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Abstract 

Raman spectroscopy is an optical measurement technique able to provide spectroscopic 

information that is molecule-specific and unique to the nature of the specimen under 

investigation. It is an invaluable analytical tool that finds application in several fields such 

as medicine and in situ chemical processing. Due to its high specificity and label-free 

features, Raman spectroscopy greatly impacted cancer diagnostics. However, retrieving 

and interpreting the Raman spectrum that contains the molecular information is 

challenging because of extreme background interference.  

I have developed various spectra-processing approaches required to purify Raman 

spectra from noisy and heavily background interfered raw Raman spectra. In detail, these 

are a new noise reduction method based on vector casting and new deep neural networks 

for the efficient removal of noise and background. Several neural network models were 

trained on simulated spectra and then tested with experimental spectra. The here 

proposed approaches were compared with the state-of-the-art techniques via different 

signal-to-noise ratios, standard deviation, and the structural similarity index metric. The 

methods presented here perform well and are superior in comparison to what has been 

reported before, especially at small signal-to-noise ratios, and for extreme fluorescence 

interfered raw Raman spectra. Furthermore, the deep neural network-based methods do 

not rely on any human intervention. 

The motivation behind this study is to make Raman spectroscopy, especially the shifted-

excitation Raman difference spectroscopy (SERDS), an even better tool for process 

analytics and cancer diagnostics. The integration of the above-mentioned spectra-

processing approaches into SERDS in combination with machine learning tools enabled 

the differentiation between physiological mucosa, non-malignant lesions, and oral 

squamous cell carcinomas with high accuracy, above the state of the art. The 
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distinguishable features obtained in the purified Raman spectra are assignable to different 

chemical compositions of the respective tissues. The feasibility of a similar approach for 

breast tumors was also investigated. The purified Raman spectra of normal breast tissue, 

fibroadenoma, and invasive carcinoma were discriminable with respect to the spectral 

features of proteins, lipids, and nucleic acid. These findings suggest the potential of 

SERDS combined with machine learning techniques as a universal tool for cancer 

diagnostics.  
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Zusammenfassung der Ergebnisse der Dissertation 

Die Raman-Spektroskopie ist eine optische Messtechnik, die in der Lage ist 

spektroskopische Information zu liefern, welche molekülspezifisch und einzigartig in 

Bezug auf die Eigenschaften der untersuchten Spezies sind. Sie ist ein unverzichtbares 

analytisches Instrument, das Anwendung in verschiedenen Bereichen findet, wie etwa der 

Medizin oder der in situ Beobachtung von chemischen Prozessen. Wegen ihren 

Eigenschaften, wie der hohen Spezifität und der Möglichkeit von Tracer-freien Messung, 

hat die Raman-Spektroskopie die Tumordiagnostik stark beeinflusst. Aufgrund einer 

äußerst starken Beeinflussung der Raman-Spektren durch Hintergrundsignale, ist das 

Isolieren und Interpretieren von Raman-Spektren eine große Herausforderung. 

Im Rahmen dieser Arbeit wurden verschieden Ansätze der Spektrenbearbeitung 

entwickelt, die benötigt werden um Raman-Spektren aus verrauschten und stark mit 

Hintergrundsignalen behafteten Rohspektren zu extrahieren. Diese Ansätze beinhalten 

im Speziellen eine auf dem vector-casting basierende Methode zur Rauschminimierung 

und eine auf dem deep neural networks basierende Methoden zur Entfernung von 

Rauschen und Hintergrundsignalen. Verschiedene neuronale Netze wurden mittels 

simulierter Spektren trainiert und an experimentell gemessenen Spektren evaluiert. Die 

im Rahmen dieser Arbeit vorgeschlagenen Ansätze wurden mit alternativen Methoden 

auf dem aktuellen Stand der Entwicklung unter Zuhilfenahme von verschieden Signal-

Rausch-Verhältnissen, Standardabweichungen und dem structural similarity index 

verglichen. Die hier entwickelten Ansätze zeigen gute Ergebnisse und sind bisher 

bekannten Methoden überlegen, vor allem für Raman-Spektren mit einem niedrigem 

Signal-Rausch-Verhältnis und extrem starken Fluoreszenz-Hintergrund. Zusätzlich 

erfordern die auf deep neural networks basierten Methoden keinerlei menschliches 

Eingreifen. 
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Die Motivation hinter dieser Arbeit ist die Verbesserung der Raman-Spektroskopie, vor 

allem der shifted-excitation Raman difference spectroscopy (SERDS) hin zu einem noch 

besseren Instrument in der Prozessanalytik und Tumordiagnostik. Die Integration der 

oben genannten Ansätze zur Spektrenbearbeitung von SERDS in Kombination mit 

Methoden des maschinellen Lernens ermöglichen es, physiologische Schleimhaut, nicht-

maligne Läsionen und oralen Plattenepithelkarzinomen mit einer Genauigkeit zu 

unterscheiden, die bisherigen Methoden überlegen ist. 

Die spezifischen Merkmale in den bearbeiteten Raman-Spektren können verschiedenen 

chemischen Zusammensetzungen in den jeweiligen Geweben zugeordnet werden. Die 

Übertragbarkeit auf einen ähnlichen Ansatz zu Erkennung von Brusttumoren wurde 

überprüft. 

Die bereinigten Raman-Spektren von normalem Brustgewebe, Fibroadenoma und 

invasiven Mammakarzinom konnten mithilfe der spektralen Eigenschaften von Proteinen, 

Lipiden und Nukleinsäuren unterschieden werden. Diese Erkenntnisse lassen das 

Potential von SERDS in Kombination mit Ansätzen des maschinellen Lernens als 

universelles Werkzeug zur Tumordiagnose erkennen. 
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1 Introduction 

Raman spectroscopy is an optical measurement technique for the remote and non-

invasive analysis of the chemical composition of samples. It has been discovered in 1928 

by C.V. Raman [1]. The main advantages of Raman spectroscopy are that often no 

sample preparation is required and that - from the detected signal spectrum one can 

quantify the chemical composition [2-4], the temperature [5-8], the state of phase [9, 10] 

or the heterogeneity [11, 12] of the sample. Therefore, Raman spectroscopy qualifies as 

analytical tool especially, when no physical samples can be or should be extracted from 

the measurement object, for example for the analysis of paintings or human tissue, or 

when the extraction of physical samples would drastically change the sample conditions, 

for example in reacting flows or high-pressure and/or high-temperature environments. 

With respect to cancer diagnostics, Raman spectroscopy enables objective tissue 

characterization in vivo and thus can avoid the resection of suspicious abnormal tissue, 

which eventually is only inflamed. 

Within the scientific environment of the author at the Technische Universität 

Bergakademie Freiberg, Germany, Raman spectroscopy is a frequently used 

measurement technique. In order to explore new grounds in chemical engineering and 

medical diagnostics, the working group is obliged to advance Raman spectroscopy 

beyond the state of the art. 

Medical Raman diagnostics often suffers from low signal-to-background ratios (SBR) and 

low signal-to-noise ratios (SNR). Both, low SBR and low SNR, complicate the reliable 

extraction of quantitative information from Raman spectra. 
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Therefore, the task of this thesis is the development of advanced methods for the 

evaluation of raw Raman spectra, which suffer from low SNRs and low SBRs. The 

methods to be developed are supposed to advance the state-of-the-art techniques with 

respect to 

1. the degree of human intervention required to process the spectra 

2. data manipulation caused by the evaluation method itself.  

Therefore, this dissertation is structured as follows: The “Introduction” is followed by 

section two, which provides the state of the art with respect to the “Purification of Raman 

Spectra”. Section two is a compilation of published approaches and methods for the 

improvement of the SNR and SBR as well as the mathematical treatment of raw Raman 

spectra. All these approaches and methods have in common that they aim at obtaining 

quasi-interference free pure Raman spectra. Section three describes the “Application 

relevant fundamentals”. The fundamentals cover Raman spectra, experimental Raman 

setups, state of the art mathematical post-processing methods, and finally, machine 

learning for the processing and evaluation of spectra. Section four provides a frame 

around the five papers which constitute the results part of this thesis. Section five 

summarizes the main achievements and presents the conclusions. 

References within section 1 

1. C.V. Raman and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 
121(3048): p. 501-502. 

2. J.J. Schuster, et al., Online monitoring of the supercritical CO2 extraction of hop. 
The Journal of Supercritical Fluids, 2018. 133: p. 139-145. 

3. F.L.J. Cals, et al., Raman spectroscopic analysis of the molecular composition of 
oral cavity squamous cell carcinoma and healthy tongue tissue. Analyst, 2018. 
143(17): p. 4090-4102. 

4. B. Volodin, et al., Application of the shifted excitation Raman difference 
spectroscopy (SERDS) to the analysis of trace amounts of methanol in red wines. 
Proceeding of SPIE 8939, 2014: p. 89390Y-89390Y-10. 



3 

 

5. L.A. Bahr, et al., Temperature determination of superheated water vapor by 
rotational-vibrational Raman spectroscopy. Optics Letters, 2018. 43(18): p. 4477-
4480. 

6. R. Hickman and L. Liang, Rotational temperature measurement in nitrogen using 
Raman spectroscopy. Review of Scientific Instruments, 1972. 43(5): p. 796-799. 

7. T.C. Klima, et al., Quantification of mixture composition, liquid-phase fraction and-
temperature in transcritical sprays. The Journal of Supercritical Fluids, 2020. 159: 
p. 104777. 

8. T.C. Klima and A.S. Braeuer, Raman Thermometry in Water, Ethanol, and 
Ethanol/Nitrogen Mixtures from Ambient to Critical Conditions. Analytical 
Chemistry, 2018. 91(1): p. 1043-1048. 

9. T.C. Klima and A.S. Braeuer, Vapor-liquid-equilibria of fuel-nitrogen systems at 
engine-like conditions measured with Raman spectroscopy in micro capillaries. 
Fuel, 2019. 238: p. 312-319. 

10. A. Hédoux, Y. Guinet, and M. Descamps, The contribution of Raman spectroscopy 
to the analysis of phase transformations in pharmaceutical compounds. 
International Journal of Pharmaceutics, 2011. 417(1-2): p. 17-31. 

11. L.A. Bahr, et al., In situ analysis of aerosols by Raman spectroscopy–Crystalline 
particle polymorphism and gas-phase temperature. Journal of Aerosol Science, 
2018. 126: p. 143-151. 

12. D. Bassing and A.S. Braeuer, The lag between micro-and macro-mixing in 
compressed fluid flows. Chemical Engineering Science, 2017. 163: p. 105-113. 
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The pure Raman spectrum contains the desired information about the sample, which can 

be the chemical composition [1-3], the temperature [4-7], the polymorphism [8, 9] and 

others [10-13]. Unfortunately, in a real measurement scenario, one would measure the 

raw Raman spectrum. The extraction of the pure Raman spectrum from the raw Raman 

spectrum is a rather challenging task, especially if – unlike shown in the synthetization 

scenario in Figure 2.1 – one doesn’t know neither the pure Raman spectrum, the 

background spectrum nor the noise spectrum in advance. 

One can say that the extraction of the pure Raman spectrum from a raw Raman spectrum 

is the simpler, the larger the signal-to-noise ratio (SNR) is and the larger the signal-to-

background ratio (SBR) is. In Figure 2.1 the SNR and the SBR are 5 dB and -40 dB, 

respectively. The definitions of SNR and SBR are provided later in section three. It is thus 

not surprising that different experimental methods have been developed for the 

enhancement of the pure Raman signal relative to the background and relative to the 

noise. One of the following subsections aims at providing the state of the art of these 

methods. 

Nevertheless, under certain circumstances, these experimental methods are not 

applicable and/or – though these methods are applied – the resulting SBRs and SNRs 

are still low. Then, mathematical evaluation methods can help extract the pure Raman 

spectrum from the raw Raman spectrum. The second following subsection aims at 

presenting the state of the art of these mathematical evaluation methods. 

