-circular-shaped

phase slowness surfaces of the shear waves in the plane transverse to the borehole. For in-

stance, �gure 2.4c illustrates that the SH-wave slowness has an elliptical shape in the Austin

Chalk HTI formation. The discussed analogy causes the problem that the reason for mode

contaminants in real measurements cannot be distinguished between ellipticity-induced or

anisotropy-induced. Thus, additional measurements are necessary to exclude or quantify the

borehole ellipticity.

Besides, not only an elliptical borehole but also an o�-centered tool induces mode contami-

nants (Wang and Tang, 2003) similar to the anisotropy-induced ones. In this thesis, numerical

modeling of various borehole modes is performed, which are excited by a multipole source of an

o�-centered LWD tool in a �uid-�lled circular borehole surrounded by a slow isotropic forma-

tion. The tool is shifted from the borehole center in X-direction by d = 6.5mm, whereby the

(a) Dipole sources (b) Quadrupole sources (c) Dipole sources (d) Quadrupole sources

Fig. 4.45: Schematic view of centered alternate polarity multipole sources/receivers in an elliptical borehole
(a�b) and for an o�-centered tool in a circular borehole (c�d).
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total distance between the borehole radius and the outer tool radius is RH − ROD
T = 15mm.

Furthermore, di�erent excitation directions relative to the tool eccentricity are considered,

as illustrated by �gures 4.45c and 4.45d. The X-multipole sources are aligned with the tool

eccentricity since the excitation direction of the �rst constituting source is parallel to the

shift of the tool from the borehole center. In contrast, the Y-multipole sources of the order

n are referred to as orthogonal to the tool eccentricity since the �rst constituting source is

azimuthally o�set to the eccentricity direction by π/(2n) radians. The FD simulations show

that the alternate polarity X-multipole source aligned with the tool eccentricity excites all

aligned X-borehole waves and the Stoneley wave. The same modes are excited if a monopole

source is �red. On the other hand, if the alternate polarity Y-multipole source is �red that is

orthogonal to the tool eccentricity, all orthogonal Y-borehole waves are excited but not the

Stoneley wave. This is similar to the HTI-induced mode contaminants, where the Stoneley

wave is only excited by a multipole source aligned with the fast principal direction but not

by one aligned with the slow principal direction. Indeed, it can be shown that the ampli-

tude of the eccentricity-induced Stoneley wave follows the same cos(nθF)�dependency as for

the anisotropic case, where the angle θF denotes the azimuth between the tool shift and the

excitation direction in this case. While this dependency of the Stoneley wave's amplitude is

true for all source orders if the LWD tool is o�-centered, it applies in the HTI case only for

alternate polarity multipole sources having even orders. In this way, the eccentricity-induced

mode coupling might be distinguished from the HTI-induced mode coupling.

4.4.3. Tilted transverse isotropy (TTI)

Finally, the anisotropy-induced mode contaminants are investigated in TTI formations, where

the symmetry axis is inclined to the borehole axis. Figure 4.46a shows that in TTI forma-

tions, a monopole source excites the Stoneley wave, the fast principal quadrupole wave, and

all higher-order fast principal cylindrical waves having an even azimuthal wavenumber similar

to the HTI case. However, the slow principal �exural wave and all higher-order slow principal

cylindrical waves with odd azimuthal wavenumbers are additionally excited in TTI forma-

tions. This coupling between the Stoneley wave and the �exural wave in TTI formations was

�rst discovered by Norris and Sinha (1996). Moreover, �gure 4.46 illustrates that not only the

Stoneley wave and the �exural wave couple but all cylindrical waves, following a speci�c pat-

tern. All fast principal cylindrical waves with even azimuthal wavenumbers are coupled with

the Stoneley wave and all slow principal cylindrical waves with odd azimuthal wavenumbers

C0 ⇔ CS
2j−1 ⇔ CF

2j , j ∈ N∗. (4.31)

These cylindrical waves are always excited independently of the source order. For instance,

a dipole or hexapole source aligned with the formation's slow principal direction excites the

same wave modes as a quadrupole or octupole source aligned with the formation's fast princi-

pal direction (Fig. 4.46b�4.46e). Only the amplitudes of the excited cylindrical waves depend

on the source excitation.
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(a) Monopole excitation (b) Dipole excitation (slow) (c) Quadrupole excitation (fast)

(d) Hexapole excitation (slow) (e) Octupole excitation (fast)

Fig. 4.46: Directivities of the borehole waves excited by an equal polarity monopole (n = 2, σ = 1) (a), an
alternate polarity dipole (n = 1, σ = −1) (b), quadrupole (n = 2, σ = −1) (c), hexapole (n = 3, σ = −1)
(d), and octupole (n = 4, σ = −1) (e) source in a �uid-�lled borehole surrounded by the slow Austin Chalk
TTI formation in the absence of an LWD tool. While the multipole sources of even excitation orders are
aligned with the formation's fast principal direction (c, e), the multipole sources of odd excitation orders are
aligned with the formation's slow principal directions (b, d). The monopole excitation is invariant to the
source azimuth.

The other way around, �gure 4.47 illustrates the anisotropy-induced coupling between all fast

principal cylindrical waves with odd azimuthal wavenumbers and all slow principal cylindrical

waves with even azimuthal wavenumbers

CF
2j−1 ⇔ CS

2j , j ∈ N∗. (4.32)

Hence, a dipole or hexapole source aligned with the formation's fast principal direction excites

the same cylindrical waves that are excited by a quadrupole or octupole source aligned with

the formation's slow principal direction.

The presence of an LWD tool does not change the general behavior of the mode coupling, but

the amplitudes of the anisotropy-induced mode contaminants become much smaller. There-

fore, �gures 4.46 and 4.47 display the mode coupling in the absence of a logging tool for

better visualization. Moreover, the cos(2θF)�dependency of the amplitude of the Stoneley

wave excited by a quadrupole source is also valid in TTI formations, as displayed in �g-

ure 4.48. It can be seen that the amplitude of the anisotropy-induced Stoneley wave also

highly depends on the inclination angle ψ0 between the TI symmetry axis to the borehole

axis. Figure 4.48 illustrates that higher inclination angles cause larger Stoneley wave ampli-
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(a) Dipole excitation (fast) (b) Quadrupole excitation (slow)

(c) Hexapole excitation (fast) (d) Octupole excitation (slow)

Fig. 4.47: Directivities of the borehole waves excited by an alternate polarity dipole (n = 1, σ = −1) (a),
quadrupole (n = 2, σ = −1) (b), hexapole (n = 3, σ = −1) (c), and octupole (n = 4, σ = −1) (d) source in
a �uid-�lled borehole surrounded by the slow Austin Chalk TTI formation in the absence of an LWD tool.
While the multipole sources of odd excitation orders are aligned with the formation's fast principal direction
(a, c), the multipole sources of even excitation orders are aligned with the formation's slow principal directions
(b, d).

tudes. The reason for this can be explained by considering the phase slowness surfaces of

the shear waves on the plane transverse to the borehole (Fig. 4.49). For small inclination

angles, such as ψ0 = 15◦ (Fig. 4.49a), the phase slowness curves are nearly circular, and thus,

the anisotropy-induced borehole waves are weak. However, with increasing inclinations, the

Fig. 4.48: Maximum amplitude of the anisotropy-(TTI-)induced Stoneley wave (C0) excited by a quadrupole
source for various inclination angles ψ0 dependent on the azimuth θF between the quadrupole excitation
direction and the formation's fast principle direction. Negative amplitude values mean opposite polarity of
the Stoneley wave.
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(a) ψ0 = 15◦ (b) ψ0 = 30◦ (c) ψ0 = 45◦

(d) ψ0 = 60◦ (e) ψ0 = 75◦ (f) ψ0 = 90◦

Fig. 4.49: Slices of the phase slowness surfaces through the plane transverse to the borehole axis (x′1�x
′
2 plane)

for the slow Austin Chalk TTI formation at di�erent inclination angles ψ0.

slowness curves increasingly deviate from a circular shape. Consequently, the amplitudes of

the anisotropy-induced borehole modes become more signi�cant and reach their maximum

at an inclination of ψ0 = 90◦ (HTI), where the deviation of the phase slowness curves from

circles is at a maximum.

4.4.4. Summary

The mode contaminants induced by the formation anisotropy are summarized in table 4.3

for the HTI and TTI cases. While the excitation direction of the omnidirectional equal po-

larity monopole source is invariant to the source azimuth, the alternate polarity sources are

assumed to be either aligned with the fast or the slow principal direction, respectively. For

the HTI symmetry, an aligned alternate polarity multipole source of an odd order excites

all corresponding (fast or slow) principal multipole waves having odd azimuthal wavenum-

bers. Analogously, an aligned alternate polarity multipole source of an even order (n > 0)

excites all respective principal multipole waves having even azimuthal wavenumbers. An ex-

ceptional case is the Stoneley wave having the azimuthal wavenumber zero, which is excited

by an alternate polarity source of even order that is aligned with the fast principal direction,

but not if the source is aligned with the slow principal direction. The mode contaminants

induced by an HTI formation are also excited for the TTI symmetry. In the latter case, ad-

ditionally to the principal waves having odd azimuthal wavenumbers, the opposite principal



120 4. Wave propagation in �uid-�lled boreholes surrounded by TI media

Tab. 4.3: Summary of the anisotropy-induced mode contaminants excited by di�erent LWD multipole sources
in a �uid-�lled borehole surrounded by an HTI or TTI formation.

HTI TTI

Monopole source (n = 2, σ = 1) C0, C
F
2 , C

F
4 , ... C0, C

S
1 , C

F
2 , C

S
3 , C

F
4 , ...

Dipole source aligned with fast
direction (n = 1, σ = −1)

CF
1 , C

F
3 , C

F
5 , ... CF

1 , C
S
2 , C

F
3 , C

S
4 , ...

Dipole source aligned with slow
direction (n = 1, σ = −1)

CS
1 , C

S
3 , C

S
5 , ... C0, C

S
1 , C

F
2 , C

S
3 , C

F
4 , ...

Quadrupole source aligned with
fast direction (n = 2, σ = −1)

C0, C
F
2 , C

F
4 , ... C0, C

S
1 , C

F
2 , C

S
3 , C

F
4 , ...

Quadrupole source aligned with
slow direction (n = 2, σ = −1)

CS
2 , C

S
4 , ... CF

1 , C
S
2 , C

F
3 , C

S
4 , ...

Hexapole source aligned with
fast direction (n = 3, σ = −1)

CF
1 , C

F
3 , C

F
5 , ... CF

1 , C
S
2 , C

F
3 , C

S
4 , ...

Hexapole source aligned with
slow direction (n = 3, σ = −1)

CS
1 , C

S
3 , C

S
5 , ... C0, C

S
1 , C

F
2 , C

S
3 , C

F
4 , ...

Octupole source aligned with
fast direction (n = 4, σ = −1)

C0, C
F
2 , C

F
4 , ... C0, C

S
1 , C

F
2 , C

S
3 , C

F
4 , ...

Octupole source aligned with
slow direction (n = 4, σ = −1)

CS
2 , C

S
4 , ... CF

1 , C
S
2 , C

F
3 , C

S
4 , ...

waves having even azimuthal wavenumbers are excited. For instance, the fast principal waves

having even azimuthal wavenumbers are coupled with the slow principal waves having odd

azimuthal wavenumbers and vice versa. Besides, if the alternate polarity multipole sources

are azimuthally o�set to the formation's principal directions, it cannot be divided between the

slow and fast principal waves since a weighted superposition of both is excited. The weights

are de�ned by the generalized Alford rotation (Eq. 4.17) only for the leading wave but not

for the mode contaminants.

The investigated anisotropy-induced mode contaminants utilizing FD modeling can also be

described by the Christo�el equation expressed in cylindrical coordinates after applying an

azimuthal Fourier transform (Eq. 2.76). If the symmetry axis of the surrounding TI formation

is parallel to the borehole, the sti�ness tensor elements de�ning this VTI symmetry cause

that only the coe�cients of v̂m⊙ (⊙ ∈ {r, θ, z}}) are non-zero, and all other terms (v̂m±j
⊙ ,

j = 1, 2, 3, 4) vanish. Consequently, the VTI symmetry does not induce mode contaminants.

In contrast, if the formation exhibits HTI symmetry, only the coe�cients of the terms v̂m±1
⊙

and v̂m±3
⊙ vanish, whereas the terms with an even increment for the azimuthal wavenumber

(v̂m±j
⊙ , j = 0, 2, 4) are non-zero. Thus, the HTI symmetry induces the coupling between

the excited cylindrical wave having the azimuthal wavenumber m and all cylindrical waves

having an even increment or decrement of m. For instance, the quadrupole wave (m = 2) is

coupled with the Stoneley wave (m = 0) and the octupole wave (m = 4), or the hexapole wave
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(m = 3) couples with the �exural wave (m = 1) and the decapole wave (m = 5). Finally, if

the formation's TI symmetry axis is arbitrarily inclined, all terms of the Christo�el equation

are non-zero, and all modes are coupled. This shows that the numerical experiments are in

agreement with the theory. However, the di�erent coupling between fast and slow principal

cylindrical waves cannot be seen by the partial di�erential equation.
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5. Inversion methods

While the previous chapter investigates the waveforms and phase slowness dispersion curves of

the borehole waves obtained from forward (FD) modeling, this chapter deals with the inversion

of waveforms and dispersion curves to obtain the anisotropy parameters of the formation. The

ultimate goal is to determine the �ve sti�ness tensor elements in the crystallographic reference

frame (x′′) characterizing a TI formation from LWD measurements for arbitrary inclination

angles of the TI symmetry axis relative to the borehole axis. It is assumed that the forma-

tion's density ρs is known from gamma-ray logging. Moreover, the borehole radius is assumed

to be known from caliper logs, whereas the dimensions and elastic parameters of the tool are

de�ned by the used LWD tool. Besides, the density and P-wave velocity of the borehole �uid

is assumed to be known and depend on the used drilling mud. Hence, only the sti�ness tensor

elements C ′′
1,1, C

′′
1,3, C

′′
3,3, C

′′
4,4, and C

′′
6,6 have to be determined in the crystallographic refer-

ence frame. Therefore, it is also necessary to determine the azimuthal angle θ0 (∝ θF) and the

inclination angle ψ0 describing the rotation of the sti�ness tensor elements from the tool refer-

ence frame (x) to the crystallographic reference frame (x′′) according to section 2.2. In many

cases, it can be assumed that the inclination angle ψ0 is known from ultrasonic measurements.

In the following sections, di�erent inversion methods are theoretically explained and discussed

for the VTI, HTI, and TTI con�gurations. The �rst section discusses an inversion method

for the VTI case utilizing the phase slowness dispersion of the Stoneley wave, which was

originally developed by Tang (2003). The subsequent section presents a model-based inversion

method for the HTI case introduced by Wang et al. (2016) using both the tool and formation

�exural waves if the latter is present. In analogy with this method, an inversion method using

non-orthogonal cross-quadrupole �rings is developed. Since this inversion method cannot

be applied to current LWD tools yet, an alternative inversion method is proposed using

the amplitudes of the anisotropy-induced Stoneley waves excited by quadrupole sources at

di�erent azimuths. The last section discusses some challenges and limitations of the methods

that occur in real measurements.

5.1. Vertical transverse isotropy (VTI)

Since the wave velocities are azimuthally invariant for the VTI case, the excited borehole

waves do not depend on the source azimuth, and the sti�ness tensor elements are equal in

the crystallographic and tool reference frames. For the determination of these components,

monopole and quadrupole excitations are helpful. The problem of dipole excitations is the

interference between the formation and tool �exural waves, especially in slow formations.
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Section 4.1.3 shows that the quadrupole mode propagates with the true vertical shear wave

slowness (βSver) de�ned by the elastic modulus C ′′
4,4 at the cuto� frequency. Consequently, the

slowness of the quadrupole mode in the low-frequency limit can be used to obtain the value

for C ′′
4,4 via

C ′′
4,4 = ρs

(︁
vSver
)︁2

=
ρs

(βSver)
2 . (5.1)

Furthermore, an omnidirectional monopole source can be used to excite refracted P-waves,

which travel vertically along the borehole wall with vertical P-wave velocity vPver de�ned by

the elastic modulus C ′′
3,3. The vertical P-wave velocity or slowness can be determined by STC

processing, e.g., semblance analysis (Kimball and Marzetta, 1984) of the wave�eld (App. D.1).

Using the obtained velocity, the sti�ness tensor element C ′′
3,3 can be computed via

C ′′
3,3 = ρs

(︁
vPver
)︁2

=
ρs

(βPver)
2 . (5.2)

Moreover, in section 4.1.1 is presented that the Stoneley wave excited by an omnidirectional

monopole source is in the low-frequency limit highly sensitive to the elastic modulus C ′′
6,6.

However, equation 4.3 cannot be used for the inversion because the presence of the LWD tool

strongly alters the tube wave velocity (Fig. 4.3). Nevertheless, Tang (2003) developed an

inversion method that accounts for the logging tool. The Stoneley wave dispersion curves are

modeled by the roots of the boundary condition matrix, where the logging tool is modeled by

an e�ective tool modulus. Tang (2003) has explained that the e�ective tool modulus of a real

logging tool can be obtained from a calibration method. Furthermore, it is assumed that all

parameters are known for the modeling except the sti�ness tensor element C ′′
6,6. The problem

is that only the elastic moduli C ′′
3,3 and C

′′
4,4 are determined from the above-described inversion

methods. Hence, the sti�ness tensor elements C ′′
1,1 and C ′′

1,3 have to be approximated. Tang

(2003) suggested that the ratio of the sti�ness tensor elements C ′′
4,4 and C ′′

6,6, controlling

the vertical and horizontal SH-wave velocities, is similar to the ratio of the elastic constants

C ′′
3,3 and C ′′

1,1, controlling the vertical and horizontal P-wave velocities. Consequently, the

component C ′′
1,1 can be parameterized by C ′′

6,6 via

C ′′
1,1 ≈

C ′′
3,3C

′′
6,6

C ′′
4,4

. (5.3a)

Moreover, Tang (2003) proposed an approximation for the elastic modulus C ′′
1,3

C ′′
1,3 ≈ C ′′

3,3 − 2C ′′
4,4. (5.3b)

The latter approximation becomes true for an isotropic formation characterized by λ+ 2µ =

C ′′
3,3 and µ = C ′′

4,4. Using both approximations, the modeling of the Stoneley wave dispersion

curve depends only on the elastic constant C ′′
6,6. In the next step, the weighted spectral



5.1. Vertical transverse isotropy (VTI) 125

average theorem introduced by Geerits and Tang (2003) is considered

β̄
St

=

∫︁
s∈Br

βSt(s, C ′′
6,6)A

2(s)ds∫︁
s∈Br

s2A2(s)ds
, (5.4)

where βSt represents the phase slowness dispersion curve of the Stoneley wave, s denotes the

frequency, and A(s) is the amplitude spectrum of the Stoneley wave. The integration over the

frequencies can be performed by evaluating the Bromwich integral (Br) in the complex s plane

(App. A.1). The left-hand side slowness value β̄
St

is the phase slowness of the Stoneley wave

obtained from non-dispersive STC processing (App. D.1). Since the Stoneley wave is highly

dispersive, especially at low frequencies (Fig. 4.3), non-dispersive processing is not appropri-

ate. However, the slowness value resulting from a non-dispersive STC processing method is

the weighted spectral average of the Stoneley wave's phase slowness dispersion curve over the

frequency range of the wave spectrum (Geerits and Tang, 2003). Tang (2003) utilized equa-

tion 5.4 to develop an inversion method. The only unknown quantity in the equation is the

sti�ness tensor element C ′′
6,6. The left-hand side (β̄

St
) is computed by STC processing of the

measured Stoneley waveforms. Additionally, the amplitude spectrum of the Stoneley wave

A(s) can be determined by applying the Laplace transform (Sec. A.1) or a temporal Fourier

transform to the measured waveforms. Subsequently, the phase slowness dispersion curve of

the Stoneley wave βSt is forward modeled using an initial guess for C ′′
6,6. After integration

and dividing the nominator and denominator, the resulting slowness value is compared to the

slowness value β̄
St
obtained from non-dispersive STC processing. If both values are di�erent,

the phase slowness dispersion curve of the Stoneley wave is modeled using a di�erent value for

C ′′
6,6, and the resulting value is again compared to β̄

St
. This procedure is repeated until the

elastic modulus C ′′
6,6 is found, for which the left-hand side and right-hand side of equation 5.4

are equal (Tang, 2003).