It must be mentioned that this section “State of the art” is rather a compilation of the 

respective publications than a detailed description of the methods. If the mentioned 

methods are relevant for this thesis, they are described in detail in the section “Application 

relevant fundamentals". 
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Other following subsections provide the state of the art with respect to Raman-based 

cancer diagnostics and the application of neural networks for the evaluation of Raman 

spectra. 

2.1 Experimental methods for the enhancement of the signal-to-
background ratio and the signal-to-noise ratio 

There are various possibilities to increase the SBR or SNR. This can be achieved by either 

increasing the Raman signal or by decreasing the background and the noise. Increasing 

the excitation laser power is a simple method for increasing the Raman signal, but often 

not applicable, simply because of laser radiation can harm the sample under investigation, 

due to photodegradation, thermal decomposition or burning [14]. Therefore, methods are 

reported here, which are not simply based on the linear relation between laser excitation 

power and signal intensity. 

Non-linear variants of Raman spectroscopy, such as coherent anti-stokes Raman 

spectroscopy (CARS) [15] or stimulated Raman spectroscopy (SRS) [16, 17] exploit the 

non-linear relation between the excitation intensity and the Raman signal intensity. This 

non-linear interdependency exists above a certain threshold of minimum excitation 

intensity. Above this threshold an increase in the excitation intensity results in a 

disproportionate increase in the signal intensity. Short-pulse lasers are required for the 

experimental realization of such non-linear Raman variants, because of what the entire 

experimental setup is complex compared to the linear variant of Raman spectroscopy. 

Additionally, the acquisition of entire spectra and the interpretation of the obtained spectra 

are challenging [18]. 

Resonance Raman spectroscopy (RRS) [19-22] uses excitation wavelengths close or 

identical to an electronic transition of a molecule contained in the sample. Due to the near-

resonant excitation of the transition, the Raman signal assignable specifically to a related 

transition is much stronger than compared to not-near-resonant excitation. Therefore, only 
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specific Raman peaks, belonging to the near-resonantly excited transitions, but not the 

entire Raman spectrum, can be enhanced. Consequently, RRS is mainly applied for the 

qualitative detection of various species or for the quantification of the concentration of only 

one species rather than for quantitative mixture analysis. Wu et al. [21] applied this 

technique for human breast cancer diagnosis. They reported enhancement of specific 

Raman signatures of normal human breast tissue when excited with 532 nm excitation 

wavelength due to resonance effect as compared to Raman spectra of the cancerous 

human breast tissue. Zhou et al. [22] also carried out a resonance Raman spectroscopic 

investigation of the discrimination between human brain normal, benign and cancer 

meningeal tissues using 532 nm excitation wavelength. Their findings indicated a 

resonance enhancement of amide II protein molecule in the spectra of malignant 

meningioma tissue.   

Surface-enhanced Raman spectroscopy (SERS) [23, 24] makes use of metallic 

nanoparticles such as gold or silver at very close proximity of the sample under 

investigation. Laser excitation of these roughened metallic nanoparticles causes collective 

oscillation of their surface electrons, termed surface plasmon resonance (SPR). The 

resonance of the frequency of the incident light with this plasmonic surface leads to a 

great enhancement of the electromagnetic field around the nanoparticles (“hot spot 

region”). A molecule placed in the vicinity of this hot spot then experiences enhanced 

electric field strength. This increase in the strength of the electric field enhances the 

intensity of the Raman signal significantly. Eryilmaz et al. [25] applied SERS for the rapid 

analysis of total protein content. They reported the ability of SERS to quantify total protein 

fraction in milk samples. Zhai et al. [26] carried out SERS analysis of residual pesticides 

in apple samples. They concluded that SERS has a great potential to serve as a useful 

means for detecting pesticide residues. Qian et al. [27] also reported the application of 

SERS for lung cancer detection using saliva samples. The metallic nanoparticles are the 

key element of a SERS experiment. Fabrication of these metallic particles/substrates for 



8 

 

high Raman signal enhancement and reproducibility is still a challenge [28]. This makes 

label-free SERS spectra very complex and a full band assignment is often not possible. 

Current developments of this method also applied SERS-tags [29] for indirect detection 

of samples under investigation. These tags are created by attaching intrinsically strong 

Raman scattering molecules (Raman reporters) to the nanoparticles. Therefore, an 

enhanced Raman spectrum of the Raman reporter molecule is collected instead of the 

Raman spectrum of the molecule under investigation. Generally, the reliability of the 

SERS method depends on the appropriate sample preparation and adequate data 

preprocessing to improve SNR and SBR [30].  

The time-gated [31-34] approach also belongs to the experimental methods. It takes 

advantage of different life-times of Raman scattering and fluorescence emissions. If the 

excitation laser is shortly pulsed or if the excitation laser power is temporally modulated, 

the pure Raman spectrum can be separated from the fluorescence background based on 

analyzing the time lag between the excitation and the signal modulation [31, 35]. If entire 

spectra should be recorded, it requires pulsed lasers with rapidly time gated spectral 

detectors. However, if the Raman signal should be measured only for a certain Raman-

shift, the usage of a temporally modulated excitation laser power with a temporally highly 

resolving zero-dimensional detector, such as a photo-diode, is sufficient. Summarizing, 

the realization of this technique either depends on the availability of expensive equipment 

or provides Raman signal at specific Raman shifts only [36]. Lipiaeinen et al. [34] applied 

this method for the quantitative assessment of ternary mixtures of solid-state forms of a 

model drug called piroxicam (PRX). They demonstrated that time-gated Raman 

spectroscopy has the potential for quantifying ternary mixtures of fluorescent 

pharmaceuticals during drug development and manufacturing. 

Shifted-excitation Raman difference spectroscopy (SERDS) [37] is a method for pure 

Raman spectrum extraction [38]. As SERDS plays an important role within this thesis, a 

detailed description of its working principle will follow in the “Application relevant 
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fundamentals”. It follows Kasha’s rule [39], which states that the fluorescence emission is 

unaltered for a small change in the excitation photon energy, but the Raman spectrum 

shifts according to the excitation photon energy change [37]. Elimination of fluorescence 

succeeds by the subtraction of two raw Raman spectra acquired with slightly different 

excitation wavelengths (photon energies). After subtraction and under ideal/perfect 

circumstances, the difference spectrum is free of background contributions. Besides 

removing fluorescence, this method can suppress other undesired interferences, such as 

ambient light and detector etaloning effects. This shows that the technique has the 

potential to be applied under daylight conditions, where spectroscopy measurements are 

usually not performed. Theurer et al. [40] applied SERDS for soil analysis and reported a 

10-fold improvement of the signal-to-background ratio. Korinth et al. [12] also applied this 

method for pollen classification and they reported advantages of SERDS in scenarios 

where Raman spectra are affected by variations due to detector etaloning, ambient light 

and intensive background interference. However, in practice when the conditions are non-

ideal, photobleaching and optical filter characteristics affect varying background 

contributions in the two raw Raman spectra. This imposes difficulties to obtain background 

free difference spectra. Consequently, mathematical post-processing methods often help 

further enhance the SNR and SBR, which will be reported in the following subsection. 

2.2 Mathematical methods for the extraction of pure Raman 
spectra from raw spectra 

If the experimental methods for the enhancement of the SBR and the SNR did not provide 

the anticipated success or were not applicable or available, mathematical methods can 

help extract the pure Raman spectrum from the raw Raman spectrum. The acquired raw 

spectra are processed, once they have been recorded. Therefore, these mathematical 

methods are referred to as post-measurement processing methods. Again, they aim at 

enhancing the SNR and the SBR. All the methods mentioned below are described in detail 

in the section three “Application relevant fundamentals”. 
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Examples of commonly used methods for de-noising of raw Raman spectra include the 

Savitzky-Golay (SG)-smoother [41], perfect smoother [42], and smoothing based on 

wavelet transform [43, 44]. The Savitzky-Golay smoother applies least-squares fitting of 

polynomials of specified order to connected data points contained in a moving window of 

specified size. The value of the data point which is situated in the center of the window is 

then updated from the value of the polynomial fit function at this data point. This whole 

process of polynomial fitting and updating new value within a shifted new spectral window 

is repeated for all data points of the raw Raman spectra. Appropriate selection of 

polynomial order and window size determines the performance of this method. The 

Savitzky-Golay smoother is considered as a standard method for denoising of raw Raman 

spectra [45-47]. The Perfect smoother has been shown to provide an improvement over 

the Savitzky-Golay smoother [48]. It is based on penalized least squares fitting. In order 

to improve the SNR, the denoised Raman spectrum has to be smoother but the smoother 

it is, the more it will deviate from the original spectrum. The main idea of perfect smoother 

is therefore to find a balance between the fidelity of the denoised raw spectra in 

comparison to the original spectra and the roughness of the denoised spectra. This 

involves tuning a parameter to find an optimum between these two conflicting goals. 

Recently, Zeng et al. [49] used this method when applying Raman spectroscopy for 

mixture analysis. 

Smoothing based on wavelets involves transformation of the noisy raw Raman spectra 

into a wavelet domain by decomposing it into a set of specified orthonormal wavelet basis 

functions. The noise is suppressed in the wavelet domain by thresholding the wavelet 

coefficients which belong to the noise. Then the not-suppressed coefficients are reverse 

transformed to obtain the noise-reduced spectra. In this method, the selection of the 

wavelet basis functions, decomposition level and the thresholding rule have a great impact 

on its performance. This method was also proposed to denoise raw Raman spectra and 

reported better performance compared to the other methods [50-52]. 
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Mathematical techniques based on polynomial fitting [53-55] and penalized least squares 

[56-59], are most common approaches to improve SBR in Raman spectroscopy. These 

mathematical techniques assume that the background is a broadband curve. Polynomial 

fitting techniques use a least-squares based polynomial fitting of specified order to 

approximate the broadband curve. Lieber et al. [55] modified the single polynomial fit of 

the background by rather involving a series of polynomial fits and they termed their method 

as modified polynomial fit (ModPoly). During the first iteration they fit a polynomial function 

with a specified order to the original raw Raman spectrum. Then they compared the 

polynomial-fit spectrum with the original raw Raman spectra along the whole spectral 

range. Afterwards, at each wavenumber the raw Raman spectrum intensity value is 

replaced by the value of the polynomial-fit spectrum whenever it exceeds the intensity 

value of the polynomial-fit. This creates a new spectrum with trimmed peaks. In a second 

iteration, they fit a new polynomial function to the new spectrum with the trimmed peaks. 

Again, at each wavenumber and whenever the new spectrum is above the new 

polynomial-fit function, it is replaced by the intensity value of the new polynomial-fit. This 

procedure repeats for further iterations and after every iteration the polynomial-fit drifts 

towards the broadband background. This method systematically excludes the Raman 

peaks in every iteration while the polynomial-fit function approximates the broadband 

background. Andersen et al. [60] applied this method recently while using Raman 

spectroscopy for the prediction of water holding capacity and pH in longissimus lumborum 

of pork. Methods based on penalized least squares use the principle of the perfect 

smoother [42] to balance the fidelity of the fit function in comparison to the raw Raman 

spectra and smoothness of the fit function. They include a weighting vector to treat peak 

regions and peak-free regions of the raw Raman spectra differently, thus systematically 

only fitting to the background signal of the raw Raman spectra. Eilers [61] was the first to 

propose penalized least squares to improve SBR. His method, asymmetric least squares 

(ALS) [61], updates the weighting vector iteratively such that a small weight is assigned 

to the data points where the original raw Raman spectra is above the fit function (vaguely 
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peak regions). Otherwise a large weight is assigned. This fitting and weight updating 

continues until no difference is detected between consecutive fit functions. This method 

employs two adjustable parameters, the smoothness parameter 𝜆 for balancing the fidelity 

and roughness of the fit function and the weighting parameter 𝑝 for updating the weighting 

vector. An adaptive iteratively reweighted penalized least squares (airPLS) [59] was 

proposed as an improvement of the ALS method. Unlike the ALS method it assigns 

different weights automatically according to the difference between the raw Raman 

spectra and the fit functions in every iteration. Therefore, only one parameter – 

smoothness - needs to be adjusted. In order to improve the applicability of penalized least 

squares methods in noisy raw Raman spectra, an asymmetrically reweighted penalized 

least squares smoothing (arPLS) was also proposed by Baek et al. [56]. Methods based 

on penalized least squares are widely used for background correction of raw Raman 

spectra because they are fast and avoid the need for peak detection [45, 62, 63]. 