The above-described inversion method is tested for the slow Austin Chalk VTI formation. The

waveforms of the Stoneley wave are displayed in �gure 5.1a. These waveforms represent the

received signals in real measurements but are FD modeled in this thesis. Figure 5.1c displays

the semblance analysis using a long time window (Tw = 10ms). The maximum semblance

value is found at the phase slowness value β̄
St
at all time samples. An alternative illustration

of the semblance is the combined correlogram shown in �gure 5.1b. For this �gure, the sem-

blance is stacked over all time samples and divided by their number. Hence, a function for the

semblance is obtained in relation to the phase slowness. The maximum of this function corre-

sponds to the centroid phase slowness β̄
St
and de�nes the left-hand side of equation 5.4. Next,

the right-hand side has to be determined. Therefore, the Stoneley wave's amplitude spectrum

is computed by applying the Laplace transform (App. A.1) to the waveforms displayed in

�gure 5.1a. Next, the phase slowness dispersion curve of the Stoneley wave is modeled for

di�erent values for the elastic modulus C ′′
6,6. For the modeling, two di�erent values for C ′′

1,1

and C ′′
1,3 are used, respectively. While one modeling is done with the true values (Tab. 3.1),

the second modeling is performed with the approximated values proposed by (Tang, 2003)
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(a) Waveform array (b) Combined correlogram

(c) Semblance (d) Centroid phase slowness

Fig. 5.1: Illustration of an inversion method to obtain the elastic modulus C′′
6,6 from Stoneley wave data. The

time-domain waveform array (a) containing the Stoneley wave is processed by semblance processing (App. D.1)
(c). The semblance values are stacked over all time samples to obtain the combined correlogram (b). The
maximum semblance value corresponds to the centroid phase slowness, which is compared to the slowness
computed from forward modeling of the Stoneley wave dispersion curves dependent on the elastic modulus
C′′

6,6. The blue lines in the last �gure (d) illustrate the slowness value obtained from forward modeling using
the exact and approximated (Eq. 5.3a and 5.3b) values for C′′

1,1 and C
′′
1,3, respectively. The intersection of the

modeled slowness value and the centroid phase slowness plotted by the dotted black line corresponds to the
sought value for C′′

6,6.

and de�ned in equations 5.3a and 5.3b. For each modeling, the right-hand side is computed

according to equation 5.4, whereby numerical integration is used. In this way, the centroid

phase slowness is computed in relation to the elastic modulus C ′′
6,6 for both modelings, as dis-

played in �gure 5.1d by the solid and dashed lines, respectively. The input of the true values

for C ′′
1,1 and C

′′
1,3 causes a linear relation between the centroid phase slowness and the elastic

modulus C ′′
6,6. In contrast, if the respective approximated values are used, the dependency

becomes non-linear since the approximation for C ′′
1,1 itself depends on C

′′
6,6. Finally, the inter-

section between these functions and the centroid phase slowness obtained from the semblance

analysis is sought to obtain the true value for C ′′
6,6. This can be performed by subtracting

the right-hand side from β̄
St

and applying any root-�nding algorithm subsequently. When

using the true values for C ′′
1,1 and C ′′

1,3, the intersection is located at C ′′
6,6 = 3.1GPa, which

coincides with the true value (Tab. 3.1). In contrast, if the approximated values for C ′′
1,1 and

C ′′
1,3 are used as modeling input, the intersection is located at C ′′

6,6 = 2.96GPa representing a

deviation of 4.5% from the true value.
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In summary, it is possible to obtain the elastic moduli C ′′
3,3, C

′′
4,4, and C

′′
6,6 for the VTI sym-

metry using the refracted P-wave, the quadrupole wave, and the Stoneley wave, respectively.

In contrast, the elastic moduli C ′′
1,1 and C ′′

1,3 cannot be directly determined by LWD mea-

surements using classical kinematic inversion methods. The approximations for both moduli

(Eq. 5.3a�5.3b) are good enough to model the phase slowness dispersion curves of the Stoneley

wave since this mode is only marginally sensitive to C ′′
1,1 and C

′′
1,3 (Tang, 2003). On the other

hand, for seismic migration and imaging using P-waves, the elastic modulus C ′′
1,1 is required

more precisely, and the correlation with the ratio of the shear wave velocities may be insu�-

cient. For instance, considering the Austin Chalk formation, the approximated values for C ′′
1,1

and C ′′
1,3 di�er from their true values by 17% and 23%, respectively. This causes a maximal

di�erence in the horizontal P-wave velocity of 9%, which is in the range of anisotropy for

weak anisotropic formations.

As an alternative, Bazulin et al. (2020) have presented an inversion method to obtain all �ve

moduli characterizing a VTI formation using an inversion method based on a convolutional

neural network. This network predicts the elastic moduli from the input data given by the

waveforms excited by a monopole source. The advantage of their method is that both the

kinematic characteristics and the amplitudes of the received waveforms are used for the in-

version. However, they tested their neural network only in the absence of a logging tool and

only in fast formations. Hence, it is not veri�ed if it also works in an LWD environment or

for slow formations, where refracted shear waves are not present.

5.2. Horizontal transverse isotropy (HTI)

The HTI symmetry, as the second exceptional case, has the advantage that the wave velocities

depend on the azimuth, and di�erent source azimuths can be utilized to determine the elastic

moduli characterizing an HTI formation. Section 4.2.1 demonstrates that a monopole source

in a �uid-�lled borehole surrounded by an HTI formation dominantly excites a refracted P-

wave and the Stoneley wave. In fast formations, two refracted shear waves (SV- and SH-wave)

are additionally emitted. In theory, these waves can be used to determine the elastic moduli

C ′′
4,4 and C ′′

6,6 but are in real measurements barely investigated and usually not consistent

(Blyth et al., 2016). Thus, both refracted shear waves are not considered in the following

sections. Nevertheless, the refracted P-wave is well detectable in real measurements in both

fast and slow formations and propagates with true vertical P-wave velocity. This velocity is

determined by the element C ′
3,3 of the sti�ness tensor given in the borehole reference frame

(x′). From equation 4.4 can be deduced that this element is equal to the elastic modulus C ′′
1,1

in the crystallographic reference frame (x′′). Therefore, the value for this elastic modulus can

be obtained from the velocity of the vertically propagating refracted P-wave by the inverse

formula of equation 4.5

C ′′
1,1 = C ′

3,3 = ρs
(︁
vPver
)︁2

=
ρs

(βPver)
2 . (5.5)
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Besides, section 4.2.1 explains that the low-frequency limit of the Stoneley wave is controlled

by a combination of the four elastic moduli C ′′
1,1, C

′′
3,3, C

′′
1,3, and C ′′

4,4 (Eq. 4.6) given in

the crystallographic reference frame. However, this equation 4.6 is not valid for the LWD

con�guration because the presence of the LWD tool strongly alters the tube wave slowness.

Moreover, the tool e�ect cannot be estimated since an analytical solution to fast model the

Stoneley wave dispersion curves exists only for the VTI symmetry (Sec. 2.4.1). Consequently,

it is not possible to develop an inversion method based on the formula for the centroid phase

slowness (Eq. 5.4), as discussed in the VTI case.

5.2.1. Inverse generalized Alford rotation

Therefore, higher-order modes are required to determine further parameters of an HTI forma-

tion because these higher-order modes, such as the dipole or quadrupole mode, are sensitive

to the azimuthal variations of the wave velocities. Section 4.2.2 demonstrates that for all

excitation orders n > 0, two principal cylindrical waves exist in the HTI case. From these

two principal waves, it is possible to determine the principal shear slowness values charac-

terizing an HTI formation. However, the problem in real measurements is that, in general,

a weighted superposition of both principal waves is excited since the azimuths of the fast

and slow principal directions are unknown. The generalized Alford rotation (Eq. 4.17) can be

used to develop a straightforward inversion method to obtain these azimuths and the principal

cylindrical waves. The formula can be easily inverted to

Ǧn(r, z0, s) = RT(nθF)P̌(r, z0, s)R(nθF), (5.6)

utilizing the orthonormal property of the rotation matrix R (RRT = RTR = I). Equa-

tion 5.6 presents that the principal cylindrical waves contained in Ǧn can be obtained from

the measured four-component data matrix (P̌) by a rotation over the angle nθF. This un-

known angle can be obtained by seeking the angle nθF for which the o�-diagonal elements of

the matrix Ǧn vanish. The sum of both o�-diagonal elements is given in the expanded form

by (Demmler et al., 2020)

0 = (p̌Y Y − p̌XX) sin
(︁
2nθF

)︁
+ (p̌XY + p̌Y X) cos

(︁
2nθF

)︁
. (5.7)

The roots of the above equation are de�ned by

θF =
1

2n
arctan

(︃
p̂XY + p̂Y X
p̂XX − p̂Y Y

)︃
(5.8)

after applying some basic trigonometric relations. The angle is sought in the range 0 ≤ θF < π.

Because of the periodicity of the tangent function (tan(x) = tan(x+ jπ), j ∈ Z) it follows

θF = θF + j
π

2n
, j = 0, 1, . . . , 2n− 1, n ≥ 1. (5.9)

For the �exural wave (n = 1), equation 5.9 yields two angles shifted by π/2 radians to each

other. One angle corresponds to the polarization direction of the fast principal �exural wave
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and one angle to the polarization direction of the slow one. For higher-order cylindrical waves,

there are 2n angles shifted by π/(2n) radians to each other, for which the o�-diagonal ele-

ments in equation 5.6 vanish. This implies there are n fast angles and n slow angles (n ≥ 1).

This is referred to as angle ambiguity. The ultimate goal is to resolve this ambiguity to deter-

mine which angles belong to the fast and slow principal direction of the formation, respectively.

The standard technique to determine formation anisotropy parameters in WL logging is to

use cross-dipole measurements (Esmersoy et al., 1994; Mueller et al., 1994). For this purpose,

two orthogonal dipole sources are �red in sequence. The waveforms emitted by each dipole

�ring are received at the four azimuthal receivers of each receiver unit and are appropriately

stacked to obtain the four-component pressure data matrix. The azimuths of the fast and slow

principal directions of the formation are obtained from this matrix by the above-described

inversion method. Additionally, the fast and slow shear slowness values are obtained from the

low-frequency limit of the fast and slow principal �exural wave, respectively. Based on this

inversion procedure, further improved inversion methods were developed, e.g., a simultaneous

inversion method (Tang and Chunduru, 1999) to determine the azimuths of the principal

directions and the principal slowness values simultaneously.

In contrast, the usage of cross-dipole excitations has some problems in the LWD con�gura-

tion. One problem is that the formation �exural wave strongly interferes with the tool �exural

wave and may be absent in slow formations (Sec. 4.2.3). Moreover, the fast tool rotation while

logging prevents exact orthogonal cross-multipole �rings, and the non-orthogonal formula for

the Alford rotation (Eq. 4.21a) has to be applied. On the other hand, the rotation of the LWD

tool has the advantage that the multipole sources can be �red at di�erent azimuths. Market

and Bilby (2012) have demonstrated that LWD dipole sources can be used to determine the

shear slowness values dependent on the azimuth in fast formations. For the determination of

the slowness values, they used non-dispersive STC processing and subsequently applied dis-

persion corrections. However, they did not investigate the coupling of the formation �exural

wave and the tool �exural wave in more detail.

Wang et al. (2016) presented an inversion work�ow using LWD dipole measurements to out-

put the fast and slow principal slowness values and the azimuth of the principal directions

characterizing an HTI formation. They considered a dipole source �ring two times in se-

quence. Since the tool rotates between both �rings, the dipole excitations are azimuthally

separated from each other by the angle ∆θ. This angle depends on the rotation velocity of

the tool and the time interval between both �rings. Hence, the two dipole excitations are, in

general, not orthogonal, and the non-orthogonal version of the formula for the Alford rotation

(Eq. 4.21) has to be utilized to develop an inversion method. Inverting the formula for the
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non-orthogonal Alford rotation yields

Ǧn(r, z0, s) = RT(nθF)Q−1(n∆θ)

⎡⎣ (p̌XX , p̌XY )

(p̌Y ∗X∗ , p̌Y ∗Y ∗)RT(n∆θ − π
2 )

⎤⎦ (r, z0, s)R(nθF),

(5.10a)

where the orthonormal property of the rotation matrix R is utilized, and the inverse of the

matrix Q is de�ned by

Q−1(n∆θ) =

⎛⎝ 1 0

− cot(n∆θ) (sin(n∆θ))−1

⎞⎠ . (5.10b)

With the help of equations 5.10a and 5.10b, the principal cylindrical waves can be computed

from two non-orthogonal multipole excitations. The problem is that the azimuth θF of the �rst

X-multipole excitation to the formation's fast principle direction is unknown, and the angle

∆θ between the X- and Y*-multipole excitations may not be known precisely. Fortunately,

both angles can be simultaneously determined by seeking the angles for which the o�-diagonal

elements of the matrix Ǧn vanish

0 = [p̌XY + p̌Y ∗X∗ + cot(n∆θ) (p̌Y ∗Y ∗ − p̌XX)] cos
(︁
2nθF

)︁
+ [p̌Y ∗Y ∗ − p̌XX − cot(n∆θ) (p̌XY + p̌Y ∗X∗)] sin

(︁
2nθF

)︁
. (5.11)

In real measurements, the in-line and cross-line components of the wave�eld emitted by the X-

and Y*-multipole excitations contain many time samples in the time domain or frequencies (s)

in the Laplace transformed domain. Furthermore, the waveforms are received at N receivers

of the receiver array having di�erent o�sets zk (k = 1, ..., N). Therefore, Wang et al. (2016)

de�ned a minimization problem to numerically compute the angles θF and ∆θ, which is

generalized to apply for all cylindrical waves (n > 0)

min
θF,∆θ

[︃ N∑︂
k=1

∫︂
s∈Br

(︃[︁
p̌XY (r, zk, s) + p̌Y ∗X∗(r, zk, s)

+ cot(n∆θ) (p̌Y ∗Y ∗(r, zk, s)− p̌XX(r, zk, s))
]︁
cos
(︁
2nθF

)︁
+
[︁
p̌Y ∗Y ∗(r, zk, s)− p̌XX(r, zk, s)

− cot(n∆θ) (p̌XY (r, zk, s) + p̌Y ∗X∗(r, zk, s))
]︁
sin
(︁
2nθF

)︁)︃
ds

]︃
. (5.12)

While the azimuth θF between the X-multipole excitation direction and the formation's fast

principal direction is sought in the range 0 ≤ θF < π, the azimuth ∆θ between the X- and

Y*-multipole excitation is sought only in the range 0 < ∆θ < π/n. The reason for this is the

nature of the cotangent function, which is involved in equation 5.12. Figure 5.2a illustrates

that the cotangent function possesses discontinuities at n∆θ = kπ (k ∈ Z). Consequently,
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(a) Cotangent

(b) Non-orthogonal cross-dipole excitation (c) Non-orthogonal cross-quadrupole excitation

Fig. 5.2: The upper �gure (a) shows the cotangent function in the range from −2π to 2π. The bottom �gures
display examples of the error function computed via equation 5.12 depending on the angles θF and ∆θ. For the
examples, non-orthogonal cross-dipole (b) and cross-quadrupole (c) excitations are considered, respectively,
having the azimuths θF = 30◦ and ∆θ = 55◦. The white crosses indicate the minima of the error function,
and their locations correspond to the actual input values for θF and ∆θ.

the inverse formula for the non-orthogonal Alford rotation (Eq. 5.10a) is not de�ned for these

angles, which is reasonable since at these angles, the azimuths of the X- and Y*-multipole

excitations are identical, and both may only di�er in opposite polarity.

5.2.2. Inversion method based on dipole excitations

Figure 5.2b shows an example for the error function in relation to the azimuths θF and ∆θ

for two non-orthogonal dipole excitations (n = 1). The X-dipole source is azimuthally o�set

to the formation's fast principal direction by θF = 30◦, and the azimuthal o�set between the

X- and Y*-dipole excitations is set to ∆θ = 55◦. The white crosses in the �gure indicate

the two minima of the error function. Since both minima are located at the angle ∆θ = 55◦,

the azimuthal o�set between the X- and Y*-excitation is uniquely determined in the range

0 < ∆θ < π. In contrast, the azimuthal angle θF shows the beforehand described angle ambi-

guity. Accordingly, one angle corresponds to the formation's fast principal direction, and one

angle corresponds to the formation's slow principal direction. This ambiguity is resolved by

substituting the obtained angle for ∆θ and one of the two angles for θF into the inverse for-

mula for the non-orthogonal Alford rotation (Eq. 5.10a) to compute the fast and slow principal

�exural waves. From the rotated waveform array data, the phase slowness dispersion curves

of the tool �exural and formation �exural wave, if the latter is present, are extracted using

the modi�ed matrix pencil method (Ekstrom, 1996). Alternatively, Wang et al. (2016) pro-

posed various broadband approaches to compute the phase slowness dispersion curves (Aeron

et al., 2011; Wang and Bose, 2013), which are computational more e�cient. In section 4.2.3 is
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demonstrated that both the principal formation �exural and the principal tool �exural waves

are sensitive to the HTI parameters of the formation (Fig. 4.18). While the formation �exu-

ral waves, if they are present, are more sensitive to the formation anisotropy parameters at

lower frequencies, the tool �exural waves exhibit a higher sensitivity at intermediate and high

frequencies. Since the drilling noise interferes with the waveforms much stronger at low fre-

quencies, it seems advantageous to use the tool �exural waves for an inversion method. From

the comparison of both tool �exural waves, it can be determined which one is the fast and the

slow principal tool �exural wave, and the angle ambiguity can be resolved. If equation 5.10a,

in which the angle θF was substituted, yields the correct order of the principal waves, i.e.,

Ǧ1,1 = 2Č
F
1 and Ǧ2,2 = 2Č

S
1 , the substituted angle θF is associated with the formation's fast

principal direction. The other way around, if the order of the principal waves is interchanged,

i.e., Ǧ1,1 = 2Č
S
1 and Ǧ2,2 = 2Č

F
1 , the substituted angle is associated with the formation's slow

principal direction.

While in this way, the angle ambiguity is resolved, the principal shear wave slowness cannot be

read directly from the dispersion curves of the principal tool �exural waves. For this reason,

Wang et al. (2016) suggested a model-based inversion method. Therefore, the phase slowness

dispersion curves of the formation and tool �exural waves are modeled by the roots of the

boundary condition matrix dependent on various parameters. The model used by Wang et al.

(2016) consists of a centered cylindrical steel pipe in a �uid-�lled borehole surrounded by a

homogeneous and isotropic formation. They assume that all parameters are known except

the formation shear wave slowness which has to be determined. For the inversion method,

the phase slowness values of the tool �exural wave at di�erent frequency samples sj are used

as the input to compute the boundary condition matrix D. Then, the determinant of the

boundary condition is minimized in relation to the formation shear wave slowness |βS| to �nd
its true value (Wang et al., 2016)

min
|βS|

⎛⎝ N∑︂
j=1

⃓⃓
D(β(sj), sj , |βS|)

⃓⃓⎞⎠ . (5.13)

It is also possible to use both the principal tool �exural and principal formation �exural waves

for the inversion if the latter is present. The problem of this inversion method is that the

measured phase slowness dispersion curves in anisotropic (HTI) formations are input in an

isotropic model. Figures 4.18a and 4.18b illustrate that the dispersion curves of the �exural

waves in anisotropic formations di�er from their isotropic counterparts, especially in slow

formations. Consequently, the usage of an isotropic model introduces an additional error in

the inversion of the principal shear wave slowness values.

An alternative would be to use an anisotropic (HTI) model to compute the phase slowness

dispersion curves. The problem is that an analytical solution does not exist if the formation

exhibits anisotropy with symmetry lower than VTI, and thus, the boundary condition matrix

cannot be computed analytically. For this reason, alternative methods were developed, such
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as the perturbation method (Ellefsen, 1990; Sinha et al., 1994). The problem of anisotropic

modeling of slowness dispersion curves is that more parameters are required which charac-

terize the HTI formation. While for the isotropic modeling, only the density and the P-wave

slowness of the formation must be known, the elastic moduli C ′′
1,1, C

′′
1,3, C

′′
3,3, and C

′′
4,4 or C

′′
6,6,

respectively, are required for the anisotropic modeling. The vertical P-wave slowness corre-

sponding to the modulus C ′′
1,1 can be obtained from the slowness of the vertically propagating

refracted P-wave excited by a monopole source. Furthermore, the elastic moduli C ′′
4,4 and C

′′
6,6

controlling the shear wave slowness values may be inverted simultaneously by a joint inversion

of the fast and slow principal tool �exural waves. However, the sti�ness tensor elements C ′′
3,3

and C ′′
1,3 are unknown and cannot be obtained from borehole measurements. Consequently,

both parameters have to be approximated analogously to section 5.1 by

C ′′
3,3 =

C ′′
1,1C

′′
4,4

C ′′
6,6

, (5.14a)

and

C ′′
1,3 = C ′′

1,1 − 2C ′′
6,6. (5.14b)

Since the principal tool �exural waves exhibit only minor sensitivity to these elastic moduli,

the approximations might introduce a smaller error than the usage of an isotropic model.

However, such a model-based inversion method using an anisotropic (HTI) model was not

tested in the scope of this thesis since an analytical solution has not been implemented yet.

5.2.3. Inversion method based on quadrupole excitations

Cross-quadrupole measurements

Since the quadrupole wave is commonly used in LWD to obtain the shear wave slowness of

isotropic formations, the following sections discuss di�erent inversion methods to determine

the HTI parameters of the formation using quadrupole excitations. Like in LWD dipole mea-

surements, the fast tool rotation can be utilized to �re two quadrupole sources in sequence,

which are azimuthally o�set by ∆θ. This angle and the azimuth θF between the excitation di-

rection of the �rst X-quadrupole source and the formation's fast principal direction can be de-

termined by solving the minimization problem given in equation 5.12 using n = 2. Figure 5.2c

illustrates an example for the error function for two non-orthogonal quadrupole excitations

(n = 2) using the input azimuths θF = 30◦ and∆θ = 55◦. In contrast to non-orthogonal dipole

excitations (Fig. 5.2b), the error function corresponding to the non-orthogonal quadrupole ex-

citation possesses four minima instead of two indicated by the white crosses. Since all four

minima are located at the angle ∆θ = 55◦, the azimuthal o�set between the X- and Y*-

excitation is again uniquely determined in the range 0 < ∆θ < π/2. However, the azimuth

θF that shows the beforehand described angle ambiguity, can only be distinguished into two

angles potentially corresponding to the formation's fast principal direction and two angles

potentially corresponding to the formation's slow principal direction. Similarly to the dipole
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logging, the obtained angle for ∆θ and one of the angles for θF are substituted into the in-

verse formula for the non-orthogonal Alford rotation (Eq. 5.10a) to compute the fast and slow

principal quadrupole waves. Their phase slowness dispersion curves can be extracted from

the waveform array data using the modi�ed matrix pencil method (App. D.2.2) or alternative

methods mentioned above. While the principal formation quadrupole mode propagating at a

lower slowness, especially at the cuto� frequency, corresponds to the fast principal quadrupole

mode, the other one is the slow principal quadrupole mode. If the substituted angle θF yields

the correct order of the principal waves, i.e., Ǧ1,1 = 4Č
F
2 and Ǧ2,2 = 4Č

S
2 , this angle θ

F is

associated with the formation's fast principal direction. In contrast, if the substituted angle

yields the interchanged order of the fast and slow principal quadrupole modes, the angle is

associated with the slow principal direction. In this way, the four angles obtained from the

locations of the minima of the error function can be divided into two fast and two slow angles.

However, it is not possible to determine which one of both fast or which one of both slow

angles is the correct one. For this distinction, further information is required, e.g., provided

by ultrasonic measurements.

Inversion of anisotropy-induced Stoneley waves

Another problem of the above-described inversion method is that it requires eight azimuthal

receivers per receiver unit, which is not implemented in modern LWD tools. Thus, an al-

ternative inversion method is developed, which utilizes the anisotropy-induced Stoneley wave

excited by a multipole source having an even order. In section 4.4 is shown that the am-

plitude of the Stoneley wave depends on the angle between the fast principal direction and

the multipole excitation direction. The amplitudes are measured of the Stoneley waves (Č0)

excited by several even alternate polarity multipole sources at di�erent source azimuths. For

the development of an inversion method, a tool reference frame is introduced that is �xed for

all �rings and which azimuth θ = 0 can be arbitrarily de�ned. The angle θ0 is the azimuth

between the �xed tool reference frame and the �rst constituting source of the respective mul-

tipole excitations. The azimuth θF de�nes the azimuth between the formation's fast principal

direction and the tool reference frame in the following. Accordingly, the amplitude of the

Stoneley wave is proportional to the cos(n(θ0 − θF))�function (Fig. 4.43)

Č0(r, θ0, z0, s) = Č
max
0 (r, z0, s) cos

(︁
n(θ0 − θF)

)︁
(n even). (5.15)

The anisotropy-induced Stoneley wave having the largest amplitude (Č
max
0 ) is excited if the

multipole source is aligned with the fast principal direction of the formation (θ0 = θF). Using

basic trigonometric relations, equation 5.15 can be rewritten into

Č0(r, θ0, z0, s) = a(r, z0, s) cos(nθ0) + b(, z0, s) sin(nθ0) (n even), (5.16a)⎛⎝a
b

⎞⎠ (r, z0, s) = Č
max
0 (r, z0, s)

⎛⎝cos(nθF)

sin(nθF)

⎞⎠ . (5.16b)
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For the following inversion method, the multipole source is assumed to be a quadrupole

source (n = 2) excited at several azimuths θ0. The inversion method requires at least two

quadrupole �rings at di�erent azimuths, but more excitations at more di�erent azimuths

are recommended since the inversion method becomes more robust against noise. For all

excitations, the quadrupole waves (Č2(r, θ0, z, s)) and the Stoneley waves (Č0(r, θ0, z, s)) are

acquired from the four azimuthal receivers by appropriate stacking. While the quadrupole

waves are obtained by stacking the waveforms received at the single receivers with alternating

polarity between neighboring receivers, the Stoneley waves are obtained using equal polarity

stacking. The obtained Stoneley wave data is used to solve equation 5.16a for a and b in the

least-squared sense and in an appropriate frequency range⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos
(︂
nθ

[1]
0

)︂
sin
(︂
nθ

[1]
0

)︂
cos
(︂
nθ

[2]
0

)︂
sin
(︂
nθ

[2]
0

)︂
...

...

cos
(︂
nθ

[M ]
0

)︂
sin
(︂
nθ

[M ]
0

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎝a
b

⎞⎠ (r, z0, s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Č0

(︂
r, θ

[1]
0 , z0, s

)︂
Č0

(︂
r, θ

[2]
0 , z0, s

)︂
...

Č0

(︂
r, θ

[M ]
0 , z0, s

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.17)

Once the coe�cients a and b are determined, the azimuthal angle of the formation's fast

principal direction can be computed from equation 5.16b via

θF =
1

n
arctan

(︃
b

a

)︃
. (5.18)

Since this formula for θF involves the arctangent function, such as equation 5.8, the angle

ambiguity problem remains (Eq. 5.9). In the next step, the principal quadrupole waves are

computed using one of the obtained angles for θF. However, the inverse formula for the Alford

rotation de�ned in equation 5.6 cannot be used since only the component p̌XX(r, θ0, z0, s) is

measured. Nevertheless, a least-squares problem can be formulated to compute the principal

cylindrical waves Č
F
n and Č

S
n (n = 2)⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos2
(︂
n
(︂
θ
[1]
0 − θF

)︂)︂
sin2

(︂
n
(︂
θ
[1]
0 − θF

)︂)︂
cos2

(︂
n
(︂
θ
[2]
0 − θF

)︂)︂
sin2

(︂
n
(︂
θ
[2]
0 − θF

)︂)︂
...

...

cos2
(︂
n
(︂
θ
[M ]
0 − θF

)︂)︂
sin2

(︂
n
(︂
θ
[M ]
0 − θF

)︂)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎝2nČ

F
n

2nČ
S
n

⎞⎠ (r, z0, s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Čn

(︂
r, θ

[1]
0 , z0, s

)︂
Čn

(︂
r, θ

[2]
0 , z0, s

)︂
...

Čn

(︂
r, θ

[M ]
0 , z0, s

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.19)

If the substituted angle θF is associated with the fast or slow principal direction can be again

distinguished by comparing the phase slowness dispersion curves of the computed principal

cylindrical waves.
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Inversion of formation parameters from principal quadrupole waves

The output of both above-described inversion methods utilizing quadrupole excitations are

the azimuths of the formation's principal directions and the principal quadrupole waves. Next,

these waves must be inverted to obtain TI parameters of the formation. Section 4.2.4 demon-

strates that the principal fast and slow shear wave slowness values cannot be read directly

from the phase slowness dispersion curves, since the principal quadrupole waves do not nec-

essarily attain these slowness values at the cuto� frequency. Besides, the amplitudes of the

principal quadrupole waves are small at low frequencies, and interfere with the drilling noise

in real measurements. Hence, the low-frequency portion of the quadrupole waves is not con-

venient to obtain the principal shear slowness values characterizing the HTI formation. Thus,

model-based inversion methods are required to obtain these values, or directly the correspond-

ing elastic moduli C ′′
4,4 and C ′′

6,6. For instance, the determinant of the boundary condition

matrix might be minimized in relation to unknown formation parameters (Eq. 5.13). Alterna-

tively, the generalized semblance method presented by Kimball (1998) could be used based on

slowness-frequency-coherence (App. D.2.1). However, the main problem of the model-based

inversion methods is that they require a fast modeling tool to model the phase slowness dis-

persion curves of the quadrupole waves in an HTI formation. Unfortunately, such a modeling

tool does not currently exist because of the lack of an analytical solution for symmetries

lower than VTI. The modeling of the dispersion curves using FD modeling is not appropriate

since the computational e�ort is too high and the run time much too long. Alternatively, an

isotropic model may be used for the inversion method (e.g., Eq. 5.13). However, an inversion

based on an isotropic model will introduce some errors since the dispersion curves of the

principal quadrupole waves are di�erent in HTI formations from them obtained in isotropic

formations (Fig. 4.21). Moreover, an inversion method to obtain the principal slowness values

from principal quadrupole waves at intermediate and high frequencies (>4 kHz) would fail

in fast HTI formations since the dispersion curves of both principal quadrupole waves are

almost identical at these frequencies (Fig. 4.21b). Hence, an inversion method would only

work for slow formations where the fast and slow principal quadrupole waves are distinct at

all frequencies (Fig. 4.21a).

An alternative method to extract the principal slowness values in fast formations seems to be

using the second order quadrupole wave. Geerits et al. (2010) have shown that in fast isotropic

formations a second-order quadrupole mode exists attaining the true formation shear wave

slowness at the cuto� frequency. The advantage of this second order quadrupole mode is that

the cuto� frequency is higher than for the �rst-order quadrupole mode resulting in a weaker

interference with the drilling noise dominant at lower frequencies. Furthermore, the second-

order quadrupole mode is less dispersive in the low-frequency limit, which is advantageous for

processing. This second-order wave is not only observed for the quadrupole excitation but

also for dipole excitations. Wang et al. (2017) proposed an inversion method using second-

order �exural waves excited by dipole sources. The advantage of their inversion method is

that it is model-independent, i.e., the forward modeling of dispersion curves is not required.
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Consequently, in the scope of this thesis a similar inversion method was looked for the principal

quadrupole waves. Unfortunately, it is di�cult to reliably extract the second-order principal

quadrupole modes from the waveform array data emitted by LWD quadrupole excitations,

and the phase slowness dispersion curves of the second-order principal quadrupole waves are

almost identical, such as the �rst-order principal quadrupole waves in fast formations.

5.3. Tilted transverse isotropy (TTI)

In the third section of this chapter, the most general TTI case is treated, where the formation's

TI symmetry axis is arbitrarily inclined to the vertical borehole axis. Thus, the wave velocities

of the plane waves propagating vertically along the borehole depend on the inclination angle

ψ0. Moreover, the wave velocities depend also on the azimuth like for the HTI symmetry

and therefore the same inversion methods can be used as presented in the previous section.

The monopole excitation is utilized to excite refracted qP-waves, traveling vertical along the

borehole wall at vertical qP-wave velocity (vqPver). This velocity or its inverse, the vertical qP-

wave slowness, can be obtained by an STC method (App. D.1) as described in section 4.3.1.

For determining the shear wave velocities of the vertically propagating qSV- and SH-wave,

cross-dipole or cross-quadrupole measurements are appropriate. In sections 4.3.2 and 4.3.3

is outlined that the generalized formula for the Alford rotation originally developed for HTI

formations also applies to TTI media. The principal directions of the TI formation are de�ned

by the polarization direction of the vertically propagating SH-wave and the projected polar-

ization direction of the vertically propagating qSV-wave onto the horizontal plane transverse

to the borehole, as explained in section 4.3 (Fig. 4.29). Consequently, all inversion methods

presented in the previous section can be used to obtain the principal shear wave velocities

or slowness values corresponding to the (projected) principal directions. Also, the azimuth

of the formation's fast principal direction relative to the tool azimuth can be computed by

the same inversion methods as for HTI con�gurations. However, the di�erence in the phase

slowness dispersion curves of the projected fast and the projected slow principal waves highly

depend on the inclination angle, as displayed in �gures 4.32, 4.34, 4.38, and 4.40. Hence, the

inversion methods are very sensitive to noise in the waveforms at small inclinations, whereas

the methods become more robust for higher inclinations.

The output of the inversion methods are the vertical wave velocities of the qP-, qSV-, and

SH-wave. Unfortunately, their wave velocities are not de�ned by single elastic moduli given in

the crystallographic reference frame (x′′), but by a combination of them in dependence with

the inclination angle ψ0. The exact values for the wave velocities can be calculated by solving

the Christo�el equation (2.36). Daley and Hron (1977) derived explicit formulas to calculate

the phase velocities of vertically propagating qP-, qSV-, and SH-waves in TTI media, which

depend on the sti�ness tensor elements expressed in the crystallographic reference frame, the

inclination angle ψ0, and the density ρ
s. The corrected formulas are given by (Thomsen, 1986)
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vqPver(ψ0) =

√︄
C ′′
3,3 + C ′′

4,4 + (C ′′
1,1 − C ′′

3,3) sin
2 ψ0 +D(ψ0)

2ρs
, (5.20a)

vqSVver (ψ0) =

√︄
C ′′
3,3 + C ′′

4,4 + (C ′′
1,1 − C ′′

3,3) sin
2 ψ0 −D(ψ0)

2ρs
, (5.20b)

vSHver(ψ0) =

√︄
C ′′
6,6 sin

2 ψ0 + C ′′
4,4 cos

2 ψ0

ρs
, (5.20c)

D(ψ0) =

[︃
(C ′′

3,3 − C ′′
4,4)

2

+ 2
(︁
2(C ′′

1,3 + C ′′
4,4)

2 − (C ′′
3,3 − C ′′

4,4)(C
′′
1,1 + C ′′

3,3 − 2C ′′
4,4)
)︁
sin2 ψ0

+
(︁
(C ′′

1,1 + C ′′
3,3 − 2C ′′

4,4)
2 − 4(C ′′

1,3 + C ′′
4,4)

2
)︁
sin4 ψ0

]︃ 1
2

. (5.20d)

The above-presented equations are helpful to invert the sti�ness tensor elements from the ver-

tical plane wave velocities assuming that the formation's density ρs and the inclination angle

ψ0 are known from other measurements. The problem is that there are �ve unknown sti�ness

tensor elements characterizing a TI formation but only three equations for the qP-, qSV- and

SH- wave velocities. Consequently, an inversion method results in an underdetermined non-

linear equation system. In the VTI and HTI cases, this problem was solved by approximating

two elastic moduli, respectively. For the modeling of the Stoneley wave dispersion curves

in the VTI case, the elastic moduli C ′′
1,1 and C ′′

1,3 are approximated by formulas depending

only on C ′′
3,3, C

′′
4,4, and C

′′
6,6 (Eq. 5.3a and 5.3b). Analogous approximations (Eq. 5.14a and

5.14b) are proposed for the anisotropic modeling of �exural and quadrupole slowness disper-

sion curves in the HTI case. However, these approximations only work for both exceptional

TI cases since the sensitivities of the respective borehole modes are low to the approximated

elastic moduli. While the vertical SH-wave velocity depends only on the elastic moduli C ′′
4,4

and C ′′
6,6 in the TTI case, the sensitivity of the vertical qP- and qSV-wave velocities is high to

all elastic moduli, and the proposed approximations would introduce an enormous error, as

displayed in �gure 5.3. The solid lines denote the velocities of the vertically propagating qP-

and qSV-waves if the exact sti�ness tensor values are used for the calculation. In comparison,

the dashed and dotted lines represent the same wave velocities, if for their computation the

elastic moduli C ′′
1,1 and C ′′

1,3 are approximated by Eq. 5.3a and 5.3b (VTI), and the elastic

moduli C ′′
3,3 and C ′′

1,3 are approximated by Eq. 5.14a and 5.14b (HTI), respectively. These

approximations induce errors in the qP- and qSV-wave velocities up to 10% and 23%, respec-

tively. Consequently, approximations cannot be used to reduce the number of elastic moduli

which have to be determined.

An alternative seems to be involving the tube wave velocity in the inversion. This velocity is

de�ned by the low-frequency limit of the Stoneley wave's dispersion curve and depends on a
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(a) qP-wave velocity (b) qSV-wave velocity

Fig. 5.3: The solid lines in the �gures display the phase velocities of the vertically propagating qP- (a) and
qSV-wave (b) dependent on the inclination angle ψ0. The dotted lines represent the values for the velocities
when using approximated values for C′′

1,1 and C
′′
1,3 (VTI: Eq. 5.3a and 5.3b) or for C

′′
3,3 and C

′′
1,3 (HTI: Eq. 5.14a

and 5.14b).

known combination of all �ve elastic moduli given in the crystallographic reference frame and

the inclination angle ψ0 (Eq. 4.27d). In this way, a fourth equation is obtained, and only one

elastic modulus must be known a priori. However, this equation holds only in the absence of

a logging tool since the presence of an LWD strongly alters the tube wave velocity. Like in

the HTI case, this e�ect of the presence of a logging tool cannot be modeled because of the

lack of an analytical solution for the TTI case.

In conclusion, this means that two elastic moduli must be known a priori in the crystal-

lographic reference frame, preferably the modulus C ′′
1,3 and either C ′′

1,1 or C ′′
3,3. Assuming

that the elastic moduli C ′′
1,1 and C

′′
1,3 of the TI formation, as well as the inclination angle ψ0

and the formation density ρs are precisely known, the elastic moduli C ′′
3,3 and C ′′

4,4 can be

simultaneously inverted by solving the minimization problem

min
C′′

3,3,C
′′
4,4

{︃⃓⃓⃓⃓
2ρs
(︁
vqPver(ψ0)

)︁2 − C ′′
3,3 − C ′′

4,4 − (C ′′
1,1 − C ′′

3,3) sin
2 ψ0 −D(ψ0)

⃓⃓⃓⃓
+
⃓⃓⃓⃓
2ρs
(︁
vqSVver (ψ0)

)︁2 − C ′′
3,3 − C ′′

4,4 − (C ′′
1,1 − C ′′

3,3) sin
2 ψ0 +D(ψ0)

⃓⃓⃓⃓}︃
, (5.21)

where D(ψ0) is de�ned in equation 5.20d. Figure 5.4 displays examples of the error function

de�ned by the minimization problem. For both the slow Austin Chalk formation and the

fast Bakken Shale formation, the correct values for C ′′
3,3 and C ′′

4,4 (Tab. 3.1) are obtained by

the location of the minimum indicated by the white crosses, respectively. Once the elastic

modulus C ′′
4,4 is determined, it can be substituted in the inverse formula of equation 5.20c to

compute the sti�ness tensor element C ′′
6,6

C ′′
6,6 =

(︁
vSHver(ψ0)

)︁2
ρs

sin2 ψ0
− C ′′

4,4 cot
2 ψ0. (5.22)

In this way, the three elastic moduli C ′′
3,3, C

′′
4,4, and C

′′
6,6 can be computed if the sti�ness ten-

sor elements C ′′
1,1 and C ′′

1,3, the inclination angle ψ0, and the formation density are precisely

known. The problem with this naive inversion method is that it is highly susceptible to errors
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(a) Austin Chalk (b) Bakken Shale

Fig. 5.4: Error functions de�ned by the minimization problem in equation 5.21 for the slow Austin Chalk (a)
and fast Bakken Shale (b) TTI formations. The location of the minimum corresponds to the values for the
elastic moduli C′′

3,3 and C′′
4,4.

in the input parameters. For instance, a deviation of only one degree from the exact inclina-

tion angle will cause the failure of the inversion method. The same is true if the vertical wave

velocities are not determined precisely. As a result, the inversion method cannot be applied to

data obtained from real measurements because of its high sensitivity to minor errors and noise.

Alternatively, it is possible to invert not the sti�ness tensor elements itself but the Thomsen

parameters ϵ, γ, and δ (Thomsen, 1986). These three dimensionless parameters and the wave

velocities of the compressional and shear waves, propagating parallel to the TI symmetry axis,

characterize a TI formation (Sec. 2.1.4). However, this results in the same problem that there

are �ve unknowns but only three equations for the vertical qP, qSV- and SH-wave velocities.

Thus, it must also be assumed that two parameters are known a priori. Norris and Sinha

(1993) proposed an inversion method to invert the elastic moduli for a weakly anisotropic TTI

formation from monopole measurements in the absence of a logging tool. Thus, they could

use the tube wave velocity in their inversion algorithm to get a fourth equation. Nevertheless,

they presented that their inversion method is also highly susceptible to errors in the inclina-

tion angle ψ0.

The main problem of the inversion of TI elastic moduli in the crystallographic reference frame

from borehole acoustic measurements is that only one travel path along the borehole wall of

the compressional and shear waves can be measured. Consequently, information is only avail-

able at one inclination angle ψ0. As a result, the inclination angle must be precisely known to

invert elastic moduli from the vertical wave velocities correctly. If there would be more travel

paths at various inclination angles, the sensitivity to the inclination angle could be reduced,

or the angle could even be obtained from the measurements. For this reason, Hornby et al.

(2003), Walsh et al. (2006) and Horne et al. (2012) combined borehole acoustic measurements

from several boreholes having di�erent deviations or from one deviated borehole exhibiting

parts with di�erent inclinations. However, their methods work only for speci�c problems and

cannot be generalized. For a single borehole acoustic measurement it is not possible to mea-

sure velocities of compressional or shear waves that do not propagate along the borehole wall.
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The only exemption is the Stoneley wave which is also sensitive to the horizontal SH-wave

velocity. Nevertheless, this information is not useful for an inversion method since the e�ect

of the logging tool cannot be fast modeled.

In conclusion, it would be necessary to invert the full phase slowness dispersion curves of the

Stoneley, �exural, quadrupole waves for the reliable determination of TI elastic moduli. The

problem is that this also requires a fast modeling tool to model the dispersion curves of the

borehole waves in a �uid-�lled borehole surrounded by a TTI formation and in the presence of

an LWD tool. While the FD method presented in this thesis is too slow for such an inversion

method, an analytical solution would be the best method for fast forward modeling.