Background approximation methods that are based on approaches, other than polynomial 

fitting and penalized least squares fitting, have been reported [36, 64, 65]. A detailed 

review of background correction methods can be found elsewhere [66].  

Due to their low cost and high flexibility, post-measurement processing techniques are 

widely applied for the refinement of pure Raman spectra. However, the choice of a suitable 

method or a combination of these methods dramatically impacts the Raman spectrum 

interpretation for qualitative and quantitative evaluation. These techniques involve tunable 

parameters that must be explicitly tuned for different raw Raman spectra acquired with 

different experimental settings or sample matrices. Thus, the post-processing techniques, 

especially when the adjustable parameters are not chosen properly, can distort Raman 

spectral signatures and impact the reliability of further spectral analysis. This imposes an 

obstacle for automation and real-time monitoring using Raman spectroscopy, especially 

when both the SBR and the SNR are small. The effect of tunable parameters is illustrated 

for the cases of the Savitzky-Golay smoother and asymmetrically reweighted penalized 
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respectively with a window size of 51 and a polynomial order of 2. Considering the larger 

window size and the lower polynomial order, the SNR is improved compared to the smaller 

window size and larger polynomial degree, but vice versa the original signature of the 

Raman peak is dramatically altered. 

On the left side of Figure 2.2 the effect of parameter tuning on background correction is 

shown considering arPLS as an example. Setting the smoothness of the arPLS to 𝝀 =

𝟏𝒆𝟒  achieves a better estimation of the background signal under the narrow Raman 

peaks. However, the estimated background signal interacts with the Raman spectrum, 

especially in the region of broad Raman peaks/bands. Increasing the smoothness 

parameter to 𝝀 = 𝟐𝒆𝟔  improves the estimation of the background under the broad 

peaks/bands but the estimated background deviates in the region of the narrow Raman 

peaks. 

2.3 Raman based cancer diagnostics 

Cancer is a major public health problem worldwide and the leading cause of premature 

death in most countries [67, 68]. According to the world cancer report 2020 [69], cancer 

is the first or second leading cause of premature death (i.e. at ages 30 to 69 years) in 134 

of 183 countries. Accurate and early diagnosis combined with adequate surgical treatment 

can reduce this high mortality rate [70]. Most cancer types also develop through a pre-

malignant stage. Hence, early detection of pre-malignant lesions can prevent further 

development of cancer. Presently, cancer diagnosis requires different approaches 

depending on the type of cancer. These approaches involve visual inspection of 

suspicious lesions, lab tests for blood, urine and other body fluid samples, and medical 

imaging methods [71]. New developments in screening technologies such as 

ultrasonography, computer tomography (CT), mammography, and magnetic resonance 

imaging (MRI) have improved cancer diagnosis regarding quality, selectivity, and 

diagnostic time. However, the final decision has still to be made using histopathological 
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analysis of suspicious tissue biopsies or diagnostic excisions. Histopathological 

examination, which involves specialized knowledge of a pathologist, is currently the gold 

standard for discriminating normal against diseased tissues. It involves fixation, micro-

sectioning, and routinely staining with hematoxylin and eosin (H&E) of the biopsied or 

resected tissues. The pathologist is then responsible for making a final decision based on 

a microscopic examination of the H&E stained section. This approach is invasive and 

demands considerable time and cost. Further, the distinction between malignant, 

premalignant and benign tumors often involves repeated biopsies/excisions, which 

increases the diagnosis time and the risk of patient harm and anxiety. Another issue is 

sampling error, because the biopsy may not be representative of the whole lesion.  

Surgery is a primary treatment of most cancer patients where surgeons decide on 

accurate localization of tumors and identification of their margins [70]. During the surgical 

treatment, the complete resection of cancer, while preserving healthy structures, 

increases the 5-year survival significantly and improves the patient’s quality of life [71]. 

However, delineating the entire tumor without affecting surrounding healthy tissue is 

challenging because surgeons commonly rely on visual and physical inspection to define 

the borders between healthy and tumor regions. This may lead to tumor recurrence due 

to the residual tumor after surgery, which is associated with a poor prognosis and may 

need additional surgery. A histopathological analysis is also not applicable for tumor 

margin assessment during surgery due to a lack of the capability for providing immediate 

feedback. Currently, to support assessment of intraoperative resection margins, the 

surgeons need direct pathologist involvement for an intra-operative consultation using a 

small piece of frozen sections of suspicious tissue sampled from the wound bed [72]. This 

process takes about 5 -10 minutes, excluding the pathologist’s time to study it under the 

microscope. This examination also has to be done while the patient is under anesthesia 

on the operating table. The shortcomings of available techniques for in vivo and real-time 

cancer diagnostics have fueled research to develop a portable label-free, non-invasive 
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and inexpensive method for accurate and real-time cancer diagnosis and intraoperative 

surgical guidance. 

Carcinogenesis changes tissue biochemistry that occurs even before the appearance of 

clinical symptoms, not visible to the naked eye, neither under the optical microscope [73]. 

Raman spectroscopy provides an intrinsic molecular fingerprint of chemical composition 

of tissue, an advantage that is lacking in other diagnostic techniques [74]. This provides 

the capability to detect biological tissue changes during the onset and progression of 

carcinogenesis, which is reflected in their Raman spectra. Thus, Raman spectroscopy is 

a potential candidate to address these unmet clinical needs that can complement 

established cancer screening tools as well as accurate guidance during the surgical 

treatment.  

Raman spectroscopy has been explored in numerous studies employing various types of 

measurement systems, targeting different types of cancers, both in ex vivo and in vivo 

settings. Since the calendar year of 2018, more than 60 thousand scientific papers on the 

application of Raman spectroscopy for cancer diagnosis were published according to 

google scholar when searched for keyword combination ‘Raman and cancer diagnostics’. 

Perhaps one of the most striking recent demonstration of the application of Raman 

spectroscopy for cancer detection is by Desroches et al. [75]. They engineered a tiny 

Raman probe into a commercially available biopsy system allowing brain tumor analysis 

before tissue harvesting. By analyzing the high wavenumber Raman spectra 

(>2600 cm-1), they reported a brain tumor detection accuracy with a sensitivity and 

specificity of 80% and 90%, respectively. They preferred the high wavenumber Raman 

region, because the laser-induced fluorescence contribution (background interference) in 

this region is low. However, for biological tissues, approximately 90% of the molecular 

Raman signatures are found in the ‘fingerprint’ spectral region at low wavenumbers 

covering the range from about 500 cm-1 to 1800 cm-1. Thus, analyzing the fingerprint 

spectral region would - most probably - have been given an even better detection 
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accuracy. However, the separation of the pure Raman spectra from the intensive laser-

induced fluorescence (background) in this region is challenging. Moreover, designing a 

tiny Raman probe using a single fiber for both, excitation and collection in the fingerprint 

spectral region is tricky due to background interference originating from the non-linear 

interaction inside the fiber.  

Surface-enhanced Raman spectroscopy (SERS) is also regarded as a powerful emerging 

technique for intraoperative tumor detection and can provide orders of magnitude 

enhancement of the Raman signal [23]. This technique involves an injection of SERS tags 

[29] into tumor-bearing samples for indirect tumor detection. Due to the enhanced 

permeation and retention effect, the SERS tags accumulate in the tumor; thus, 

significantly higher intensity of Raman signal from the Raman reporters of the 

nanoparticles can be collected from the tumor as compared to normal tissue. This intensity 

difference of the Raman signal from tumor and normal tissue is then considered for tumor 

detection. Though interesting and much progress has been achieved in recent years, 

many questions remain regarding biocompatibility of used SERS tags and effects of 

substrate variation in spectral reproducibility. Furthermore, the less expensive and less 

complex spontaneous Raman spectroscopy is sufficient for cancer diagnostics under 

many circumstances [70]. Tissue laser-induced fluorescence and detector noise are the 

main challenges of Raman spectroscopy for its application in cancer diagnosis.  

2.4 Neural networks for the evaluation of Raman spectra 

Machine learning techniques have frequently been utilized for the evaluation/interpretation 

of Raman spectra. They learn meaningful representations, or characteristics or patterns 

contained in the Raman spectra that help to answer a variety of scientific questions. Partial 

least squares (PLS) [76] based regression models were applied for the quantification and 

composition assessments of mixtures. Machine learning algorithms such as linear 

discriminant analysis (LDA) [77], principal component analysis (PCA) [78], support vector 
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machines (SVM) [79], gradient boosting [80] and random forest [81] have been also 

reported by other researchers [82-85] for an appropriate transformation of the Raman 

spectra into meaningful categories, such as for instance that obtained from biological 

samples of healthy tissues and tissues with a disease. Once these models, whether 

regression or classification, are built based on known information (training data), they can 

then be used for the interpretation of test Raman spectra, if the test Raman spectra are 

contained within the “room” of training data. Extrapolations are not possible. If for example 

a model is built on experimental raw spectra from pig-tissue, it is not applicable for the 

interpretation of human-tissue. In this way machine learning algorithms can be used to 

interpret the information content of the Raman spectra.  

Deep learning, a sub-field of machine learning, has risen to the forefront of the artificial 

intelligence community. It shows excellent performances, especially in the fields of 

computer vision and pattern recognition. Motivated by the recent and widespread success 

of deep learning, deep neural networks - especially convolutional neural networks (CNN) 

- were applied to tackle challenges of Raman spectroscopy. Liu et al. [86] trained a CNN 

for mineral species classification using raw Raman spectra without spectral 

preprocessing, such as background correction, noise reduction, and feature extraction. 

Fan et al. [87] developed a CNN model to identify components in mixtures using raw 

Raman spectra. They evaluated their model using simulated and experimentally acquired 

raw Raman spectra of fluid and powder mixtures. They reported that CNN could learn 

spectral features and identify substances in both, artificial and real spectral datasets of 

mixtures. Xia et al. [88] also used a CNN model to extract features from raw Raman 

spectra. The extracted features were fed into a support vector machine (SVM) classifier 

to detect oral tongue squamous cell carcinoma. These findings showed the potential of 

CNN for the interpretation of raw Raman spectra with respect to mineral species 

recognition, mixture composition analysis or human tissue characterization. However, the 

usage of the trained CNN models is very much restricted to the specific applications. Data 
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quality also plays an important role on the performance of deep learning models [89]. 

Thus, a better performance could have been achieved if pure Raman spectra were 

evaluated instead of the raw Raman spectra.  

2.5 Objective 

The previous sections have shown that extensive research has been undertaken to 

develop methods which seek to advance the practical limitations of Raman spectroscopy. 

It has been illustrated that these limitations find their origin in the low Raman signal levels 

in relation to large background and noise interferences. Many of the undertaken efforts 

focused on the development of algorithms, which intend to separate the information-rich 

pure Raman spectrum from the undesired background and noise interferences. However, 

the mathematical extraction of pure Raman spectra from heavily interfered raw Raman 

spectra – according to the state of the art – relies on human-intervention-dependent 

algorithms. “Human-intervention-dependent” means that humans have to choose at least 

few input parameters. Taking for example a typical polynomial smoothing algorithm, the 

human has to choose a window size and a polynomial degree. As a consequence, the 

mathematically derived pure Raman spectrum depends on the human intervention. 

Furthermore, there is always the risk of altering the pure Raman spectrum when the raw 

Raman spectrum is mathematically processed.  