5.4. Challenges in real measurements

5.4.1. Signal-to-noise ratio (SNR)

While the above-presented inversion methods for the VTI, HTI, and TTI symmetries are only

theoretically veri�ed, some problems will exist in real measurements. One problem is that the

signal-to-noise ratio (SNR) is lower in LWDmeasurements because of the intense noise induced

by the drill bit, especially at low frequencies. This problem is solved in isotropic formations by

�ring the multipole source several times and stacking the results of all �rings to increase the

SNR signi�cantly. In contrast, this does not work in azimuthally anisotropic formations since

the tool rotates between the subsequent �rings, and the azimuthal information would get lost.

For instance, the integration of the generalized formula for the Alford rotation (Eq. 4.17) over

all azimuths yields
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Consequently, if the waveforms excited by multipole sources are stacked over all source az-

imuths, the in-line components of the four-component data matrix contain the sum of the

fast and slow principal waves, whereas the o�-diagonal components vanish. Unfortunately, it

is impossible to separate the fast and slow principal cylindrical waves from their sum without

further information. A solution for the low SNR ratio problem could be future LWD tools,

which can precisely determine the source azimuth relative to a reference frame and �re the

source at the same azimuths several times. However, the disadvantage of this solution is that

the vertical resolution decreases since the tool moves downwards during the repeated �rings.
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5.4.2. Tool eccentricity

Another main challenge in LWD measurements is that the logging tool is usually not per-

fectly centered in the �uid-�lled borehole. While WL tools are almost perfectly centered in

the borehole using centralizers, they cannot be used for LWD tools because of the fast tool

rotation. In the latter case, stabilizers are used instead of centralizers, which allow a higher

eccentricity. Wang and Tang (2003) as well as section 4.4 have shown that such a tool eccen-

tricity induces mode contaminants in isotropic formations. Furthermore, Zheng et al. (2004)

and Pardo et al. (2013) found that the �exural and quadrupole waves split into two waves with

di�erent phase slowness dispersion curves, such as in anisotropic environments. However, they

showed that the di�erence of the dispersion curves is marginal and not signi�cant. Within the

scope of this thesis, several numerical experiments were performed which show that the phase

slowness dispersion curves of the principal �exural and quadrupole waves are also only minor

a�ected by the tool eccentricity in anisotropic environments. On the other hand, Zheng et al.

(2004) and Pardo et al. (2013) outlined that the tool eccentricity strongly a�ects the velocity

of the Stoneley wave at low frequencies in isotropic formations. Further investigation shows

that this is not only true in isotropic formations but also in anisotropic media. Therefore,

tool eccentricity must be carefully treated when using the tube wave velocity to invert elastic

moduli, e.g., as described in section 5.1.

While the phase slowness dispersion curves of the cylindrical waves (n > 0) are only slightly

sensitive to tool eccentricity, the Alford rotation assumes a perfect symmetry and might not

apply to cylindrical waves excited by o�-centered cross-multipole sources. Numerical experi-

ments have shown that the generalized formula can be only applied without any errors to the

cylindrical waves measured by an o�-centered tool which center is shifted from the borehole

center parallel to the formation's fast or slow principal direction. However, in the case of an

arbitrary tool eccentricity, i.e., the tool center is o�set from the borehole center in an arbi-

trary direction relative to the formation's principal directions, the Alford rotation cannot be

applied exactly. Consequently, this leads to errors in the inversion methods for the determi-

nation of the azimuth θF. For instance, �gure 5.5a displays the error function computed from

the �exural waves excited by two non-orthogonal dipole sources of an o�-centered LWD tool.

The azimuth between the excitation direction of the X-dipole source and the formation's fast

principal direction is θF = 30◦, and the azimuth between both dipole excitations is ∆θ = 25◦,

which is indicated by the white dots. In comparison, the white crosses in the �gure represent

the minima of the error function which strongly deviate from the true values. Hence, the tool

eccentricity causes considerable errors in the determination of both azimuths θF and ∆θ, as

illustrated by the gray lines. Consequently, LWD dipole logging is not appropriate to obtain

the azimuths of the fast and slow principal directions characterizing an HTI formation if the

LWD tool is o�-centered.

On the other hand, �gure 5.5b illustrates that the tool eccentricity-induced error in the ob-

tained azimuth θF is much lower when using non-orthogonal LWD quadrupole �rings. While
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(a) Non-orthogonal o�-centered dipole excitation (b) Non-orthogonal o�-centered quadrupole excitation

Fig. 5.5: Examples of the error function computed via equation 5.12 in relation to the angles θF and∆θ. For the
examples, non-orthogonal cross-dipole (a) and cross-quadrupole (b) excitations are considered, respectively,
having the azimuths θF = 30◦ and ∆θ = 55◦. Both sources are o�-center from the borehole center by 6.5mm.
Since the di�erence between the borehole radius and the outer tool radius is 15mm, the tool eccentricity comes
to about 43%. The minima of the error function are indicated by the white crosses, whereas the white dots
correspond to the actual input values for θF and ∆θ. The gray lines indicate the error induced by the tool
eccentricity.

the angle between the X- and Y*-excitation directions is determined correctly despite the tool

eccentricity, the error in the obtained azimuth θF is only 4.8◦. Since the identical amount

of tool eccentricity is used for both examples (d = 6.5mm), it can be concluded that the

determination of the azimuth from LWD cross-quadrupole logging is much less sensitive to

tool eccentricity than an inversion method utilizing LWD cross-dipole measurements.

Nevertheless, tool eccentricity-induced mode contaminants cause problems if the amplitudes

of the anisotropy-induced Stoneley waves excited by quadrupole sources are used to obtain

the azimuth θF (Sec. 5.2.3). Figure 5.6 illustrates the interference of the anisotropy- and

eccentricity-induced Stoneley waves excited by an o�-centered LWD quadrupole source in

HTI media. The tool center is shifted from the borehole center by d = 6.5mm along a

direction 45◦ rotated to the formation's principal directions. It is shown that the cos(2θF)

dependency of the anisotropy-induced Stoneley wave's amplitude (Fig. 4.43) is disturbed

due to the tool eccentricity. Considering the slow Austin Chalk formation (Fig. 5.6a), the

(a) Austin Chalk (b) Bakken Shale

Fig. 5.6: Maximum amplitude of the anisotropy-(HTI-)induced Stoneley wave (C0) excited by a generally
o�-centered LWD quadrupole source in a �uid-�lled borehole surrounded by the slow Austin Chalk (a) and
fast Bakken Shale (b) HTI formations. The maximum amplitudes are displayed by the blue circles in relation
to the azimuth θF between the quadrupole excitation direction and the formation's fast principle direction.
Negative amplitude values mean opposite polarity of the Stoneley wave. The solid lines illustrate the cos(2θF)�
dependency that is phase-shifted due to the tool eccentricity.
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amplitude values follow, at the most azimuths, a cos(2θF)�function phase-shifted by 13◦.

However, for azimuths between 50◦ ≤ θF ≤ 70◦ (or 140◦ ≤ θF ≤ 160◦) the amplitude

values deviate from this dependency. Similar behavior is observed for the fast Bakken Shale

formation in �gure 5.6b. The cosine dependency is shifted by about 25◦, and the amplitude

values not following this function are located at azimuths between 10◦ ≤ θF ≤ 35◦ and

100◦ ≤ θF ≤ 125◦. Thus, it is di�cult to �nd the cosine dependency from measurements at

only a few azimuths, and even if this dependency is found, the maximum and zero values of

Stoneley wave amplitude do not correspond to the formation's principal directions because

of the phase shift. Thus, when applying the inversion method based on the Stoneley wave

amplitudes excited by a quadrupole source of an o�-centered LWD tool, the phase shift of the

cosine function will be the error in determining the azimuth θF, which is signi�cant especially

in fast formations. An extraordinary case occurs if the tool eccentricity is aligned with the

principal directions of the HTI formation. This means that the tool center is shifted from the

borehole center in a direction parallel to the formation's fast or slow principal direction. Then,

the tool eccentricity-induced Stoneley wave amplitudes follow a cos(2θF)�function that has

the same phase as the cos(2θF)�dependency of the anisotropy-induced Stoneley wave. Hence,

the interference results only in a change of the amplitude but not in the phase, and the

inversion method presented in section 5.2.3 works perfectly. However, since there is only little

control of the direction of tool eccentricity, this cannot be exploited in real measurements.
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6. Conclusions

The main objective of this thesis is the investigation of the feasibility on the determination of

elastic TI parameters from LWD acoustic measurements. For this reason, borehole-guided and

refracted waves are systematically investigated in anisotropic environments, and the e�ect of

the LWD tool is treated additionally. The investigation is based on synthetic waveforms that

are modeled for various anisotropic parameters and symmetries. For the VTI con�guration,

an analytical solution of the Christo�el equation can be derived in cylindrical coordinates.

It was also tried to �nd an analytical solution for triclinic anisotropic media, which was not

successful since the governing partial di�erential equation could not be solved in cylindrical

coordinates. Alternatively, a new ansatz was developed, but there was no time to implement

and test the underlying ideas in the scope of this thesis. Consequently, FD modeling was used

to model the wave�eld if the anisotropic formation exhibits HTI or TTI symmetry. Depen-

dent on the type of anisotropy, di�erent spatial FD grids must be utilized. The commonly

used standard staggered grid (SSG) works correctly only for anisotropic media with at least

orthotropic symmetry, including the HTI case. In contrast, if the anisotropic formation ex-

hibits monoclinic or triclinic symmetry, which is the case if the TI symmetry axis is inclined

to the borehole axis, the Lebedev grid consisting of four SSGs must be applied.

The investigation of the FD modeled waveforms results in a detailed overview of the behavior

of the Stoneley, �exural, and quadrupole waves in TI formations. While the Stoneley and

�exural waves have already been well-understood, the quadrupole wave was only little inves-

tigated in anisotropic environments. One of the major discoveries of the investigation is that

not only the �exural waves split into two principal waves in HTI and TTI formations, but

analogously all higher-order cylindrical waves. The mathematical derivation of this multipole

cylindrical wave splitting has been successfully veri�ed by FD modeling of quadrupole and

hexapole waves. Based on the multipole cylindrical wave splitting theorem, the well-known

Alford rotation (Alford, 1986) originally developed for �exural waves has been generalized

to apply for all cylindrical waves (m > 0). Besides, the formula for the Alford rotation was

extended to apply for non-orthogonal �rings.

Based on the inverse formula for the generalized Alford rotation, a simple inversion method is

proposed utilizing non-orthogonal cross-quadrupole measurements. The inversion method is

compared to a similar inversion method utilizing non-orthogonal cross-dipole measurements

developed by Wang et al. (2016). In both cases, the inverse formula for the Alford rotation

is used to obtain the azimuths of the formation's principal directions and the principal bore-

hole waves. The quadrupole inversion method has the disadvantage that the azimuths for
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the formation's principal directions cannot be determined uniquely because of an angle am-

biguity that cannot be resolved without further information. In contrast, this type of angle

ambiguity does not exist for the dipole inversion method, which yields one azimuth corre-

sponding to the fast principal direction and one azimuth corresponding to the slow principal

direction. Consequently, the inversion method using LWD cross-dipole excitations seems to

be the better option for determining the azimuths between the excitation direction and the

formation's principal directions, even in slow formations where only the tool �exural wave

might be present. This is because the tool �exural wave is also sensitive to the formation's

anisotropy parameters at intermediate and high frequencies (> 2 kHz).

The proposed LWD cross-quadrupole inversion method requires eight azimuthal receivers

causing a technical problem since modern LWD tools have a receiver array with only four

azimuthal receivers. For that reason, a second inversion method is developed exploiting

anisotropy-induced mode contaminants. Besides the investigation of phase slowness disper-

sion curves of various borehole waves, this thesis has also extensively investigated the mode

contaminants induced by the formation anisotropy. While these anisotropy-induced mode

contaminants were predominately studied using FD modeling, the results can be perfectly

described by the governing di�erential equations (Christo�el equation) in cylindrical coordi-

nates after applying an azimuthal Fourier transform. The most useful discovery is that a

quadrupole source excites a Stoneley wave in HTI and TTI media, which amplitude depends

on the azimuth between the quadrupole excitation direction and the formation's principal

directions. In this way, the anisotropy-induced Stoneley wave amplitudes provide informa-

tion about the azimuths of the principal directions. Based on this, an alternative inversion

method has been developed to obtain the azimuths and the principal quadrupole waves. The

advantage of this method is that it requires only four azimuthal receivers, which are already

installed in modern LWD tools. Nevertheless, the problem of the angle ambiguity remains

and cannot be solved.

Furthermore, solution strategies and limitations in determining both true principal phase

slowness values from the dispersion curves of the obtained principal quadrupole waves are

discussed. This work illustrates that the principal slowness values cannot be read directly

from the low-frequency limits of the quadrupole phase slowness dispersion curves. Alter-

natively, Wang et al. (2016) proposed a model-based inversion method to obtain the phase

slowness values from the �exural wave dispersion curves. While they approximate the dis-

persion curves measured in anisotropic media by an isotropic model, this introduces errors

for the quadrupole inversion method since the dispersion curves of the principal quadrupole

waves deviate signi�cantly from their isotropic counterparts. Thus, it would be advantageous

to invert the dispersion curves by using an anisotropic model. The problem is that such an

inversion method requires a fast modeling tool, e.g., an analytical solution, to forward model

the dispersion curves for di�erent anisotropic parameters. Because such an analytical solu-

tion does not exist for the HTI or TTI con�guration, it is di�cult to reliably determine TI

formations anisotropy parameters from LWD cross-quadrupole acoustic measurements. Be-
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sides, it is presented that the quadrupole wave splitting can be primarily observed in slow

TI formations, whereas the di�erence between the fast and slow principal quadrupole waves

is marginal in fast TI formations. Moreover, the �exural and quadrupole waves are highly

sensitive to the borehole �uid slowness in fast formations. Since this slowness value is input

in the model-based inversion methods, it must be known precisely to prevent introducing

signi�cant errors in the inversion methods.

Moreover, even if the azimuths of the principal directions and the principal phase slowness

values are correctly determined, it is impossible to invert elastic moduli in the crystallographic

reference frame for the TTI case without knowing the inclination between the TI symmetry

axis and the borehole axis precisely. While this inclination angle can be determined, e.g.,

by ultrasonic measurements, the inversion methods for the elastic moduli are highly sensitive

to errors and not practicable in real measurements. Hence, it is proposed to use the full

phase slowness dispersion curves of several borehole waves instead of single principal slowness

values to reliably obtain the elastic moduli of the TI formation. The problem is that such

an inversion method also requires a fast modeling tool (analytical solution) for modeling the

dispersion curves for di�erent input parameters.

Bazulin et al. (2020) have shown that neural networks might be an alternative to conventional

inversion methods. Their advantage is that an analytical solution is not required since the

neural network simulates the involved physics. The latter can be trained with synthetic wave-

form array data obtained, for instance, by FD modeling for known elastic moduli. Another

advantage of neural networks is that both the kinematics and the amplitudes of the wave�eld

are processed in the inversion. Since the application of neural networks in borehole acoustics

is a relatively new topic, the future will show all advantages and limitations of such inversion

methods.

Despite all problems and limitations, cross-quadrupole measurements are useful in anisotropic

formations to validate cross-dipole logging results in real measurements. For instance, one

problem discussed in this work is tool eccentricity, which can lead to great errors in determin-

ing the azimuths of the formation's principal directions from cross-dipole measurements. In

contrast, the cross-quadrupole inversion methods are less sensitive to tool eccentricity. Nev-

ertheless, a combination of acoustic LWD measurements with ultrasonic measurements would

be good practice in the future. The ultrasonic measurements may be used not only to image

the borehole wall but additionally to position the tool relative to the borehole. In the best

case, the LWD tool is positioned in the center, but if this is technically not possible, the tool

can be placed at di�erent positions to quality control the anisotropic parameters obtained

from LWD dipole or quadrupole measurements. Besides, quadrupole shear wave splitting and

anisotropy-induced mode coupling provide indicators to detect formation anisotropy.

In a future step, the theoretical results presented in this thesis can be tested in real measure-

ments. Ideally, LWD cross-quadrupole measurements are performed in a �uid-�lled borehole
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surrounded by a slow HTI formation, which anisotropic parameters are known. The LWD

tool must contain eight azimuthal receivers instead of four to investigate if the quadrupole

wave splitting can be observed in reality. On the other hand, the amplitude dependency of

the anisotropy-induced Stoneley wave excited by quadrupole sources can be validated with

current LWD tools possessing four azimuthal receivers. For the tests, the logging tool must

be exactly centered, the borehole must be perfectly circular, and the four constituting sources

must be amplitude and phase-matched to exclude other mode contaminants that interfere

with the anisotropy-induced ones.

Besides, further work is required to obtain an analytical solution to quickly model the bore-

hole waves and their phase slowness dispersion curves in general anisotropic media exhibiting

the lowest triclinic symmetry. One solution strategy is trying to solve the Christo�el equation

given in cylindrical coordinates by transforming the spatial radial coordinate by an appro-

priate integral transform to obtain an algebraic equation. The Meijer transform (Meijer,

1941) might be such an integral transform. However, the resulting equations depend on dif-

ferent azimuthal wavenumbers causing additional problems to �nd a solution. Hence, a more

promising solution strategy is to transform the plane wave solutions of the Christo�el equa-

tion given in Cartesian coordinates into cylindrical coordinates. This investigation is in an

early stage but has shown that, also in the triclinic anisotropic case, it is possible to expand

the Cartesian propagation factor (exp(sβqxq), Eq. 2.41) as an in�nite summation of (gener-

alized) modi�ed Bessel functions. In this way, the plane wave solution can be transformed to

cylindrical coordinates, and the boundary conditions can be applied to obtain an analytical

solution for the borehole acoustic problem. Further research will show if this solution strategy

is successful. An analytical solution would be essential to develop inversion methods that are

more robust and may provide a fast tool to model waveforms for given parameters to train

neural networks.
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A. Integral transforms

A.1. Laplace transform

Integral transforms are standard analysis tools for con�gurations whose properties are shift-

invariant. The one-sided Laplace transform is an appropriate integral transform with respect

to the time coordinate since causality must be considered. Causality means that a physical

quantity cannot be generated before a source is switched on at the instant t0. The one-side

Laplace transform pair of some physical quantity f = f(x, t) de�ned in t ∈ T = {t ∈ R; t > t0}
is given by (e.g., de Hoop, 1995)

L (f(x, t)) = f̌(x, s) =

∞∫︂
t=t0

exp (−st) f(x, t)dt, (A.1a)

L−1
(︁
f̌(x, s)

)︁
= f(x, t) =

1

2πi

∫︂
s∈Br

exp(st)f̌(x, s)ds, (A.1b)

where s is the complex Laplace transform parameter (frequency), and exp (−st) is referred
to as the kernel of the Laplace transform. Extending the range of f by f(x, t) ≡ 0 for

t ∈ T ′ = {t ∈ R; t < t0} enforces causality. Equation A.1a can be considered as an integral

equation for a given f̌(x, s) with the solution f(x, t) having the value zero for t ∈ T ′ and

reproducing the function for t ∈ T (de Hoop, 1995). This requirement can be ful�lled by a

proper choice of the parameter s. Since all quantities in physics are bounded, it is assumed

that the function f is bounded. Therefore, the integral in equation A.1a is convergent if the

parameter s is either real and positive {s ∈ R; s > 0} or complex with a positive real part

{s ∈ C; Re(s) > 0} (de Hoop, 1995). The limiting case where s = iω and ω is the angular

frequency (ω ∈ R) yields the temporal Fourier transform. The inverse Laplace transform is

performed by evaluating the integral given in equation A.1b in the complex s plane. The

integral is the Bromwich integral (Br), where the integration path parallel to the imaginary

s�axis lies right-hand of all possible poles of the function f̌ .

The Laplace transform of the temporal derivative ∂tf(x, t) of a function f can be calculated

using partial integration

L (∂tf(x, t)) =

∞∫︂
t=t0

exp (−st) ∂tf(x, t)dt, (A.2a)



170 A. Integral transforms

= [exp(−st)f(x, t)]∞t=t0 −
∞∫︂

t=t0

(−s) exp(−st)f(x, t)dt, (A.2b)

= − exp(−st0) lim
t↓t0

f(x, t) + sf̌(x, s). (A.2c)

The �rst term of the right-hand side in equation A.2c describes a delta impulse δ(t − t0),

whose amplitude is de�ned by the jump of f when passing the instant t0 (de Hoop, 1995).

Note the Laplace transform of a delta function is de�ned as

L (δ(t− t0)) = exp(−st0). (A.3)

Assuming that the initial condition is given by f(x, t0) = 0 and f is continuous (no jump at

t0), the �rst term in equation A.2c vanishes and the remaining second term indicates that

time di�erentiation in the time domain is equivalent to multiplication with the parameter s

in the Laplace transformed or s-domain.

A.2. Spatial Fourier transform

The spatial Fourier transform is an integral transform concerning one or more spatial coor-

dinates. Let f = f(x, t) be a scalar function that is de�ned in the N -dimensional Euclidean

space RN and let f̌ = f̌(x, s) be its Laplace transform with respect to time (Appendix A.1).