Figure 2.3 shows an example of a raw Raman spectrum featuring a low SNR and a low 

SBR acquired from healthy human tissue of the oral cavity. The background and noise 

spectra overwhelmingly interfere with the pure Raman spectrum and impose 

complications to interpret the information which is important for cancer diagnostics. This 

thesis aims to develop and implement spectral processing methods for the successful 

refinement of pure Raman spectra from such high noise level and intensive background 

interferences with less spectral manipulation and no or minimal reliance on input 

parameters that have to be chosen by humans. According to Figure 2.3 the refined Raman 
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3 Application relevant fundaments 

This section briefly describes the fundamentals necessary to being able to follow the 

descriptions and interpretations given in this work. First, the basics of Raman 

spectroscopy are covered including its experimental challenges. Second, the simulation 

of raw spectra composed of noise, background and pure Raman spectra is described. 

Third, the basics of Shifted-Excitation Raman Difference Spectroscopy (SERDS) and its 

challenges are presented. Fourth, the Raman experimental setup used for measurements 

in this thesis is introduced. Fifth, details of mathematical methods for noise reduction and 

background correction are provided. The effect of adjustable parameters and their 

influence on mathematically derived Raman spectra is provided with the help of simulated 

raw Raman spectra. Finally, this section lays out the required knowledge about machine 

learning with a focus on deep neural networks.  

3.1 Basics of Raman spectroscopy 

This subsection describes Raman spectroscopy briefly. The details of Raman 

spectroscopy are presented elsewhere [1]. Here the main focus will be that a Raman 

spectrum can be considered a fingerprint of a molecule and that it is very likely that the 

fluorescence emission (if existing) spectrally overlaps with it.  

Figure 3.1 shows the term-energy of a diatomic molecule as a function of the displacement 

𝑅 of the separation between the cores of the two nuclei. For describing the principle of 

light-matter interaction a simple diatomic molecule is considered. But the concept is 

transferrable to more complex molecules because transitions in these complex molecules 
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differentiates the vibrational energy levels of the excited electronic state (v0′   , v1′ , …, v𝑛′ ) 

from the vibrational energy levels of the electronic ground state (v0 , v1 , …, v𝑛 ). The 

rotational energy levels are excluded because they are not relevant for this study. 

Light can be considered as composed of photons and the energy of one photon 

𝐸 =  ℎ𝜈 3.1 

is proportional to the frequency of light 𝜈, where ℎ is the Plank’s constant. Depending on 

the photon energy and energy difference between energy levels and properties of the 

molecules (such as Raman active or IR active), there are different possible ways that light 

can interact with a molecule. In the following only Raman scattering, Rayleigh scattering 

and laser-induced fluorescence will be discussed, as they are relevant for this thesis.  

Figure 3.1 illustrates these three interactions between an incident photon and a molecule 

during a scattering process or a laser-induced fluorescence event. A scattering process 

occurs when the incident photon cannot be absorbed by the molecule but can be 

scattered, which means that the photon “collides” with the molecule and consequently is 

scattered away from its original path. This scattering process can be elastic or inelastic. 

In the first case, elastic scattering (Rayleigh scattering), there is no change of energy of 

neither the molecule nor the incident photon. Thus no energy exchange occurs during the 

collision. This is represented in Figure 3.1 (left) by the green arrows of identical length of 

the incident photon and scattered photon. In this context, the scattered photon has the 

same energy as the incident photon, but the propagation directions of the photon before 

and after the collision can be different. In the inelastic scattering process, which is termed 

Raman scattering, there is an energy transfer between the molecule and the incident 

photon. If the molecule receives energy from the incident photon, the scattering process 

is called Raman Stokes. Then the scattered radiation is red-shifted with respect to the 

incident radiation which means that the scattered photon has less energy than the incident 
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photon. This is represented, in Figure 3.1 second from left by the red arrow whose length 

is shorter than the green arrow length used to represent the incident photon. If energy is 

transferred from the molecule to the incident photon it is called Raman anti-Stokes 

scattering. The Raman anti-Stokes scattered radiation is blue-shifted with respect to the 

incident radiation which means that the scattered photon carries more energy after the 

scattering process (see Figure 3.1 second from right). Raman anti-Stokes is out of scope 

of this study. Only the Raman-Stokes effect is exploited. 

Figure 3.1 (right) shows a laser-induced fluorescence process. As a first step the molecule 

absorbs an incident photon. Afterwards it undergoes a transition from the vibrational 

energy level v0 of its ground electronic stat to the vibration energy level v1′  of its excited 

electronic state as shown in the figure with green arrow. The molecule then relaxes to the 

vibrational ground state v0′  releasing energy through non-radiative processes but it is still 

in its excited electronic state. Afterwards, it emits a new photon and undergoes a transition 

back to one of the vibration energy levels of its electronic ground state. In this specific 

example (see Figure 3.1 right) it undergoes a transition to the vibration energy level v1 of 

its electronic ground state. Since excited molecules can undergo transitions to several of 

their vibrational energy levels of the electronic ground state, the laser-induced 

fluorescence emission features a broadband spectrum. Radiation due to the laser-induced 

fluorescence process is also red-shifted, meaning the emitted photons have less energy 

than the incident photons. Thus, the fluorescence emission (if existing) spectrally overlaps 

with the Raman scattered signal, as both occur red-shifted with respect to the excitation 

photons (photons before the light-matter interaction). Biological tissue contains a large 

variety of molecules with many different functional groups and sizes. Consequently, when 

biological tissue is irradiated with monochromatic radiation, Raman scattered light as well 

as laser-induced fluorescence emissions emerge.  
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During Raman Stokes scattering the molecule undergoes a transition from its ground 

vibrational energy level (vo) to its first excited vibrational energy level (v1). Since every 

molecule has its own unique vibrational energy levels, the difference in energy between 

the incident photon and the scattered photon carries relevant information specific for that 

molecule that scattered the photon. This difference in energy is referred to as Raman shift 

�̅� 

�̅� = (
1

𝜆𝑖
−
1

𝜆𝑠
) 3.2 

in Raman spectroscopy, which is calculated as the difference in energy between the 

incident photon having a wavelength of 𝜆𝑖  and a scattered photon of wavelength 𝜆𝑠 . 

Therefore the Raman spectrum is a plot of the number of scattered photons as a function 

of the Raman shift. 

What has been described for a diatomic molecule can be transferred to more complex 

molecules, such as in the presented example to ethanol. Ethanol is composed of carbon, 

hydrogen and oxygen. Existing intramolecular transitions are for example the C-H 

vibration between C and H nuclei in the methyl group, the O-H vibration between O and 

H nuclei in the hydroxyl group, the C-O vibration between the C and the O nuclei in the 

hydroxyl group and many more. Figure 3.2 shows that each peak in the Raman spectrum 

of ethanol can be assigned to an intramolecular transition, where the peak position 

(Raman shift) quantifies the energy of this transition and the peak height (or area under 

the peak) represents the probability that the respective transition scatters photons 

according to the Raman mechanism. In the case of ethanol, the C-H vibration is the most 

intense peak, as ethanol features in each molecule five of those bonds between C and H 

nuclei. It is mentioned in section 3.2 why the Raman peaks are not monochromatic lines 

but feature specific peak profile shapes. 
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3.2 Simulation of raw Raman spectra 

The raw Raman spectrum 𝑟(�̅�) 

𝑟(�̅�) = 𝑅(�̅�) + 𝐵(�̅�) + 𝑛(�̅�) 3.3 

consists of a pure Raman spectrum 𝑅(�̅�), a background spectrum 𝐵(�̅�) and a noise 

spectrum 𝑛(�̅�), where �̅� is Raman shift and computed as per equation 3.2. 

Theoretically, the pure Raman spectrum consists of quasi-monochromatic spectral lines 

and bands as a function of the Raman shift reflecting the characteristics of the sample 

under investigation. However, several spectral line broadening physical mechanisms 

affect the Raman peak shape. Such broadening effects can be due to collisions which 

give rise to Lorentzian profile of the Raman peaks or thermal Doppler broadening which 

results in a Gaussian profile of the Raman peaks. The combination of both broadening 

mechanisms creates a Voigt profile in Raman spectral line shapes. Further broadening 

mechanisms can stem also from the Raman instrument such as for instance linewidth of 

the excitation laser sources. Raman peaks thus feature a distribution around their center 

frequency which can be fitted by Lorentzian, Gaussian or Voigt profiles. Considering this, 

a pure Raman spectrum 𝑅(�̅�) 

𝑅(𝜈) =∑

{
  
 

  
 𝑃ℎ

ℜ[𝑤𝑜𝑓𝑧(((𝜈 − 𝜈0) + 𝑗𝛾) 𝜎⁄ √2)]

𝜎√2𝜋

𝑃ℎ
1

𝜎√2𝜋
𝑒𝑥𝑝 (

−(𝜈 − 𝜈0)

2𝜎2
)

𝑃ℎ
𝛾 𝜋⁄

(𝜈 − 𝜈0)2 + 𝛾2

𝑀

𝑖=0

 

Voigt 

Gaussian  

Lorentzian 

 

 

3.4 

can be synthesized as a summation of peaks, where each of the peaks can feature a 

Gaussian-, a Lorentzian- or a Voigt profile. The different profiles respect Doppler 

broadening, collisional broadening, optical effects and a combination of them. Each of the 
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profiles is characterized by three parameters. The first is the central position of the Raman 

peak 𝜈0 , between 𝜈 = 0 𝑐𝑚−1  and 𝜈 = 4200 𝑐𝑚−1 , which covers the entire Raman 

spectral range of physically existing Raman transitions. The second is the height (𝑃ℎ) of 

the Raman peaks. The intensity of the Raman peak depends on different factors such as 

the excitation wavelengths, the laser power, the number of molecules and others. 

Applying normalization by scaling between 0 and 1, the intensity of the Raman peak can 

be varied between 0 and 1. The third parameter is the width of the Raman peak. The half-

width at half maximum (HWHM) of the Gaussian (which is 𝜎) and of the Lorentzian (which 

is 𝛾) peak profile can be varied to simulated Raman peaks having different widths. 

Noise originates from two primary sources; device-associated noise and signal-

associated noise. Read out noise and thermal noise are the two device-associated noises 

and shot noise is signal-associated noise. Read out noise (Gaussian noise) depends on 

the read-out frequency of the detector, while thermal noise (Poisson noise) occurs from 

thermally generated electrons in the silicon structure of the CCD detector and correlates 

to temperature. Shot noise (Poisson noise) arises due to the discrete nature and random 

arrival times of acquired photons. Thus, noise in raw Raman spectra consists of Poisson 

noise and Gaussian noise. But above certain noise levels, the Poisson noise can be 

approximated as Gaussian noise[2, 3]. With this assumption, the noise spectrum 𝑛(�̅�) 

𝑛(�̅�) = 𝑒(�̅�)√𝑛𝑝ℎ2(�̅�) + 𝑛𝑡ℎ2 + 𝑛𝑟𝑑2 3.5  

can be modeled as the summation of shot noise 𝑛𝑝ℎ (also referred to as photon noise), 

thermal noise 𝑛𝑡ℎ  and read-out noise 𝑛𝑟𝑑 . 𝑒(�̅�)  is Gaussian noise having a standard 

deviation of one and mean of zero. The shot noise  

𝑛𝑝ℎ(�̅�) = √𝑅(�̅�) 3.6 
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is the square root of the pure Raman spectrum, and with this a function of the variable �̅�. 

The shot noise is larger at spectral ranges with large signal level, while spectral regions 

without signal feature no shot noise. This noise level is also dependent on the background 

signal. Therefore, high background interference also bury the Raman signal in its large 

shot noise.  

The thermal noise 

𝑛𝑡ℎ = √𝐵 3.7 

is approximated by the square root of the thermal background 𝐵. The thermal background 

is independent of the signal. Therefore it is supposed to be a constant over the whole 

spectral range �̅� . The read-out noise does also not depend on the signal. Thus it is 

considered as a constant 𝑐 over �̅�. 