Then, the spatial Fourier transform pair can be de�ned as (e.g., van der Hijden, 1987)

F
(︁
f̌(x, s)

)︁
= f̂(β, s) =

∫︂
x∈RN

exp (−ikqxq) f̌(x, s)d
Nx (A.4a)

F−1
(︂
f̂(β, s)

)︂
= f̌(x, s) =

(︂ s

2π

)︂N ∫︂
β∈RN

exp (ikqxq) f̂(β, s)d
Nβ, (A.4b)

where k is the transformation parameter referred to as wave vector. If the wave vector is real

k ∈ RN , the integral is convergent for an absolute integrable function f̌(x, s), meaning that

for unbounded domains, f̌(x, s) goes to zero as x→ −∞ and x→ ∞ (de Hoop, 1995). This

is sometimes referred to as radiation condition. Analogously to van der Hijden (1987), the

wave vector can be expressed by ik = sβ, where β is the phase slowness vector and s the

possibly complex Laplace transform parameter.

The spatial Fourier transform of the derivative of the Laplace transformed function f̌ with

respect to the spatial coordinate xp is de�ned as

F
(︁
∂pf̌(x, s)

)︁
=

∫︂
x∈X

exp (−sβqxq) ∂pf̌(x, s)dV, (A.5a)

=

∫︂
x∈X

[︁
∂p
(︁
exp(−sβqxq)f̌(x, s)

)︁
− (∂p exp(−sβqxq)) f̌(x, s)

]︁
dV, (A.5b)
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=

∫︂
x∈∂X

exp(−sβqxq)f̌(x, s)npdA+ sβpf̂(β, s), (A.5c)

where partial integration is used, and np is the unit vector normal to the surface ∂X pointing

away from X . If the domain X is extended to RN and the function f(x, s) goes to zero as

x→ −∞ and x→ ∞, the surface integral vanishes (de Hoop, 1995). Therefore di�erentiation

with respect to spatial coordinates (∂p) in RN is equivalent to multiplication by the factor

sβp in the Fourier transformed or spectral domain.

A.3. Azimuthal Fourier transform

A function f de�ned on a bounded domain in a cylindrical coordinate system depends on

the radial coordinate r, the azimuthal coordinate θ, and the vertical coordinate z. While the

latter coordinate can be transformed into the spectral domain via the above-described spatial

Fourier transform, the azimuthal Fourier transform is required to transform the azimuth θ.

The corresponding transform pair can be de�ned as (e.g., Geerits et al., 2010)

Fθ (f(θ)) = f̃m =
1

2π

π∫︂
θ=−π

exp(−imθ)f(θ)dθ, (A.6a)

F−1
θ

(︂
f̃m

)︂
= f(θ) =

∞∑︂
m=−∞

exp(imθ)f̃m. (A.6b)

The transform parameter m is the azimuthal wavenumber, sometimes referred to as modal

number.

The azimuthal Fourier transform of the azimuthal derivative of the function (∂θf(θ)) is de�ned

as

Fθ (dθf(θ)) =
1

2π

[︃
exp(−imθ)f(θ)

]︃π
−π

+
im

2π

π∫︂
θ=−π

exp(−imθ)f(θ)dθ, (A.7a)

=
1

2π
[(−1)m(f(π)− f(−π))] + imf̃m, (A.7b)

= imf̃m, (A.7c)

where partial integration is applied. Consequently, di�erentiation with respect to the azimuth

θ in the spatial domain is equivalent to multiplication by the factor im in the azimuthal Fourier

transformed domain if the function f is periodic (f(π) = f(−π)). If θ denotes the azimuth

of a cylindrical coordinate system, the condition is always ful�lled.
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Besides, the azimuthal Fourier transforms of the trigonometric cosine and sine functions are

derived using Euler 's formulas, where δ denotes the Dirac delta distribution

Fθ(cos(nθ)) =
1

2π

π∫︂
θ=−π

exp(−imθ) cos(nθ)dθ,

=
1

4π

π∫︂
θ=−π

(exp(−i(m− n)θ) + exp(−i(m+ n)θ)) dθ,

=
1

4π

(︃[︃
i

m− n
exp(−i(m− n)θ)

]︃π
θ=−π

+

[︃
i

m+ n
exp(−i(m+ n)θ)

]︃π
θ=−π

)︃
,

=
1

2

[︃
exp(iπ(m− n))− exp(−iπ(m− n))

2iπ(m− n)
+

exp(iπ(m+ n))− exp(−iπ(m+ n))

2iπ(m+ n)

]︃
,

=
1

2

[︃
sin(π(m− n))

π(m− n)
+

sin(π(m+ n))

π(m+ n)

]︃
,

=
1

2
[δ(m− n) + δ(m+ n)] , (A.8a)

Fθ(sin(nθ)) =
1

2π

π∫︂
θ=−π

exp(−imθ) sin(nθ)dθ,

=
1

4iπ

π∫︂
θ=−π

(exp(−i(m− n)θ)− exp(−i(m+ n)θ)) dθ,

=
1

4iπ

(︃[︃
i

m− n
exp(−i(m− n)θ)

]︃π
θ=−π

−
[︃

i

m+ n
exp(−i(m+ n)θ)

]︃π
θ=−π

)︃
,

=
1

2i

[︃
exp(iπ(m− n))− exp(−iπ(m− n))

2iπ(m− n)
− exp(iπ(m+ n))− exp(−iπ(m+ n))

2iπ(m+ n)

]︃
,

=
1

2i

[︃
sin(π(m− n))

π(m− n)
− sin(π(m+ n))

π(m+ n)

]︃
,

=
1

2i
[δ(m− n)− δ(m+ n)] . (A.8b)

The azimuthal Fourier transforms of further trigonometric expressions, e.g., the product of

the cosine and sine functions or arbitrary powers of them, can be straightforwardly calculated

from the above transforms (Eq. A.8a�A.8b) by applying the convolution property

Fθ (f(θ)g(θ)) = f̃m ∗ g̃m =
∞∑︂

k=−∞
f̃kg̃m−k. (A.9)

Some particular azimuthal Fourier transforms are given by

Fθ
[︁
cos2 θ

]︁
=

1

4
[δ(m− 2) + 2δ(m) + δ(m+ 2)] , (A.10a)
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Fθ
[︁
cos3 θ

]︁
=

1

8
[δ(m− 3) + 3δ(m− 1) + 3δ(m+ 1) + δ(m+ 3)] , (A.10b)

Fθ
[︁
cos4 θ

]︁
=

1

16
[δ(m− 4) + 4δ(m− 2) + 6δ(m) + 4δ(m+ 2) + δ(m+ 4)] , (A.10c)

Fθ
[︁
sin2 θ

]︁
=

1

4
[−δ(m− 2) + 2δ(m)− δ(m+ 2)] , (A.10d)

Fθ
[︁
sin3 θ

]︁
=

1

8i
[−δ(m− 3) + 3δ(m− 1)− 3δ(m+ 1) + δ(m+ 3)] , (A.10e)

Fθ
[︁
sin4 θ

]︁
=

1

16
[δ(m− 4)− 4δ(m− 2) + 6δ(m)− 4δ(m+ 2) + δ(m+ 4)] , (A.10f)

Fθ [sin θ cos θ] =
1

4i
[δ(m− 2)− δ(m+ 2)] , (A.10g)

Fθ
[︁
sin θ cos2 θ

]︁
=

1

8i
[δ(m− 3) + δ(m− 1)− δ(m+ 1)− δ(m+ 3)] , (A.10h)

Fθ
[︁
sin θ cos3 θ

]︁
=

1

16i
[δ(m− 4) + 2δ(m− 2)− 2δ(m+ 2)− δ(m+ 4)] , (A.10i)

Fθ
[︁
sin2 θ cos θ

]︁
=

1

8
[−δ(m− 3) + δ(m− 1) + δ(m+ 1)− δ(m+ 3)] , (A.10j)

Fθ
[︁
sin3 θ cos θ

]︁
=

1

16i
[−δ(m− 4) + 2δ(m− 2)− 2δ(m+ 2) + δ(m+ 4)] , (A.10k)

Fθ
[︁
sin2 θ cos2 θ

]︁
=

1

16
[−δ(m− 4) + 2δ(m)− δ(m+ 4)] . (A.10l)

On the other hand, the convolution property has to be also applied for the multiplication of

a trigonometric function and an arbitrary function f(θ) depending on θ

Fθ [cos θf(θ)] =
1

2

[︂
f̂m−1 + f̂m+1

]︂
, (A.11a)

Fθ [sin θf(θ)] =
1

2i

[︂
f̂m−1 − f̂m+1

]︂
. (A.11b)

A.4. Meijer transform

The Meijer transform was originally introduced by Meijer (1941) and is sometimes referred

to as (Meijer) K-transform or Meijer -Bessel transform. The Meijer transform of the order

ν is de�ned by (Bateman Manuscript Project, 1954)

Kν (f(r)) = f̄ν(kr) =

∞∫︂
r=0

√︁
rkrKν(rkr)f(r)dr, (A.12)

where Kν denotes a modi�ed Bessel function of the second kind and the order ν. If the

order equals ν = ±1
2 , the Meijer transform becomes the Laplace transform because of (e.g.,
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Gradshteyn and Ryzhik, 2007)

K± 1
2
(rkr) =

√︃
π

2rkr
exp (−rkr) . (A.13)

For the transformation of the radial coordinate into the radial wavenumber domain in the

Christo�el equation, the transforms of various terms (∂2r ,
1
r∂r, ∂r,

1
r ,

1
r2
) have to be considered.

Their Meijer transforms are given by

Kν (2ν∂rf(r)) = kr

[︃(︃
ν − 1

2

)︃
f̄ν+1(kr) +

(︃
ν +

1

2

)︃
f̄ν−1(kr)

]︃
, (A.14a)

Kν

(︁
4ν2∂2rf(r)

)︁
= k2r

[︃(︃
ν2 − ν +

1

4

)︃
f̄ν+2(kr) +

(︃
2ν2 − 1

2

)︃
f̄ν(kr)

+

(︃
ν2 + ν +

1

4

)︃
f̄ν−2(kr)

]︃
, (A.14b)

Kν

(︃
4ν2

1

r
∂rf(r)

)︃
= k2r

[︃(︃
1

2
+ ν

)︃
f̄ν+2(kr)− f̄ν(kr) +

(︃
1

2
− ν

)︃
f̄ν−2(kr)

]︃
, (A.14c)

Kν

(︃
2ν

1

r
f(r)

)︃
= kr

[︁
f̄ν+1(kr)− f̄ν−1(kr)

]︁
, (A.14d)

K
(︃
4ν2

1

r2
f(r)

)︃
= k2r

[︁
f̄ν+2(kr)− 2f̄ν(kr) + f̄ν−2(kr)

]︁
. (A.14e)

These equations are derived by using recursion formulas given in Gradshteyn and Ryzhik

(2007)

∂rKν(rkr) = −kr
2

[︁
Kν−1(rkr) +Kν+1(rkr)

]︁
, (A.15a)

2νKν(rkr) = rkr
[︁
Kν+1(rkr)−Kν−1(rkr)

]︁
. (A.15b)



175

B. Sti�ness and compliance tensor

B.1. Rotation between reference frames

The symmetries of anisotropic media are applied to de�ne the crystallographic reference frame

(x′′). However, in borehole acoustics, the governing equations are expressed in the borehole

reference frame (x′). The vertical axis of this reference frame is chosen to be always aligned

with the borehole axis (Fig. B.1). Furthermore, a tool reference frame (x) can be de�ned,

which vertical axis also coincides with the borehole axis, and the horizontal axes are aligned

with a speci�c de�ned tool position. Since Hooke's law applies to all orthogonal reference

frames, it can be transformed from the crystallographic reference frame into the tool reference

frame. Therefore, the stress (τi,j) and strain (ϵk,l) tensors are transformed by multiplication

with a second-order rotation tensor Ri,j

τi,j = Ri,i′Rj,j′τ
′′
i′,j′ , (B.1)

ϵk,l = Rk,k′Rl,l′ϵ
′′
k′,l′ . (B.2)

The substitution of Hooke's law given in the crystallographic reference frame (τ ′′i,j = C ′′
i,j,k,lϵ

′′
k,l)

into equation B.1 yields

τi,j = Ri,i′Rj,j′C
′′
i′,j′,k′,l′ϵ

′′
k′,l′ . (B.3)

(a) Crystallographic to borehole reference frame (b) Borehole to tool reference frame

Fig. B.1: Illustration of the transformations from the crystallographic reference frame x′′ (red) to the borehole
reference frame x′ (blue) and the tool reference frame x (black).
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The inverse of equation B.2 can be easily computed since the rotation tensor is orthogonal

(Ri,jRi,k = δj,k)

ϵ′′k′,l′ = Rk,k′Rl,l′ϵk,l. (B.4)

Substitution of the above equation into equation B.3 yields Hooke's law expressed in the tool

reference frame

τi,j = Ci,j,k,lϵk,l, (B.5)

with

Ci,j,k,l = Ri,i′Rj,j′Rk,k′Rl,l′C
′′
i′,j′,k′,l′ . (B.6)

The rotation tensor Ri,j contains two rotations. First, the sti�ness tensor is transformed

from the crystallographic reference frame x′′ to the borehole reference frame x′ by a rotation

around the x′′1�axis by the angle ψ0 (Fig. B.1a). The elements of the rotation tensor Ri,j are

de�ned by the cosines of the angles between the x′i and x
′′
j axes

Rx′′1 (ψ0) =

⎛⎜⎜⎜⎝
1 0 0

0 cosψ0 sinψ0

0 − sinψ0 cosψ0

⎞⎟⎟⎟⎠ . (B.7)

Second, the sti�ness tensor is transformed from the borehole reference frame (x′) to the tool

reference frame (x) by an azimuthal rotation around the x′3�axis by the angle θ0 (Fig. B.1b).

The corresponding rotation tensor is de�ned as

Rx′3(θ0) =

⎛⎜⎜⎜⎝
cos θ0 sin θ0 0

− sin θ0 cos θ0 0

0 0 1

⎞⎟⎟⎟⎠ . (B.8)

Both rotations can be combined by matrix multiplication, and the resulting rotation tensor

becomes

Ri,j(ψ0, θ0) = Rx′3
q,j(θ0)R

x′′1
i,q(ψ0) =

⎛⎜⎜⎜⎝
cos θ0 cosψ0 sin θ0 sinψ0 sin θ0

− sin θ0 cosψ0 cos θ0 sinψ0 cos θ0

0 − sinψ0 cosψ0

⎞⎟⎟⎟⎠ . (B.9)

Since Hooke's law is often expressed in a matrix-vector notation, it is useful to de�ne the

rotations also as a matrix-vector multiplication. Straightforward expansion of equation B.1

and the usage of the stress tensor symmetry yields

τ = Rτ ′′, τ = (τ1,1, τ2,2, τ3,3, τ2,3, τ1,3, τ1,2)
T , (B.10)
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with (Auld, 1973)

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R2
1,1 R2

1,2 R2
1,3

R2
2,1 R2

2,2 R2
2,3

R2
3,1 R2

3,2 R2
3,3

R2,1R3,1 R2,2R3,2 R2,3R3,3

R1,1R3,1 R1,2R3,2 R1,3R3,3

R1,1R2,1 R1,2R2,2 R1,3R2,3

2R1,3R1,2 2R1,1R1,3 2R1,1R1,2

2R2,2R2,3 2R2,1R2,3 2R2,1R2,2

2R3,2R3,3 2R3,1R3,3 2R3,1R3,2

R2,2R3,3 +R2,3R3,2 R2,1R3,3 +R2,3R3,1 R2,1R3,2 +R2,2R3,1

R1,2R3,3 +R1,3R3,2 R1,1R3,3 +R1,3R3,1 R1,1R3,2 +R1,2R3,1

R1,2R2,3 +R1,3R2,2 R1,1R2,3 +R1,3R2,1 R1,1R2,2 +R1,2R2,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.11)

Analogously, equation B.4 can be expanded to obtain

ϵ′′ = RTϵ, ϵ = (ϵ1,1, ϵ2,2, ϵ3,3, 2ϵ2,3, 2ϵ1,3, 2ϵ1,2)
T . (B.12)

Important to note is that the rotation matrix is not orthogonal (RRT ̸= RTR ̸= I). Nev-

ertheless, the expansion of equation B.4 yields the transpose of the rotation matrix because

the strain vector is de�ned by the normal components and the tangential components mul-

tiplied with the factor two. Accordingly, Hooke's law in the tool reference frame and the

matrix-vector notation is de�ned as

τ = Cϵ, (B.13)

with

C = RC ′′RT. (B.14)

Equation B.14 describes the rotation of the sti�ness tensor given in Voigt 's notation by two

matrix-matrix multiplications, and is equivalent to equation B.6.



178 B. Sti�ness and compliance tensor

Substitution of the rotation tensor components de�ned in equation B.9 into equation B.11

yields the rotation matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 θ0 cos2 ψ0 sin
2 θ0 sin2 ψ0 sin

2 θ0

sin2 θ0 cos2 ψ0 cos
2 θ0 sin2 ψ0 cos

2 θ0

0 sin2 ψ0 cos2 ψ0

0 −1
2 sin (2ψ0) cos θ0

1
2 sin (2ψ0) cos θ0

0 −1
2 sin (2ψ0) sin θ0

1
2 sin (2ψ0) sin θ0

−1
2 sin (2θ0)

1
2 cos

2 ψ0 sin (2θ0)
1
2 sin

2 ψ0 sin (2θ0)

sin (2ψ0) sin
2 θ0 sinψ0 sin (2θ0) cosψ0 sin (2θ0)

sin (2ψ0) cos
2 θ0 − sinψ0 sin (2θ0) − cosψ0 sin (2θ0)

− sin (2ψ0) 0 0

cos (2ψ0) cos θ0 − cosψ0 sin θ0 sinψ0 sin θ0

cos (2ψ0) sin θ0 cosψ0 cos θ0 − sinψ0 cos θ0

1
2 sin (2ψ0) sin (2θ0) sinψ0 cos (2θ0) cosψ0 cos (2θ0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.15)

The rotation of the sti�ness tensor characterizing speci�c anisotropic symmetries in the crys-

tallographic reference frame to the tool reference frame may cause that these symmetries get

lost.