𝑛𝑟𝑑 = 𝑐 3.8 

Following the above spectroscopic noise simulation approaches, a noise featuring 

different SNR 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
∫ (𝑅(𝜈))

2𝜈=4200𝑐𝑚−1

𝜈=0𝑐𝑚−1 𝑑𝜈

∫ (𝑛(𝜈))
2𝜈=4200𝑐𝑚−1

𝜈=0𝑐𝑚−1 𝑑𝜈
 

3.9 

in decibel (dB) can be synthesized.  

In this study the background spectrum 𝐵(𝜈) is assumed to be broadband and featureless. 

Therefore it can be approximated as polynomial, exponential, sinusoidal, Gaussian or 

sigmoidal distribution or as combination of those functions. Of course, not all background 

interferences are simply broadband and featureless. For instance surface enhanced 

Raman spectroscopy (SERS) is known to feature rather complex backgrounds, which 
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under certain circumstances are composed of several narrowband peaks. However, 

complex background spectra with narrowband peaks are out of scope of this study. But 

this does not mean the techniques developed in this study are not applicable for non-

varying complex backgrounds.  

In order to consider different strength of the background level in the simulated raw Raman 

spectra, the Raman signal to background ratio 

𝑆𝐵𝑅 = 10𝑙𝑜𝑔10
∫ 𝑅(𝜈)
𝜈=4200𝑐𝑚−1

𝜈=0𝑐𝑚−1 𝑑𝜈

∫ 𝐵(𝜈)
𝜈=4200𝑐𝑚−1

𝜈=0𝑐𝑚−1 𝑑𝜈
 

3.10 

is determined. By varying this parameter several background spectra with different 

strength can be simulated. 

3.3 Shifted-excitation Raman difference Spectroscopy 

Shifted-excitation Raman difference spectroscopy is a powerful method for extracting 

recovered Raman spectra from heavily fluorescence interfered raw Raman spectra. This 

technique is based on Kasha’s rule, which states that an excited molecule relaxes to the 

vibrational ground state in the excited electronic state, before the fluorescence emission 

takes place. This is when the collisional frequency between molecules exceeds the 

inverse lifetime of the molecule in the excited state, which under the here considered 

condition is granted. Figure 3.4 (left) shows a sketch of the term-energy of a molecule, 

which can absorb green excitation radiation and then emit a fluorescence photon. This 

can be for example a fluorophore compound contained in blood or biological tissue. As it 

can be seen from the figure, regardless of whether the molecule absorbs the dark green 

photon (dark green arrow) or the more photon energy containing light green photon (light 

green photon), according to Kasha’s rule the fluorescence emission always occurs from 

the vibrational ground state v′0. Incident photons with slightly different photon energies 

(slightly different wavelengths) can promote the molecule to different vibrational states in 
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Figure 3.5 shows as thin solid lines one synthesized raw Raman spectrum 𝑟𝜆(�̅�) excited 

with the excitation wavelength 𝜆 and another raw Raman spectrum 𝑟𝜆+Δ𝜆(�̅�) excited with 

slightly different excitation wavelength 𝜆 + Δ𝜆 . Due to Kasha’s rule, the fluorescence 

background which is shown as thick gray solid line is identical in both raw Raman spectra 

whereas the Raman peaks, when related to the same excitation wavelength, are shifted 

according to the photon energy shift corresponding to Δ𝜆 . Thus the fluorescence is 

canceled out in the difference spectrum 

Δ𝑟(�̅�) =  𝑟𝜆(�̅�) − 𝑟𝜆+Δ𝜆(�̅�)  3.11 

and the difference spectrum only contains the Raman information. The difference 

spectrum is shown as dashed blue curve in Figure 3.5. The pure Raman spectrum can 

then be recovered from this difference spectrum after reconstruction. I will discuss later 

the reconstruction method and the effect of different excitation wavelength shift Δ𝜆 on the 

reconstruction performance.  

The charm of SERDS is first that it eliminates fluorescence via an experimental method 

and based on a physical mechanism. Secondly, this technique removes not only 

fluorescence but also any other non-varying background interferences such as ambient 

light, etaloning and others. However, in reality, the background spectra for both excitation 

wavelengths are not always identical, because of which the SERDS spectrum has to be 

mathematically treated before reconstruction and also after reconstruction. This is shown 

in detail in the results section. 
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shifted excitation wavelengths 𝚫𝝀; therefore the Raman peaks (see Figure 3.7 dashed 

gray curves) are synthesized to be shifted from the original Raman peak. Only the Raman 

spectra shifted with the smallest 𝚫𝝀  = 0.15 nm and largest 𝚫𝝀  = 10 nm excitation 

wavelength shift are shown as dashed gray curves in Figure 3.7. In order to determine the 

effect of the excitation wavelength shift to the signal-to-noise ratio of the difference 

spectrum, a noise signal was added to the Raman spectra. Then the SERDS difference 

spectra are computed based on equation 3.11 by subtracting the shifted raw Raman 

spectra from the original raw Raman spectrum. Figure 3.8 left side (blue dashed curve) 

shows the signal-to-noise ratio and the relative spectral resolution (black solid curve) of 

the reconstructed Raman peak as a function of the excitation wavelength shift 𝚫𝝀. The 

SNR was computed based on equation 3.9 for each difference spectrum relative to the 

corresponding noise-free difference spectra (before reconstruction). The relative spectral 

resolution was computed after the reconstruction of the recovered Raman spectra and will 

be discussed latter. As it can be seen from Figure 3.8 (left), the SNR curve reveals that 

selecting a small excitation wavelength shift 𝚫𝝀 corresponds to low SNR of the difference 

spectrum. On the contrary a small excitation wavelength shift achieves a high spectral 

resolution of the recovered Raman spectra as shown in Figure 3.8 (left) in black curve. 

Increasing the excitation wavelength shift, which decreases the peak area overlap in the 

SERDS raw Raman spectra, improves the SNR of the SERDS difference spectrum, 

initially, in a linear relationship. Then the slope decreases and approaches a constant 

value when the SERDS Raman peaks are separated completely at large wavelength 

shifts. Thus, high excitation wavelength shifts comforts to the improvement of the SNR.  
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𝚫𝑷𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚(𝚫𝛌) = 𝐦𝐚𝐱(𝑹𝒓𝒆𝒄𝒐𝒗(�̅�)) − 𝐦𝐚𝐱(𝑹(�̅�)) 3.14 

is the maximum intensity of the recovered Raman spectra minus the maximum intensity 

of the pure Raman spectrum. Figure 3.8 (right) shows as dashed blue curve the effect of 

excitation wavelength shift 𝜟𝝀  on the peak intensity of recovered Raman peak. The 

excitation wavelength shift also imposes a peak widening effect on the recovered Raman 

spectrum. This effect is computed as relative spectral resolution. Figure 3.8 left side (black 

curve) shows the relative spectral resolution of the recovered Raman spectra with respect 

to the pure Raman spectrum as a function of excitation wavelength shift. The relative 

spectral resolution 𝒓𝑷𝒘𝒊𝒅𝒕𝒉(𝚫𝝀)  

𝒓𝑷𝒘𝒊𝒅𝒕𝒉(𝚫𝝀) =
𝑭𝑾𝑯𝑴𝑹(�̅�)

𝑭𝑾𝑯𝑴𝑹𝒓𝒆𝒄𝒐𝒗(�̅�)
 

3.15 

is computed as the ratio of the linewidth of the pure Raman spectrum to the linewidth of 

the recovered Raman spectra. The result shows the loss of spectral resolution (widening 

of recovered Raman peaks) with an increase in excitation wavelength shift.  

This shows there is always a compromise in choosing the excitation wavelength shift. A 

small shift achieves better spectral resolution at the cost of reduced signal strength of 

broadband Raman bands due to considerable peak area overlap. On the contrary, setting 

a large wavelength shift results in a reduced spectral resolution and distorted narrow 

spectral signatures to gain improved signal strength of broader peaks.  

3.4 Raman experimental setup 

In this subsection the general experimental setup of the Raman device, as it has been 

used with slight modifications throughout the thesis, is described. In order to being able 





47 

 

(785 nm) suppresses wavelengths longer than 785 nm originating from fiber-light 

interactions when the excitation light passes through the glass fiber. The excitation laser 

beam is then reflected via a dichroic mirror, which is highly reflective for the excitation 

wavelength but transparent for wavelengths longer than 785 nm. It is then focused through 

a lens onto the sample. A portion of the excited signals (this is mainly elastic light 

scattering signals, fluorescence and the desired Raman signals) is detected in back-

scattering direction through the same lens. The red-shifted fluorescence and Raman 

signals pass the dichroic mirror towards another lens focusing them onto a detection glass 

fiber bundle guiding the signals from the Raman probe to the spectrometer. The 

spectrometer analyzes the collected raw Raman spectra. The elastic light scattering 

signals are filtered out first by the dichroic mirror reflecting them towards the excitation 

glass fiber and second by a long pass filter mounted between the dichroic mirror and the 

signal focusing lens. 

During my thesis I used two different lasers as excitation light source and two different 

spectrometers for signal detection. These main components of the Raman experiments 

are specified in the Table 3.1 below. 

Table 3.1: Specification of main components of the Raman experiments 

Laser Manufacturer Excitation 
wavelength range 

Laser power 

Toptica DLpro Toptica 770 – 810 nm 1.5 W 

Cobolt samba Hübner Photonics 532 nm 500 mW - 1.5 W 
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Spectrometer Manufacturer Detection 
wavelegnth range 

Spectral 
resolution 

Ventana 785 Ocean optics 800 – 940 nm 10 cm-1 

QEPro 532 Ocean optics 532 – 700 nm 11 cm-1 

3.5 Mathematical method for Raman spectra refinement 

Raman spectra refinement refers to the enhancement of the signal-to-noise ratio (SNR) 

and signal-to-background ratio (SBR) as given by equations 3.9 and 3.10, respectively. 

These ratios are directly proportional to the pure Raman signal and inversely proportional 

to the interferences (noise or background). Therefore, the enhancement of these ratios 

can be achieved by either the enhancement of the pure Raman signal relative to the 

background and the noise or the reduction/removal of the interferences. Different 

experimental methods have been developed based on the enhancement of the pure 

Raman signal. Mathematical post-measurement processing methods follow the reduction 

or removal of the interferences to enhance the SNR and the SBR. These mathematical 

methods are usually applied when the experimental methods for the enhancement of the 

SBR and the SNR cannot provide the anticipated success or cannot be applied. So far, 

there is no single mathematical technique which can handle both simultaneously, the 

enhancement of SNR and SBR. Therefore, the mathematical post-measurement methods 

are broadly categorized as noise reduction methods or background correction methods. 

In my thesis I had to compare the results of the post-measurement processing methods 

that I have developed against state of the art post-measurement processing methods. 

Therefore, I here provide details on those post-measurement processing methods for 

noise reduction and background correction, which I have already mentioned in section 

two of this thesis.  
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mathematical post-measurement methods potentially can modify the pure Raman 

spectrum. Consequently, the recovered Raman spectrum should be taken only as an 

approximation of the pure (real) Raman spectrum.  

Within the grey window shown in Figure 3.10 the recovered Raman spectrum (green 

curve) is varying slowly whereas the noise is fluctuating randomly (light red curve). The 

simplest way to smooth out the noise is to replace each data point of the raw Raman 

spectrum by the average of its neighboring data points within a given moving window 

(window size defines the number of data points that are averaged). The smoothness of 

the resulting spectrum is determined by the size of the moving window. But “moving-

window-averaging” always reduces peak maxima and also introduces shifting of the peak 

maxima. The Savitzky-Golay smoother (SG-smoother) [4] does not average within the 

moving window but fits a polynomial function to the data points within the moving window. 

Then the center data point of the moving window is updated from the value of the 

polynomial function at the center point location. Figure 3.11 shows the SG-smoother as 

applied to de-noise a raw Raman spectrum. The noise-interfered raw Raman spectrum is 

shown as gray curve. The data points of the raw Raman spectrum within a moving window 

(light blue rectangle in Figure 3.11) are fitted with a polynomial function of a specified 

order (a polynomial of third order in Figure 3.11). The value of the to-be-recovered Raman 

spectrum, which is the center data point of the moving window (green circle in Figure 3.11) 

is computed from the fit-polynomial function at the Raman shift position of this center data 

point. Then the light blue window is shifted by one data point to the right and a new 

polynomial fit of the same order is applied to the data points within the shifted window. 

This step is not shown in Figure 3.11. The center data point of this shifted window is again 

updated from the value of the fit-polynomial function evaluated at the Raman shift position 

of this central data point. In this way all data points of the recovered Raman spectrum 

function (see red curve in Figure 3.11) are updated one after the other by shifting of the 

light blue window of data points to the right of the raw Raman spectrum followed by fitting 
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is the least square of the difference between the raw Raman spectrum 𝑟(�̅�) and the to-

be-recovered Raman spectrum 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�) . The roughness of the recovered Raman 

spectrum  

𝑠(�̅�) =  ∑Δ𝑑𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖)
 

𝑁

𝑖=1

 

is obtained from the difference with a degree 𝑑 between consecutive data points of the 

recovered Raman spectrum. For instance 

Δ1𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖) = 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖) − 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖−1) 3.17a 

Δ2𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖) = 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖) −  2 ∙ 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖−1) + 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖−2) 3.17b 

Δ3𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖) = 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖) −  3 ∙ 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖−1) + 3 ∙ 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖−2) − 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖−3) 3.17c 

are the computation of the roughness of the recovered Raman spectrum for 𝑑 = 1, 2, and 

3, respectively. 

Then the objective function 

𝑄 =  min
𝑅𝑟𝑒𝑐𝑜𝑣(�̅�)

(𝑒(�̅�)  +  𝜆 ∙ 𝑠(�̅�)) 3.18 

is a balanced combination of the two goals, the fidelity and the roughness, where the 

smoothness parameter 𝜆  is to be adjusted through human intervention. The finally 

recovered Raman spectrum is the solution which minimizes equation 3.18. The perfect 

smoother involves two parameters 𝑑 and 𝜆 to be adjusted through human intervention. 

Noise reduction based on wavelets (wavelet-smoother) [6] involves transformation of the 

noisy raw Raman spectra into a wavelet domain by decomposing it into a set of specified 

orthonormal wavelet basis functions. The procedure is shown in Figure 3.12. In a first 
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different moving window sizes and a fixed third order polynomial function to eliminate the 

noise. Here it is intended to illustrate the effect of varying window size on the performance 

of the SG-smoother. 

Figure 3.13a (left) shows the SG-recovered Raman spectra as blue, red and cyan curves, 

respectively, when the moving window size was set to 17, 35 and 51 data points and 

keeping the polynomial order at 3. Increasing the window size achieves smoother 

recovered Raman spectra but the recovered Raman peak gets significantly distorted. The 

recovered Raman peak becomes broader with an increase in window size, which means 

loss of spectral resolution. Figure 3.13a (right) shows the effect of varying the polynomial 

order of the SG-smoother while keeping the window size fixed at 17. The recovered 

Raman spectrum obtained by setting the polynomial order to 1, 3, and 9 are shown in 

blue, red and cyan respectively. A low polynomial order results in distortion of the 

recovered Raman peak, but a high polynomial order shows an improved preservation of 

the recovered Raman peak. However, a high polynomial order also features a low SNR 

enhancement.  

In order to analyze the influence of the adjustable parameters of PS-smoother, the raw 

Raman spectrum of Figure 3.13 was also recovered using three different values of the 

smoothness parameter 𝜆 of the PS-smoother. The result is shown in Figure 3.13b (left) 

as blue, red and cyan curves, respectively, for 𝜆 = 1, 𝜆 = 10 and 𝜆 = 100 . For small 

values of 𝜆, the recovered Raman spectrum is rough and becomes smoother at larger 

values of 𝜆. But the PS-smoother with larger 𝜆-values also interacts negatively with the 

recovered Raman peak. Figure 3.13b (right) shows the effect of the second parameter of 

PS-smoother. The recovered Raman spectrum obtained by setting 𝑑 = 1, 𝑑 = 2 and 𝑑 =

3 of PS-smoother are shown, respectively, as blue, red and cyan curves. Setting 𝑑 = 1 

enhanced the SNR, but at the cost of a trimmed recovered Raman peak.  
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procedure repeats for further iterations. The recovered background spectrum after 

iteration 10 is shown as dashed black curve in Figure 3.15 on the left. With every iteration, 

the recovered background spectrum 𝐵𝑟𝑒𝑐𝑜𝑣(�̅�)  drifts towards approximating the 

background spectrum 𝐵(�̅�). This method systematically excludes the Raman peaks in 

every iteration, while the recovered background spectrum approximates the background 

spectrum. In this method the polynomial order has to be adjusted through human 

intervention. 

Methods based on penalized least squares modify the perfect smoother to be applied to 

approximate the background spectrum. Asymmetric least squares smoothing (ALS) is one 

of these methods. This method includes only a weighting factor to the fidelity (equation 

3.16)  

𝑒(�̅�) =∑𝑤𝑖 ∙ |𝑟(�̅�𝑖) − 𝐵𝑟𝑒𝑐𝑜𝑣(�̅�𝑖)|
2

𝑁

𝑖=1

 
3.19 

  

of the fit-function (to-be-recovered background spectrum) 𝐵𝑟𝑒𝑐𝑜𝑣(�̅�) to the raw Raman 

spectrum 𝑟(�̅�).  The weighting factor  

𝑤𝑖 = {
𝑝   𝑖𝑓 𝑟(�̅�𝑖) > 𝐵𝑟𝑒𝑐𝑜𝑣(�̅�𝑖)

1 − 𝑝 𝑖𝑓 𝑟(�̅�𝑖) < 𝐵𝑟𝑒𝑐𝑜𝑣(�̅�𝑖)
 3.20 

is computed by introducing a new parameter 𝑝 to be adjusted through human intervention. 

The main idea of introducing the weighting factor is to treat peak regions and peak-free 

regions of the raw Raman spectra differently, thus systematically only fitting to the 

background spectrum of the raw Raman spectrum. Figure 3.16 illustrates the principle of 

ALS.  
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second iteration, a new recovered background spectrum is estimated again using 

equation 3.18 but with the updated weighting factor. The recovered background spectrum 

in iteration two is shown as dashed green curve in Figure 3.16. In the next iteration, again 

the weighting factor is updated by comparing the new recovered background spectrum 

and the raw Raman spectrum. This fitting and weight updating continues until no 

difference is detected between the consecutively recovered background spectra. The 

recovered background spectrum at iteration 10 is shown as dashed black curve in Figure 

3.16. Thus, as it can be seen in Figure 3.16, after every iteration the recovered 

background spectrum drifts towards approximating the background spectrum. This 

method involves two adjustable parameters to be provided through human intervention. 

An adaptive iteratively reweighted penalized least squares method (airPLS) [7] was also 

proposed as an improvement of the ALS method. Its difference from ALS is that airPLS 

assigns the weighting factors automatically according to the difference between the raw 

Raman spectrum and the recovered background spectrum in every iteration. Thus, it 

excludes the weighting parameter 𝑝 of the ALS method. Therefore, only one parameter 𝜆 

needs to be adjusted. The ALS and airPLS methods assign large weights whenever the 

recovered background spectrum is above the raw Raman spectrum and assign small 

weights whenever the recovered background spectrum is below the spectrum of the 

previous iteration. However, noise is distributed above the background spectrum as well 

as below it. The airPLS method therefore inherently underestimates the real background. 

Therefore the recovered background after iteration 10 in the figure above is mainly below 

the real background. 

In order to take this into account, an asymmetrically reweighted penalized least squares 

smoothing (arPLS) was proposed by Baek et al. [8]. This method includes an estimation 

of the noise level in every iteration and adjusts the weights accordingly.  
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Figure 3.17 shows the effect of adjustable parameters on the performance of the ModPoly 

and ALS background correction methods. Two raw Raman spectra are simulated. One 

with a simple (left in Figure 3.17) and one with a complex background (right in Figure 

3.17). Figure 3.17a shows the recovered background spectra in dashed black and dashed 

green curves which are obtained when using the ModPoly method by setting the 

polynomial order to 4 and 10, respectively. The choice of high polynomial order increases 

the flexibility of the recovered background spectrum. Figure 3.17a (right) shows that the 

ModPoly with a polynomial order of 10 approximates the complex background spectrum 

better than a polynomial order of 4. But this flexibility also implies that the recovered 

background spectrum also takes broad Raman bands as background. Figure 3.17b shows 

the recovered background spectra in dashed black and dashed green curves obtained 

using the ALS method by setting the smoothness parameter to 𝜆 = 104  and 𝜆 = 105 

respectively. In both cases the weighting parameter 𝑝 is kept constant (𝑝 = 0.001). As it 

can be seen from Figure 3.17b (left) 𝜆 = 104  achieves a better estimation of the 

background spectrum under the narrow Raman peaks. However, the estimated 

background signal interacts with the Raman spectrum, especially in the region of broad 

Raman peaks/bands. Increasing 𝜆 by one order of magnitude improves the estimation of 

the recovered background under the broad peaks/bands, but the estimated background 

deviates in the region of the narrow Raman peaks. 
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Deep learning is a branch of machine learning that involves multiple levels of data 

representations to map the input data to their corresponding final target [9]. It requires 

large amounts of data to imitate complex interrelationship, whose inputs and outputs are 

far apart. One example is highly fluorescence interfered raw Raman spectra as input data 

and as output purified Raman spectra. Another example are raw Raman spectra as input 

and as output the malignant or non-malignant categorization in cancer diagnostics. In 

order to accomplish this success, it uses mathematical entities named neural networks, 

which are capable of representing complicated interrelationships functions through a 

composition of linear relationships. 

Figure 3.19 illustrates in a nutshell, how deep neural networks work in the case of the 

refinement of Raman spectra. Raw Raman spectra 𝑟(�̅�) were considered as an input to 

the input layer of the network. In Figure 3.19 only one raw Raman spectrum is shown as 

input. Following the input layer, one hidden layer consists of m nodes 𝑎𝑚.  

For simplicity of description, only two hidden layers are considered, but depending on the 

problem at hand, several hidden layers can be required to implement a deep neural 

network. The value of each node is computed in a two-step procedure. First, its value is 

computed through a linear combination of all its input data (data left of the node). For 

instance, the value of the first node (𝑎1) of the hidden layer  

𝑎1 = 𝑤11 ∙ 𝑟(�̅�1) + 𝑤12 ∙ 𝑟(�̅�2) + ⋯+ 𝑤1𝑛 ∙ 𝑟(�̅�𝑛) + 𝑏1 3.21 

is equal to the weighted sum of the raw Raman spectrum plus a bias 𝑏. 

Second the value of the node passes through non-linear function (𝒇(. )) which is called 

activation function. Thus, the values of all the nodes 𝑎𝑚 of one hidden layer in matrix form 

can be defined as 
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𝐖 = [

𝑤11 ⋯ 𝑤𝑚1
⋮ ⋱ ⋮
𝑤1𝑛 ⋯ 𝑤𝑚𝑛

] 
3.23 

and the bias matrix 𝐛  

𝐛 =  [
𝑏1
⋮
𝑏𝑚

] 
3.24 

The parameters contained in the weighting matrix 𝐖 and contained in the bias matrix 𝐛 

are trainable parameters, which have to be adjusted through optimization by exposing the 

neural network to known pairs of raw Raman spectra and pure Raman spectra. 

The non-linear activation function enables neural networks to learn a complex pattern of 

input data [9]. At present, the rectified linear unit (ReLU) non-linear activation function 

𝐟(𝐖𝐓 ∙ 𝑟(�̅�) + 𝐛) = 𝐦𝐚𝐱(𝐖𝐓 ∙ 𝑟(�̅�) + 𝐛, 0) 3.25 

 is a good default for all hidden layers and it is simply equal to the half-wave rectifier. 

Going from one layer to the next involves computation of a weighted sum of the inputs 

from the previous layer plus a bias and pass the result through a non-linear function. 