B.2. Cylindrical coordinates

The transformation of the sti�ness tensor from Cartesian into cylindrical coordinates is equiv-

alent to a rotation around the x3�axis. Consequently, equation B.6 or equation B.14 can be

used by setting ψ0 = 0 and θ0 ≡ θ. The sti�ness tensor in cylindrical coordinates is still

symmetric, which elements are given by

C̃1,1 = C1,1 cos
4 θ + 4C1,6 sin θ cos

3 θ + (2C1,2 + 4C6,6) sin
2 θ cos2 θ

+ 4C2,6 sin
3 θ cos θ + C2,2 sin

4 θ, (B.16a)

C̃1,2 = C1,2 cos
4 θ + 2 (C2,6 − C1,6) sin θ cos

3 θ + (C1,1 + C2,2 − 4C6,6) sin
2 θ cos2 θ

+ 2 (C1,6 − C2,6) sin
3 θ cos θ + C1,2 sin

4 θ, (B.16b)

C̃1,3 = C1,3 cos
2 θ + 2C3,6 cos θ sin θ + C2,3 sin

2 θ, (B.16c)

C̃1,4 = C1,4 cos
3 θ + (2C4,6 − C1,5) sin θ cos

2 θ + (C2,4 − 2C5,6) sin
2 θ cos θ

− C2,5 sin
3 θ, (B.16d)

(B.16e)
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C̃1,5 = C1,5 cos
3 θ + (2C5,6 + C1,4) sin θ cos

2 θ + (C2,5 + 2C4,6) sin
2 θ cos θ

+ C2,4 sin
3 θ, (B.16f)

C̃1,6 = C1,6 cos
4 θ + (C1,2 − C1,1 + 2C6,6) sin θ cos

3 θ + 3 (C2,6 − C1,6) cos
2 θ sin2 θ

+ (C2,2 − C1,2 − 2C6,6) sin
3 θ cos θ − C2,6 sin

4 θ, (B.16g)

C̃2,2 = C2,2 cos
4 θ − 4C2,6 sin θ cos

3 θ + (2C1,2 + 4C6,6) sin
2 θ cos2 θ

− 4C1,6 sin
3 θ cos θ + C1,1 sin

4 θ, (B.16h)

C̃2,3 = C1,3 sin
2 θ + C2,3 cos

2 θ − 2C3,6 sin θ cos θ, (B.16i)

C̃2,4 = C2,4 cos
3 θ − (C2,5 + 2C4,6) sin θ cos

2 θ + (C1,4 + 2C5,6) sin
2 θ cos θ

− C1,5 sin
3 θ, (B.16j)

C̃2,5 = C2,5 cos
3 θ + (C2,4 − 2C5,6) sin θ cos

2 θ + (C1,5 − 2C4,6) sin
2 θ cos θ

+ C1,4 sin
3 θ, (B.16k)

C̃2,6 = C2,6 cos
4 θ + (C2,2 − C1,2 − 2C6,6) sin θ cos

3 θ + 3 (C1,6 − C2,6) sin
2 θ cos2 θ

+ (C1,2 − C1,1 + 2C6,6) sin
3 θ cos θ − C1,6 sin

4 θ, (B.16l)

C̃3,3 = C3,3, (B.16m)

C̃3,4 = C3,4 cos θ − C3,5 sin θ, (B.16n)

C̃3,5 = C3,4 sin θ + C3,5 cos θ, (B.16o)

C̃3,6 = (C2,3 − C1,3) sin θ cos θ + C3,6 cos
2 θ − C3,6 sin

2 θ, (B.16p)

C̃4,4 = C4,4 cos
2 θ − 2C4,5 sin θ cos θ + C5,5 sin

2 θ, (B.16q)

C̃4,5 = C4,5 cos
2 θ + (C4,4 − C5,5) sin θ cos θ − C4,5 sin

2 θ, (B.16r)

C̃4,6 = C4,6 cos
3 θ + (C2,4 − C1,4 − C5,6) sin θ cos

2 θ

+ (C1,5 − C2,5 − C4,6) sin
2 θ cos θ + C5,6 sin

3 θ, (B.16s)

C̃5,5 = C5,5 cos
2 θ + 2C4,5 sin θ cos θ + C4,4 sin

2 θ, (B.16t)

C̃5,6 = C5,6 cos
3 θ + (C4,6 + C2,5 − C1,5) sin θ cos

2 θ

+ (C2,4 − C1,4 − C5,6) sin
2 θ cos θ − C4,6 sin

3 θ, (B.16u)

C̃6,6 = C6,6 cos
4 θ + 2 (C2,6 − C1,6) sin θ cos

3 θ

+ (C1,1 + C2,2 − 2C1,2 − 2C6,6) sin
2 θ cos2 θ

+ 2 (C1,6 − C2,6) sin
3 θ cos θ + C6,6 sin

4 θ. (B.16v)
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C. Christo�el equation

C.1. Cartesian coordinates

The Christo�el equation can be derived from equations 2.25 by rearranging the second equa-

tion (second row in the matrix) to make it explicit for the temporal derivative of the stress

tensor

−Si,j,p,q∂tτp,q(x, t) + ∆+
i,j,n,r∂nvr(x, t) = 0, (C.1a)

Cp′,q′,i,jSi,j,p,q⏞ ⏟⏟ ⏞
=∆+

p′,q′,p,q

∂tτp,q(x, t) = ∆+
i,j,n,rCp′,q′,i,j∂nvr(x, t), (C.1b)

∆+
p′,q′,p,q∂tτp,q(x, t) = Cp′,q′,n,r∂nvr(x, t), (C.1c)

∂tτp,q(x, t) = Cp,q,n,r∂nvr(x, t). (C.1d)

Subsequently, equation C.1d is substituted into the equation of motion after temporal di�er-

entiation (�rst row of the matrix in equation 2.25)

−∆+
k,m,p,q∂m∂tτp,q(x, t) + δk,rρ

s∂2t vr(x, t) = 0, (C.2a)

−∆+
k,m,p,q∂mCp,q,n,r∂nvr(x, t) + δk,rρ

s∂2t vr(x, t) = 0, (C.2b)

−∂m
1

ρs
Ck,m,n,r∂nvr(x, t) + δk,r∂

2
t vr(x, t) = 0, C̄k,m,n,r =

1

ρs
Ck,m,n,r, (C.2c)

(︁
∂mC̄k,m,n,r∂n − δk,r∂

2
t

)︁
vr(x, t) = 0. (C.2d)

Applying a Laplace transform (App. A.1) with respect to the time and spatial Fourier trans-

forms (App. A.2) with respect to the spatial coordinates, equation C.2d becomes

(︁
sβmC̄k,m,n,rsβn − δk,rs

2
)︁
v̂r(β, s) = 0. (C.3)

The equation can be divided by the frequency s2 (s ̸= 0), and the phase slowness vector β

can be separated into its length |β| and direction ζ

βm = |β|ζm, (C.4)

to obtain the Christo�el equation in the form

(︁
|β|2ζmC̄k,m,n,rζn − δk,r

)︁
v̂r(β, s) = 0. (C.5)
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Further de�nitions of Λk,r = ζmC̄k,m,n,rζn and κ = |β|(−2) yield the eigenvalue problem

(Λk,r − κδk,r) v̂r(β, s) = 0. (C.6)

The elements of the symmetric matrix Λk,r (tensor of rank two) can be given in a matrix-vector

notation by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1,1

Λ1,2

Λ1,3

Λ2,2

Λ2,3

Λ3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̄1,1 C̄6,6 C̄5,5 2C̄1,6 2C̄1,5 2C̄5,6

C̄1,6 C̄2,6 C̄4,5 C̄1,2 + C̄6,6 C̄1,4 + C̄5,6 C̄4,6 + C̄2,5

C̄1,5 C̄4,6 C̄3,5 C̄1,4 + C̄5,6 C̄1,3 + C̄5,5 C̄3,6 + C̄4,5

C̄6,6 C̄2,2 C̄4,4 2C̄2,6 2C̄4,6 2C̄2,4

C̄5,6 C̄2,4 C̄3,4 C̄4,6 + C̄2,5 C̄3,6 + C̄4,5 C̄2,3 + C̄4,4

C̄5,5 C̄4,4 C̄3,3 2C̄4,5 2C̄3,5 2C̄3,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ21

ζ22

ζ23

ζ1ζ2

ζ1ζ3

ζ2ζ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.7)

where the sti�ness tensor elements are expressed in Voigt 's notation and are divided by the

volumetric mass density ρs.

Moreover, the Christo�el equation (Eq. C.6) can be expressed in matrix-vector form by⎛⎜⎜⎜⎜⎝
Λ1,1 − κ Λ1,2 Λ1,3

Λ1,2 Λ2,2 − κ Λ2,3

Λ1,3 Λ2,3 Λ3,3 − κ

⎞⎟⎟⎟⎟⎠v = 0. (C.8)

Equation C.8 has only non-trivial solutions if the matrix becomes singular. Thus, the values κ

are sought for which the determinant of the matrix vanishes. These values are, by de�nition,

the eigenvalues of the matrix Λ and are equivalent to the roots of the characteristic polynomial

det

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
Λ1,1 − κ Λ1,2 Λ1,3

Λ1,2 Λ2,2 − κ Λ2,3

Λ1,3 Λ2,3 Λ3,3 − κ

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ = 0 ⇔ κ3 + a1κ

2 + a2κ+ a3 = 0, (C.9a)

with

a1 = −Λ1,1 − Λ2,2 − Λ3,3, (C.9b)

a2 = Λ1,1Λ2,2 + Λ1,1Λ3,3 + Λ2,2Λ3,3 − Λ2
1,3 − Λ2

2,3 − Λ2
1,2, (C.9c)

a3 = Λ2
2,3Λ1,1 + Λ2

1,3Λ2,2 + Λ2
1,2Λ3,3 − Λ1,1Λ2,2Λ3,3 − 2Λ1,2Λ2,3Λ1,3. (C.9d)
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The roots of the cubic characteristic polynomial can be solved by �rst substituting κ = γ− a1
3

to eliminate the quadratic term (Korn and Korn, 1968)(︂
γ − a1

3

)︂3
+ a1

(︂
γ − a1

3

)︂2
+ b

(︂
γ − a1

3

)︂
+ a3 = 0, (C.10a)

γ3 +

(︃
−a

2
1

3
+ a2

)︃
γ +

2a31
27

− a1a2
3

+ a3 = 0, (C.10b)

γ3 + dγ + q = 0, (C.10c)

with

d = −a
2
1

3
+ a2, q =

2a31
27

− a1a2
3

+ a3. (C.10d)

Because the matrix Λ is symmetric, it can be shown that the coe�cient d is negative

d = −a
2
1

3
+ a2 < 0, (C.11a)

−a21 + 3a2 < 0. (C.11b)

Substitution of equations C.9b and C.9c into equation C.11b yields

(Λ1,1 − Λ2,2)
2 + (Λ1,1 − Λ3,3)

2 + (Λ2,2 − Λ3,3)
2 + 6

(︁
Λ2
2,3 + Λ2

1,3 + Λ2
1,2

)︁
≥ 0. (C.12)

Obviously, equation C.12 is satis�ed for arbitrary elements of Λ. Accordingly, the roots of

the cubic characteristic polynomial are real if the following relation is non-positive (Tsvankin,

2012)

Q =
d3

27
+
q2

4
≤ 0. (C.13)

Because the characteristic polynomial is of degree three, there exists three roots which can

be computed by (Korn and Korn, 1968)

γ1,2,3 = 2

√︃
−d
3

cos

(︃
β

3
+ k

2π

3

)︃
, k = 0, 1, 2, (C.14)

with

β = arccos

⎛⎝− q

2

√︂(︁−d
3

)︁3
⎞⎠ , 0 ≤ β ≤ π. (C.15)

Finally, the substitution is reversed, and the three roots of the characteristic polynomial are

computed using

κ1,2,3 = γ1,2,3 −
a1
3
. (C.16)
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The root with the largest absolute value corresponds to the qP-wave, whereas the other

two roots correspond to the qSV- and SH-wave. The latter two roots are equal if Q = 0

(Eq. C.13), e.g., for isotropic media or pure modes in anisotropic media, and are distinct if

Q < 0 (Tsvankin, 2012).

C.2. Cylindrical coordinates

The Christo�el equation in cylindrical coordinates can be expressed in the Laplace-space-

domain (r, θ, z, s) according to equation 2.55 as

(︁
Λ− ρss2I

)︁
⎛⎜⎜⎜⎝
v̌r

v̌θ

v̌z

⎞⎟⎟⎟⎠ (r, θ, z, s) = 0. (C.17)

The components of the non-symmetric matrix Λ are de�ned by

Λ1,1 = C̃1,1∂
2
r +

[︂
C̃1,1 +

(︂
∂θC̃1,6

)︂]︂ 1
r
∂r +

[︂(︂
∂θC̃2,6

)︂
− C̃2,2

]︂ 1

r2
+ C̃6,6

1

r2
∂2θ

+
(︂
∂θC̃6,6

)︂ 1

r2
∂θ + C̃5,5∂

2
z +

[︂
C̃1,5 +

(︂
∂θC̃5,6

)︂]︂ 1
r
∂z

+ 2

[︃
C̃1,6

1

r
∂r∂θ + C̃1,5∂r∂z + C̃5,6

1

r
∂θ∂z

]︃
, (C.18a)

Λ1,2 = C̃1,6∂
2
r +

[︂(︂
∂θC̃6,6

)︂
− C̃2,6

]︂ 1
r
∂r +

[︂
C̃2,6 −

(︂
∂θC̃6,6

)︂]︂ 1

r2
+ C̃2,6

1

r2
∂2θ

+
[︂(︂
∂θC̃2,6

)︂
− C̃2,2 − C̃6,6

]︂ 1

r2
∂θ + C̃4,5∂

2
z +

[︂
C̃1,4 − C̃2,4 − C̃5,6 +

(︂
∂θC̃4,6

)︂]︂ 1
r
∂z

+
[︂
C̃1,2 + C̃6,6

]︂ 1
r
∂r∂θ +

[︂
C̃1,4 + C̃5,6

]︂
∂r∂z +

[︂
C̃2,5 + C̃4,6

]︂ 1
r
∂θ∂z, (C.18b)

Λ1,3 = C̃1,5∂
2
r +

[︂(︂
∂θC̃5,6

)︂
+ C̃1,5 − C̃2,5

]︂ 1
r
∂r + C̃4,6

1

r2
∂2θ

+
[︂(︂
∂θC̃4,6

)︂
− C̃2,4

]︂ 1

r2
∂θ + C̃3,5∂

2
z +

[︂
C̃1,3 − C̃2,3 +

(︂
∂θC̃3,6

)︂]︂ 1
r
∂z

+
[︂
C̃1,4 + C̃5,6

]︂ 1
r
∂r∂θ +

[︂
C̃1,3 + C̃5,5

]︂
∂r∂z +

[︂
C̃3,6 + C̃4,5

]︂ 1
r
∂θ∂z, (C.18c)

Λ2,1 = C̃1,6∂
2
r +

[︂(︂
∂θC̃1,2

)︂
+ C̃2,6 + 2C̃1,6

]︂ 1
r
∂r +

[︂(︂
∂θC̃2,2

)︂
+ C̃2,6

]︂ 1

r2
+ C̃2,6

1

r2
∂2θ

+
[︂(︂
∂θC̃2,6

)︂
+ C̃2,2 + C̃6,6

]︂ 1

r2
∂θ + C̃4,5∂

2
z +

[︂(︂
∂θC̃2,5

)︂
+ C̃2,4 + 2C̃5,6

]︂ 1
r
∂z

+
[︂
C̃1,2 + C̃6,6

]︂ 1
r
∂r∂θ +

[︂
C̃1,4 + C̃5,6

]︂
∂r∂z +

[︂
C̃2,5 + C̃4,6

]︂ 1
r
∂θ∂z, (C.18d)

(C.18e)
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Λ2,2 = C̃6,6∂
2
r +

[︂
C̃6,6 +

(︂
∂θC̃2,6

)︂]︂ 1
r
∂r +

[︂
−
(︂
∂θC̃2,6

)︂
− C̃6,6

]︂ 1

r2
+ C̃2,2

1

r2
∂2θ

+
(︂
∂θC̃2,2

)︂ 1

r2
∂θ + C̃4,4∂

2
z +

[︂
C̃4,6 +

(︂
∂θC̃2,4

)︂]︂ 1
r
∂z

+ 2

[︃
C̃2,6

1

r
∂r∂θ + C̃4,6∂r∂z + C̃2,4

1

r
∂θ∂z

]︃
, (C.18f)

Λ2,3 = C̃5,6∂
2
r +

[︂(︂
∂θC̃2,5

)︂
+ 2C̃5,6

]︂ 1
r
∂r + C̃2,4

1

r2
∂2θ

+
[︂(︂
∂θC̃2,4

)︂
+ C̃4,6

]︂ 1

r2
∂θ + C̃3,4∂

2
z +

[︂
2C̃3,6 +

(︂
∂θC̃2,3

)︂]︂ 1
r
∂z

+
[︂
C̃2,5 + C̃4,6

]︂ 1
r
∂r∂θ +

[︂
C̃3,6 + C̃4,5

]︂
∂r∂z +

[︂
C̃2,3 + C̃4,4

]︂ 1
r
∂θ∂z, (C.18g)

Λ3,1 = C̃1,5∂
2
r +

[︂(︂
∂θC̃1,4

)︂
+ C̃1,5 + C̃2,5

]︂ 1
r
∂r +

(︂
∂θC̃2,4

)︂ 1

r2
+ C̃4,6

1

r2
∂2θ

+
[︂(︂
∂θC̃4,6

)︂
+ C̃2,4

]︂ 1

r2
∂θ + C̃3,5∂

2
z +

[︂
C̃2,3 + C̃5,5 +

(︂
∂θC̃4,5

)︂]︂ 1
r
∂z

+
[︂
C̃1,4 + C̃5,6

]︂ 1
r
∂r∂θ +

[︂
C̃1,3 + C̃5,5

]︂
∂r∂z +

[︂
C̃3,6 + C̃4,5

]︂ 1
r
∂θ∂z, (C.18h)

Λ3,2 = C̃5,6∂
2
r +

(︂
∂θC̃4,6

)︂ 1

r
∂r −

(︂
∂θC̃4,6

)︂ 1

r2
+ C̃2,4

1

r2
∂2θ

+
[︂(︂
∂θC̃2,4

)︂
− C̃4,6

]︂ 1

r2
∂θ + C̃3,4∂

2
z +

[︂
C̃4,5 − C̃3,6 +

(︂
∂θC̃4,4

)︂]︂ 1
r
∂z

+
[︂
C̃2,5 + C̃4,6

]︂ 1
r
∂r∂θ +

[︂
C̃3,6 + C̃4,5

]︂
∂r∂z +

[︂
C̃2,3 + C̃4,4

]︂ 1
r
∂θ∂z, (C.18i)

Λ3,3 = C̃5,5∂
2
r +

[︂
C̃5,5 +

(︂
∂θC̃4,5

)︂]︂ 1
r
∂r + C̃4,4

1

r2
∂2θ

+
(︂
∂θC̃4,4

)︂ 1

r2
∂θ + C̃3,3∂

2
z +

[︂
C̃3,5 +

(︂
∂θC̃3,4

)︂]︂ 1
r
∂z

+ 2

[︃
C̃4,5

1

r
∂r∂θ + C̃3,5∂r∂z + C̃3,4

1

r
∂θ∂z

]︃
. (C.18j)

The sti�ness tensor elements in cylindrical coordinates are de�ned in Appendix B.2.

Special Case: VTI

Since the sti�ness tensor characterizing an anisotropic medium exhibiting VTI symmetry is

azimuthal invariant (C̃(θ) = C), the components of the matrix Λ in cylindrical coordinates

reduces to

Λ1,1 = C1,1

(︃
∂2r +

1

r
∂r −

1

r2

)︃
+ C6,6

1

r2
∂2θ + C4,4∂

2
z , (C.19a)

Λ1,2 = (C1,1 − C6,6)
1

r
∂r∂θ − (C1,1 + C6,6)

1

r2
∂θ, (C.19b)
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Λ1,3 = (C1,3 + C4,4) ∂r∂z, (C.19c)

Λ2,1 = (C1,1 − C6,6)
1

r
∂r∂θ + (C1,1 + C6,6)

1

r2
∂θ, (C.19d)

Λ2,2 = C6,6

(︃
∂2r +

1

r
∂r −

1

r2

)︃
+ C1,1

1

r2
∂2θ + C4,4∂

2
z , (C.19e)

Λ2,3 = (C1,3 + C4,4)
1

r
∂θ∂z, (C.19f)

Λ3,1 = (C1,3 + C4,4)

(︃
∂r∂z +

1

r
∂z

)︃
, (C.19g)

Λ3,2 = (C1,3 + C4,4)
1

r
∂θ∂z, (C.19h)

Λ3,3 = C4,4

(︃
∂2r +

1

r
∂r +

1

r2
∂2θ

)︃
+ C3,3∂

2
z . (C.19i)

General triclinic case

In contrast, for anisotropic media exhibiting symmetries lower than VTI, the sti�ness tensor

elements are not azimuthal invariant and depend on θ. Hence, these components in cylindrical

coordinates (Eq. B.2) have to be substituted into equation C.18 involving azimuthal di�eren-

tiation. The elements of the Christo�el equation for the most general triclinic symmetry are

de�ned as

Λ1,1 = cos4 θ

[︃
C1,1∂

2
r + (2C1,6∂θ + C1,2 + 2C6,6)

1

r
∂r

+
(︁
C6,6∂

2
θ − 2(C1,6 − C2,6)∂θ − (C1,2 + 2C6,6)

)︁ 1

r2

]︃
+ sin θ cos3 θ

[︃
4C1,6∂

2
r − ((2C1,1 − 2C1,2 − 4C6,6)∂θ + 6(C1,6 − C2,6))

1

r
∂r

+
(︁
−2(C1,6 − C2,6)∂

2
θ + (2C1,1 + 2C2,2 − 4C1,2 − 8C6,6)∂θ + 6(C1,6 − C2,6)

)︁ 1

r2

]︃
+ sin2 θ cos2 θ

[︃
(2C1,2 + 4C6,6)∂

2
r

+ (−6(C1,6 − C2,6)∂θ + 3C1,1 + 3C2,2 − 4C1,2 − 8C6,6)
1

r
∂r

+
(︁
(C1,1 + C2,2 − 2C1,2 − 2C6,6)∂

2
θ + 12(C1,6 − C2,6)∂θ

−(3C1,1 + 3C2,2 − 4C1,2 − 8C6,6))
1

r2

]︃
+ sin3 θ cos θ

[︃
4C2,6∂

2
r + ((2C2,2 − 2C1,2 − 4C6,6)∂θ + 6(C1,6 − C2,6))

1

r
∂r

+
(︁
2(C1,6 − C2,6)∂

2
θ − (2C1,1 + 2C2,2 − 4C1,2 − 8C6,6)∂θ − 6(C1,6 − C2,6)

)︁ 1

r2

]︃
+ sin4 θ

[︃
C2,2∂

2
r + (−2C2,6∂θ + C1,2 + 2C6,6)

1

r
∂r

+
(︁
C6,6∂

2
θ − 2(C1,6 − C2,6)∂θ − (C1,2 + 2C6,6)

)︁ 1

r2

]︃
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+ cos3 θ

[︃
2C1,5∂r∂z + (2C5,6∂θ + C4,6 + C2,5)

1

r
∂z

]︃
+ sin θ cos2 θ

[︃
(2C1,4 + 4C5,6)∂r∂z

− ((2C1,5 − 2C2,5 − 2C4,6)∂θ + (C1,4 − 2C2,4 + 3C5,6))
1

r
∂z

]︃
+ sin2 θ cos θ

[︃
(2C2,5 + 4C4,6)∂r∂z

− ((2C1,4 − 2C2,4 + 2C5,6)∂θ − (2C1,5 − C2,5 − 3C4,6))
1

r
∂z

]︃
+ sin3 θ

[︃
2C2,4∂r∂z + (−2C4,6∂θ + (C1,4 + C5,6))