Therefore, the value of the nodes in the output layer (see Figure 3.19)  

𝒐 = 𝑓(𝐖′𝐓 ∙ 𝒂′  + 𝐛′) 3.26 

is the weighted sum of the values of the nodes of the last hidden layer added to a bias 

and then activated through an activation function. Depending on the task, the activation 

function can be defined differently in the output layer. For instance, sigmoid functions are 

used for binary classification problems, whereas linear or none can be used for refinement 

of Raman spectra (regression task).  Finally the recovered Raman spectra 
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𝑅𝑟𝑒𝑐𝑜𝑣(�̅�) = 𝒐 

is obtained from the output layer and it is a function of the weights and bias as shown in 

Figure 3.19. The computation of the output from the input in a cascade is called forward 

propagation. The details of backward propagation, loss function and optimization which 

are shown in Figure 3.19 are discussed in the following paragraphs. 

Figure 3.20 illustrates a convolutional neural network (CNN). CNN consists of two layers; 

convolutional layers and pooling layers in addition to the fully-connected layers that are 

shown in Figure 3.19. Figure 3.20 (light green box) shows the convolutional layer 

operation considering a kernel with three elements. The convolutional layer focuses on 

using learnable kernel 𝐊  that stride through the input data, perform element-wise 

multiplication and averaging, and pass the result through a non-linear activation, 

commonly the ReLU. Its role is to reduce the input data into a more comfortable form and 

at the same time to not lose the input features that are critical for getting a good prediction. 

The kernel size is referred to as hyper-parameter, as it is not a learning parameter of the 

neural network, but its elements are trainable parameters to be adjusted through 

optimization like the weight and bias parameters. Figure 3.20 (light red box) shows pooling 

operation for a pool size of two; however, the pool size is a hyper-parameter that can be 

tuned. The pooling operation involves gliding through the input data (the input to the 

pooling layer is the output of the convolutional layer) by taking average- or maximum of a 

specified number of input data points. The pooling layer is utilized for the reduction of the 

dimensionality of the representations and thus reduces the computational complexity of 

the CNNs [9]. In the specific example presented in Figure 3.20 after the pooling operation 

the number of input data points is reduced by half. CNNs usually consist of fully-connected 

layers as it is shown in Figure 3.19. They are finally responsible for mapping the extracted 

features of the convolutional layers to the predicted output. 
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𝐿(𝑊,𝐾, 𝑏) =  ∑|𝑅(�̅�𝑖) − 𝑅𝑟𝑒𝑐𝑜𝑣(�̅�𝑖)|
2

𝑁

𝑖=1

 
3.28 

is usually utilized for regression learning tasks such as the refinement of Raman spectra. 

The objective function can be envisioned as a hilly landscape in the high-dimensional 

parameter space of the neural network. The gradient of this objective function indicates 

the direction of steepest descent towards the minimum of the error between the predicted 

output (recovered Raman spectra) and target output (pure Raman spectrum). The 

computation of the gradient applies the chain rule for derivatives, where differentiation is 

repeatedly applied through all the layers starting from the output layer all the way to the 

input. This is called backward propagation. Once the gradients are computed, it is 

straightforward to update the parameters 𝜽𝑖 

𝜽𝑖 = 𝜽𝑖−1 − 𝜂
𝜕𝐿(𝜽)

𝜕𝜽
 

3.29 

as a function of their current values 𝜽𝑖−1, following the steepest descent by a specified 

increment called learning rate 𝜂 where 𝑖 is the number of iterations also called number of 

epochs. This optimization approach is called gradient descent optimizer and it iteratively 

updates the parameters for a given number of iterations (epochs) which is the number of 

forward and backward propagation passes through the network to be set by the user. The 

learning rate is the most critical hyper-parameter to be tuned during the training of deep 

neural networks. Small learning rates will make the learning process converge slowly, 

whereas large learning rates could fail to converge. One usually starts with a learning rate 

value and then decreases it monotonically during learning [9]. Instead of reducing the 

learning rate during training, Smith et al [11] also suggested varying the learning rate 

cyclically as a function of epoch between reasonable boundary values. Besides the 

learning rate, there are also many hyper-parameters to tweak, such as the number of 
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hidden layers and the number of nodes per layer, number of convolutional layers and 

kernel size, and others.  

With the large number of adjustable parameters, a CNN has an incredible amount of 

freedom to fit a wide variety of complex datasets. However, this great flexibility means it 

is also prone to overfitting a scenario, where the model performs only well on the training 

dataset but fails to generalize. Therefore, after each epoch, the performance of the system 

is always measured on a different dataset (validation dataset) not included in the training 

dataset. This helps monitor the learning process and interrupts the training when the 

model starts to overfit. Dropout is a popular regularization approach to tackle overfitting in 

deep neural networks. It is a fairly simple algorithm such that at every training epoch some 

of the nodes are entirely ignored based on a given dropout percentage.  

Based on convolutional neural networks, there are several deep neural network 

architectures. U-Net is one of these architectures originally proposed by Ronneberger [12] 

for medical image segmentation. “U” is not an acronym here, it has to be understood like 

in the expression U-turn, where one reverses the direction. Figure 3.21 shows the 

architecture of the U-Net as applied to refinement of Raman spectra. It applies a network 

of convolutional layers to perform the prediction of the desired output from noisy and 

background interfered raw Raman spectra. The network architecture consists of an 

encoder network followed by a decoder. The encoder takes a raw Raman spectrum as an 

input. It extracts spatial features from the spectra, thus yielding a multilevel feature 

representation of the information to map the input to the desired output. The decoder then 

reconstructs the output, which has the same pixel space as the input, using the extracted 

information of the encoder.  
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which are now reduced by half, get appended by the output of the corresponding 

convolutional layer of the encoder prior to the pooling operation. The concatenation step 

allows the network to retrieve the information lost by pooling operation during encoding. 

After the up-sampling and concatenation, the feature map propagated through two 5𝑥1 

consecutive convolutional layers followed by batch normalization. Similar to the encoder, 

this sequential operation of up-sampling, concatenation and convolution operations 

repeated four times, halving the feature channels at each stage. Rectified Linear Unit 

(ReLU) was used to activate the output of all convolution layers of both of the encoder 

and decoder networks. At the end of the decoder, a 1x1 convolutional layer with no 

activation function was used to retrieve the predicted output. 
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4 Summary of the published results 

The results relevant for my thesis have been published in 5 manuscripts in peer-reviewed 

international journals. Three manuscripts are related to the development of Raman and 

Raman spectral processing techniques beyond the state of the art. In detail these are: 

1. M.T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, A. Braeuer 

A Shifted-Excitation Raman Difference Spectroscopy (SERDS) evaluation strategy 

for the efficient isolation of Raman spectra from extreme fluorescence interference 

Journal of Raman Spectroscopy 47, 198–209 (2016) 

2. M.T. Gebrekidan, Ch. Knipfer, A.S. Braeuer   

Vector casting for noise reduction  

Journal of Raman Spectroscopy 51, 731–743 (2020) 

3. M.T. Gebrekidan, Ch. Knipfer, A.S. Braeuer  

Refinement of spectra using a deep neural network; fully automated removal of 

noise and background  

Journal of Raman Spectroscopy 52, 723-736 (2021) 

Two manuscripts are related to the application of the developed techniques for cancer 

diagnostics. In detail these are: 

4. Gebrekidan T.M., Erber R., Hartmann A., Fasching P.A., Emons J., Beckmann 

M.W., Braeuer A.S.  

Breast tumor analysis using Shifted-Excitation Raman Difference Spectroscopy 

https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.4775
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.4775
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.4775
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.4775
https://onlinelibrary.wiley.com/doi/10.1002/jrs.5835
https://onlinelibrary.wiley.com/doi/10.1002/jrs.5835
https://onlinelibrary.wiley.com/doi/10.1002/jrs.5835
https://onlinelibrary.wiley.com/doi/10.1002/jrs.5835
https://onlinelibrary.wiley.com/doi/10.1002/jrs.5835
https://onlinelibrary.wiley.com/doi/full/10.1002/jrs.6053?af=R
https://onlinelibrary.wiley.com/doi/full/10.1002/jrs.6053?af=R
https://onlinelibrary.wiley.com/doi/full/10.1002/jrs.6053?af=R
https://onlinelibrary.wiley.com/doi/full/10.1002/jrs.6053?af=R
https://doi.org/10.1177/1533033818782532
https://doi.org/10.1177/1533033818782532
https://doi.org/10.1177/1533033818782532
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(SERDS) 

Technology in Cancer Research & Treatment 17, (2018)  

5. L. Matthies, M.T. Gebrekidan, J.F. Tegtmeyer, N. Oetter, M. Rohde, T. 

Vollkommer, R. Smeets, W. Wilczak, F. Stelzle, M. Gosau, A.S. Braeuer, Ch. 

Knipfer 

Optical Diagnosis of Oral Cavity Lesions by label-free Raman Spectroscopy 

Biomedical Optics Express 12, 836-851 (2021) 

The subsections that follow summarize each of the respective manuscripts. The title of 

each subsection is equal to the title of the respective manuscript. The subsections do 

neither contain a motivation, the state of the art nor details on the experimental setup, as 

all this information has been provided in the previous sections of this thesis. Whenever 

appropriate, references are made to these previous sections. 

4.1 A shifted-excitation Raman difference spectroscopy 
evaluation strategy for the efficient isolation of Raman 
spectra from extreme fluorescence interference 

The working principle of the shifted-excitation Raman difference spectroscopy (SERDS) 

method is described in subsection 3.3. Practically, the SERDS method is subject to two 

challenges, which are that (i) the difference spectrum still contains left-over fluorescence 

background (due to variation in the intensity of excitation source and photobleaching) and 

that (ii) the difference spectrum features a low SNR even lower than that of the two raw 

Raman spectra (because the noise can be additive while the signal is subtractive). The 

methods I have developed for encountering these challenges are reported in [1] and are 

summarized below in the context of Figure 4.1. At the top of Figure 4.1 the two raw Raman 

spectra required for the SERDS method are shown. At the bottom one can see the 

recovered Raman spectrum as the results of the developed methods. 

https://doi.org/10.1177/1533033818782532
https://doi.org/10.1177/1533033818782532
https://doi.org/10.1177/1533033818782532
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-2-836&id=446530
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-2-836&id=446530
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-2-836&id=446530
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-2-836&id=446530
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-2-836&id=446530
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Figure 4.1 Overview of the processing steps required for the purification of the pure Raman spectrum from 
the interfering fluorescence. (source: Ref. [1]). 
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The contribution of intensity variation to the left-over fluorescence can be overcome 

following spectral normalization (first step in Figure 4.1). However, since the 

photobleaching effect changes the fluorescence contribution, the difference spectrum 

obtained after applying the normalization still features a left-over fluorescence. In this 

study zero-centering technique is recommended before spectral reconstruction for further 

reduction of the left-over fluorescence.  

Spectral reconstruction based on the integration method was applied to the difference 

spectrum after zero-centering. Due to the low SNR of the difference spectrum, this method 

considers a Raman shift difference between consecutive spectral data points to 

reconstruct the Raman spectrum. This improves the SNR of the reconstructed Raman 

spectrum but at the cost of Raman peak shifting and Raman band broadening, which is 

discussed in detail in [1].  

The reconstructed Raman spectrum still contains a fluorescence background though 

significantly reduced in contrast to the raw Raman spectra. Finally, a mathematical 

baseline correction algorithm was implemented based on piecewise asymmetric least 

squares (see subsection 3.5) to remove the left-over fluorescence from the reconstructed 

Raman spectrum.  

The capacity of the developed methods is illustrated in Figure 4.2, which compares a pure 

Raman spectrum of ethanol with the one reconstructed from a heavily fluorescence 

interfered ethanol/dye-solution (top in Figure 4.2). The reconstruction was even able to 

detect the Raman signature of the dye cryptocyanine. 
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Figure 4.2: (top) Raw spectrum taken from the cryptocyanine-ethanol-solution and (bottom) the comparison 
of a pure Raman spectrum acquired from pure ethanol with a Raman spectrum reconstructed according to 
the here proposed method from the raw spectrum shown at the top. (source: Ref. [1]). 