1

r
∂z

]︃
+ C5,5∂

2
z cos

2 θ + 2C4,5∂
2
z sin θ cos θ + C4,4∂

2
z sin

2 θ, (C.20a)

Λ1,2 = cos4 θ

[︃
C1,6∂

2
r + ((C1,2 + C6,6)∂θ − (2C1,6 − C2,6))

1

r
∂r

+
(︁
C2,6∂

2
θ − (C1,2 + 3C6,6)∂θ + (2C1,6 − C2,6)

)︁ 1

r2

]︃
+ cos3 θ sin θ

[︃
− (C1,1 − C1,2 − 2C6,6)∂

2
r

+ (−4(C1,6 − C2,6)∂θ + (2C1,1 + C2,2 − 3C1,2 − 6C6,6))
1

r
∂r

+
(︁
(C2,2 − C1,2 − 2C6,6)∂

2
θ + 8(C1,6 − C2,6)∂θ − (2C1,1 + C2,2 − 3C1,2 − 6C6,6)

)︁ 1

r2

]︃
+ cos2 θ sin2 θ

[︃
− 3(C1,6 − C2,6)∂

2
r

+ ((2C1,1 + 2C2,2 − 2C1,2 − 6C6,6)∂θ + 9(C1,6 − C2,6))
1

r
∂r

+
(︁
3(C1,6 − C2,6)∂

2
θ − (4C1,1 + 4C2,2 − 6C1,2 − 10C6,6)∂θ − 9(C1,6 − C2,6)

)︁ 1

r2

]︃
+ sin3 θ cos θ

[︃
(C2,2 − C1,2 − 2C6,6)∂

2
r

+ (4(C1,6 − C2,6)∂θ − (C1,1 + 2C2,2 − 3C1,2 − 6C6,6))
1

r
∂r

+
(︁
−(C1,1 − C1,2 − 2C6,6)∂

2
θ − 8(C1,6 − C2,6)∂θ

+(C1,1 + 2C2,2 − 3C1,2 − 6C6,6))
1

r2

]︃
+ sin4 θ

[︃
− C2,6∂

2
r + ((C1,2 + C6,6)∂θ − (C1,6 − 2C2,6))

1

r
∂r

+
(︁
−C1,6∂

2
θ − (C1,2 + 3C6,6)∂θ + (C1,6 − 2C2,6)

)︁ 1

r2

]︃
+ cos3 θ

[︃
(C1,4 + C5,6)∂r∂z + ((C2,5 + C4,6)∂θ − 2C5,6)

1

r
∂z

]︃
+ sin θ cos2 θ

[︃
(C2,5 − 2C1,5 + 3C4,6)∂r∂z
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+ ((2C2,4 − C1,4 − 3C5,6)∂θ + (2C1,5 − 2C2,5 − 2C4,6))
1

r
∂z

]︃
+ sin2 θ cos θ

[︃
(2C2,4 − C1,4 − 3C5,6)∂r∂z

+ ((2C1,5 − C2,5 − 3C4,6)∂θ + (2C1,4 − 2C2,4 + 2C5,6))
1

r
∂z

]︃
+ sin3 θ

[︃
− (C2,5 + C4,6)∂r∂z + ((C1,4 + C5,6)∂θ + 2C4,6)

1

r
∂z

]︃
+ C4,5∂

2
z cos

2 θ + (C4,4 − C5,5)∂
2
z sin θ cos θ − C4,5∂

2
z sin

2 θ, (C.20b)

Λ1,3 = cos3 θ

[︃
C1,5∂

2
r + ((C1,4 + C5,6)∂θ + C4,6)

1

r
∂r +

(︁
C4,6∂

2
θ − (C1,4 + C5,6)∂θ

)︁ 1

r2

]︃
+ sin θ cos2 θ

[︃
(C1,4 + 2C5,6)∂

2
r − ((2C1,5 − C2,5 − 3C4,6)∂θ + (C1,4 − C2,4 + C5,6))

1

r
∂r

+
(︁
−(C1,4 − C2,4 + C5,6)∂

2
θ + (2C1,5 − C2,5 − 3C4,6)∂θ

)︁ 1

r2

]︃
+ sin2 θ cos θ

[︃
(C2,5 + 2C4,6)∂

2
r − ((C1,4 − 2C2,4 + 3C5,6)∂θ − (C1,5 − C2,5 − C4,6))

1

r
∂r

+
(︁
(C1,5 − C2,5 − C4,6)∂

2
θ + (C1,4 − 2C2,4 + 3C5,6)∂θ

)︁ 1

r2

]︃
+ sin3 θ

[︃
C2,4∂

2
r − ((C2,5 + C4,6)∂θ − C5,6)

1

r
∂r +

(︁
C5,6∂

2
θ + (C2,5 + C4,6)∂θ

)︁ 1

r2

]︃
+ cos2 θ

[︃
(C1,3 + C5,5)∂r∂z + (C3,6 + C4,5)

1

r
∂θ∂z

]︃
+ sin θ cos θ

[︃
2(C3,6 + C4,5)∂r∂z − (C1,3 − C2,3 − C4,4 + C5,5)

1

r
∂θ∂z

]︃
+ sin2 θ

[︃
(C2,3 + C4,4)∂r∂z − (C3,6 + C4,5)

1

r
∂θ∂z

]︃
+ C3,5∂

2
z cos θ + C3,4∂

2
z sin θ, (C.20c)

Λ2,1 = cos4 θ

[︃
C1,6∂

2
r + ((C1,2 + C6,6)∂θ + 3C2,6)

1

r
∂r

+
(︁
C2,6∂

2
θ + (2C2,2 − C1,2 − C6,6)∂θ − 3C2,6

)︁ 1

r2

]︃
+ sin θ cos3 θ

[︃
− (C1,1 − C1,2 − 2C6,6)∂

2
r

+ (−4(C1,6 − C2,6)∂θ + (3C2,2 − 3C1,2 − 6C6,6))
1

r
∂r

+
(︁
(C2,2 − C1,2 − 2C6,6)∂

2
θ + (4C1,6 − 12C2,6)∂θ − (3C2,2 − 3C1,2 − 6C6,6)

)︁ 1

r2

]︃
+ sin2 θ cos2 θ

[︃
− 3(C1,6 − C2,6)∂

2
r
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+ ((2C1,1 + 2C2,2 − 2C1,2 − 6C6,6)∂θ + 9(C1,6 − C2,6))
1

r
∂r

+
(︁
3(C1,6 − C2,6)∂

2
θ − (2C1,1 + 2C2,2 − 6C1,2 − 14C6,6)∂θ − 9(C1,6 − C2,6)

)︁ 1

r2

]︃
+ sin3 θ cos θ

[︃
(C2,2 − C1,2 − 2C6,6)∂

2
r

+ (4(C1,6 − C2,6)∂θ − (3C1,1 − 3C1,2 − 6C6,6))
1

r
∂r

+
(︁
−(C1,1 − C1,2 − 2C6,6)∂

2
θ − (12C1,6 − 4C2,6)∂θ + (3C1,1 − 3C1,2 − 6C6,6)

)︁ 1

r2

]︃
+ sin4 θ

[︃
− C2,6∂

2
r + ((C1,2 + C6,6)∂θ − 3C1,6)

1

r
∂r

+
(︁
−C1,6∂

2
θ + (2C1,1 − C1,2 − C6,6)∂θ + 3C1,6

)︁ 1

r2

]︃
+ cos3 θ

[︃
(C1,4 + C5,6)∂r∂z + ((C2,5 + C4,6)∂θ + 2C2,4)

1

r
∂z

]︃
+ sin θ cos2 θ

[︃
(C2,5 − 2C1,5 + 3C4,6)∂r∂z

+ ((2C2,4 − C1,4 − 3C5,6)∂θ − (2C2,5 + 4C4,6))
1

r
∂z

]︃
+ sin2 θ cos θ

[︃
(2C2,4 − C1,4 − 3C5,6)∂r∂z

+ ((2C1,5 − C2,5 − 3C4,6)∂θ + (2C1,4 + 4C5,6))
1

r
∂z

]︃
+ sin3 θ

[︃
− (C2,5 + C4,6)∂r∂z + ((C1,4 + C5,6)∂θ − 2C1,5)

1

r
∂z

]︃
+ C4,5∂

2
z cos

2 θ + (C4,4 − C5,5)∂
2
z sin θ cos θ − C4,5∂

2
z sin

2 θ, (C.20d)

Λ2,2 = cos4 θ

[︃
C6,6∂

2
r + (2C2,6∂θ + (C2,2 − C1,2 − C6,6))

1

r
∂r

+
(︁
C2,2∂

2
θ − 4C2,6∂θ − (C2,2 − C1,2 − C6,6)

)︁ 1

r2

]︃
+ sin θ cos3 θ

[︃
2(C2,6 − C1,6)∂

2
r + ((2C2,2 − 2C1,2 − 4C6,6)∂θ + (4C1,6 − 8C2,6))

1

r
∂r

+
(︁
−4C2,6∂

2
θ − (4C2,2 − 4C1,2 − 8C6,6)∂θ − (4C1,6 − 8C2,6)

)︁ 1

r2

]︃
+ sin2 θ cos2 θ

[︃
(C1,1 + C2,2 − 2C1,2 − 2C6,6)∂

2
r

+ (6(C1,6 − C2,6)∂θ − (2C1,1 + 2C2,2 − 4C1,2 − 10C6,6))
1

r
∂r

+
(︁
(2C1,2 + 4C6,6)∂

2
θ − 12(C1,6 − C2,6)∂θ + (2C1,1 + 2C2,2 − 4C1,2 − 10C6,6

)︁ 1

r2

]︃
+ sin3 θ cos θ

[︃
2(C1,6 − C2,6)∂

2
r − ((2C1,1 − 2C1,2 − 4C6,6)∂θ + (8C1,6 − 4C2,6))

1

r
∂r
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+
(︁
−4C1,6∂

2
θ + (4C1,1 − 4C1,2 − 8C6,6)∂θ + (8C1,6 − 4C2,6)

)︁ 1

r2

]︃
+ sin4 θ

[︃
C6,6∂

2
r + (−2C1,6∂θ + C1,1 − C1,2 − C6,6)

1

r
∂r

+
(︁
C1,1∂

2
θ + 4C1,6∂θ − (C1,1 − C1,2 − C6,6)

)︁ 1

r2

]︃
+ cos3 θ

[︃
2C4,6∂r∂z + (2C2,4∂θ − (C2,5 + C4,6))

1

r
∂z

]︃
+ sin θ cos2 θ

[︃
(2C2,4 − 2C1,4 − 2C5,6)∂r∂z

+ (−(2C2,5 + 4C4,6)∂θ + (C1,4 − 2C2,4 + 3C5,6))
1

r
∂z

]︃
+ sin2 θ cos θ

[︃
(2C1,5 − 2C2,5 − 2C4,6)∂r∂z

+ ((2C1,4 + 4C5,6)∂θ + (C2,5 − 2C1,5 + 3C4,6))
1

r
∂z

]︃
+ sin3 θ

[︃
2C5,6∂r∂z + (−2C1,5∂θ − (C1,4 + C5,6))

1

r
∂z

]︃
+ C4,4∂

2
z cos

2 θ − 2C4,5∂
2
z sin θ cos θ + C5,5∂

2
z sin

2 θ, (C.20e)

Λ2,3 = cos3 θ

[︃
C5,6∂

2
r + ((C2,5 + C4,6)∂θ + C2,4)

1

r
∂r +

(︁
C2,4∂

2
θ − (C2,5 + C4,6)∂θ

)︁ 1

r2

]︃
+ sin θ cos2 θ

[︃
− (C1,5 − C2,5 − C4,6)∂

2
r − ((C1,4 − 2C2,4 + 3C5,6)∂θ + (C2,5 + 2C4,6))

1

r
∂r

+
(︁
−(C2,5 + 2C4,6)∂

2
θ + (C1,4 − 2C2,4 + 3C5,6)∂θ

)︁ 1

r2

]︃
+ sin2 θ cos θ

[︃
− (C1,4 − C2,4 + C5,6)∂

2
r + ((2C1,5 − C2,5 − 3C4,6)∂θ + (C1,4 + 2C5,6))

1

r
∂r

+
(︁
(C1,4 + 2C5,6)∂

2
θ − (2C1,5 − C2,5 − 3C4,6)∂θ

)︁ 1

r2

]︃
+ sin3 θ

[︃
− C4,6∂

2
r + ((C1,4 + C5,6)∂θ − C1,5)

1

r
∂r −

(︁
C1,5∂

2
θ + (C1,4 + C5,6)∂θ

)︁ 1

r2

]︃
+ cos2 θ

[︃
(C3,6 + C4,5)∂r∂z + (C2,3 + C4,4)

1

r
∂θ∂z

]︃
+ sin θ cos θ

[︃
− (C1,3 − C2,3 − C4,4 + C5,5)∂r∂z − 2(C3,6 + C4,5)

1

r
∂θ∂z

]︃
+ sin2 θ

[︃
− (C3,6 + C4,5)∂r∂z + (C1,3 + C5,5)

1

r
∂θ∂z

]︃
+ C3,4∂

2
z cos θ − C3,5∂

2
z sin θ, (C.20f)
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Λ3,1 = cos3 θ

[︃
C1,5∂

2
r + ((C1,4 + C5,6)∂θ + (C2,5 + 2C4,6))

1

r
∂r

+
(︁
C4,6∂

2
θ − (C1,4 − 2C2,4 + C5,6)∂θ − (C2,5 + 2C4,6)

)︁ 1

r2

]︃
+ sin θ cos2 θ

[︃
(C1,4 + 2C5,6)∂

2
r − ((2C1,5 − C2,5 − 3C4,6)∂θ + (2C1,4 − 3C2,4 + 4C5,6))

1

r
∂r

+
(︁
−(C1,4 − C2,4 + C5,6)∂

2
θ + (2C1,5 − 3C2,5 − 7C4,6)∂θ + (2C1,4 − 3C2,4 + 4C5,6)

)︁ 1

r2

]︃
+ sin2 θ cos θ

[︃
(C2,5 + 2C4,6)∂

2
r − ((C1,4 − 2C2,4 + 3C5,6)∂θ − (3C1,5 − 2C2,5 − 4C4,6))

1

r
∂r

+
(︁
(C1,5 − C2,5 − C4,6)∂

2
θ + (3C1,4 − 2C2,4 + 7C5,6)∂θ − (3C1,5 − 2C2,5 − 4C4,6)

)︁ 1

r2

]︃
+ sin3 θ

[︃
C2,4∂

2
r − ((C2,5 + C4,6)∂θ − (C1,4 + 2C5,6))

1

r
∂r

+
(︁
C5,6∂

2
θ − (2C1,5 − C2,5 − C4,6)∂θ − (C1,4 + 2C5,6)

)︁ 1

r2

]︃
+ cos2 θ

[︃
(C1,3 + C5,5)∂r∂z + ((C3,6 + C4,5)∂θ + (C2,3 + C4,4))

1

r
∂z

]︃
+ sin θ cos θ

[︃
2(C3,6 + C4,5)∂r∂z − ((C1,3 − C2,3 − C4,4 + C5,5)∂θ + 2(C3,6 + C4,5))

1

r
∂z

]︃
+ sin2 θ

[︃
(C2,3 + C4,4)∂r∂z + (−(C3,6 + C4,5)∂θ + (C1,3 + C5,5))

1

r
∂z

]︃
+ C3,5∂

2
z cos θ + C3,4∂

2
z sin θ, (C.20g)

Λ3,2 = cos3 θ

[︃
C5,6∂

2
r + ((C2,5 + C4,6)∂θ − (C1,4 − C2,4 + C5,6))

1

r
∂r

+
(︁
C2,4∂

2
θ − (C2,5 + 3C4,6)∂θ + (C1,4 − C2,4 + C5,6)

)︁ 1

r2

]︃
+ sin θ cos2 θ

[︃
− (C1,5 − C2,5 − C4,6)∂

2
r

− ((C1,4 − 2C2,4 + 3C5,6)∂θ − (2C1,5 − 2C2,5 − 5C4,6))
1

r
∂r

+
(︁
−(C2,5 + 2C4,6)∂

2
θ + (3C1,4 − 4C2,4 + 5C5,6)∂θ − (2C1,5 − 2C2,5 − 5C4,6)

)︁ 1

r2

]︃
+ sin2 θ cos θ

[︃
− (C1,4 − C2,4 + C5,6)∂

2
r

+ ((2C1,5 − C2,5 − 3C4,6)∂θ + (2C1,4 − 2C2,4 + 5C5,6))
1

r
∂r

+
(︁
(C1,4 + 2C5,6)∂

2
θ − (4C1,5 − 3C2,5 − 5C4,6)∂θ − (2C1,4 − 2C2,4 + 5C5,6)

)︁ 1

r2

]︃
+ sin3 θ

[︃
− C4,6∂

2
r + ((C1,4 + C5,6)∂θ − (C1,5 − C2,5 − C4,6))

1

r
∂r
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−
(︁
C1,5∂

2
θ + (C1,4 + 3C5,6)∂θ − (C1,5 − C2,5 − C4,6)

)︁ 1

r2

]︃
+ cos2 θ

[︃
(C3,6 + C4,5)∂r∂z + ((C2,3 + C4,4)∂θ − (C3,6 + C4,5))

1

r
∂z

]︃
+ sin θ cos θ

[︃
− (C1,3 − C2,3 − C4,4 + C5,5)∂r∂z

+ (−2(C3,6 + C4,5)∂θ + (C1,3 − C2,3 − C4,4 + C5,5))
1

r
∂z

]︃
+ sin2 θ

[︃
− (C3,6 + C4,5)∂r∂z + ((C1,3 + C5,5)∂θ + (C3,6 + C4,5))

1

r
∂z

]︃
+ C3,4∂

2
z cos θ − C3,5∂

2
z sin θ, (C.20h)

Λ3,3 = cos2 θ

[︃
C5,5∂

2
r + (2C4,5∂θ + C4,4)

1

r
∂r +

(︁
C4,4∂

2
θ − 2C4,5∂θ

)︁ 1

r2

]︃
+ sin θ cos θ

[︃
2C4,5∂

2
r + (2(C4,4 − C5,5)∂θ − 2C4,5)

1

r
∂r

+
(︁
−2C4,5∂

2
θ − 2(C4,4 − C5,5)∂θ

)︁ 1

r2

]︃
+ sin2 θ

[︃
C4,4∂

2
r − (2C4,5∂θ − C5,5)

1

r
∂r +

(︁
C5,5∂

2
θ + 2C4,5∂θ

)︁ 1

r2

]︃
+ cos θ

[︃
2C3,5∂r∂z + 2C3,4

1

r
∂θ∂z

]︃
+ sin θ

[︃
2C3,4∂r∂z − 2C3,5

1

r
∂θ∂z

]︃
+ C3,3∂

2
z . (C.20i)

Application of an azimuthal Fourier transform with respect to the azimuthal coordinate θ

and a spatial Fourier transform with respect to the vertical z�coordinate yields the Christo�el

equation in the (r,m, βz, s)�domain

Λ̃(r,m, βz, s) = 0, (C.21a)

where the elements of the matrix Λ̃ are given in the following equations C.21b�C.21j. For

clarity reasons, the ± sign is meant to sum over both signs, e.g., Λ1,1 =
∑︁m+4

l=m−4(...)ṽ
l
r(r, βz, s).