4.2 Vector casting for noise reduction 

Subsection 3.5.1 showed that the removal of noise is a trade-off between smoothing the 

spectrum but also modifying the peaks (shape, central position, peak maximum). 

In [2] a completely novel noise reduction method based on casting vectors is reported. 

The vector casting method initially searches for the top and bottom envelopes of the noisy 

spectra. On this account, in a first-level, all peaks and valleys, irrespectively of whether 

the peak or valley is due to noise or due to a real signal were identified. These first-level 

peaks and valleys are a good first estimate of the top and bottom envelopes of the raw 
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Raman spectrum. In a second-level, each of these first-level envelopes are decomposed 

into peak/valley pairs. This process is iterated and at the third-level, peak/valley pairs of 

the second-level are decomposed into further peak/valley pairs. The consecutive data 

points of third-level valleys of the second-level valleys of the first-level peaks were then 

considered as possible left and right border of a signal peak. Then, the presence of a real 

signal peaks is regarded by considering two criteria; (i) whether the height of the potential 

signal peak is greater than the maximum value of the difference between two consecutive 

data points of the noisy spectra and (ii) whether the slopes of the linear fits of the first-

level peaks and valleys left of the maximum of the potential peak are both positive and 

right of the potential peak are both negative. Following this, a categorization of the first-

level peak/ valley pairs of data points into part of peak region and peak free region were 

carried out. Afterwards, the top and bottom envelopes, which are the first-level peaks and 

valleys, are smoothed considering an asymmetric moving average windows.  

In order to retrieve the noise-reduced spectrum, vectors are casted within the margin of 

the above computed smooth envelopes from a starting already noise-reduced data point 

to subsequent not yet noise-reduced data points. Vectors that cross either of the 

envelopes are deleted. Then the not yet noise-reduced data point that is situated one 

increment right of the already noise-reduced data point is computed as the mean of the 

intercept of the remaining vectors. The performance of the vector casting method was 

compared with the state-of-the-art noise reduction approaches using simulated Raman 

spectra of various SNRs and experimentally acquired Raman spectra. The method 

performs well, especially at small SNRs, when quantified by different signal-to-noise ratio 

metrics. And it comparably relies on a minimum of human input. The drawbacks of this 

method are that it involves peak detection and takes longer execution time, which depends 

on the number of vectors to be casted.  

Figure 4.3 compares the vector casting method for noise reduction with the Savitzky-

Golay and the wavelet methods. It can be seen that the vector casting method results in 
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excellent noise reduction, least modifies the peak characteristics and thus is superior 

(under the tested circumstances) to the other methods. 

 

Figure 4.3: Comparison of noise-reduced spectra 𝑟(𝑥𝑖) (black line) using (a) vector casting method, (b) 
envelope-finder algorithm, (c) wavelet based smoothing and (d) Savitzky-Golay filter with respect to the 
pure signal spectrum 𝑅(𝑥𝑖) (blue line). The original noisy spectrum is shown as gray line. (source: Ref. 

[2]). 
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4.3 Refinement of spectra using a deep neural network; fully 
automated removal of noise and background 

Compared to the vector casting method (previous subsection), the deep neural network 

approach preserves the peak shapes and at the same time it efficiently removes the noise. 

Moreover, the neural network model does not at all rely on any human intervention.  

The architecture of the U-Net network has already been introduced in Figure 3.21 in 

subsection 3.6. The U-Net has been trained with hundreds of thousands of synthetic raw 

Raman spectra that were simulated according to the description provided in subsection 

3.2. The respective reference [3] contains different application scenarios where the trained 

U-Net provided noise-reduction and background-elimination capabilities which were 

superior to the state of the art methods. Here its capability is demonstrated in Figure 4.4 

with respect to a highly fluorescence interfered cryptocyanine/ethanol-solution. The higher 

the cryptocyanine weight fraction in the solution, the more the raw Raman spectra was 

interfered with fluorescence background. The results revealed the very positive 

performance of the U-Net method in the preservation of Raman spectral features and 

efficient removal of noise. The performance of the different background correction 

methods was also quantified based on different SNRs metrics and the structure similarity 

index. The metrics confirmed the superiority of U-Net with respect to the other background 

correction methods. The structure similarity index obtained, when having treated the raw 

Raman spectra of cryptocyanine/ethanol-solutions with three different spectra processing 

methods are reported in Figure 4.5. This figure clearly demonstrates the superiority of the 

U-Net method relative to the state of the art methods arPLS and ModPoly (compare 

subsection 3.5.2). 
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Figure 4.5: Comparison of Raman extraction performance of U-Net (black circles), arPLS (blue squares) 
and ModPoly (red squares) using structural similarity index metric. (source: Ref. [3]) 

4.4 Breast Tumor Analysis using Shifted-Excitation Raman 
difference Spectroscopy 

SERDS, combined with machine learning tools, is investigated in this study for the 

analysis of breast tumor and the details are reported in [4].  The Raman spectra refinement 

approaches proposed in this study are applied to separate the Raman spectrum from 

extreme fluorescence interference. The purified Raman spectra are then fed to machine 

learning tools for spectra interpretation. On this account ex vivo classification of resected 

and formalin-fixed breast tissue samples as normal tissue, fibroadenoma or invasive 
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4.5 Optical diagnosis of clinically apparent lesions of oral cavity 
by label-free Raman spectroscopy 

Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers and 

frequently preceded by non-malignant lesions. In [5] SERDS combined with classical 

machine learning (PCA/LDA) was applied for the diagnosis of clinically apparent lesions 

of the oral cavity. Unlike the breast, the oral cavity is complex, it contains different types 

of tissues, and depending on the anatomical location, content and amount of tissue can 

be different. Thus, the Raman spectrum of the healthy oral tissue contains diversified 

features, and the raw Raman spectra are also governed by less to extreme intensive 

fluorescence background. Figure 4.8 shows the Raman spectra of physiological tissue 

(green curve), OSCC (red curve) and non-malignant lesions (black curve) that were 

averaged from 42, 95 and 43 reconstructed Raman spectra, respectively. The non-

malignant lesions involved distinct histopathological entities such as inflammation, 

leukoplakia, dysplasia, hyperkeratosis and irritant fibroma. Annotations assign the 

spectral Raman signatures to their known molecular origin. The differences between 

physiological and pathological tissues (non-malignant and OSCC) are noticeable in the 

whole spectral region analyzed, although more pronounced in the fingerprint region 

(1200–1800 cm-1). The differences between malignant and non-malignant lesions were 

less pronounced and occurred mainly in the region between 800 to 1400 cm-1. The 

spectral features of physiological tissue of the oral cavity reflected dominant contribution 

from lipid molecules, a strong CH2 band around 1448 cm-1, two sharp peaks/bands around 

the amide III region, a sharper peak around the amide I region and altered nucleic acid 

spectral features. In contrast, spectra from non-malignant and OSCC tissues feature 

broader amide I and III regions, a shifted and weaker CH2 band and a strong 

phenylalanine peak. 
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Figure 4.8: Reconstructed mean Raman spectra of physiological oral tissue (green line), malignant (red) 
and non-malignant lesions (black) and with peak position assignment to their respective molecular origin. 
Lipids (light green), protein (light yellow), both proteins and lipids (light magenta), nucleic acid (light red), 
and proteins, nucleic acid and carbohydrates (light brown). (source: Ref. [5]) 

The feasibility of the classification of physiological, non-malignant and malignant lesions 

based on their reconstructed Raman spectra was explored using PCA/LDA. Figure 4.9 

illustrates the receiver-operating characteristic curve (ROC) that visualizes the 

performance of the classification. In the physiological mucosa vs. non-malignant lesions 

classification, it was found a 5-fold cross-validation accuracy of 95.3 % at a sensitivity of 

95.4 % and specificity of 95.2 %. The area under the curve was found to be 0.99, with 

only four out of 85 tissue spectra being misclassified. Spectral classification of OSCC 

against physiological mucosa gave an overall accuracy of 89.8 % at a sensitivity of 93.7 % 

and specificity of 81.0 %. Here, a total of 123 out of 137 were correctly classified while 

eight physiological tissue samples were falsely classified as OSCC and six OSCC were 

misclassified as physiological tissue. The respective AUC was determined to be 0.90.  
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Figure 4.9: Receiver-operating characteristic curve. Performance of the PCA-LDA classifiers, between 
physiological mucosa and non-malignant lesions (black curve), physiologic vs. OSCC (red curve), and 
OSCC against non-malignant lesions (green curve). (source: Ref. [5]) 

Classification of OSCC against non-malignant tissues resulted in a sensitivity of 93.7 % 

and specificity of 76.7 %. In total, 122 out of 138 pathological tissues were correctly 

classified while 16 were falsely classified giving an overall accuracy of 88.4 % and an 

AUC of 0.93. The respective reference [5] provides additional details and discussions.  
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Conclusion 

Raman spectroscopy gains potency for a large variety of practical applications in different 

fields. Fiber optics facilitate the minimally invasive analysis in hazardous environments 

and in vivo investigations of hardly accessible samples such as inside the human body. 

On the contrary, intensive fluorescence interferences and low SNR pose considerable 

challenges to the interpretability of Raman spectra. Especially these two challenges are 

encountered by this thesis. This thesis reports the development of methods for the 

purification of Raman spectra from heavily interfered raw Raman spectra. The capabilities 

of the methods are demonstrated by their application to chemical engineering tasks or to 

cancer diagnostics in a medical context.  

Different methods for the processing of spectra that are relevant for the purification of the 

Raman spectra are developed and tested in the context of noise reduction and 

fluorescence rejection. The results show that it is possible to extract pure Raman spectra 

from heavily fluorescence-interfered raw Raman spectra, which feature low SNR. Based 

on the comparison with the state of the art techniques, the approaches proposed in this 

study significantly improve the Raman spectra post-processing. Even though explored 

and tested for Raman spectroscopy, these techniques can also be applied for other 

techniques such as diffractometry, emission spectroscopy, absorbance spectroscopy or 

chromatography. The exploration of deep neural networks for Raman spectra refinement 

showed promising results. In addition to the significant improvement of purification of 

Raman spectra, such an approach does not rely on any input parameters that humans 
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have to choose. Therefore, a pre-trained neural network can play a significant role in the 

automation of Raman spectral processing.  

In the scope of this study I demonstrated the potential of the proposed techniques for 

broadband backgrounds. However, the proposed techniques are also promising to 

efficiently recover Raman spectra from other complex backgrounds which might be 

composed of several non-variant narrowband peaks. Throughout all post-processing 

steps, care has been taken not to eliminate Raman signals from the processed spectra. 

According to the world cancer report, cancer is a major public health problem worldwide 

and the leading cause of premature death in most countries. In this study, I demonstrated 

the effectiveness of Raman spectra preprocessing approaches in combination with 

machine learning tools to identify breast and oral squamous cell carcinoma. I explored 

whether physiological mucosa, non-malignant lesions and oral cancer can be 

differentiated. To this end, pure Raman spectra of the respective tissues were isolated 

from heavily fluorescence interfered raw spectra using the proposed Raman purification 

techniques. The results demonstrate that malignant and non-malignant lesions can be 

differentiated from the physiological tissue of the oral cavity with a high accuracy, despite 

considerable heterogeneity of these lesions. The technique showed excellent results for 

the correct distinction of non-malignant lesions, oral squamous cell carcinoma and 

physiological mucosa. Invasive breast carcinoma can also be differentiated from 

fibroadenoma with a high accuracy by isolating the pure Raman spectrum of the 

respective tissue from its heavily fluorescence interfered raw spectrum. The differentiation 

between diseased and non-diseased was also found to be correlated to and determined 

by the spectral features of protein, lipid and nucleic acid.  

Putting everything in a nutshell, I have developed a method which outperforms state of 

the art methods with respect to noise reduction and background elimination and which 

additionally does not rely on any human intervention. 