16Λ̃1,1 =

[︃
C1,1 + C2,2 − 2C1,2 − 4C6,6 ± 4i (C1,6 − C2,6)

]︃
·
[︃
∂2r + (±2m+ 5)

1

r
∂r + (m2 ± 4m+ 3)

1

r2

]︃
ṽm±4
r

+ 4sβz

[︃
(C1,5 − C2,5 − 2C4,6)± i (C1,4 − C2,4 + 2C5,6)

]︃[︃
∂r + (±m+ 2)

1

r

]︃
ṽm∓3
r

+

(︃
4 [C1,1 − C2,2 ± 2i (C1,6 + C2,6)]

[︃
∂2r + (±m+ 2)

1

r
∂r

]︃
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+ 4s2β2z [C5,5 − C4,4 ± 2iC4,5]

)︃
ṽm±2
r

+ sβz

(︃[︁
8 [(C1,5 + C4,6)± i (C2,4 + C5,6)]

± 4m [(C1,5 − C2,5 + 2C4,6)± i (C1,4 − C2,4 − 2C5,6)]
]︁1
r

+ 4 [(3C1,5 + C2,5 + 2C4,6)± i (C1,4 + 3C2,4 + 2C5,6)] ∂r

)︃
ṽm±1
r

+

(︃
[6C1,1 + 6C2,2 + 4C1,2 + 8C6,6]

[︃
∂2r +

1

r
∂r −

1

r2

]︃
− 2m2 [C1,1 + C2,2 − 2C1,2 + 4C6,6]

1

r2
+ 8s2β2z [C4,4 + C5,5]− 16ρss2

)︃
ṽmr ,

(C.21b)

16Λ̃1,2 =

[︃
4 (C1,6 − C2,6)∓ i (C1,1 + C2,2 − 2C1,2 − 4C6,6)

]︃
·
[︃
∂2r + (±2m+ 5)

1

r
∂r + (m2 ± 4m+ 3)

1

r2

]︃
ṽm±4
θ

+ 4sβz

[︃
(C1,4 − C2,4 + 2C5,6)∓ i (C1,5 − C2,5 − 2C4,6)

]︃ [︃
∂r + (±m+ 2)

1

r

]︃
ṽm±3
θ

+

(︃[︁
4 (C1,6 + C2,6)∓ 2i (C1,1 − C2,2)

]︁ [︃
∂2r −

1

r
∂r − (m2 ± 4m+ 3)

1

r2

]︃
+ 4s2β2z [2C4,5 ± i (C4,4 − C5,5)]

)︃
ṽm±2
θ

+ sβz

(︃
8 [−(C2,4 + C5,6)± i (C1,5 + C4,6)]

1

r

+ 4 [(C1,4 + C2,4)∓ i (C1,5 + C2,5)]
[︂
∂r ∓

m

r

]︂)︃
ṽm±1
θ

+ 4im

[︃
(C1,1 + C2,2 + 2C1,2)

1

r
∂r − (2C1,1 + 2C2,2 + 4C6,6)

1

r2

]︃
ṽmθ , (C.21c)

8Λ̃1,3 =

[︃
C1,5 − C2,5 − 2C4,6 ± i (C1,4 − C2,4 + 2C5,6)

]︃
·
[︃
∂2r + (±2m+ 5)

1

r
∂r + (m2 ± 4m+ 3)

1

r2

]︃
ṽm±3
z

+ 2sβz

[︃
(C1,3 − C2,3 − C4,4 + C5,5)± 2i (C3,6 + C4,5)

]︃ [︃
∂r + (±m+ 2)

1

r

]︃
ṽm±2
z

+

(︃[︁
3C1,5 + C2,5 + 2C4,6 ± i (C1,4 + 3C2,4 + 2C5,6)

]︁ [︃
∂2r +

1

r
∂r −

1

r2

]︃
−m2 [C1,5 − C2,5 + 2C4,6 ∓ i (C1,4 − C2,4 − 2C5,6)]

1

r2
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± 2m [C1,5 + C2,5 ± i (C1,4 + C2,4)]

[︃
1

r
∂r −

2

r2

]︃
+ 4s2β2z [C3,5 ± iC3,4]

)︃
ṽm±1
z

+ 4sβz [C1,3 + C2,3 + C4,4 + C5,5] ∂rṽ
m
z , (C.21d)

16Λ̃2,1 =

[︃
4 (C1,6 − C2,6)∓ i (C1,1 + C2,2 − 2C1,2 − 4C6,6)

]︃
·
[︃
∂2r + (±2m+ 5)

1

r
∂r + (m2 ± 4m+ 3)

1

r2

]︃
ṽm±4
r

+ 4sβz [(C1,4 − C2,4 + 2C5,6)∓ i (C1,5 − C2,5 − 2C4,6)]

[︃
∂r + (±m+ 2)

1

r

]︃
ṽm±3
r

+

(︃
[4 (C1,6 + C2,6)∓ 2i (C1,1 − C2,2)]

[︃
∂2r +

3

r
∂r + (−m2 + 1)

1

r2

]︃
+ 4s2β2z [2C4,5 ± i (C4,4 − C5,5)]

)︃
ṽm±2
r

+ sβz

(︃
8 [(C2,4 + C5,6)∓ i (C1,5 + C4,6)]

1

r

+ 4 [(C1,4 + C2,4)∓ i (C1,5 + C2,5)]
[︂
∂r ∓

m

r

]︂)︃
ṽm±1
r

+ 4im

[︃
(C1,1 + C2,2 + 2C1,2)

1

r
∂r + (2C1,1 + 2C2,2 + 4C6,6)

1

r2

]︃
ṽmr , (C.21e)

16Λ̃2,2 = −
[︃
C1,1 + C2,2 − 2C1,2 − 4C6,6 ± 4i (C1,6 − C2,6)

]︃
·
[︃
∂2r + (±2m+ 5)

1

r
∂r + (m2 ± 4m+ 3)

1

r2

]︃
ṽm±4
r
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1

r
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ṽm±3
r
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[︃
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1

r
∂r + (m2 ± 2m+ 1)

1

r2
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)︁
ṽm±2
r

+ sβz
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± 4m [(3C1,5 + C2,5 + 2C4,6)± i(C1,4 + 3C2,4 + 2C5,6)]

+ 8 [(C1,5 + C4,6)± i(C2,4 + C5,6)]
]︁1
r

)︃
ṽm±1
r

+

(︃
[2C1,1 + 2C2,2 − 4C1,2 + 8C6,6]

[︃
∂2r +

1

r
∂r −

1

r2

]︃
−m2 [6C1,1 + 6C2,2 + 4C1,2 + 8C6,6]

1

r2
+ 8s2β2z [C4,4 + C5,5]− 16ρss2
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ṽmr ,

(C.21f)
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8Λ̃2,3 =
[︁
C1,4 − C2,4 + 2C5,6 ∓ i (C1,5 − C2,5 − 2C4,6)
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·
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1
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∂r + (m2 ± 4m+ 3)

1
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ṽm±3
z

+ sβz
[︁
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1

r

]︃
ṽm±2
z
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1
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1
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1

r2
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1
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1
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z
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1

r
ṽmz , (C.21g)
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[︃
∂r +

1
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ṽmr , (C.21h)
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[︁
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− [3C1,4 + C2,4 − 2C5,6 ∓ i (C1,5 + 3C2,5 − 2C4,6)]
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D. Processing of borehole acoustic

waveform array data

Section 1.1 presents that borehole acoustic tools contain an array of receivers that are axially

o�set from each other by a constant distance. The wave�eld emitted by the transmitter is

measured at each receiver yielding a waveform array. The main objective is to extract the

wave velocity or slowness of di�erent wave modes from the waveform array data. For this

purpose, several methods were developed in the past, which can be classi�ed into time-domain

and frequency-domain methods. Some of these methods are brie�y explained in the following

sections, and examples in isotropic formations are presented.

D.1. Time-domain methods

The most widespread slowness time coherence (STC) method is semblance processing devel-

oped by Kimball and Marzetta (1984). This method determines the �rst arrival time (T ) and

the slowness value (β) that maximize the coherence of stacked waveform data. The coherence

or semblance (ρ) is de�ned as (Kimball and Marzetta, 1984)

ρ(β, T, Tw) =
1

N

T+Tw∫︁
t=T

⃓⃓⃓⃓
N∑︁
k=1

wk (t+ β(k − 1)∆z)

⃓⃓⃓⃓2
dt

N∑︁
k=1

T+Tw∫︁
t=T

|wk (t+ β(k − 1)∆z)|2 dt
. (D.1)

The variable wk denotes the measured time-domain waveform at the kth receiver in the re-

ceiver array. The array contains N receivers that are axially o�set by the equidistant spacing

∆z. As an example, the upper plot of �gure D.1 displays the FD modeled waveform array

data of the wave�eld emitted by an LWD monopole source in a �uid-�lled borehole that is

surrounded by a fast isotropic formation. Equation D.1 expresses that the waveform at the

kth receiver is propagated to the �rst receiver position by applying a time shift β(k − 1)∆z

(Tang and Cheng, 2004). This time shift is illustrated in �gure D.1 by the orange lines and

depends on the chosen slowness value β. For calculating the nominator of equation D.1, the

waveform data of the �rst receiver and all other (N − 1) time-shifted waveforms are summed.

Then, the absolute values of the summed waveforms are squared and integrated over a time

window. The start of the time window depends on the �rst arrival time (T ), and its length is

de�ned by the chosen time window length Tw (Fig. D.1). The denominator of equation D.1

looks similar, but the absolute values of the time-shifted waveforms are squared and inte-

grated over the time window before they are summed. Hence, the denominator represents the
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Fig. D.1: The upper �gure shows the time-domain waveform array data of the wave�eld emitted by an LWD
monopole source (fc = 4kHz) in a �uid-�lled borehole surrounded by a fast isotropic formation. The wave
modes are di�erently ampli�ed for better visualization. The bottom �gure displays the semblance function in
relation to the slowness β and the arrival time T at the �rst receiver. The maxima of the semblance function
correspond to the refracted P-, refracted S-, and Stoneley waves.

stacked coherent power contained in a time windowed portion of each waveform. In contrast,

the physically meaning of the nominator is the power contained in the time windowed portion

of the stacked waveform. Consequently, the nominator is always smaller or equal to the de-

nominator, and the semblance ρ attains values between zero and one (0 ≤ ρ ≤ 1). The value

one is obtained if all time-shifted waveforms are identical. This can only be obtained if the

slowness value used in the time shift coincides with the true slowness value at which the wave

propagates. Additionally, the waveforms of a particular wave must be contained in the time

window T ≤ t ≤ T + Tw. Thus, the scalar semblance value depends on the slowness β, the

�rst arrival time T , and the time window length Tw. The latter is usually set to contain two or

three wave cycles (Tang and Cheng, 2004). Then, the �rst arrival time and the slowness value

are numerically varied in the range of interest, and for each (β,T )�pair, the semblance value is

computed. This results in a two-dimensional semblance function, as displayed at the bottom

of Fig. D.1. It can be observed that the semblance function contains several local maxima

corresponding to di�erent wave modes. The �rst maximum located at the earliest �rst arrival

time corresponds to the refracted P-wave propagating vertically along the borehole. The loca-

tion of the respective maximum semblance value indicated by the star corresponds to the �rst

arrival time of the refracted P-wave (TP) at the �rst receiver, as illustrated by the red line in

�gure D.1. Moreover, the slowness value that makes the semblance value maximum coincide

with the slowness of the refracted P-wave (βP), corresponding to the slope of the green line

plotted on top of the �rst arrivals in the upper plot of Fig. D.1. Analogously, the location
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of the second maximum de�nes the �rst arrival time (T S) and slowness (βS) of the refracted

shear wave. The third maximum corresponds to the borehole-guided Stoneley wave, which is

dispersive, i.e., the wave propagates with di�erent slowness at di�erent frequencies. The prob-

lem is that the waveforms are time-shifted in the semblance method using a constant slowness

value. Consequently, the semblance method cannot process dispersive waves correctly, and

frequency-domain methods are required instead. Geerits and Tang (2003) have shown that

semblance processing of dispersive borehole waves yields a weighted spectral average of the

dispersion curve over the frequency range of the wave spectrum.

Although the semblance method is the most common slowness time coherence (STC) tech-

nique, McFadden et al. (1986) proposed the Nth root stacking method as an alternative based

on the same physics, whereas the mathematical formulation is slightly di�erent.

D.2. Frequency-domain methods

D.2.1. Weighted spectral semblance method

Nolte et al. (1997) proposed a weighted spectral semblance method that processes the wave-

form array data in the frequency domain. For this reason, the N waveforms of the array are

Laplace transformed (App. A.1) from the time domain (w(t)) to the frequency domain (w̌(s))

�rst. The upper plot in �gure D.2 displays an example for the frequency-domain waveform ar-

ray of the wave�eld emitted by an LWD monopole source in a �uid-�lled borehole surrounded

by a fast isotropic formation.

In the next step of the method, the spectral semblance is computed de�ned as (e.g., Tang and

Cheng, 2004)

ρ(β, s) =

⃓⃓⃓⃓
N∑︁
k=1

w̌∗
k(s) exp(−sβ(k − 1)∆z)

⃓⃓⃓⃓2
√︄
N

N∑︁
k=1

w̌k(s)∗w̌k(s)

, (D.2)

where w̌∗
k denotes the complex conjugate of w̌k(s). Equation D.2 describes a coherence stack-

ing of the waveform array data in the frequency domain. If the slowness value β coincides

with the slowness of a wave mode contained in the waveform array at a particular frequency

(s = iω), the phase of the nominator in equation D.2 vanishes, and the semblance is maximized

approaching the value one for noise-free data (Tang and Cheng, 2004). In the next step, the

computed semblance values are weighted over neighboring frequency points to enhance the

data information and reduce noise, as explained by Nolte et al. (1997) and Tang and Cheng

(2004). The weighted semblance values are calculated for di�erent slowness values and fre-

quencies in the range of interest to obtain a two-dimensional semblance function, as displayed

in the bottom plot of �gure D.2. The location of the maximum semblance value for each

frequency de�nes the slowness dispersion curves of the corresponding wave mode contained
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Fig. D.2: The upper �gure shows the frequency-domain waveform array data (absolute values) of the wave�eld
emitted by an LWD monopole source (fc = 4kHz) in a �uid-�lled borehole surrounded by a fast isotropic
formation. The bottom �gure displays the semblance function in relation to the slowness and frequency. The
maximum of the semblance for each frequency de�nes the slowness dispersion curve of the Stoneley wave
illustrated by the red line.

in the waveform array data. In �gure D.2, the maximum semblance values in dependence

with the frequency de�ne the dispersion curve of the Stoneley wave. Since the waveform

array contains only weak signals at low frequencies, the semblance possesses a wide maximum

below 1 kHz.

D.2.2. Modi�ed matrix pencil method

Ekstrom (1996) has developed a modi�ed matrix pencil method that is a multi-mode dis-

persion extraction method to extract several borehole modes from the waveform array data.

This method is a frequency-domain method, and the received waveforms at the N receivers of

the array are Laplace transformed (App. A.1) from the time domain (w(t)) to the frequency

domain (w̌(s)) �rst. Next, the slowness values β are estimated at a particular temporal fre-

quency s. The complex sequence w̌k(s) (k = 1, ..., N) at a particular frequency has the length

N and can be approximated as a set of p complex exponentials (Ekstrom, 1996)

w̌k(s) ≈
p∑︂
j=1

aj exp(−sβ[j]zk), (D.3)

where zk represents the axial o�set between the transmitter and kth receiver. The objective is

to �nd the p exponentials (poles) that �t the waveform data best. Since the waveforms contain

the signal and noise in real measurements, Ekstrom (1996) explained that the estimation of
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the signal poles improves if the noise poles are also �t. Thus, he proposed to choose a

larger number for p than the number of expected signal modes q. For the estimation of the

exponentials, a forward and backward pencil is used. For this purpose, two matrices are

de�ned as (Ekstrom, 1996)

W0(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w̌2(s) w̌3(s) . . . w̌p+1(s)

w̌3(s) w̌4(s) . . . w̌p+2(s)

...
...

. . .
...

w̌N−p+1(s) w̌N−p+2(s) · · · w̌N (s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D.4)

and

W1(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w̌1(s) w̌2(s) . . . w̌p(s)

w̌2(s) w̌3(s) . . . w̌p+1(s)

...
...

. . .
...

w̌N−p(s) w̌N−p+1(s) · · · w̌N−1(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (D.5)

Hua and Sarkar (1990) proved that the poles are the generalized eigenvalues of the matrix pair

(W0 and W1). Thus, the pole estimates can be computed by solving the standard eigenvalue

problems (Ekstrom, 1996)

(︁
W+

1 W0 − λ0I
)︁
e0 = 0, (D.6)

and

(︁
W+

0 W1 − λ1I
)︁
e1 = 0, (D.7)

where the W+ denotes the Moore-Penrose inverse of W. The pole estimates obtained from

equation D.6 are referred to as backward estimates, whereas the eigenvalues of equation D.7

yield the forward estimates for the exponentials. Ekstrom (1996) proposed a simple variation

of the pencil formulation that is more robust and also applicable for attenuative signals. For

this reason, the forward and backward pole estimates are computed separately. Subsequently,

the forward and backward sets of the pole estimates are matched by �nding the corresponding

poles of each set that are closest together in magnitude. If the di�erence between two poles is

within a chosen tolerance, the two poles are arithmetically averaged to yield a �nal estimate.

Otherwise, the estimated pole pair is discarded (Ekstrom, 1996). In the above-described

way, the estimates of the poles are obtained in the form of averaged complex eigenvalues (λ̄)

characterized by its length |λ| and argument (phase) φ

λ̄
[j]
(s) = |λ[j]| exp(iφ[j]), j = 1, ..., p. (D.8)
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While the length of the complex eigenvalues represents the attenuation of the corresponding

wave modes, their argument can be used to obtain the slowness of the extracted modes at the

particular frequency s (= iω)

β[j](s) =
φ[j](s)

is∆z
, j = 1, ..., p. (D.9)

The modi�ed matrix pencil method can be applied to all frequency samples in the frequency

range of interest to obtain the slowness dispersion curves of the wave modes contained in

the waveform array data. The upper plot of �gure D.3 shows an example for waveform

array data in the frequency domain. The �gure displays the absolute value of the frequency-

domain waveforms of the wave�eld emitted by an LWD dipole source in a �uid-�lled borehole

surrounded by a fast isotropic formation. The bottom of �gure D.3 displays the slowness

dispersion curves of the excited wave modes, which are extracted from the frequency-domain

waveform array data using the modi�ed matrix pencil method. This method can extract both

dispersive waves, e.g., the tool �exural or formation �exural waves, and non-dispersive waves,

e.g., the refracted S-wave, as displayed in the �gure.

Fig. D.3: The upper �gure shows the frequency-domain waveform array data (absolute values) of the wave�eld
emitted by an LWD dipole source (fc = 4kHz) in a �uid-�lled borehole surrounded by a fast isotropic
formation. The bottom �gure displays the slowness dispersion curves of the tool �exural, formation �exural,
and refracted S-waves extracted via the matrix pencil method (p = 3). The dashed black lines illustrate the
slowness values of the P- and S-wave in the formation.
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Addendum: Inaccuracy in the sensitivity

analysis

This thesis contains a number of sensitivity calculations shown in the corresponding sensi-

tivity plots (Fig. 4.2e�4.2f, 4.3c�4.3d, 4.4c�4.4d, 4.5c�4.5d, 4.6c�4.6d, 4.7c�4.7d, 4.9d, 4.10b,

4.16c�4.16f, 4.18c�4.18f, and 4.21c�4.21f), which are potentially inaccurate. The inaccuracy

of these plots can be caused by di�erent aspects. First, the FD modeled waveforms contain

an inaccuracy because of the FD method. As explained in section 3.4, grid dispersion can

introduce errors depending on the spacing of the FD grid. Since decreasing the spacing of the

FD grid increases the computational e�ort, a balance for the spacing was chosen so that the

simulations are still manageable on a high-performance cluster and the grid dispersion errors

are at an acceptable level.

Nevertheless, this error can also be partially contained in the phase slowness dispersion curves

of the borehole waves since they are directly extracted from the FD modeled waveform array

data using the modi�ed matrix pencil method (Sec. D.2.2). Figure 1 shows a comparison of

the phase slowness dispersion curves of the tool �exural (Fig. 1a) and formation quadrupole

(Fig. 1b) waves in an isotropic environment. While the blue dots illustrate the phase slowness

dispersion curves obtained from the FD modeled waveforms, the dispersion curves displayed

by the solid red lines are computed using an analytical solution (Geerits et al., 2010). The

comparison shows that both modeled phase slowness dispersion curves are very similar, where

the di�erence for the tool �exural wave is less than 3.4%. Similarly, the modeled phase slow-

ness dispersion curves of the formation quadrupole wave show a good agreement and di�er

(a) Phase slowness dispersion (tool �exural) (b) Phase slowness dispersion (formation quadrupole)

Fig. 1: Phase slowness dispersion curves of the tool �exural (a) and formation quadrupole (b) waves excited by
a dipole/quadrupole source in a �uid-�lled borehole surrounded by an isotropic formation (vP = 3162.3m s−1,
vS = 1187.1m s−1, ρs = 2200 kgm−3) in the presence of an LWD tool. The blue dots illustrate the phase
slowness dispersion curves extracted from FD modeled waveform array data, whereas the solid red lines display
the dispersion curves computed using an analytical solution.
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only slightly in the low-frequency limit with a maximum error of 2.1%. Consequently, these

comparisons of FD and analytic modeled phase slowness dispersion curves show that the FD

modeled data agree well with the analytic modeling in isotropic environments and the FD

error is relatively small. Therefore, it is assumed that the FD modeling also works well in

TI environments. Unfortunately, the FD results in HTI or TTI formations cannot be bench-

marked against an analytical solution because it is not available, as discussed in section 2.4.2.

While the above discussion shows that there is only slight inaccuracy introduced in the FD

modeling of the phase slowness dispersion curves, the sensitivity calculation itself causes

further inaccuracies. The formula for the sensitivity (Eq. 4.2) involves the partial derivative

of the phase slowness with respect to the considered parameter. This partial derivative itself

must be calculated using a �nite-di�erence since there are no explicit formulas for the phase

slowness in TI formation. In the sensitivity analysis of this work, the partial di�erence is

modeled by a forward di�erence

∂β(s)

∂parameter
≈ β(parameter+∆parameter, s)− β(parameter, s)

∆parameter
. (1)

This approximation of the partial derivation in the calculation of the sensitivity introduces

further errors, which highly depend on the perturbation of the parameter (∆parameter). The

smaller the perturbation of the considered parameter is chosen, the less the discretization

error becomes. On the other hand, a small perturbation can strongly increase errors in the

phase slowness dispersion curves. Since the phase slowness values involved in the nominator of

the forward di�erence (Eq. 1) contain errors caused by the FD modeling, these errors would

be strongly ampli�ed by a small value of the perturbation parameter in the denominator.

Consequently, when weighting the computational costs of highly accurate sensitivity coe�-

cients against the practical goal to demonstrate general trends in the sensitivity analysis with

respect to various parameters, e.g., sti�ness tensor elements, it appears reasonable to refrain

from the former.
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